root/drivers/thermal/ti-soc-thermal/ti-bandgap.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ti_bandgap_readl
  2. ti_bandgap_writel
  3. ti_bandgap_power
  4. ti_errata814_bandgap_read_temp
  5. ti_bandgap_read_temp
  6. ti_bandgap_talert_irq_handler
  7. ti_bandgap_tshut_irq_handler
  8. ti_bandgap_adc_to_mcelsius
  9. ti_bandgap_validate
  10. ti_bandgap_read_counter
  11. ti_bandgap_read_counter_delay
  12. ti_bandgap_read_update_interval
  13. ti_bandgap_write_counter_delay
  14. ti_bandgap_write_counter
  15. ti_bandgap_write_update_interval
  16. ti_bandgap_read_temperature
  17. ti_bandgap_set_sensor_data
  18. ti_bandgap_get_sensor_data
  19. ti_bandgap_force_single_read
  20. ti_bandgap_set_continuous_mode
  21. ti_bandgap_get_trend
  22. ti_bandgap_tshut_init
  23. ti_bandgap_talert_init
  24. ti_bandgap_build
  25. ti_bandgap_probe
  26. ti_bandgap_remove
  27. ti_bandgap_save_ctxt
  28. ti_bandgap_restore_ctxt
  29. ti_bandgap_suspend
  30. ti_bandgap_resume

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * TI Bandgap temperature sensor driver
   4  *
   5  * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
   6  * Author: J Keerthy <j-keerthy@ti.com>
   7  * Author: Moiz Sonasath <m-sonasath@ti.com>
   8  * Couple of fixes, DT and MFD adaptation:
   9  *   Eduardo Valentin <eduardo.valentin@ti.com>
  10  */
  11 
  12 #include <linux/module.h>
  13 #include <linux/export.h>
  14 #include <linux/init.h>
  15 #include <linux/kernel.h>
  16 #include <linux/interrupt.h>
  17 #include <linux/clk.h>
  18 #include <linux/gpio.h>
  19 #include <linux/platform_device.h>
  20 #include <linux/err.h>
  21 #include <linux/types.h>
  22 #include <linux/spinlock.h>
  23 #include <linux/reboot.h>
  24 #include <linux/of_device.h>
  25 #include <linux/of_platform.h>
  26 #include <linux/of_irq.h>
  27 #include <linux/of_gpio.h>
  28 #include <linux/io.h>
  29 
  30 #include "ti-bandgap.h"
  31 
  32 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id);
  33 
  34 /***   Helper functions to access registers and their bitfields   ***/
  35 
  36 /**
  37  * ti_bandgap_readl() - simple read helper function
  38  * @bgp: pointer to ti_bandgap structure
  39  * @reg: desired register (offset) to be read
  40  *
  41  * Helper function to read bandgap registers. It uses the io remapped area.
  42  * Return: the register value.
  43  */
  44 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
  45 {
  46         return readl(bgp->base + reg);
  47 }
  48 
  49 /**
  50  * ti_bandgap_writel() - simple write helper function
  51  * @bgp: pointer to ti_bandgap structure
  52  * @val: desired register value to be written
  53  * @reg: desired register (offset) to be written
  54  *
  55  * Helper function to write bandgap registers. It uses the io remapped area.
  56  */
  57 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
  58 {
  59         writel(val, bgp->base + reg);
  60 }
  61 
  62 /**
  63  * DOC: macro to update bits.
  64  *
  65  * RMW_BITS() - used to read, modify and update bandgap bitfields.
  66  *            The value passed will be shifted.
