root/drivers/edac/sb_edac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. show_dram_attr
  2. sad_pkg
  3. numrank
  4. numrow
  5. numcol
  6. get_sbridge_dev
  7. alloc_sbridge_dev
  8. free_sbridge_dev
  9. sbridge_get_tolm
  10. sbridge_get_tohm
  11. ibridge_get_tolm
  12. ibridge_get_tohm
  13. rir_limit
  14. sad_limit
  15. interleave_mode
  16. dram_attr
  17. knl_sad_limit
  18. knl_interleave_mode
  19. get_intlv_mode_str
  20. dram_attr_knl
  21. get_memory_type
  22. haswell_get_memory_type
  23. knl_get_width
  24. sbridge_get_width
  25. __ibridge_get_width
  26. ibridge_get_width
  27. broadwell_get_width
  28. knl_get_memory_type
  29. get_node_id
  30. haswell_get_node_id
  31. knl_get_node_id
  32. sbridge_get_ha
  33. ibridge_get_ha
  34. knl_get_ha
  35. haswell_get_tolm
  36. haswell_get_tohm
  37. knl_get_tolm
  38. knl_get_tohm
  39. haswell_rir_limit
  40. sad_pkg_socket
  41. sad_pkg_ha
  42. haswell_chan_hash
  43. knl_get_tad
  44. knl_channel_mc
  45. knl_get_edc_route
  46. knl_get_mc_route
  47. knl_show_edc_route
  48. knl_show_mc_route
  49. knl_get_dimm_capacity
  50. get_source_id
  51. __populate_dimms
  52. get_dimm_config
  53. get_memory_layout
  54. get_mci_for_node_id
  55. get_memory_error_data
  56. get_memory_error_data_from_mce
  57. sbridge_put_devices
  58. sbridge_put_all_devices
  59. sbridge_get_onedevice
  60. sbridge_get_all_devices
  61. sbridge_mci_bind_devs
  62. ibridge_mci_bind_devs
  63. haswell_mci_bind_devs
  64. broadwell_mci_bind_devs
  65. knl_mci_bind_devs
  66. sbridge_mce_output_error
  67. sbridge_mce_check_error
  68. sbridge_unregister_mci
  69. sbridge_register_mci
  70. sbridge_probe
  71. sbridge_remove
  72. sbridge_init
  73. sbridge_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
   3  *
   4  * This driver supports the memory controllers found on the Intel
   5  * processor family Sandy Bridge.
   6  *
   7  * Copyright (c) 2011 by:
   8  *       Mauro Carvalho Chehab
   9  */
  10 
  11 #include <linux/module.h>
  12 #include <linux/init.h>
  13 #include <linux/pci.h>
  14 #include <linux/pci_ids.h>
  15 #include <linux/slab.h>
  16 #include <linux/delay.h>
  17 #include <linux/edac.h>
  18 #include <linux/mmzone.h>
  19 #include <linux/smp.h>
  20 #include <linux/bitmap.h>
  21 #include <linux/math64.h>
  22 #include <linux/mod_devicetable.h>
  23 #include <asm/cpu_device_id.h>
  24 #include <asm/intel-family.h>
  25 #include <asm/processor.h>
  26 #include <asm/mce.h>
  27 
  28 #include "edac_module.h"
  29 
  30 /* Static vars */
  31 static LIST_HEAD(sbridge_edac_list);
  32 
  33 /*
  34  * Alter this version for the module when modifications are made
  35  */
  36 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
  37 #define EDAC_MOD_STR        "sb_edac"
  38 
  39 /*
  40  * Debug macros
  41  */
  42 #define sbridge_printk(level, fmt, arg...)                      \
  43         edac_printk(level, "sbridge", fmt, ##arg)
  44 
  45 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
  46         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  47 
  48 /*
  49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  50  */
  51 #define GET_BITFIELD(v, lo, hi) \
  52         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  53 
  54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  55 static const u32 sbridge_dram_rule[] = {
  56         0x80, 0x88, 0x90, 0x98, 0xa0,
  57         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  58 };
  59 
  60 static const u32 ibridge_dram_rule[] = {
  61         0x60, 0x68, 0x70, 0x78, 0x80,
  62         0x88, 0x90, 0x98, 0xa0, 0xa8,
  63         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  64         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  65 };
  66 
  67 static const u32 knl_dram_rule[] = {
  68         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  69         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  70         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  71         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  72         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
  73 };
  74 
  75 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
  76 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
  77 
  78 static char *show_dram_attr(u32 attr)
  79 {
  80         switch (attr) {
  81                 case 0:
  82                         return "DRAM";
  83                 case 1:
  84                         return "MMCFG";
  85                 case 2:
  86                         return "NXM";
  87                 default:
  88                         return "unknown";
  89         }
  90 }
  91 
  92 static const u32 sbridge_interleave_list[] = {
  93         0x84, 0x8c, 0x94, 0x9c, 0xa4,
  94         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  95 };
  96 
  97 static const u32 ibridge_interleave_list[] = {
  98         0x64, 0x6c, 0x74, 0x7c, 0x84,
  99         0x8c, 0x94, 0x9c, 0xa4, 0xac,
 100         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
 101         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
 102 };
 103 
 104 static const u32 knl_interleave_list[] = {
 105         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
 106         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
 107         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
 108         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
 109         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
 110 };
 111 #define MAX_INTERLEAVE                                                  \
 112         (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),       \
 113                max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
 114                      ARRAY_SIZE(knl_interleave_list))))
 115 
 116 struct interleave_pkg {
 117         unsigned char start;
 118         unsigned char end;
 119 };
 120 
 121 static const struct interleave_pkg sbridge_interleave_pkg[] = {
 122         { 0, 2 },
 123         { 3, 5 },
 124         { 8, 10 },
 125         { 11, 13 },
 126         { 16, 18 },
 127         { 19, 21 },
 128         { 24, 26 },
 129         { 27, 29 },
 130 };
 131 
 132 static const struct interleave_pkg ibridge_interleave_pkg[] = {
 133         { 0, 3 },
 134         { 4, 7 },
 135         { 8, 11 },
 136         { 12, 15 },
 137         { 16, 19 },
 138         { 20, 23 },
 139         { 24, 27 },
 140         { 28, 31 },
 141 };
 142 
 143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
 144                           int interleave)
 145 {
 146         return GET_BITFIELD(reg, table[interleave].start,
 147                             table[interleave].end);
 148 }
 149 
 150 /* Devices 12 Function 7 */
 151 
 152 #define TOLM            0x80
 153 #define TOHM            0x84
 154 #define HASWELL_TOLM    0xd0
 155 #define HASWELL_TOHM_0  0xd4
 156 #define HASWELL_TOHM_1  0xd8
 157 #define KNL_TOLM        0xd0
 158 #define KNL_TOHM_0      0xd4
 159 #define KNL_TOHM_1      0xd8
 160 
 161 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 162 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 163 
 164 /* Device 13 Function 6 */
 165 
 166 #define SAD_TARGET      0xf0
 167 
 168 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
 169 
 170 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
 171 
 172 #define SAD_CONTROL     0xf4
 173 
 174 /* Device 14 function 0 */
 175 
 176 static const u32 tad_dram_rule[] = {
 177         0x40, 0x44, 0x48, 0x4c,
 178         0x50, 0x54, 0x58, 0x5c,
 179         0x60, 0x64, 0x68, 0x6c,
 180 };
 181 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
 182 
 183 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 184 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
 185 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
 186 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
 187 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
 188 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
 189 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
 190 
 191 /* Device 15, function 0 */
 192 
 193 #define MCMTR                   0x7c
 194 #define KNL_MCMTR               0x624
 195 
 196 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
 197 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
 198 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
 199 
 200 /* Device 15, function 1 */
 201 
 202 #define RASENABLES              0xac
 203 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
 204 
 205 /* Device 15, functions 2-5 */
 206 
 207 static const int mtr_regs[] = {
 208         0x80, 0x84, 0x88,
 209 };
 210 
 211 static const int knl_mtr_reg = 0xb60;
 212 
 213 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
 214 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
 215 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
 216 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
 217 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
 218 
 219 static const u32 tad_ch_nilv_offset[] = {
 220         0x90, 0x94, 0x98, 0x9c,
 221         0xa0, 0xa4, 0xa8, 0xac,
 222         0xb0, 0xb4, 0xb8, 0xbc,
 223 };
 224 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
 225 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
 226 
 227 static const u32 rir_way_limit[] = {
 228         0x108, 0x10c, 0x110, 0x114, 0x118,
 229 };
 230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 231 
 232 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
 233 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
 234 
 235 #define MAX_RIR_WAY     8
 236 
 237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 238         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 239         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 240         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 241         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 242         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 243 };
 244 
 245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
 246         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
 247 
 248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
 249         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
 250 
 251 /* Device 16, functions 2-7 */
 252 
 253 /*
 254  * FIXME: Implement the error count reads directly
 255  */
 256 
 257 static const u32 correrrcnt[] = {
 258         0x104, 0x108, 0x10c, 0x110,
 259 };
 260 
 261 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
 262 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
 263 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
 264 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
 265 
 266 static const u32 correrrthrsld[] = {
 267         0x11c, 0x120, 0x124, 0x128,
 268 };
 269 
 270 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
 271 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
 272 
 273 
 274 /* Device 17, function 0 */
 275 
 276 #define SB_RANK_CFG_A           0x0328
 277 
 278 #define IB_RANK_CFG_A           0x0320
 279 
 280 /*
 281  * sbridge structs
 282  */
 283 
 284 #define NUM_CHANNELS            6       /* Max channels per MC */
 285 #define MAX_DIMMS               3       /* Max DIMMS per channel */
 286 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
 287 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
 288 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
 289 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
 290 
 291 enum type {
 292         SANDY_BRIDGE,
 293         IVY_BRIDGE,
 294         HASWELL,
 295         BROADWELL,
 296         KNIGHTS_LANDING,
 297 };
 298 
 299 enum domain {
 300         IMC0 = 0,
 301         IMC1,
 302         SOCK,
 303 };
 304 
 305 enum mirroring_mode {
 306         NON_MIRRORING,
 307         ADDR_RANGE_MIRRORING,
 308         FULL_MIRRORING,
 309 };
 310 
 311 struct sbridge_pvt;
 312 struct sbridge_info {
 313         enum type       type;
 314         u32             mcmtr;
 315         u32             rankcfgr;
 316         u64             (*get_tolm)(struct sbridge_pvt *pvt);
 317         u64             (*get_tohm)(struct sbridge_pvt *pvt);
 318         u64             (*rir_limit)(u32 reg);
 319         u64             (*sad_limit)(u32 reg);
 320         u32             (*interleave_mode)(u32 reg);
 321         u32             (*dram_attr)(u32 reg);
 322         const u32       *dram_rule;
 323         const u32       *interleave_list;
 324         const struct interleave_pkg *interleave_pkg;
 325         u8              max_sad;
 326         u8              (*get_node_id)(struct sbridge_pvt *pvt);
 327         u8              (*get_ha)(u8 bank);
 328         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
 329         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
 330         struct pci_dev  *pci_vtd;
 331 };
 332 
 333 struct sbridge_channel {
 334         u32             ranks;
 335         u32             dimms;
 336 };
 337 
 338 struct pci_id_descr {
 339         int                     dev_id;
 340         int                     optional;
 341         enum domain             dom;
 342 };
 343 
 344 struct pci_id_table {
 345         const struct pci_id_descr       *descr;
 346         int                             n_devs_per_imc;
 347         int                             n_devs_per_sock;
 348         int                             n_imcs_per_sock;
 349         enum type                       type;
 350 };
 351 
 352 struct sbridge_dev {
 353         struct list_head        list;
 354         int                     seg;
 355         u8                      bus, mc;
 356         u8                      node_id, source_id;
 357         struct pci_dev          **pdev;
 358         enum domain             dom;
 359         int                     n_devs;
 360         int                     i_devs;
 361         struct mem_ctl_info     *mci;
 362 };
 363 
 364 struct knl_pvt {
 365         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
 366         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
 367         struct pci_dev          *pci_mc0;
 368         struct pci_dev          *pci_mc1;
 369         struct pci_dev          *pci_mc0_misc;
 370         struct pci_dev          *pci_mc1_misc;
 371         struct pci_dev          *pci_mc_info; /* tolm, tohm */
 372 };
 373 
 374 struct sbridge_pvt {
 375         /* Devices per socket */
 376         struct pci_dev          *pci_ddrio;
 377         struct pci_dev          *pci_sad0, *pci_sad1;
 378         struct pci_dev          *pci_br0, *pci_br1;
 379         /* Devices per memory controller */
 380         struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
 381         struct pci_dev          *pci_tad[NUM_CHANNELS];
 382 
 383         struct sbridge_dev      *sbridge_dev;
 384 
 385         struct sbridge_info     info;
 386         struct sbridge_channel  channel[NUM_CHANNELS];
 387 
 388         /* Memory type detection */
 389         bool                    is_cur_addr_mirrored, is_lockstep, is_close_pg;
 390         bool                    is_chan_hash;
 391         enum mirroring_mode     mirror_mode;
 392 
 393         /* Memory description */
 394         u64                     tolm, tohm;
 395         struct knl_pvt knl;
 396 };
 397 
 398 #define PCI_DESCR(device_id, opt, domain)       \
 399         .dev_id = (device_id),          \
 400         .optional = opt,        \
 401         .dom = domain
 402 
 403 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 404                 /* Processor Home Agent */
 405         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
 406 
 407                 /* Memory controller */
 408         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
 409         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
 410         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
 411         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
 412         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
 413         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
 414         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
 415 
 416                 /* System Address Decoder */
 417         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
 418         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
 419 
 420                 /* Broadcast Registers */
 421         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
 422 };
 423 
 424 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
 425         .descr = A,                     \
 426         .n_devs_per_imc = N,    \
 427         .n_devs_per_sock = ARRAY_SIZE(A),       \
 428         .n_imcs_per_sock = M,   \
 429         .type = T                       \
 430 }
 431 
 432 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 433         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
 434         {0,}                    /* 0 terminated list. */
 435 };
 436 
 437 /* This changes depending if 1HA or 2HA:
 438  * 1HA:
 439  *      0x0eb8 (17.0) is DDRIO0
 440  * 2HA:
 441  *      0x0ebc (17.4) is DDRIO0
 442  */
 443 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
 444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
 445 
 446 /* pci ids */
 447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
 448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
 449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
 450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
 451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
 452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
 453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
 454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
 455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
 456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
 457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
 458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
 459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
 460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
 461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
 462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
 463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
 464 
 465 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
 466                 /* Processor Home Agent */
 467         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
 468         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
 469 
 470                 /* Memory controller */
 471         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
 472         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
 473         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
 474         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
 475         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
 476         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
 477 
 478                 /* Optional, mode 2HA */
 479         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
 480         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
 481         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
 482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
 483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
 484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
 485 
 486         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
 487         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
 488 
 489                 /* System Address Decoder */
 490         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
 491 
 492                 /* Broadcast Registers */
 493         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
 494         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
 495 
 496 };
 497 
 498 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
 499         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
 500         {0,}                    /* 0 terminated list. */
 501 };
 502 
 503 /* Haswell support */
 504 /* EN processor:
 505  *      - 1 IMC
 506  *      - 3 DDR3 channels, 2 DPC per channel
 507  * EP processor:
 508  *      - 1 or 2 IMC
 509  *      - 4 DDR4 channels, 3 DPC per channel
 510  * EP 4S processor:
 511  *      - 2 IMC
 512  *      - 4 DDR4 channels, 3 DPC per channel
 513  * EX processor:
 514  *      - 2 IMC
 515  *      - each IMC interfaces with a SMI 2 channel
 516  *      - each SMI channel interfaces with a scalable memory buffer
 517  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 518  */
 519 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
 520 #define HASWELL_HASYSDEFEATURE2 0x84
 521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
 522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
 523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
 524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
 525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
 526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
 527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
 528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
 529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
 530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
 531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
 532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
 533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
 534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
 535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
 536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
 537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
 538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
 539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
 540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
 541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
 542 static const struct pci_id_descr pci_dev_descr_haswell[] = {
 543         /* first item must be the HA */
 544         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
 545         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
 546 
 547         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
 548         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
 549         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
 550         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
 551         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
 552         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
 553 
 554         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
 555         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
 556         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
 557         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
 558         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
 559         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
 560 
 561         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
 562         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
 563         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
 564         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
 565         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
 566         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
 567 };
 568 
 569 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
 570         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
 571         {0,}                    /* 0 terminated list. */
 572 };
 573 
 574 /* Knight's Landing Support */
 575 /*
 576  * KNL's memory channels are swizzled between memory controllers.