  67  */
  68 #define RMW_BITS(bgp, id, reg, mask, val)                       \
  69 do {                                                            \
  70         struct temp_sensor_registers *t;                        \
  71         u32 r;                                                  \
  72                                                                 \
  73         t = bgp->conf->sensors[(id)].registers;         \
  74         r = ti_bandgap_readl(bgp, t->reg);                      \
  75         r &= ~t->mask;                                          \
  76         r |= (val) << __ffs(t->mask);                           \
  77         ti_bandgap_writel(bgp, r, t->reg);                      \
  78 } while (0)
  79 
  80 /***   Basic helper functions   ***/
  81 
  82 /**
  83  * ti_bandgap_power() - controls the power state of a bandgap device
  84  * @bgp: pointer to ti_bandgap structure
  85  * @on: desired power state (1 - on, 0 - off)
  86  *
  87  * Used to power on/off a bandgap device instance. Only used on those
  88  * that features tempsoff bit.
  89  *
  90  * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
  91  */
  92 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
  93 {
  94         int i;
  95 
  96         if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH))
  97                 return -ENOTSUPP;
  98 
  99         for (i = 0; i < bgp->conf->sensor_count; i++)
 100                 /* active on 0 */
 101                 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
 102         return 0;
 103 }
 104 
 105 /**
 106  * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
 107  * @bgp: pointer to ti_bandgap structure
 108  * @reg: desired register (offset) to be read
 109  *
 110  * Function to read dra7 bandgap sensor temperature. This is done separately
 111  * so as to workaround the errata "Bandgap Temperature read Dtemp can be
 112  * corrupted" - Errata ID: i814".
 113  * Read accesses to registers listed below can be corrupted due to incorrect
 114  * resynchronization between clock domains.
 115  * Read access to registers below can be corrupted :
 116  * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
 117  * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
 118  *
 119  * Return: the register value.
 120  */
 121 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp,  u32 reg)
 122 {
 123         u32 val1, val2;
 124 
 125         val1 = ti_bandgap_readl(bgp, reg);
 126         val2 = ti_bandgap_readl(bgp, reg);
 127 
 128         /* If both times we read the same value then that is right */
 129         if (val1 == val2)
 130                 return val1;
 131 
 132         /* if val1 and val2 are different read it third time */
 133         return ti_bandgap_readl(bgp, reg);
 134 }
 135 
 136 /**
 137  * ti_bandgap_read_temp() - helper function to read sensor temperature
 138  * @bgp: pointer to ti_bandgap structure
 139  * @id: bandgap sensor id
 140  *
 141  * Function to concentrate the steps to read sensor temperature register.
 142  * This function is desired because, depending on bandgap device version,
 143  * it might be needed to freeze the bandgap state machine, before fetching
 144  * the register value.
 145  *
 146  * Return: temperature in ADC values.
 147  */
 148 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
 149 {
 150         struct temp_sensor_registers *tsr;
 151         u32 temp, reg;
 152 
 153         tsr = bgp->conf->sensors[id].registers;
 154         reg = tsr->temp_sensor_ctrl;
 155 
 156         if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
 157                 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
 158                 /*
 159                  * In case we cannot read from cur_dtemp / dtemp_0,
 160                  * then we read from the last valid temp read
 161                  */
 162                 reg = tsr->ctrl_dtemp_1;
 163         }
 164 
 165         /* read temperature */
 166         if (TI_BANDGAP_HAS(bgp, ERRATA_814))
 167                 temp = ti_errata814_bandgap_read_temp(bgp, reg);
 168         else
 169                 temp = ti_bandgap_readl(bgp, reg);
 170 
 171         temp &= tsr->bgap_dtemp_mask;
 172 
 173         if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
 174                 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
 175 
 176         return temp;
 177 }
 178 
 179 /***   IRQ handlers   ***/
 180 
 181 /**
 182  * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
 183  * @irq: IRQ number
 184  * @data: private data (struct ti_bandgap *)
 185  *
 186  * This is the Talert handler. Use it only if bandgap device features
 187  * HAS(TALERT). This handler goes over all sensors and checks their
 188  * conditions and acts accordingly. In case there are events pending,
 189  * it will reset the event mask to wait for the opposite event (next event).
 190  * Every time there is a new event, it will be reported to thermal layer.