 577  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
 578  */
 579 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
 580 
 581 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
 582 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
 583 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
 584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
 585 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
 586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
 587 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
 588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
 589 /* SAD target - 1-29-1 (1 of these) */
 590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
 591 /* Caching / Home Agent */
 592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
 593 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
 594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
 595 
 596 /*
 597  * KNL differs from SB, IB, and Haswell in that it has multiple
 598  * instances of the same device with the same device ID, so we handle that
 599  * by creating as many copies in the table as we expect to find.
 600  * (Like device ID must be grouped together.)
 601  */
 602 
 603 static const struct pci_id_descr pci_dev_descr_knl[] = {
 604         [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
 605         [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
 606         [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
 607         [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
 608         [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
 609         [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
 610         [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
 611 };
 612 
 613 static const struct pci_id_table pci_dev_descr_knl_table[] = {
 614         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
 615         {0,}
 616 };
 617 
 618 /*
 619  * Broadwell support
 620  *
 621  * DE processor:
 622  *      - 1 IMC
 623  *      - 2 DDR3 channels, 2 DPC per channel
 624  * EP processor:
 625  *      - 1 or 2 IMC
 626  *      - 4 DDR4 channels, 3 DPC per channel
 627  * EP 4S processor:
 628  *      - 2 IMC
 629  *      - 4 DDR4 channels, 3 DPC per channel
 630  * EX processor:
 631  *      - 2 IMC
 632  *      - each IMC interfaces with a SMI 2 channel
 633  *      - each SMI channel interfaces with a scalable memory buffer
 634  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 635  */
 636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
 637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
 638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
 639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
 640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
 641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
 642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
 643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
 644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
 645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
 646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
 647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
 648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
 649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
 650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
 651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
 652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
 653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
 654 
 655 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
 656         /* first item must be the HA */
 657         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
 658         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
 659 
 660         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
 661         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
 662         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
 663         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
 664         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
 665         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
 666 
 667         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
 668         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
 669         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
 670         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
 671         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
 672         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
 673 
 674         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
 675         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
 676         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
 677 };
 678 
 679 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
 680         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
 681         {0,}                    /* 0 terminated list. */
 682 };
 683 
 684 
 685 /****************************************************************************
 686                         Ancillary status routines
 687  ****************************************************************************/
 688 
 689 static inline int numrank(enum type type, u32 mtr)
 690 {
 691         int ranks = (1 << RANK_CNT_BITS(mtr));
 692         int max = 4;
 693 
 694         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
 695                 max = 8;
 696 
 697         if (ranks > max) {
 698                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
 699                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 700                 return -EINVAL;
 701         }
 702 
 703         return ranks;
 704 }
 705 
 706 static inline int numrow(u32 mtr)
 707 {
 708         int rows = (RANK_WIDTH_BITS(mtr) + 12);
 709 
 710         if (rows < 13 || rows > 18) {
 711                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
 712                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 713                 return -EINVAL;
 714         }
 715 
 716         return 1 << rows;
 717 }
 718 
 719 static inline int numcol(u32 mtr)
 720 {
 721         int cols = (COL_WIDTH_BITS(mtr) + 10);
 722 
 723         if (cols > 12) {
 724                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
 725                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 726                 return -EINVAL;
 727         }
 728 
 729         return 1 << cols;
 730 }
 731 
 732 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
 733                                            int multi_bus,
 734                                            struct sbridge_dev *prev)
 735 {
 736         struct sbridge_dev *sbridge_dev;
 737 
 738         /*
 739          * If we have devices scattered across several busses that pertain
 740          * to the same memory controller, we'll lump them all together.
 741          */
 742         if (multi_bus) {
 743                 return list_first_entry_or_null(&sbridge_edac_list,
 744                                 struct sbridge_dev, list);
 745         }
 746 
 747         sbridge_dev = list_entry(prev ? prev->list.next
 748                                       : sbridge_edac_list.next, struct sbridge_dev, list);
 749 
 750         list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
 751                 if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
 752                                 (dom == SOCK || dom == sbridge_dev->dom))
 753                         return sbridge_dev;
 754         }
 755 
 756         return NULL;
 757 }
 758 
 759 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
 760                                              const struct pci_id_table *table)
 761 {
 762         struct sbridge_dev *sbridge_dev;
 763 
 764         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 765         if (!sbridge_dev)
 766                 return NULL;
 767 
 768         sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
 769                                     sizeof(*sbridge_dev->pdev),
 770                                     GFP_KERNEL);
 771         if (!sbridge_dev->pdev) {
 772                 kfree(sbridge_dev);
 773                 return NULL;
 774         }
 775 
 776         sbridge_dev->seg = seg;
 777         sbridge_dev->bus = bus;
 778         sbridge_dev->dom = dom;
 779         sbridge_dev->n_devs = table->n_devs_per_imc;
 780         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 781 
 782         return sbridge_dev;
 783 }
 784 
 785 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 786 {
 787         list_del(&sbridge_dev->list);
 788         kfree(sbridge_dev->pdev);
 789         kfree(sbridge_dev);
 790 }
 791 
 792 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
 793 {
 794         u32 reg;
 795 
 796         /* Address range is 32:28 */
 797         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
 798         return GET_TOLM(reg);
 799 }
 800 
 801 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
 802 {
 803         u32 reg;
 804 
 805         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
 806         return GET_TOHM(reg);
 807 }
 808 
 809 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
 810 {
 811         u32 reg;
 812 
 813         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
 814 
 815         return GET_TOLM(reg);
 816 }
 817 
 818 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
 819 {
 820         u32 reg;
 821 
 822         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
 823 
 824         return GET_TOHM(reg);
 825 }
 826 
 827 static u64 rir_limit(u32 reg)
 828 {
 829         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
 830 }
 831 
 832 static u64 sad_limit(u32 reg)
 833 {
 834         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
 835 }
 836 
 837 static u32 interleave_mode(u32 reg)
 838 {
 839         return GET_BITFIELD(reg, 1, 1);
 840 }
 841 
 842 static u32 dram_attr(u32 reg)
 843 {
 844         return GET_BITFIELD(reg, 2, 3);
 845 }
 846 
 847 static u64 knl_sad_limit(u32 reg)
 848 {
 849         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
 850 }
 851 
 852 static u32 knl_interleave_mode(u32 reg)
 853 {
 854         return GET_BITFIELD(reg, 1, 2);
 855 }
 856 
 857 static const char * const knl_intlv_mode[] = {
 858         "[8:6]", "[10:8]", "[14:12]", "[32:30]"
 859 };
 860 
 861 static const char *get_intlv_mode_str(u32 reg, enum type t)
 862 {
 863         if (t == KNIGHTS_LANDING)
 864                 return knl_intlv_mode[knl_interleave_mode(reg)];
 865         else
 866                 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
 867 }
 868 
 869 static u32 dram_attr_knl(u32 reg)
 870 {
 871         return GET_BITFIELD(reg, 3, 4);
 872 }
 873 
 874 
 875 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
 876 {
 877         u32 reg;
 878         enum mem_type mtype;
 879 
 880         if (pvt->pci_ddrio) {
 881                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
 882                                       &reg);
 883                 if (GET_BITFIELD(reg, 11, 11))
 884                         /* FIXME: Can also be LRDIMM */
 885                         mtype = MEM_RDDR3;
 886                 else
 887                         mtype = MEM_DDR3;
 888         } else
 889                 mtype = MEM_UNKNOWN;
 890 
 891         return mtype;
 892 }
 893 
 894 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
 895 {
 896         u32 reg;
 897         bool registered = false;
 898         enum mem_type mtype = MEM_UNKNOWN;
 899 
 900         if (!pvt->pci_ddrio)
 901                 goto out;
 902 
 903         pci_read_config_dword(pvt->pci_ddrio,
 904                               HASWELL_DDRCRCLKCONTROLS, &reg);
 905         /* Is_Rdimm */
 906         if (GET_BITFIELD(reg, 16, 16))
 907                 registered = true;
 908 
 909         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
 910         if (GET_BITFIELD(reg, 14, 14)) {
 911                 if (registered)
 912                         mtype = MEM_RDDR4;
 913                 else
 914                         mtype = MEM_DDR4;
 915         } else {
 916                 if (registered)
 917                         mtype = MEM_RDDR3;
 918                 else
 919                         mtype = MEM_DDR3;
 920         }
 921 
 922 out:
 923         return mtype;
 924 }
 925 
 926 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
 927 {
 928         /* for KNL value is fixed */
 929         return DEV_X16;
 930 }
 931 
 932 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 933 {
 934         /* there's no way to figure out */
 935         return DEV_UNKNOWN;
 936 }
 937 
 938 static enum dev_type __ibridge_get_width(u32 mtr)
 939 {
 940         enum dev_type type;
 941 
 942         switch (mtr) {
 943         case 3:
 944                 type = DEV_UNKNOWN;
 945                 break;
 946         case 2:
 947                 type = DEV_X16;
 948                 break;
 949         case 1:
 950                 type = DEV_X8;
 951                 break;
 952         case 0:
 953                 type = DEV_X4;
 954                 break;
 955         }
 956 
 957         return type;
 958 }
 959 
 960 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 961 {
 962         /*
 963          * ddr3_width on the documentation but also valid for DDR4 on
 964          * Haswell
 965          */
 966         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
 967 }
 968 
 969 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
 970 {
 971         /* ddr3_width on the documentation but also valid for DDR4 */
 972         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
 973 }
 974 
 975 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
 976 {
 977         /* DDR4 RDIMMS and LRDIMMS are supported */
 978         return MEM_RDDR4;
 979 }
 980 
 981 static u8 get_node_id(struct sbridge_pvt *pvt)
 982 {
 983         u32 reg;
 984         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
 985         return GET_BITFIELD(reg, 0, 2);
 986 }
 987 
 988 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
 989 {
 990         u32 reg;
 991 
 992         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 993         return GET_BITFIELD(reg, 0, 3);
 994 }
 995 
 996 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
 997 {
 998         u32 reg;
 999 
1000         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1001         return GET_BITFIELD(reg, 0, 2);
1002 }
1003 
1004 /*
1005  * Use the reporting bank number to determine which memory
1006  * controller (also known as "ha" for "home agent"). Sandy
1007  * Bridge only has one memory controller per socket, so the
1008  * answer is always zero.
1009  */
1010 static u8 sbridge_get_ha(u8 bank)
1011 {
1012         return 0;
1013 }
1014 
1015 /*
1016  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1017  * home agent bank (7, 8), or one of the per-channel memory
1018  * controller banks (9 .. 16).
1019  */
1020 static u8 ibridge_get_ha(u8 bank)
1021 {
1022         switch (bank) {
1023         case 7 ... 8:
1024                 return bank - 7;
1025         case 9 ... 16:
1026                 return (bank - 9) / 4;
1027         default:
1028                 return 0xff;
1029         }
1030 }
1031 
1032 /* Not used, but included for safety/symmetry */
1033 static u8 knl_get_ha(u8 bank)
1034 {
1035         return 0xff;
1036 }
1037 
1038 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1039 {
1040         u32 reg;
1041 
1042         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1043         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1044 }
1045 
1046 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1047 {
1048         u64 rc;
1049         u32 reg;
1050 
1051         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1052         rc = GET_BITFIELD(reg, 26, 31);
1053         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1054         rc = ((reg << 6) | rc) << 26;
1055 
1056         return rc | 0x1ffffff;
1057 }
1058 
1059 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1060 {
1061         u32 reg;
1062 
1063         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1064         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1065 }
1066 
1067 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1068 {
1069         u64 rc;
1070         u32 reg_lo, reg_hi;
1071 
1072         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1073         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1074         rc = ((u64)reg_hi << 32) | reg_lo;
1075         return rc | 0x3ffffff;
1076 }
1077 
1078 
1079 static u64 haswell_rir_limit(u32 reg)
1080 {
1081         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1082 }
1083 
1084 static inline u8 sad_pkg_socket(u8 pkg)
1085 {
1086         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1087         return ((pkg >> 3) << 2) | (pkg & 0x3);
1088 }
1089 
1090 static inline u8 sad_pkg_ha(u8 pkg)
1091 {
1092         return (pkg >> 2) & 0x1;
1093 }
1094 
1095 static int haswell_chan_hash(int idx, u64 addr)
1096 {
1097         int i;
1098 
1099         /*
1100          * XOR even bits from 12:26 to bit0 of idx,
1101          *     odd bits from 13:27 to bit1
1102          */
1103         for (i = 12; i < 28; i += 2)
1104                 idx ^= (addr >> i) & 3;
1105 
1106         return idx;
1107 }
1108 
1109 /* Low bits of TAD limit, and some metadata. */
1110 static const u32 knl_tad_dram_limit_lo[] = {
1111         0x400, 0x500, 0x600, 0x700,
1112         0x800, 0x900, 0xa00, 0xb00,
1113 };
1114 
1115 /* Low bits of TAD offset. */
1116 static const u32 knl_tad_dram_offset_lo[] = {
1117         0x404, 0x504, 0x604, 0x704,
1118         0x804, 0x904, 0xa04, 0xb04,
1119 };
1120 
1121 /* High 16 bits of TAD limit and offset. */
1122 static const u32 knl_tad_dram_hi[] = {
1123         0x408, 0x508, 0x608, 0x708,
1124         0x808, 0x908, 0xa08, 0xb08,
1125 };
1126 
1127 /* Number of ways a tad entry is interleaved. */
1128 static const u32 knl_tad_ways[] = {
1129         8, 6, 4, 3, 2, 1,
1130 };
1131 
1132 /*
1133  * Retrieve the n'th Target Address Decode table entry
1134  * from the memory controller's TAD table.
1135  *
1136  * @pvt:        driver private data
1137  * @entry:      which entry you want to retrieve
1138  * @mc:         which memory controller (0 or 1)
1139  * @offset:     output tad range offset
1140  * @limit:      output address of first byte above tad range
1141  * @ways:       output number of interleave ways
1142  *
1143  * The offset value has curious semantics.  It's a sort of running total
1144  * of the sizes of all the memory regions that aren't mapped in this
1145  * tad table.
1146  */
1147 static int knl_get_tad(const struct sbridge_pvt *pvt,
1148                 const int entry,
1149                 const int mc,
1150                 u64 *offset,
1151                 u64 *limit,
1152                 int *ways)
1153 {
1154         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1155         struct pci_dev *pci_mc;
1156         int way_id;
1157 
1158         switch (mc) {
1159         case 0:
1160                 pci_mc = pvt->knl.pci_mc0;
1161                 break;
1162         case 1:
1163                 pci_mc = pvt->knl.pci_mc1;
1164                 break;
1165         default:
1166                 WARN_ON(1);
1167                 return -EINVAL;
1168         }
1169 
1170         pci_read_config_dword(pci_mc,
1171                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1172         pci_read_config_dword(pci_mc,
1173                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1174         pci_read_config_dword(pci_mc,
1175                         knl_tad_dram_hi[entry], &reg_hi);
1176 
1177         /* Is this TAD entry enabled? */
1178         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1179                 return -ENODEV;
1180 
1181         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1182 
1183         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1184                 *ways = knl_tad_ways[way_id];
1185         } else {
1186                 *ways = 0;
1187                 sbridge_printk(KERN_ERR,
1188                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1189                                 way_id);
1190                 return -ENODEV;
1191         }
1192 
1193         /*
1194          * The least significant 6 bits of base and limit are truncated.
1195          * For limit, we fill the missing bits with 1s.
1196          */
1197         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1198                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1199         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1200                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1201 
1202         return 0;
1203 }
1204 
1205 /* Determine which memory controller is responsible for a given channel. */
1206 static int knl_channel_mc(int channel)
1207 {
1208         WARN_ON(channel < 0 || channel >= 6);
1209 
1210         return channel < 3 ? 1 : 0;
1211 }
1212 
1213 /*
1214  * Get the Nth entry from EDC_ROUTE_TABLE register.
1215  * (This is the per-tile mapping of logical interleave targets to
1216  *  physical EDC modules.)
1217  *
1218  * entry 0: 0:2
1219  *       1: 3:5
1220  *       2: 6:8
1221  *       3: 9:11
1222  *       4: 12:14
1223  *       5: 15:17
1224  *       6: 18:20
1225  *       7: 21:23
1226  * reserved: 24:31
1227  */
1228 static u32 knl_get_edc_route(int entry, u32 reg)
1229 {
1230         WARN_ON(entry >= KNL_MAX_EDCS);
1231         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1232 }
1233 
1234 /*
1235  * Get the Nth entry from MC_ROUTE_TABLE register.
1236  * (This is the per-tile mapping of logical interleave targets to
1237  *  physical DRAM channels modules.)
1238  *
1239  * entry 0: mc 0:2   channel 18:19
1240  *       1: mc 3:5   channel 20:21
1241  *       2: mc 6:8   channel 22:23
1242  *       3: mc 9:11  channel 24:25
1243  *       4: mc 12:14 channel 26:27
1244  *       5: mc 15:17 channel 28:29
1245  * reserved: 30:31
1246  *
1247  * Though we have 3 bits to identify the MC, we should only see
1248  * the values 0 or 1.
1249  */
1250 
1251 static u32 knl_get_mc_route(int entry, u32 reg)
1252 {
1253         int mc, chan;
1254 
1255         WARN_ON(entry >= KNL_MAX_CHANNELS);
1256 
1257         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1258         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1259 
1260         return knl_channel_remap(mc, chan);
1261 }
1262 
1263 /*
1264  * Render the EDC_ROUTE register in human-readable form.
1265  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1266  */
1267 static void knl_show_edc_route(u32 reg, char *s)
1268 {
1269         int i;
1270 
1271         for (i = 0; i < KNL_MAX_EDCS; i++) {
1272                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1273                 s[i*2+1] = '-';
1274         }
1275 
1276         s[KNL_MAX_EDCS*2 - 1] = '\0';
1277 }
1278 
1279 /*
1280  * Render the MC_ROUTE register in human-readable form.
1281  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1282  */
1283 static void knl_show_mc_route(u32 reg, char *s)
1284 {
1285         int i;
1286 
1287         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1288                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1289                 s[i*2+1] = '-';
1290         }
1291 
1292         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1293 }
1294 
1295 #define KNL_EDC_ROUTE 0xb8
1296 #define KNL_MC_ROUTE 0xb4
1297 
1298 /* Is this dram rule backed by regular DRAM in flat mode? */
1299 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1300 
1301 /* Is this dram rule cached? */
1302 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1303 
1304 /* Is this rule backed by edc ? */
1305 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1306 
1307 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1308 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1309 
1310 /* Is this rule mod3? */
1311 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1312 
1313 /*
1314  * Figure out how big our RAM modules are.
1315  *
1316  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1317  * have to figure this out from the SAD rules, interleave lists, route tables,
1318  * and TAD rules.
1319  *
1320  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1321  * inspect the TAD rules to figure out how large the SAD regions really are.
1322  *
1323  * When we know the real size of a SAD region and how many ways it's
1324  * interleaved, we know the individual contribution of each channel to
1325  * TAD is size/ways.
1326  *
1327  * Finally, we have to check whether each channel participates in each SAD
1328  * region.
1329  *
1330  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1331  * much memory the channel uses, we know the DIMM is at least that large.
1332  * (The BIOS might possibly choose not to map all available memory, in which
1333  * case we will underreport the size of the DIMM.)
1334  *
1335  * In theory, we could try to determine the EDC sizes as well, but that would
1336  * only work in flat mode, not in cache mode.
1337  *
1338  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1339  *            elements)
1340  */
1341 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1342 {
1343         u64 sad_base, sad_size, sad_limit = 0;
1344         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1345         int sad_rule = 0;
1346         int tad_rule = 0;
1347         int intrlv_ways, tad_ways;
1348         u32 first_pkg, pkg;
1349         int i;
1350         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1351         u32 dram_rule, interleave_reg;
1352         u32 mc_route_reg[KNL_MAX_CHAS];
1353         u32 edc_route_reg[KNL_MAX_CHAS];
1354         int edram_only;
1355         char edc_route_string[KNL_MAX_EDCS*2];
1356         char mc_route_string[KNL_MAX_CHANNELS*2];
1357         int cur_reg_start;
1358         int mc;
1359         int channel;
1360         int participants[KNL_MAX_CHANNELS];
1361 
1362         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1363                 mc_sizes[i] = 0;
1364 
1365         /* Read the EDC route table in each CHA. */
1366         cur_reg_start = 0;
1367         for (i = 0; i < KNL_MAX_CHAS; i++) {
1368                 pci_read_config_dword(pvt->knl.pci_cha[i],
1369                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1370 
1371                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1372                         knl_show_edc_route(edc_route_reg[i-1],
1373                                         edc_route_string);
1374                         if (cur_reg_start == i-1)
1375                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1376                                         cur_reg_start, edc_route_string);
1377                         else
1378                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1379                                         cur_reg_start, i-1, edc_route_string);
1380                         cur_reg_start = i;
1381                 }
1382         }
1383         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1384         if (cur_reg_start == i-1)
1385                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1386                         cur_reg_start, edc_route_string);
1387         else
1388                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1389                         cur_reg_start, i-1, edc_route_string);
1390 
1391         /* Read the MC route table in each CHA. */
1392         cur_reg_start = 0;
1393         for (i = 0; i < KNL_MAX_CHAS; i++) {
1394                 pci_read_config_dword(pvt->knl.pci_cha[i],
1395                         KNL_MC_ROUTE, &mc_route_reg[i]);
1396 
1397                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1398                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1399                         if (cur_reg_start == i-1)
1400                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1401                                         cur_reg_start, mc_route_string);
1402                         else
1403                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1404                                         cur_reg_start, i-1, mc_route_string);
1405                         cur_reg_start = i;
1406                 }
1407         }
1408         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1409         if (cur_reg_start == i-1)
1410                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1411                         cur_reg_start, mc_route_string);
1412         else
1413                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1414                         cur_reg_start, i-1, mc_route_string);
1415 
1416         /* Process DRAM rules */
1417         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1418                 /* previous limit becomes the new base */
1419                 sad_base = sad_limit;
1420 
1421                 pci_read_config_dword(pvt->pci_sad0,
1422                         pvt->info.dram_rule[sad_rule], &dram_rule);
1423 
1424                 if (!DRAM_RULE_ENABLE(dram_rule))
1425                         break;
1426 
1427                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1428 
1429                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1430                 sad_size = sad_limit - sad_base;
1431 
1432                 pci_read_config_dword(pvt->pci_sad0,
1433                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1434 
1435                 /*
1436                  * Find out how many ways this dram rule is interleaved.