 191  *
 192  * Return: IRQ_HANDLED
 193  */
 194 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
 195 {
 196         struct ti_bandgap *bgp = data;
 197         struct temp_sensor_registers *tsr;
 198         u32 t_hot = 0, t_cold = 0, ctrl;
 199         int i;
 200 
 201         spin_lock(&bgp->lock);
 202         for (i = 0; i < bgp->conf->sensor_count; i++) {
 203                 tsr = bgp->conf->sensors[i].registers;
 204                 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
 205 
 206                 /* Read the status of t_hot */
 207                 t_hot = ctrl & tsr->status_hot_mask;
 208 
 209                 /* Read the status of t_cold */
 210                 t_cold = ctrl & tsr->status_cold_mask;
 211 
 212                 if (!t_cold && !t_hot)
 213                         continue;
 214 
 215                 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
 216                 /*
 217                  * One TALERT interrupt: Two sources
 218                  * If the interrupt is due to t_hot then mask t_hot and
 219                  * and unmask t_cold else mask t_cold and unmask t_hot
 220                  */
 221                 if (t_hot) {
 222                         ctrl &= ~tsr->mask_hot_mask;
 223                         ctrl |= tsr->mask_cold_mask;
 224                 } else if (t_cold) {
 225                         ctrl &= ~tsr->mask_cold_mask;
 226                         ctrl |= tsr->mask_hot_mask;
 227                 }
 228 
 229                 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
 230 
 231                 dev_dbg(bgp->dev,
 232                         "%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
 233                         __func__, bgp->conf->sensors[i].domain,
 234                         t_hot, t_cold);
 235 
 236                 /* report temperature to whom may concern */
 237                 if (bgp->conf->report_temperature)
 238                         bgp->conf->report_temperature(bgp, i);
 239         }
 240         spin_unlock(&bgp->lock);
 241 
 242         return IRQ_HANDLED;
 243 }
 244 
 245 /**
 246  * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
 247  * @irq: IRQ number
 248  * @data: private data (unused)
 249  *
 250  * This is the Tshut handler. Use it only if bandgap device features
 251  * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
 252  * the system.
 253  *
 254  * Return: IRQ_HANDLED
 255  */
 256 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
 257 {
 258         pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
 259                  __func__);
 260 
 261         orderly_poweroff(true);
 262 
 263         return IRQ_HANDLED;
 264 }
 265 
 266 /***   Helper functions which manipulate conversion ADC <-> mi Celsius   ***/
 267 
 268 /**
 269  * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
 270  * @bgp: struct ti_bandgap pointer
 271  * @adc_val: value in ADC representation
 272  * @t: address where to write the resulting temperature in mCelsius
 273  *
 274  * Simple conversion from ADC representation to mCelsius. In case the ADC value
 275  * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
 276  * The conversion table is indexed by the ADC values.
 277  *
 278  * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
 279  * argument is out of the ADC conv table range.
 280  */
 281 static
 282 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
 283 {
 284         const struct ti_bandgap_data *conf = bgp->conf;
 285 
 286         /* look up for temperature in the table and return the temperature */
 287         if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val)
 288                 return -ERANGE;
 289 
 290         *t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
 291         return 0;
 292 }
 293 
 294 /**
 295  * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
 296  * @bgp: struct ti_bandgap pointer
 297  * @id: bandgap sensor id
 298  *
 299  * Checks if the bandgap pointer is valid and if the sensor id is also
 300  * applicable.
 301  *
 302  * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
 303  * @id cannot index @bgp sensors.