1437                  * We stop when we see the first channel again.
1438                  */
1439                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1440                                                 interleave_reg, 0);
1441                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1442                         pkg = sad_pkg(pvt->info.interleave_pkg,
1443                                                 interleave_reg, intrlv_ways);
1444 
1445                         if ((pkg & 0x8) == 0) {
1446                                 /*
1447                                  * 0 bit means memory is non-local,
1448                                  * which KNL doesn't support
1449                                  */
1450                                 edac_dbg(0, "Unexpected interleave target %d\n",
1451                                         pkg);
1452                                 return -1;
1453                         }
1454 
1455                         if (pkg == first_pkg)
1456                                 break;
1457                 }
1458                 if (KNL_MOD3(dram_rule))
1459                         intrlv_ways *= 3;
1460 
1461                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1462                         sad_rule,
1463                         sad_base,
1464                         sad_limit,
1465                         intrlv_ways,
1466                         edram_only ? ", EDRAM" : "");
1467 
1468                 /*
1469                  * Find out how big the SAD region really is by iterating
1470                  * over TAD tables (SAD regions may contain holes).
1471                  * Each memory controller might have a different TAD table, so
1472                  * we have to look at both.
1473                  *
1474                  * Livespace is the memory that's mapped in this TAD table,
1475                  * deadspace is the holes (this could be the MMIO hole, or it
1476                  * could be memory that's mapped by the other TAD table but
1477                  * not this one).
1478                  */
1479                 for (mc = 0; mc < 2; mc++) {
1480                         sad_actual_size[mc] = 0;
1481                         tad_livespace = 0;
1482                         for (tad_rule = 0;
1483                                         tad_rule < ARRAY_SIZE(
1484                                                 knl_tad_dram_limit_lo);
1485                                         tad_rule++) {
1486                                 if (knl_get_tad(pvt,
1487                                                 tad_rule,
1488                                                 mc,
1489                                                 &tad_deadspace,
1490                                                 &tad_limit,
1491                                                 &tad_ways))
1492                                         break;
1493 
1494                                 tad_size = (tad_limit+1) -
1495                                         (tad_livespace + tad_deadspace);
1496                                 tad_livespace += tad_size;
1497                                 tad_base = (tad_limit+1) - tad_size;
1498 
1499                                 if (tad_base < sad_base) {
1500                                         if (tad_limit > sad_base)
1501                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1502                                 } else if (tad_base < sad_limit) {
1503                                         if (tad_limit+1 > sad_limit) {
1504                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1505                                         } else {
1506                                                 /* TAD region is completely inside SAD region */
1507                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1508                                                         tad_rule, tad_base,
1509                                                         tad_limit, tad_size,
1510                                                         mc);
1511                                                 sad_actual_size[mc] += tad_size;
1512                                         }
1513                                 }
1514                         }
1515                 }
1516 
1517                 for (mc = 0; mc < 2; mc++) {
1518                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1519                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1520                 }
1521 
1522                 /* Ignore EDRAM rule */
1523                 if (edram_only)
1524                         continue;
1525 
1526                 /* Figure out which channels participate in interleave. */
1527                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1528                         participants[channel] = 0;
1529 
1530                 /* For each channel, does at least one CHA have
1531                  * this channel mapped to the given target?
1532                  */
1533                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1534                         int target;
1535                         int cha;
1536 
1537                         for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1538                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1539                                         if (knl_get_mc_route(target,
1540                                                 mc_route_reg[cha]) == channel
1541                                                 && !participants[channel]) {
1542                                                 participants[channel] = 1;
1543                                                 break;
1544                                         }
1545                                 }
1546                         }
1547                 }
1548 
1549                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1550                         mc = knl_channel_mc(channel);
1551                         if (participants[channel]) {
1552                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1553                                         channel,
1554                                         sad_actual_size[mc]/intrlv_ways,
1555                                         sad_rule);
1556                                 mc_sizes[channel] +=
1557                                         sad_actual_size[mc]/intrlv_ways;
1558                         }
1559                 }
1560         }
1561 
1562         return 0;
1563 }
1564 
1565 static void get_source_id(struct mem_ctl_info *mci)
1566 {
1567         struct sbridge_pvt *pvt = mci->pvt_info;
1568         u32 reg;
1569 
1570         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1571             pvt->info.type == KNIGHTS_LANDING)
1572                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1573         else
1574                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1575 
1576         if (pvt->info.type == KNIGHTS_LANDING)
1577                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1578         else
1579                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1580 }
1581 
1582 static int __populate_dimms(struct mem_ctl_info *mci,
1583                             u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1584                             enum edac_type mode)
1585 {
1586         struct sbridge_pvt *pvt = mci->pvt_info;
1587         int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1588                                                          : NUM_CHANNELS;
1589         unsigned int i, j, banks, ranks, rows, cols, npages;
1590         struct dimm_info *dimm;
1591         enum mem_type mtype;
1592         u64 size;
1593 
1594         mtype = pvt->info.get_memory_type(pvt);
1595         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1596                 edac_dbg(0, "Memory is registered\n");
1597         else if (mtype == MEM_UNKNOWN)
1598                 edac_dbg(0, "Cannot determine memory type\n");
1599         else
1600                 edac_dbg(0, "Memory is unregistered\n");
1601 
1602         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1603                 banks = 16;
1604         else
1605                 banks = 8;
1606 
1607         for (i = 0; i < channels; i++) {
1608                 u32 mtr;
1609 
1610                 int max_dimms_per_channel;
1611 
1612                 if (pvt->info.type == KNIGHTS_LANDING) {
1613                         max_dimms_per_channel = 1;
1614                         if (!pvt->knl.pci_channel[i])
1615                                 continue;
1616                 } else {
1617                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1618                         if (!pvt->pci_tad[i])
1619                                 continue;
1620                 }
1621 
1622                 for (j = 0; j < max_dimms_per_channel; j++) {
1623                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1624                         if (pvt->info.type == KNIGHTS_LANDING) {
1625                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1626                                         knl_mtr_reg, &mtr);
1627                         } else {
1628                                 pci_read_config_dword(pvt->pci_tad[i],
1629                                         mtr_regs[j], &mtr);
1630                         }
1631                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1632                         if (IS_DIMM_PRESENT(mtr)) {
1633                                 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1634                                         sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1635                                                        pvt->sbridge_dev->source_id,
1636                                                        pvt->sbridge_dev->dom, i);
1637                                         return -ENODEV;
1638                                 }
1639                                 pvt->channel[i].dimms++;
1640 
1641                                 ranks = numrank(pvt->info.type, mtr);
1642 
1643                                 if (pvt->info.type == KNIGHTS_LANDING) {
1644                                         /* For DDR4, this is fixed. */
1645                                         cols = 1 << 10;
1646                                         rows = knl_mc_sizes[i] /
1647                                                 ((u64) cols * ranks * banks * 8);
1648                                 } else {
1649                                         rows = numrow(mtr);
1650                                         cols = numcol(mtr);
1651                                 }
1652 
1653                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1654                                 npages = MiB_TO_PAGES(size);
1655 
1656                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1657                                          pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1658                                          size, npages,
1659                                          banks, ranks, rows, cols);
1660 
1661                                 dimm->nr_pages = npages;
1662                                 dimm->grain = 32;
1663                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1664                                 dimm->mtype = mtype;
1665                                 dimm->edac_mode = mode;
1666                                 snprintf(dimm->label, sizeof(dimm->label),
1667                                                  "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1668                                                  pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1669                         }
1670                 }
1671         }
1672 
1673         return 0;
1674 }
1675 
1676 static int get_dimm_config(struct mem_ctl_info *mci)
1677 {
1678         struct sbridge_pvt *pvt = mci->pvt_info;
1679         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1680         enum edac_type mode;
1681         u32 reg;
1682 
1683         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1684         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1685                  pvt->sbridge_dev->mc,
1686                  pvt->sbridge_dev->node_id,
1687                  pvt->sbridge_dev->source_id);
1688 
1689         /* KNL doesn't support mirroring or lockstep,
1690          * and is always closed page
1691          */
1692         if (pvt->info.type == KNIGHTS_LANDING) {
1693                 mode = EDAC_S4ECD4ED;
1694                 pvt->mirror_mode = NON_MIRRORING;
1695                 pvt->is_cur_addr_mirrored = false;
1696 
1697                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1698                         return -1;
1699                 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1700                         edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1701                         return -ENODEV;
1702                 }
1703         } else {
1704                 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1705                         if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1706                                 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1707                                 return -ENODEV;
1708                         }
1709                         pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1710                         if (GET_BITFIELD(reg, 28, 28)) {
1711                                 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1712                                 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1713                                 goto next;
1714                         }
1715                 }
1716                 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1717                         edac_dbg(0, "Failed to read RASENABLES register\n");
1718                         return -ENODEV;
1719                 }
1720                 if (IS_MIRROR_ENABLED(reg)) {
1721                         pvt->mirror_mode = FULL_MIRRORING;
1722                         edac_dbg(0, "Full memory mirroring is enabled\n");
1723                 } else {
1724                         pvt->mirror_mode = NON_MIRRORING;
1725                         edac_dbg(0, "Memory mirroring is disabled\n");
1726                 }
1727 
1728 next:
1729                 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1730                         edac_dbg(0, "Failed to read MCMTR register\n");
1731                         return -ENODEV;
1732                 }
1733                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1734                         edac_dbg(0, "Lockstep is enabled\n");
1735                         mode = EDAC_S8ECD8ED;
1736                         pvt->is_lockstep = true;
1737                 } else {
1738                         edac_dbg(0, "Lockstep is disabled\n");
1739                         mode = EDAC_S4ECD4ED;
1740                         pvt->is_lockstep = false;
1741                 }
1742                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1743                         edac_dbg(0, "address map is on closed page mode\n");
1744                         pvt->is_close_pg = true;
1745                 } else {
1746                         edac_dbg(0, "address map is on open page mode\n");
1747                         pvt->is_close_pg = false;
1748                 }
1749         }
1750 
1751         return __populate_dimms(mci, knl_mc_sizes, mode);
1752 }
1753 
1754 static void get_memory_layout(const struct mem_ctl_info *mci)
1755 {
1756         struct sbridge_pvt *pvt = mci->pvt_info;
1757         int i, j, k, n_sads, n_tads, sad_interl;
1758         u32 reg;
1759         u64 limit, prv = 0;
1760         u64 tmp_mb;
1761         u32 gb, mb;
1762         u32 rir_way;
1763 
1764         /*
1765          * Step 1) Get TOLM/TOHM ranges
1766          */
1767 
1768         pvt->tolm = pvt->info.get_tolm(pvt);
1769         tmp_mb = (1 + pvt->tolm) >> 20;
1770 
1771         gb = div_u64_rem(tmp_mb, 1024, &mb);
1772         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1773                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1774 
1775         /* Address range is already 45:25 */
1776         pvt->tohm = pvt->info.get_tohm(pvt);
1777         tmp_mb = (1 + pvt->tohm) >> 20;
1778 
1779         gb = div_u64_rem(tmp_mb, 1024, &mb);
1780         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1781                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1782 
1783         /*
1784          * Step 2) Get SAD range and SAD Interleave list
1785          * TAD registers contain the interleave wayness. However, it
1786          * seems simpler to just discover it indirectly, with the
1787          * algorithm bellow.
1788          */
1789         prv = 0;
1790         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1791                 /* SAD_LIMIT Address range is 45:26 */
1792                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1793                                       &reg);
1794                 limit = pvt->info.sad_limit(reg);
1795 
1796                 if (!DRAM_RULE_ENABLE(reg))
1797                         continue;
1798 
1799                 if (limit <= prv)
1800                         break;
1801 
1802                 tmp_mb = (limit + 1) >> 20;
1803                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1804                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1805                          n_sads,
1806                          show_dram_attr(pvt->info.dram_attr(reg)),
1807                          gb, (mb*1000)/1024,
1808                          ((u64)tmp_mb) << 20L,
1809                          get_intlv_mode_str(reg, pvt->info.type),
1810                          reg);
1811                 prv = limit;
1812 
1813                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1814                                       &reg);
1815                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1816                 for (j = 0; j < 8; j++) {
1817                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1818                         if (j > 0 && sad_interl == pkg)
1819                                 break;
1820 
1821                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1822                                  n_sads, j, pkg);
1823                 }
1824         }
1825 
1826         if (pvt->info.type == KNIGHTS_LANDING)
1827                 return;
1828 
1829         /*
1830          * Step 3) Get TAD range
1831          */
1832         prv = 0;
1833         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1834                 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1835                 limit = TAD_LIMIT(reg);
1836                 if (limit <= prv)
1837                         break;
1838                 tmp_mb = (limit + 1) >> 20;
1839 
1840                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1841                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1842                          n_tads, gb, (mb*1000)/1024,
1843                          ((u64)tmp_mb) << 20L,
1844                          (u32)(1 << TAD_SOCK(reg)),
1845                          (u32)TAD_CH(reg) + 1,
1846                          (u32)TAD_TGT0(reg),
1847                          (u32)TAD_TGT1(reg),
1848                          (u32)TAD_TGT2(reg),
1849                          (u32)TAD_TGT3(reg),
1850                          reg);
1851                 prv = limit;
1852         }
1853 
1854         /*
1855          * Step 4) Get TAD offsets, per each channel
1856          */
1857         for (i = 0; i < NUM_CHANNELS; i++) {
1858                 if (!pvt->channel[i].dimms)
1859                         continue;
1860                 for (j = 0; j < n_tads; j++) {
1861                         pci_read_config_dword(pvt->pci_tad[i],
1862                                               tad_ch_nilv_offset[j],
1863                                               &reg);
1864                         tmp_mb = TAD_OFFSET(reg) >> 20;
1865                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1866                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1867                                  i, j,
1868                                  gb, (mb*1000)/1024,
1869                                  ((u64)tmp_mb) << 20L,
1870                                  reg);
1871                 }
1872         }
1873 
1874         /*
1875          * Step 6) Get RIR Wayness/Limit, per each channel
1876          */
1877         for (i = 0; i < NUM_CHANNELS; i++) {
1878                 if (!pvt->channel[i].dimms)
1879                         continue;
1880                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1881                         pci_read_config_dword(pvt->pci_tad[i],
1882                                               rir_way_limit[j],
1883                                               &reg);
1884 
1885                         if (!IS_RIR_VALID(reg))
1886                                 continue;
1887 
1888                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1889                         rir_way = 1 << RIR_WAY(reg);
1890                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1891                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1892                                  i, j,
1893                                  gb, (mb*1000)/1024,
1894                                  ((u64)tmp_mb) << 20L,
1895                                  rir_way,
1896                                  reg);
1897 
1898                         for (k = 0; k < rir_way; k++) {
1899                                 pci_read_config_dword(pvt->pci_tad[i],
1900                                                       rir_offset[j][k],
1901                                                       &reg);
1902                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1903 
1904                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1905                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1906                                          i, j, k,
1907                                          gb, (mb*1000)/1024,
1908                                          ((u64)tmp_mb) << 20L,
1909                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1910                                          reg);
1911                         }
1912                 }
1913         }
1914 }
1915 
1916 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1917 {
1918         struct sbridge_dev *sbridge_dev;
1919 
1920         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1921                 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1922                         return sbridge_dev->mci;
1923         }
1924         return NULL;
1925 }
1926 
1927 static int get_memory_error_data(struct mem_ctl_info *mci,
1928                                  u64 addr,
1929                                  u8 *socket, u8 *ha,
1930                                  long *channel_mask,
1931                                  u8 *rank,
1932                                  char **area_type, char *msg)
1933 {
1934         struct mem_ctl_info     *new_mci;
1935         struct sbridge_pvt *pvt = mci->pvt_info;
1936         struct pci_dev          *pci_ha;
1937         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1938         int                     sad_interl, idx, base_ch;
1939         int                     interleave_mode, shiftup = 0;
1940         unsigned int            sad_interleave[MAX_INTERLEAVE];
1941         u32                     reg, dram_rule;
1942         u8                      ch_way, sck_way, pkg, sad_ha = 0;
1943         u32                     tad_offset;
1944         u32                     rir_way;
1945         u32                     mb, gb;
1946         u64                     ch_addr, offset, limit = 0, prv = 0;
1947 
1948 
1949         /*
1950          * Step 0) Check if the address is at special memory ranges
1951          * The check bellow is probably enough to fill all cases where
1952          * the error is not inside a memory, except for the legacy
1953          * range (e. g. VGA addresses). It is unlikely, however, that the
1954          * memory controller would generate an error on that range.
1955          */
1956         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1957                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1958                 return -EINVAL;
1959         }
1960         if (addr >= (u64)pvt->tohm) {
1961                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1962                 return -EINVAL;
1963         }
1964 
1965         /*
1966          * Step 1) Get socket
1967          */
1968         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1969                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1970                                       &reg);
1971 
1972                 if (!DRAM_RULE_ENABLE(reg))
1973                         continue;
1974 
1975                 limit = pvt->info.sad_limit(reg);
1976                 if (limit <= prv) {
1977                         sprintf(msg, "Can't discover the memory socket");
1978                         return -EINVAL;
1979                 }
1980                 if  (addr <= limit)
1981                         break;
1982                 prv = limit;
1983         }
1984         if (n_sads == pvt->info.max_sad) {
1985                 sprintf(msg, "Can't discover the memory socket");
1986                 return -EINVAL;
1987         }
1988         dram_rule = reg;
1989         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1990         interleave_mode = pvt->info.interleave_mode(dram_rule);
1991 
1992         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1993                               &reg);
1994 
1995         if (pvt->info.type == SANDY_BRIDGE) {
1996                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1997                 for (sad_way = 0; sad_way < 8; sad_way++) {
1998                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1999                         if (sad_way > 0 && sad_interl == pkg)
2000                                 break;
2001                         sad_interleave[sad_way] = pkg;
2002                         edac_dbg(0, "SAD interleave #%d: %d\n",
2003                                  sad_way, sad_interleave[sad_way]);
2004                 }
2005                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2006                          pvt->sbridge_dev->mc,
2007                          n_sads,
2008                          addr,
2009                          limit,
2010                          sad_way + 7,
2011                          !interleave_mode ? "" : "XOR[18:16]");
2012                 if (interleave_mode)
2013                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2014                 else
2015                         idx = (addr >> 6) & 7;
2016                 switch (sad_way) {
2017                 case 1:
2018                         idx = 0;
2019                         break;
2020                 case 2:
2021                         idx = idx & 1;
2022                         break;
2023                 case 4:
2024                         idx = idx & 3;
2025                         break;
2026                 case 8:
2027                         break;
2028                 default:
2029                         sprintf(msg, "Can't discover socket interleave");
2030                         return -EINVAL;
2031                 }
2032                 *socket = sad_interleave[idx];
2033                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2034                          idx, sad_way, *socket);
2035         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2036                 int bits, a7mode = A7MODE(dram_rule);
2037 
2038                 if (a7mode) {
2039                         /* A7 mode swaps P9 with P6 */
2040                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2041                         bits |= GET_BITFIELD(addr, 9, 9);
2042                 } else
2043                         bits = GET_BITFIELD(addr, 6, 8);
2044 
2045                 if (interleave_mode == 0) {
2046                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2047                         idx = GET_BITFIELD(addr, 16, 18);
2048                         idx ^= bits;
2049                 } else
2050                         idx = bits;
2051 
2052                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2053                 *socket = sad_pkg_socket(pkg);
2054                 sad_ha = sad_pkg_ha(pkg);
2055 
2056                 if (a7mode) {
2057                         /* MCChanShiftUpEnable */
2058                         pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2059                         shiftup = GET_BITFIELD(reg, 22, 22);
2060                 }
2061 
2062                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2063                          idx, *socket, sad_ha, shiftup);
2064         } else {
2065                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2066                 idx = (addr >> 6) & 7;
2067                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2068                 *socket = sad_pkg_socket(pkg);
2069                 sad_ha = sad_pkg_ha(pkg);
2070                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2071                          idx, *socket, sad_ha);
2072         }
2073 
2074         *ha = sad_ha;
2075 
2076         /*
2077          * Move to the proper node structure, in order to access the
2078          * right PCI registers
2079          */
2080         new_mci = get_mci_for_node_id(*socket, sad_ha);
2081         if (!new_mci) {
2082                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2083                         *socket);
2084                 return -EINVAL;
2085         }
2086         mci = new_mci;
2087         pvt = mci->pvt_info;
2088 
2089         /*
2090          * Step 2) Get memory channel
2091          */
2092         prv = 0;
2093         pci_ha = pvt->pci_ha;
2094         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2095                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2096                 limit = TAD_LIMIT(reg);
2097                 if (limit <= prv) {
2098                         sprintf(msg, "Can't discover the memory channel");
2099                         return -EINVAL;
2100                 }
2101                 if  (addr <= limit)
2102                         break;
2103                 prv = limit;
2104         }
2105         if (n_tads == MAX_TAD) {
2106                 sprintf(msg, "Can't discover the memory channel");
2107                 return -EINVAL;
2108         }
2109 
2110         ch_way = TAD_CH(reg) + 1;
2111         sck_way = TAD_SOCK(reg);
2112 
2113         if (ch_way == 3)
2114                 idx = addr >> 6;
2115         else {
2116                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2117                 if (pvt->is_chan_hash)
2118                         idx = haswell_chan_hash(idx, addr);
2119         }
2120         idx = idx % ch_way;
2121 
2122         /*
2123          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2124          */
2125         switch (idx) {
2126         case 0:
2127                 base_ch = TAD_TGT0(reg);
2128                 break;
2129         case 1:
2130                 base_ch = TAD_TGT1(reg);
2131                 break;
2132         case 2:
2133                 base_ch = TAD_TGT2(reg);
2134                 break;
2135         case 3:
2136                 base_ch = TAD_TGT3(reg);
2137                 break;
2138         default:
2139                 sprintf(msg, "Can't discover the TAD target");
2140                 return -EINVAL;
2141         }
2142         *channel_mask = 1 << base_ch;
2143 
2144         pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2145 
2146         if (pvt->mirror_mode == FULL_MIRRORING ||
2147             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2148                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2149                 switch(ch_way) {
2150                 case 2:
2151                 case 4:
2152                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2153                         break;
2154                 default:
2155                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2156                         return -EINVAL;
2157                 }
2158 
2159                 pvt->is_cur_addr_mirrored = true;
2160         } else {
2161                 sck_xch = (1 << sck_way) * ch_way;
2162                 pvt->is_cur_addr_mirrored = false;
2163         }
2164 
2165         if (pvt->is_lockstep)
2166                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2167 
2168         offset = TAD_OFFSET(tad_offset);
2169 
2170         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2171                  n_tads,
2172                  addr,
2173                  limit,
2174                  sck_way,
2175                  ch_way,
2176                  offset,
2177                  idx,
2178                  base_ch,
2179                  *channel_mask);
2180 
2181         /* Calculate channel address */
2182         /* Remove the TAD offset */
2183 
2184         if (offset > addr) {
2185                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2186                         offset, addr);
2187                 return -EINVAL;
2188         }
2189 
2190         ch_addr = addr - offset;
2191         ch_addr >>= (6 + shiftup);
2192         ch_addr /= sck_xch;
2193         ch_addr <<= (6 + shiftup);
2194         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2195 
2196         /*
2197          * Step 3) Decode rank
2198          */
2199         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2200                 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2201 
2202                 if (!IS_RIR_VALID(reg))
2203                         continue;
2204 
2205                 limit = pvt->info.rir_limit(reg);
2206                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2207                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2208                          n_rir,
2209                          gb, (mb*1000)/1024,
2210                          limit,
2211                          1 << RIR_WAY(reg));
2212                 if  (ch_addr <= limit)
2213                         break;
2214         }
2215         if (n_rir == MAX_RIR_RANGES) {
2216                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2217                         ch_addr);
2218                 return -EINVAL;
2219         }
2220         rir_way = RIR_WAY(reg);
2221 
2222         if (pvt->is_close_pg)
2223                 idx = (ch_addr >> 6);
2224         else
2225                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2226         idx %= 1 << rir_way;
2227 
2228         pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2229         *rank = RIR_RNK_TGT(pvt->info.type, reg);
2230 
2231         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2232                  n_rir,
2233                  ch_addr,
2234                  limit,
2235                  rir_way,
2236                  idx);
2237 
2238         return 0;
2239 }
2240 
2241 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2242                                           const struct mce *m, u8 *socket,
2243                                           u8 *ha, long *channel_mask,
2244                                           char *msg)
2245 {
2246         u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2247         struct mem_ctl_info *new_mci;
2248         struct sbridge_pvt *pvt;
2249         struct pci_dev *pci_ha;
2250         bool tad0;
2251 
2252         if (channel >= NUM_CHANNELS) {
2253                 sprintf(msg, "Invalid channel 0x%x", channel);
2254                 return -EINVAL;
2255         }
2256 
2257         pvt = mci->pvt_info;
2258         if (!pvt->info.get_ha) {
2259                 sprintf(msg, "No get_ha()");
2260                 return -EINVAL;
2261         }
2262         *ha = pvt->info.get_ha(m->bank);
2263         if (*ha != 0 && *ha != 1) {
2264                 sprintf(msg, "Impossible bank %d", m->bank);
2265                 return -EINVAL;
2266         }
2267 
2268         *socket = m->socketid;
2269         new_mci = get_mci_for_node_id(*socket, *ha);
2270         if (!new_mci) {
2271                 strcpy(msg, "mci socket got corrupted!");
2272                 return -EINVAL;
2273         }
2274 
2275         pvt = new_mci->pvt_info;
2276         pci_ha = pvt->pci_ha;
2277         pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2278         tad0 = m->addr <= TAD_LIMIT(reg);
2279 
2280         *channel_mask = 1 << channel;
2281         if (pvt->mirror_mode == FULL_MIRRORING ||
2282             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2283                 *channel_mask |= 1 << ((channel + 2) % 4);
2284                 pvt->is_cur_addr_mirrored = true;
2285         } else {
2286                 pvt->is_cur_addr_mirrored = false;
2287         }
2288 
2289         if (pvt->is_lockstep)
2290                 *channel_mask |= 1 << ((channel + 1) % 4);
2291 
2292         return 0;
2293 }
2294 
2295 /****************************************************************************
2296         Device initialization routines: put/get, init/exit
2297  ****************************************************************************/
2298 
2299 /*
2300  *      sbridge_put_all_devices 'put' all the devices that we have
2301  *                              reserved via 'get'
2302  */
2303 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2304 {
2305         int i;
2306 
2307         edac_dbg(0, "\n");
2308         for (i = 0; i < sbridge_dev->n_devs; i++) {
2309                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2310                 if (!pdev)
2311                         continue;
2312                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2313                          pdev->bus->number,
2314                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2315                 pci_dev_put(pdev);
2316         }
2317 }
2318 
2319 static void sbridge_put_all_devices(void)
2320 {
2321         struct sbridge_dev *sbridge_dev, *tmp;
2322 
2323         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2324                 sbridge_put_devices(sbridge_dev);
2325                 free_sbridge_dev(sbridge_dev);
2326         }
2327 }
2328 
2329 static int sbridge_get_onedevice(struct pci_dev **prev,
2330                                  u8 *num_mc,
2331                                  const struct pci_id_table *table,
2332                                  const unsigned devno,
2333                                  const int multi_bus)
2334 {
2335         struct sbridge_dev *sbridge_dev = NULL;
2336         const struct pci_id_descr *dev_descr = &table->descr[devno];
2337         struct pci_dev *pdev = NULL;
2338         int seg = 0;
2339         u8 bus = 0;