 304  */
 305 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
 306 {
 307         if (!bgp || IS_ERR(bgp)) {
 308                 pr_err("%s: invalid bandgap pointer\n", __func__);
 309                 return -EINVAL;
 310         }
 311 
 312         if ((id < 0) || (id >= bgp->conf->sensor_count)) {
 313                 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
 314                         __func__, id);
 315                 return -ERANGE;
 316         }
 317 
 318         return 0;
 319 }
 320 
 321 /**
 322  * ti_bandgap_read_counter() - read the sensor counter
 323  * @bgp: pointer to bandgap instance
 324  * @id: sensor id
 325  * @interval: resulting update interval in miliseconds
 326  */
 327 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
 328                                     int *interval)
 329 {
 330         struct temp_sensor_registers *tsr;
 331         int time;
 332 
 333         tsr = bgp->conf->sensors[id].registers;
 334         time = ti_bandgap_readl(bgp, tsr->bgap_counter);
 335         time = (time & tsr->counter_mask) >>
 336                                         __ffs(tsr->counter_mask);
 337         time = time * 1000 / bgp->clk_rate;
 338         *interval = time;
 339 }
 340 
 341 /**
 342  * ti_bandgap_read_counter_delay() - read the sensor counter delay
 343  * @bgp: pointer to bandgap instance
 344  * @id: sensor id
 345  * @interval: resulting update interval in miliseconds
 346  */
 347 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
 348                                           int *interval)
 349 {
 350         struct temp_sensor_registers *tsr;
 351         int reg_val;
 352 
 353         tsr = bgp->conf->sensors[id].registers;
 354 
 355         reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
 356         reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
 357                                 __ffs(tsr->mask_counter_delay_mask);
 358         switch (reg_val) {
 359         case 0:
 360                 *interval = 0;
 361                 break;
 362         case 1:
 363                 *interval = 1;
 364                 break;
 365         case 2:
 366                 *interval = 10;
 367                 break;
 368         case 3:
 369                 *interval = 100;
 370                 break;
 371         case 4:
 372                 *interval = 250;
 373                 break;
 374         case 5:
 375                 *interval = 500;
 376                 break;
 377         default:
 378                 dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
 379                          reg_val);
 380         }
 381 }
 382 
 383 /**
 384  * ti_bandgap_read_update_interval() - read the sensor update interval
 385  * @bgp: pointer to bandgap instance
 386  * @id: sensor id
 387  * @interval: resulting update interval in miliseconds
 388  *
 389  * Return: 0 on success or the proper error code
 390  */
 391 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
 392                                     int *interval)
 393 {
 394         int ret = 0;
 395 
 396         ret = ti_bandgap_validate(bgp, id);
 397         if (ret)
 398                 goto exit;
 399 
 400         if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
 401             !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
 402                 ret = -ENOTSUPP;
 403                 goto exit;
 404         }
 405 
 406         if (TI_BANDGAP_HAS(bgp, COUNTER)) {
 407                 ti_bandgap_read_counter(bgp, id, interval);
 408                 goto exit;
 409         }
 410 
 411         ti_bandgap_read_counter_delay(bgp, id, interval);
 412 exit:
 413         return ret;
 414 }
 415 
 416 /**
 417  * ti_bandgap_write_counter_delay() - set the counter_delay
 418  * @bgp: pointer to bandgap instance
 419  * @id: sensor id
 420  * @interval: desired update interval in miliseconds
 421  *
 422  * Return: 0 on success or the proper error code
 423  */
 424 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
 425                                           u32 interval)
 426 {
 427         int rval;
 428 
 429         switch (interval) {
 430         case 0: /* Immediate conversion */
 431                 rval = 0x0;
 432                 break;
 433         case 1: /* Conversion after ever 1ms */
 434                 rval = 0x1;
 435                 break;
 436         case 10: /* Conversion after ever 10ms */
 437                 rval = 0x2;
 438                 break;
 439         case 100: /* Conversion after ever 100ms */
 440                 rval = 0x3;
 441                 break;
 442         case 250: /* Conversion after ever 250ms */