2340         int i = 0;
2341 
2342         sbridge_printk(KERN_DEBUG,
2343                 "Seeking for: PCI ID %04x:%04x\n",
2344                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2345 
2346         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2347                               dev_descr->dev_id, *prev);
2348 
2349         if (!pdev) {
2350                 if (*prev) {
2351                         *prev = pdev;
2352                         return 0;
2353                 }
2354 
2355                 if (dev_descr->optional)
2356                         return 0;
2357 
2358                 /* if the HA wasn't found */
2359                 if (devno == 0)
2360                         return -ENODEV;
2361 
2362                 sbridge_printk(KERN_INFO,
2363                         "Device not found: %04x:%04x\n",
2364                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2365 
2366                 /* End of list, leave */
2367                 return -ENODEV;
2368         }
2369         seg = pci_domain_nr(pdev->bus);
2370         bus = pdev->bus->number;
2371 
2372 next_imc:
2373         sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2374                                       multi_bus, sbridge_dev);
2375         if (!sbridge_dev) {
2376                 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2377                 if (dev_descr->dom == IMC1 && devno != 1) {
2378                         edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2379                                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2380                         pci_dev_put(pdev);
2381                         return 0;
2382                 }
2383 
2384                 if (dev_descr->dom == SOCK)
2385                         goto out_imc;
2386 
2387                 sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2388                 if (!sbridge_dev) {
2389                         pci_dev_put(pdev);
2390                         return -ENOMEM;
2391                 }
2392                 (*num_mc)++;
2393         }
2394 
2395         if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2396                 sbridge_printk(KERN_ERR,
2397                         "Duplicated device for %04x:%04x\n",
2398                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2399                 pci_dev_put(pdev);
2400                 return -ENODEV;
2401         }
2402 
2403         sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2404 
2405         /* pdev belongs to more than one IMC, do extra gets */
2406         if (++i > 1)
2407                 pci_dev_get(pdev);
2408 
2409         if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2410                 goto next_imc;
2411 
2412 out_imc:
2413         /* Be sure that the device is enabled */
2414         if (unlikely(pci_enable_device(pdev) < 0)) {
2415                 sbridge_printk(KERN_ERR,
2416                         "Couldn't enable %04x:%04x\n",
2417                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2418                 return -ENODEV;
2419         }
2420 
2421         edac_dbg(0, "Detected %04x:%04x\n",
2422                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2423 
2424         /*
2425          * As stated on drivers/pci/search.c, the reference count for
2426          * @from is always decremented if it is not %NULL. So, as we need
2427          * to get all devices up to null, we need to do a get for the device
2428          */
2429         pci_dev_get(pdev);
2430 
2431         *prev = pdev;
2432 
2433         return 0;
2434 }
2435 
2436 /*
2437  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2438  *                           devices we want to reference for this driver.
2439  * @num_mc: pointer to the memory controllers count, to be incremented in case
2440  *          of success.
2441  * @table: model specific table
2442  *
2443  * returns 0 in case of success or error code
2444  */
2445 static int sbridge_get_all_devices(u8 *num_mc,
2446                                         const struct pci_id_table *table)
2447 {
2448         int i, rc;
2449         struct pci_dev *pdev = NULL;
2450         int allow_dups = 0;
2451         int multi_bus = 0;
2452 
2453         if (table->type == KNIGHTS_LANDING)
2454                 allow_dups = multi_bus = 1;
2455         while (table && table->descr) {
2456                 for (i = 0; i < table->n_devs_per_sock; i++) {
2457                         if (!allow_dups || i == 0 ||
2458                                         table->descr[i].dev_id !=
2459                                                 table->descr[i-1].dev_id) {
2460                                 pdev = NULL;
2461                         }
2462                         do {
2463                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2464                                                            table, i, multi_bus);
2465                                 if (rc < 0) {
2466                                         if (i == 0) {
2467                                                 i = table->n_devs_per_sock;
2468                                                 break;
2469                                         }
2470                                         sbridge_put_all_devices();
2471                                         return -ENODEV;
2472                                 }
2473                         } while (pdev && !allow_dups);
2474                 }
2475                 table++;
2476         }
2477 
2478         return 0;
2479 }
2480 
2481 /*
2482  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2483  * the format: XXXa. So we can convert from a device to the corresponding
2484  * channel like this
2485  */
2486 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2487 
2488 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2489                                  struct sbridge_dev *sbridge_dev)
2490 {
2491         struct sbridge_pvt *pvt = mci->pvt_info;
2492         struct pci_dev *pdev;
2493         u8 saw_chan_mask = 0;
2494         int i;
2495 
2496         for (i = 0; i < sbridge_dev->n_devs; i++) {
2497                 pdev = sbridge_dev->pdev[i];
2498                 if (!pdev)
2499                         continue;
2500 
2501                 switch (pdev->device) {
2502                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2503                         pvt->pci_sad0 = pdev;
2504                         break;
2505                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2506                         pvt->pci_sad1 = pdev;
2507                         break;
2508                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2509                         pvt->pci_br0 = pdev;
2510                         break;
2511                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2512                         pvt->pci_ha = pdev;
2513                         break;
2514                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2515                         pvt->pci_ta = pdev;
2516                         break;
2517                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2518                         pvt->pci_ras = pdev;
2519                         break;
2520                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2521                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2522                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2523                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2524                 {
2525                         int id = TAD_DEV_TO_CHAN(pdev->device);
2526                         pvt->pci_tad[id] = pdev;
2527                         saw_chan_mask |= 1 << id;
2528                 }
2529                         break;
2530                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2531                         pvt->pci_ddrio = pdev;
2532                         break;
2533                 default:
2534                         goto error;
2535                 }
2536 
2537                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2538                          pdev->vendor, pdev->device,
2539                          sbridge_dev->bus,
2540                          pdev);
2541         }
2542 
2543         /* Check if everything were registered */
2544         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2545             !pvt->pci_ras || !pvt->pci_ta)
2546                 goto enodev;
2547 
2548         if (saw_chan_mask != 0x0f)
2549                 goto enodev;
2550         return 0;
2551 
2552 enodev:
2553         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2554         return -ENODEV;
2555 
2556 error:
2557         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2558                        PCI_VENDOR_ID_INTEL, pdev->device);
2559         return -EINVAL;
2560 }
2561 
2562 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2563                                  struct sbridge_dev *sbridge_dev)
2564 {
2565         struct sbridge_pvt *pvt = mci->pvt_info;
2566         struct pci_dev *pdev;
2567         u8 saw_chan_mask = 0;
2568         int i;
2569 
2570         for (i = 0; i < sbridge_dev->n_devs; i++) {
2571                 pdev = sbridge_dev->pdev[i];
2572                 if (!pdev)
2573                         continue;
2574 
2575                 switch (pdev->device) {
2576                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2577                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2578                         pvt->pci_ha = pdev;
2579                         break;
2580                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2581                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2582                         pvt->pci_ta = pdev;
2583                         break;
2584                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2585                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2586                         pvt->pci_ras = pdev;
2587                         break;
2588                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2589                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2590                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2591                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2592                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2593                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2594                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2595                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2596                 {
2597                         int id = TAD_DEV_TO_CHAN(pdev->device);
2598                         pvt->pci_tad[id] = pdev;
2599                         saw_chan_mask |= 1 << id;
2600                 }
2601                         break;
2602                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2603                         pvt->pci_ddrio = pdev;
2604                         break;
2605                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2606                         pvt->pci_ddrio = pdev;
2607                         break;
2608                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2609                         pvt->pci_sad0 = pdev;
2610                         break;
2611                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2612                         pvt->pci_br0 = pdev;
2613                         break;
2614                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2615                         pvt->pci_br1 = pdev;
2616                         break;
2617                 default:
2618                         goto error;
2619                 }
2620 
2621                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2622                          sbridge_dev->bus,
2623                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2624                          pdev);
2625         }
2626 
2627         /* Check if everything were registered */
2628         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2629             !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2630                 goto enodev;
2631 
2632         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2633             saw_chan_mask != 0x03)   /* -EP */
2634                 goto enodev;
2635         return 0;
2636 
2637 enodev:
2638         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2639         return -ENODEV;
2640 
2641 error:
2642         sbridge_printk(KERN_ERR,
2643                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2644                         pdev->device);
2645         return -EINVAL;
2646 }
2647 
2648 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2649                                  struct sbridge_dev *sbridge_dev)
2650 {
2651         struct sbridge_pvt *pvt = mci->pvt_info;
2652         struct pci_dev *pdev;
2653         u8 saw_chan_mask = 0;
2654         int i;
2655 
2656         /* there's only one device per system; not tied to any bus */
2657         if (pvt->info.pci_vtd == NULL)
2658                 /* result will be checked later */
2659                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2660                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2661                                                    NULL);
2662 
2663         for (i = 0; i < sbridge_dev->n_devs; i++) {
2664                 pdev = sbridge_dev->pdev[i];
2665                 if (!pdev)
2666                         continue;
2667 
2668                 switch (pdev->device) {
2669                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2670                         pvt->pci_sad0 = pdev;
2671                         break;
2672                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2673                         pvt->pci_sad1 = pdev;
2674                         break;
2675                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2676                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2677                         pvt->pci_ha = pdev;
2678                         break;
2679                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2680                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2681                         pvt->pci_ta = pdev;
2682                         break;
2683                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2684                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2685                         pvt->pci_ras = pdev;
2686                         break;
2687                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2688                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2689                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2690                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2691                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2692                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2693                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2694                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2695                 {
2696                         int id = TAD_DEV_TO_CHAN(pdev->device);
2697                         pvt->pci_tad[id] = pdev;
2698                         saw_chan_mask |= 1 << id;
2699                 }
2700                         break;
2701                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2702                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2703                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2704                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2705                         if (!pvt->pci_ddrio)
2706                                 pvt->pci_ddrio = pdev;
2707                         break;
2708                 default:
2709                         break;
2710                 }
2711 
2712                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2713                          sbridge_dev->bus,
2714                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2715                          pdev);
2716         }
2717 
2718         /* Check if everything were registered */
2719         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2720             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2721                 goto enodev;
2722 
2723         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2724             saw_chan_mask != 0x03)   /* -EP */
2725                 goto enodev;
2726         return 0;
2727 
2728 enodev:
2729         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2730         return -ENODEV;
2731 }
2732 
2733 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2734                                  struct sbridge_dev *sbridge_dev)
2735 {
2736         struct sbridge_pvt *pvt = mci->pvt_info;
2737         struct pci_dev *pdev;
2738         u8 saw_chan_mask = 0;
2739         int i;
2740 
2741         /* there's only one device per system; not tied to any bus */
2742         if (pvt->info.pci_vtd == NULL)
2743                 /* result will be checked later */
2744                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2745                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2746                                                    NULL);
2747 
2748         for (i = 0; i < sbridge_dev->n_devs; i++) {
2749                 pdev = sbridge_dev->pdev[i];
2750                 if (!pdev)
2751                         continue;
2752 
2753                 switch (pdev->device) {
2754                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2755                         pvt->pci_sad0 = pdev;
2756                         break;
2757                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2758                         pvt->pci_sad1 = pdev;
2759                         break;
2760                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2761                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2762                         pvt->pci_ha = pdev;
2763                         break;
2764                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2765                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2766                         pvt->pci_ta = pdev;
2767                         break;
2768                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2769                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2770                         pvt->pci_ras = pdev;
2771                         break;
2772                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2773                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2774                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2775                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2776                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2777                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2778                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2779                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2780                 {
2781                         int id = TAD_DEV_TO_CHAN(pdev->device);
2782                         pvt->pci_tad[id] = pdev;
2783                         saw_chan_mask |= 1 << id;
2784                 }
2785                         break;
2786                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2787                         pvt->pci_ddrio = pdev;
2788                         break;
2789                 default:
2790                         break;
2791                 }
2792 
2793                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2794                          sbridge_dev->bus,
2795                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2796                          pdev);
2797         }
2798 
2799         /* Check if everything were registered */
2800         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2801             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2802                 goto enodev;
2803 
2804         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2805             saw_chan_mask != 0x03)   /* -EP */
2806                 goto enodev;
2807         return 0;
2808 
2809 enodev:
2810         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2811         return -ENODEV;
2812 }
2813 
2814 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2815                         struct sbridge_dev *sbridge_dev)
2816 {
2817         struct sbridge_pvt *pvt = mci->pvt_info;
2818         struct pci_dev *pdev;
2819         int dev, func;
2820 
2821         int i;
2822         int devidx;
2823 
2824         for (i = 0; i < sbridge_dev->n_devs; i++) {
2825                 pdev = sbridge_dev->pdev[i];
2826                 if (!pdev)
2827                         continue;
2828 
2829                 /* Extract PCI device and function. */
2830                 dev = (pdev->devfn >> 3) & 0x1f;
2831                 func = pdev->devfn & 0x7;
2832 
2833                 switch (pdev->device) {
2834                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2835                         if (dev == 8)
2836                                 pvt->knl.pci_mc0 = pdev;
2837                         else if (dev == 9)
2838                                 pvt->knl.pci_mc1 = pdev;
2839                         else {
2840                                 sbridge_printk(KERN_ERR,
2841                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2842                                         dev, func);
2843                                 continue;
2844                         }
2845                         break;
2846 
2847                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2848                         pvt->pci_sad0 = pdev;
2849                         break;
2850 
2851                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2852                         pvt->pci_sad1 = pdev;
2853                         break;
2854 
2855                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2856                         /* There are one of these per tile, and range from
2857                          * 1.14.0 to 1.18.5.