 443                 rval = 0x4;
 444                 break;
 445         case 500: /* Conversion after ever 500ms */
 446                 rval = 0x5;
 447                 break;
 448         default:
 449                 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
 450                 return -EINVAL;
 451         }
 452 
 453         spin_lock(&bgp->lock);
 454         RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
 455         spin_unlock(&bgp->lock);
 456 
 457         return 0;
 458 }
 459 
 460 /**
 461  * ti_bandgap_write_counter() - set the bandgap sensor counter
 462  * @bgp: pointer to bandgap instance
 463  * @id: sensor id
 464  * @interval: desired update interval in miliseconds
 465  */
 466 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
 467                                      u32 interval)
 468 {
 469         interval = interval * bgp->clk_rate / 1000;
 470         spin_lock(&bgp->lock);
 471         RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
 472         spin_unlock(&bgp->lock);
 473 }
 474 
 475 /**
 476  * ti_bandgap_write_update_interval() - set the update interval
 477  * @bgp: pointer to bandgap instance
 478  * @id: sensor id
 479  * @interval: desired update interval in miliseconds
 480  *
 481  * Return: 0 on success or the proper error code
 482  */
 483 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
 484                                      int id, u32 interval)
 485 {
 486         int ret = ti_bandgap_validate(bgp, id);
 487         if (ret)
 488                 goto exit;
 489 
 490         if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
 491             !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
 492                 ret = -ENOTSUPP;
 493                 goto exit;
 494         }
 495 
 496         if (TI_BANDGAP_HAS(bgp, COUNTER)) {
 497                 ti_bandgap_write_counter(bgp, id, interval);
 498                 goto exit;
 499         }
 500 
 501         ret = ti_bandgap_write_counter_delay(bgp, id, interval);
 502 exit:
 503         return ret;
 504 }
 505 
 506 /**
 507  * ti_bandgap_read_temperature() - report current temperature
 508  * @bgp: pointer to bandgap instance
 509  * @id: sensor id
 510  * @temperature: resulting temperature
 511  *
 512  * Return: 0 on success or the proper error code
 513  */
 514 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
 515                                 int *temperature)
 516 {
 517         u32 temp;
 518         int ret;
 519 
 520         ret = ti_bandgap_validate(bgp, id);
 521         if (ret)
 522                 return ret;
 523 
 524         if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) {
 525                 ret = ti_bandgap_force_single_read(bgp, id);
 526                 if (ret)
 527                         return ret;
 528         }
 529 
 530         spin_lock(&bgp->lock);
 531         temp = ti_bandgap_read_temp(bgp, id);
 532         spin_unlock(&bgp->lock);
 533 
 534         ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
 535         if (ret)
 536                 return -EIO;
 537 
 538         *temperature = temp;
 539 
 540         return 0;
 541 }
 542 
 543 /**
 544  * ti_bandgap_set_sensor_data() - helper function to store thermal
 545  * framework related data.
 546  * @bgp: pointer to bandgap instance
 547  * @id: sensor id
 548  * @data: thermal framework related data to be stored
 549  *
 550  * Return: 0 on success or the proper error code
 551  */
 552 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
 553 {
 554         int ret = ti_bandgap_validate(bgp, id);
 555         if (ret)
 556                 return ret;
 557 
 558         bgp->regval[id].data = data;
 559 
 560         return 0;
 561 }
 562 
 563 /**
 564  * ti_bandgap_get_sensor_data() - helper function to get thermal
 565  * framework related data.
 566  * @bgp: pointer to bandgap instance
 567  * @id: sensor id
 568  *
 569  * Return: data stored by set function with sensor id on success or NULL
 570  */
 571 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
 572 {
 573         int ret = ti_bandgap_validate(bgp, id);
 574         if (ret)
 575                 return ERR_PTR(ret);
 576 
 577         return bgp->regval[id].data;
 578 }
 579 
 580 /***   Helper functions used during device initialization   ***/
 581 
 582 /**
 583  * ti_bandgap_force_single_read() - executes 1 single ADC conversion
 584  * @bgp: pointer to struct ti_bandgap
 585  * @id: sensor id which it is desired to read 1 temperature
 586  *
 587  * Used to initialize the conversion state machine and set it to a valid
 588  * state. Called during device initialization and context restore events.