2858                          */
2859                         devidx = ((dev-14)*8)+func;
2860 
2861                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2862                                 sbridge_printk(KERN_ERR,
2863                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2864                                         dev, func);
2865                                 continue;
2866                         }
2867 
2868                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2869 
2870                         pvt->knl.pci_cha[devidx] = pdev;
2871                         break;
2872 
2873                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2874                         devidx = -1;
2875 
2876                         /*
2877                          *  MC0 channels 0-2 are device 9 function 2-4,
2878                          *  MC1 channels 3-5 are device 8 function 2-4.
2879                          */
2880 
2881                         if (dev == 9)
2882                                 devidx = func-2;
2883                         else if (dev == 8)
2884                                 devidx = 3 + (func-2);
2885 
2886                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2887                                 sbridge_printk(KERN_ERR,
2888                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2889                                         dev, func);
2890                                 continue;
2891                         }
2892 
2893                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2894                         pvt->knl.pci_channel[devidx] = pdev;
2895                         break;
2896 
2897                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2898                         pvt->knl.pci_mc_info = pdev;
2899                         break;
2900 
2901                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2902                         pvt->pci_ta = pdev;
2903                         break;
2904 
2905                 default:
2906                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2907                                 pdev->device);
2908                         break;
2909                 }
2910         }
2911 
2912         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2913             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2914             !pvt->pci_ta) {
2915                 goto enodev;
2916         }
2917 
2918         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2919                 if (!pvt->knl.pci_channel[i]) {
2920                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2921                         goto enodev;
2922                 }
2923         }
2924 
2925         for (i = 0; i < KNL_MAX_CHAS; i++) {
2926                 if (!pvt->knl.pci_cha[i]) {
2927                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2928                         goto enodev;
2929                 }
2930         }
2931 
2932         return 0;
2933 
2934 enodev:
2935         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2936         return -ENODEV;
2937 }
2938 
2939 /****************************************************************************
2940                         Error check routines
2941  ****************************************************************************/
2942 
2943 /*
2944  * While Sandy Bridge has error count registers, SMI BIOS read values from
2945  * and resets the counters. So, they are not reliable for the OS to read
2946  * from them. So, we have no option but to just trust on whatever MCE is
2947  * telling us about the errors.
2948  */
2949 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2950                                     const struct mce *m)
2951 {
2952         struct mem_ctl_info *new_mci;
2953         struct sbridge_pvt *pvt = mci->pvt_info;
2954         enum hw_event_mc_err_type tp_event;
2955         char *type, *optype, msg[256];
2956         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2957         bool overflow = GET_BITFIELD(m->status, 62, 62);
2958         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2959         bool recoverable;
2960         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2961         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2962         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2963         u32 channel = GET_BITFIELD(m->status, 0, 3);
2964         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2965         /*
2966          * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2967          * A value 6 is for cache line aligned address, a value 12 is for page
2968          * aligned address reported by patrol scrubber.
2969          */
2970         u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2971         long channel_mask, first_channel;
2972         u8  rank = 0xff, socket, ha;
2973         int rc, dimm;
2974         char *area_type = "DRAM";
2975 
2976         if (pvt->info.type != SANDY_BRIDGE)
2977                 recoverable = true;
2978         else
2979                 recoverable = GET_BITFIELD(m->status, 56, 56);
2980 
2981         if (uncorrected_error) {
2982                 core_err_cnt = 1;
2983                 if (ripv) {
2984                         type = "FATAL";
2985                         tp_event = HW_EVENT_ERR_FATAL;
2986                 } else {
2987                         type = "NON_FATAL";
2988                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2989                 }
2990         } else {
2991                 type = "CORRECTED";
2992                 tp_event = HW_EVENT_ERR_CORRECTED;
2993         }
2994 
2995         /*
2996          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2997          * memory errors should fit in this mask:
2998          *      000f 0000 1mmm cccc (binary)
2999          * where:
3000          *      f = Correction Report Filtering Bit. If 1, subsequent errors
3001          *          won't be shown
3002          *      mmm = error type
3003          *      cccc = channel
3004          * If the mask doesn't match, report an error to the parsing logic
3005          */
3006         switch (optypenum) {
3007         case 0:
3008                 optype = "generic undef request error";
3009                 break;
3010         case 1:
3011                 optype = "memory read error";
3012                 break;
3013         case 2:
3014                 optype = "memory write error";
3015                 break;
3016         case 3:
3017                 optype = "addr/cmd error";
3018                 break;
3019         case 4:
3020                 optype = "memory scrubbing error";
3021                 break;
3022         default:
3023                 optype = "reserved";
3024                 break;
3025         }
3026 
3027         if (pvt->info.type == KNIGHTS_LANDING) {
3028                 if (channel == 14) {
3029                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3030                                 overflow ? " OVERFLOW" : "",
3031                                 (uncorrected_error && recoverable)
3032                                 ? " recoverable" : "",
3033                                 mscod, errcode,
3034                                 m->bank);
3035                 } else {
3036                         char A = *("A");
3037 
3038                         /*
3039                          * Reported channel is in range 0-2, so we can't map it
3040                          * back to mc. To figure out mc we check machine check
3041                          * bank register that reported this error.
3042                          * bank15 means mc0 and bank16 means mc1.
3043                          */
3044                         channel = knl_channel_remap(m->bank == 16, channel);
3045                         channel_mask = 1 << channel;
3046 
3047                         snprintf(msg, sizeof(msg),
3048                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3049                                 overflow ? " OVERFLOW" : "",
3050                                 (uncorrected_error && recoverable)
3051                                 ? " recoverable" : " ",
3052                                 mscod, errcode, channel, A + channel);
3053                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3054                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3055                                 channel, 0, -1,
3056                                 optype, msg);
3057                 }
3058                 return;
3059         } else if (lsb < 12) {
3060                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3061                                            &channel_mask, &rank,
3062                                            &area_type, msg);
3063         } else {
3064                 rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3065                                                     &channel_mask, msg);
3066         }
3067 
3068         if (rc < 0)
3069                 goto err_parsing;
3070         new_mci = get_mci_for_node_id(socket, ha);
3071         if (!new_mci) {
3072                 strcpy(msg, "Error: socket got corrupted!");
3073                 goto err_parsing;
3074         }
3075         mci = new_mci;
3076         pvt = mci->pvt_info;
3077 
3078         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3079 
3080         if (rank == 0xff)
3081                 dimm = -1;
3082         else if (rank < 4)
3083                 dimm = 0;
3084         else if (rank < 8)
3085                 dimm = 1;
3086         else
3087                 dimm = 2;
3088 
3089         /*
3090          * FIXME: On some memory configurations (mirror, lockstep), the
3091          * Memory Controller can't point the error to a single DIMM. The
3092          * EDAC core should be handling the channel mask, in order to point
3093          * to the group of dimm's where the error may be happening.
3094          */
3095         if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3096                 channel = first_channel;
3097 
3098         snprintf(msg, sizeof(msg),
3099                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3100                  overflow ? " OVERFLOW" : "",
3101                  (uncorrected_error && recoverable) ? " recoverable" : "",
3102                  area_type,
3103                  mscod, errcode,
3104                  socket, ha,
3105                  channel_mask,
3106                  rank);
3107 
3108         edac_dbg(0, "%s\n", msg);
3109 
3110         /* FIXME: need support for channel mask */
3111 
3112         if (channel == CHANNEL_UNSPECIFIED)
3113                 channel = -1;
3114 
3115         /* Call the helper to output message */
3116         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3117                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3118                              channel, dimm, -1,
3119                              optype, msg);
3120         return;
3121 err_parsing:
3122         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3123                              -1, -1, -1,
3124                              msg, "");
3125 
3126 }
3127 
3128 /*
3129  * Check that logging is enabled and that this is the right type
3130  * of error for us to handle.
3131  */
3132 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3133                                    void *data)
3134 {
3135         struct mce *mce = (struct mce *)data;
3136         struct mem_ctl_info *mci;
3137         char *type;
3138 
3139         if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3140                 return NOTIFY_DONE;
3141 
3142         /*
3143          * Just let mcelog handle it if the error is
3144          * outside the memory controller. A memory error
3145          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3146          * bit 12 has an special meaning.
3147          */
3148         if ((mce->status & 0xefff) >> 7 != 1)
3149                 return NOTIFY_DONE;
3150 
3151         /* Check ADDRV bit in STATUS */
3152         if (!GET_BITFIELD(mce->status, 58, 58))
3153                 return NOTIFY_DONE;
3154 
3155         /* Check MISCV bit in STATUS */
3156         if (!GET_BITFIELD(mce->status, 59, 59))
3157                 return NOTIFY_DONE;
3158 
3159         /* Check address type in MISC (physical address only) */
3160         if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3161                 return NOTIFY_DONE;
3162 
3163         mci = get_mci_for_node_id(mce->socketid, IMC0);
3164         if (!mci)
3165                 return NOTIFY_DONE;
3166 
3167         if (mce->mcgstatus & MCG_STATUS_MCIP)
3168                 type = "Exception";
3169         else
3170                 type = "Event";
3171 
3172         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3173 
3174         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3175                           "Bank %d: %016Lx\n", mce->extcpu, type,
3176                           mce->mcgstatus, mce->bank, mce->status);
3177         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3178         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3179         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3180 
3181         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3182                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3183                           mce->time, mce->socketid, mce->apicid);
3184 
3185         sbridge_mce_output_error(mci, mce);
3186 
3187         /* Advice mcelog that the error were handled */
3188         return NOTIFY_STOP;
3189 }
3190 
3191 static struct notifier_block sbridge_mce_dec = {
3192         .notifier_call  = sbridge_mce_check_error,
3193         .priority       = MCE_PRIO_EDAC,
3194 };
3195 
3196 /****************************************************************************
3197                         EDAC register/unregister logic
3198  ****************************************************************************/
3199 
3200 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3201 {
3202         struct mem_ctl_info *mci = sbridge_dev->mci;
3203         struct sbridge_pvt *pvt;
3204 
3205         if (unlikely(!mci || !mci->pvt_info)) {
3206                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3207 
3208                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3209                 return;
3210         }
3211 
3212         pvt = mci->pvt_info;
3213 
3214         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3215                  mci, &sbridge_dev->pdev[0]->dev);
3216 
3217         /* Remove MC sysfs nodes */
3218         edac_mc_del_mc(mci->pdev);
3219 
3220         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3221         kfree(mci->ctl_name);
3222         edac_mc_free(mci);
3223         sbridge_dev->mci = NULL;
3224 }
3225 
3226 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3227 {
3228         struct mem_ctl_info *mci;
3229         struct edac_mc_layer layers[2];
3230         struct sbridge_pvt *pvt;
3231         struct pci_dev *pdev = sbridge_dev->pdev[0];
3232         int rc;
3233 
3234         /* allocate a new MC control structure */
3235         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3236         layers[0].size = type == KNIGHTS_LANDING ?
3237                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3238         layers[0].is_virt_csrow = false;
3239         layers[1].type = EDAC_MC_LAYER_SLOT;
3240         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3241         layers[1].is_virt_csrow = true;
3242         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3243                             sizeof(*pvt));
3244 
3245         if (unlikely(!mci))
3246                 return -ENOMEM;
3247 
3248         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3249                  mci, &pdev->dev);
3250 
3251         pvt = mci->pvt_info;
3252         memset(pvt, 0, sizeof(*pvt));
3253 
3254         /* Associate sbridge_dev and mci for future usage */
3255         pvt->sbridge_dev = sbridge_dev;
3256         sbridge_dev->mci = mci;
3257 
3258         mci->mtype_cap = type == KNIGHTS_LANDING ?
3259                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3260         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3261         mci->edac_cap = EDAC_FLAG_NONE;
3262         mci->mod_name = EDAC_MOD_STR;
3263         mci->dev_name = pci_name(pdev);
3264         mci->ctl_page_to_phys = NULL;
3265 
3266         pvt->info.type = type;
3267         switch (type) {
3268         case IVY_BRIDGE:
3269                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3270                 pvt->info.get_tolm = ibridge_get_tolm;
3271                 pvt->info.get_tohm = ibridge_get_tohm;
3272                 pvt->info.dram_rule = ibridge_dram_rule;
3273                 pvt->info.get_memory_type = get_memory_type;
3274                 pvt->info.get_node_id = get_node_id;
3275                 pvt->info.get_ha = ibridge_get_ha;
3276                 pvt->info.rir_limit = rir_limit;
3277                 pvt->info.sad_limit = sad_limit;
3278                 pvt->info.interleave_mode = interleave_mode;
3279                 pvt->info.dram_attr = dram_attr;
3280                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3281                 pvt->info.interleave_list = ibridge_interleave_list;
3282                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3283                 pvt->info.get_width = ibridge_get_width;
3284 
3285                 /* Store pci devices at mci for faster access */
3286                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3287                 if (unlikely(rc < 0))
3288                         goto fail0;
3289                 get_source_id(mci);
3290                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3291                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3292                 break;
3293         case SANDY_BRIDGE:
3294                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3295                 pvt->info.get_tolm = sbridge_get_tolm;
3296                 pvt->info.get_tohm = sbridge_get_tohm;
3297                 pvt->info.dram_rule = sbridge_dram_rule;
3298                 pvt->info.get_memory_type = get_memory_type;
3299                 pvt->info.get_node_id = get_node_id;
3300                 pvt->info.get_ha = sbridge_get_ha;
3301                 pvt->info.rir_limit = rir_limit;
3302                 pvt->info.sad_limit = sad_limit;
3303                 pvt->info.interleave_mode = interleave_mode;
3304                 pvt->info.dram_attr = dram_attr;
3305                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3306                 pvt->info.interleave_list = sbridge_interleave_list;
3307                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3308                 pvt->info.get_width = sbridge_get_width;
3309 
3310                 /* Store pci devices at mci for faster access */
3311                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3312                 if (unlikely(rc < 0))
3313                         goto fail0;
3314                 get_source_id(mci);
3315                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3316                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3317                 break;
3318         case HASWELL:
3319                 /* rankcfgr isn't used */
3320                 pvt->info.get_tolm = haswell_get_tolm;
3321                 pvt->info.get_tohm = haswell_get_tohm;
3322                 pvt->info.dram_rule = ibridge_dram_rule;
3323                 pvt->info.get_memory_type = haswell_get_memory_type;
3324                 pvt->info.get_node_id = haswell_get_node_id;
3325                 pvt->info.get_ha = ibridge_get_ha;
3326                 pvt->info.rir_limit = haswell_rir_limit;
3327                 pvt->info.sad_limit = sad_limit;
3328                 pvt->info.interleave_mode = interleave_mode;
3329                 pvt->info.dram_attr = dram_attr;
3330                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3331                 pvt->info.interleave_list = ibridge_interleave_list;
3332                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3333                 pvt->info.get_width = ibridge_get_width;
3334 
3335                 /* Store pci devices at mci for faster access */
3336                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3337                 if (unlikely(rc < 0))
3338                         goto fail0;
3339                 get_source_id(mci);
3340                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3341                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3342                 break;
3343         case BROADWELL:
3344                 /* rankcfgr isn't used */
3345                 pvt->info.get_tolm = haswell_get_tolm;
3346                 pvt->info.get_tohm = haswell_get_tohm;
3347                 pvt->info.dram_rule = ibridge_dram_rule;
3348                 pvt->info.get_memory_type = haswell_get_memory_type;
3349                 pvt->info.get_node_id = haswell_get_node_id;
3350                 pvt->info.get_ha = ibridge_get_ha;
3351                 pvt->info.rir_limit = haswell_rir_limit;
3352                 pvt->info.sad_limit = sad_limit;
3353                 pvt->info.interleave_mode = interleave_mode;
3354                 pvt->info.dram_attr = dram_attr;
3355                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3356                 pvt->info.interleave_list = ibridge_interleave_list;
3357                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3358                 pvt->info.get_width = broadwell_get_width;
3359 
3360                 /* Store pci devices at mci for faster access */
3361                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3362                 if (unlikely(rc < 0))
3363                         goto fail0;
3364                 get_source_id(mci);
3365                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3366                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3367                 break;
3368         case KNIGHTS_LANDING:
3369                 /* pvt->info.rankcfgr == ??? */
3370                 pvt->info.get_tolm = knl_get_tolm;
3371                 pvt->info.get_tohm = knl_get_tohm;
3372                 pvt->info.dram_rule = knl_dram_rule;
3373                 pvt->info.get_memory_type = knl_get_memory_type;
3374                 pvt->info.get_node_id = knl_get_node_id;
3375                 pvt->info.get_ha = knl_get_ha;
3376                 pvt->info.rir_limit = NULL;
3377                 pvt->info.sad_limit = knl_sad_limit;
3378                 pvt->info.interleave_mode = knl_interleave_mode;
3379                 pvt->info.dram_attr = dram_attr_knl;
3380                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3381                 pvt->info.interleave_list = knl_interleave_list;
3382                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3383                 pvt->info.get_width = knl_get_width;
3384 
3385                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3386                 if (unlikely(rc < 0))
3387                         goto fail0;
3388                 get_source_id(mci);
3389                 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3390                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3391                 break;
3392         }
3393 
3394         if (!mci->ctl_name) {
3395                 rc = -ENOMEM;
3396                 goto fail0;
3397         }
3398 
3399         /* Get dimm basic config and the memory layout */
3400         rc = get_dimm_config(mci);
3401         if (rc < 0) {
3402                 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3403                 goto fail;
3404         }
3405         get_memory_layout(mci);
3406 
3407         /* record ptr to the generic device */
3408         mci->pdev = &pdev->dev;
3409 
3410         /* add this new MC control structure to EDAC's list of MCs */
3411         if (unlikely(edac_mc_add_mc(mci))) {
3412                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3413                 rc = -EINVAL;
3414                 goto fail;
3415         }
3416 
3417         return 0;
3418 
3419 fail:
3420         kfree(mci->ctl_name);
3421 fail0:
3422         edac_mc_free(mci);
3423         sbridge_dev->mci = NULL;
3424         return rc;
3425 }
3426 
3427 static const struct x86_cpu_id sbridge_cpuids[] = {
3428         INTEL_CPU_FAM6(SANDYBRIDGE_X,     pci_dev_descr_sbridge_table),
3429         INTEL_CPU_FAM6(IVYBRIDGE_X,       pci_dev_descr_ibridge_table),
3430         INTEL_CPU_FAM6(HASWELL_X,         pci_dev_descr_haswell_table),
3431         INTEL_CPU_FAM6(BROADWELL_X,       pci_dev_descr_broadwell_table),
3432         INTEL_CPU_FAM6(BROADWELL_D,       pci_dev_descr_broadwell_table),
3433         INTEL_CPU_FAM6(XEON_PHI_KNL,      pci_dev_descr_knl_table),
3434         INTEL_CPU_FAM6(XEON_PHI_KNM,      pci_dev_descr_knl_table),
3435         { }
3436 };
3437 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3438 
3439 /*
3440  *      sbridge_probe   Get all devices and register memory controllers
3441  *                      present.
3442  *      return:
3443  *              0 for FOUND a device
3444  *              < 0 for error code
3445  */
3446 
3447 static int sbridge_probe(const struct x86_cpu_id *id)
3448 {
3449         int rc = -ENODEV;
3450         u8 mc, num_mc = 0;
3451         struct sbridge_dev *sbridge_dev;
3452         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3453 
3454         /* get the pci devices we want to reserve for our use */
3455         rc = sbridge_get_all_devices(&num_mc, ptable);
3456 
3457         if (unlikely(rc < 0)) {
3458                 edac_dbg(0, "couldn't get all devices\n");
3459                 goto fail0;
3460         }
3461 
3462         mc = 0;
3463 
3464         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3465                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3466                          mc, mc + 1, num_mc);
3467 
3468                 sbridge_dev->mc = mc++;
3469                 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3470                 if (unlikely(rc < 0))
3471                         goto fail1;
3472         }
3473 
3474         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3475 
3476         return 0;
3477 
3478 fail1:
3479         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3480                 sbridge_unregister_mci(sbridge_dev);
3481 
3482         sbridge_put_all_devices();
3483 fail0:
3484         return rc;
3485 }
3486 
3487 /*
3488  *      sbridge_remove  cleanup
3489  *
3490  */
3491 static void sbridge_remove(void)
3492 {
3493         struct sbridge_dev *sbridge_dev;
3494 
3495         edac_dbg(0, "\n");
3496 
3497         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3498                 sbridge_unregister_mci(sbridge_dev);
3499 
3500         /* Release PCI resources */
3501         sbridge_put_all_devices();
3502 }
3503 
3504 /*
3505  *      sbridge_init            Module entry function
3506  *                      Try to initialize this module for its devices
3507  */
3508 static int __init sbridge_init(void)
3509 {
3510         const struct x86_cpu_id *id;
3511         const char *owner;
3512         int rc;
3513 
3514         edac_dbg(2, "\n");
3515 
3516         owner = edac_get_owner();
3517         if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3518                 return -EBUSY;
3519 
3520         id = x86_match_cpu(sbridge_cpuids);
3521         if (!id)
3522                 return -ENODEV;
3523 
3524         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3525         opstate_init();
3526 
3527         rc = sbridge_probe(id);
3528 
3529         if (rc >= 0) {
3530                 mce_register_decode_chain(&sbridge_mce_dec);
3531                 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3532                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3533                 return 0;
3534         }
3535 
3536         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3537                       rc);
3538 
3539         return rc;
3540 }
3541 
3542 /*
3543  *      sbridge_exit()  Module exit function
3544  *                      Unregister the driver
3545  */
3546 static void __exit sbridge_exit(void)
3547 {
3548         edac_dbg(2, "\n");
3549         sbridge_remove();
3550         mce_unregister_decode_chain(&sbridge_mce_dec);
3551 }
3552 
3553 module_init(sbridge_init);
3554 module_exit(sbridge_exit);
3555 
3556 module_param(edac_op_state, int, 0444);
3557 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3558 
3559 MODULE_LICENSE("GPL");
3560 MODULE_AUTHOR("Mauro Carvalho Chehab");
3561 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3562 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3563                    SBRIDGE_REVISION);

/* [<][>][^][v][top][bottom][index][help] */