 589  *
 590  * Return: 0
 591  */
 592 static int
 593 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
 594 {
 595         u32 counter = 1000;
 596         struct temp_sensor_registers *tsr;
 597 
 598         /* Select single conversion mode */
 599         if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
 600                 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
 601 
 602         /* Start of Conversion = 1 */
 603         RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
 604 
 605         /* Wait for EOCZ going up */
 606         tsr = bgp->conf->sensors[id].registers;
 607 
 608         while (--counter) {
 609                 if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
 610                     tsr->bgap_eocz_mask)
 611                         break;
 612         }
 613 
 614         /* Start of Conversion = 0 */
 615         RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
 616 
 617         /* Wait for EOCZ going down */
 618         counter = 1000;
 619         while (--counter) {
 620                 if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
 621                       tsr->bgap_eocz_mask))
 622                         break;
 623         }
 624 
 625         return 0;
 626 }
 627 
 628 /**
 629  * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode
 630  * @bgp: pointer to struct ti_bandgap
 631  *
 632  * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
 633  * be used for junction temperature monitoring, it is desirable that the
 634  * sensors are operational all the time, so that alerts are generated
 635  * properly.
 636  *
 637  * Return: 0
 638  */
 639 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
 640 {
 641         int i;
 642 
 643         for (i = 0; i < bgp->conf->sensor_count; i++) {
 644                 /* Perform a single read just before enabling continuous */
 645                 ti_bandgap_force_single_read(bgp, i);
 646                 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
 647         }
 648 
 649         return 0;
 650 }
 651 
 652 /**
 653  * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
 654  * @bgp: pointer to struct ti_bandgap
 655  * @id: id of the individual sensor
 656  * @trend: Pointer to trend.
 657  *
 658  * This function needs to be called to fetch the temperature trend of a
 659  * Particular sensor. The function computes the difference in temperature
 660  * w.r.t time. For the bandgaps with built in history buffer the temperatures
 661  * are read from the buffer and for those without the Buffer -ENOTSUPP is
 662  * returned.
 663  *
 664  * Return: 0 if no error, else return corresponding error. If no
 665  *              error then the trend value is passed on to trend parameter
 666  */
 667 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
 668 {
 669         struct temp_sensor_registers *tsr;
 670         u32 temp1, temp2, reg1, reg2;
 671         int t1, t2, interval, ret = 0;
 672 
 673         ret = ti_bandgap_validate(bgp, id);
 674         if (ret)
 675                 goto exit;
 676 
 677         if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
 678             !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
 679                 ret = -ENOTSUPP;
 680                 goto exit;
 681         }
 682 
 683         spin_lock(&bgp->lock);
 684 
 685         tsr = bgp->conf->sensors[id].registers;
 686 
 687         /* Freeze and read the last 2 valid readings */
 688         RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
 689         reg1 = tsr->ctrl_dtemp_1;
 690         reg2 = tsr->ctrl_dtemp_2;
 691 
 692         /* read temperature from history buffer */
 693         temp1 = ti_bandgap_readl(bgp, reg1);
 694         temp1 &= tsr->bgap_dtemp_mask;
 695 
 696         temp2 = ti_bandgap_readl(bgp, reg2);
 697         temp2 &= tsr->bgap_dtemp_mask;
 698 
 699         /* Convert from adc values to mCelsius temperature */
 700         ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
 701         if (ret)
 702                 goto unfreeze;
 703 
 704         ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
 705         if (ret)
 706                 goto unfreeze;
 707 
 708         /* Fetch the update interval */
 709         ret = ti_bandgap_read_update_interval(bgp, id, &interval);
 710         if (ret)
 711                 goto unfreeze;
 712 
 713         /* Set the interval to 1 ms if bandgap counter delay is not set */
 714         if (interval == 0)
 715                 interval = 1;
 716 
 717         *trend = (t1 - t2) / interval;
 718 
 719         dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
 720                 t1, t2, *trend);
 721 
 722 unfreeze:
 723         RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
 724         spin_unlock(&bgp->lock);
 725 exit:
 726         return ret;
 727 }
 728 
 729 /**
 730  * ti_bandgap_tshut_init() - setup and initialize tshut handling
 731  * @bgp: pointer to struct ti_bandgap
 732  * @pdev: pointer to device struct platform_device
 733  *
 734  * Call this function only in case the bandgap features HAS(TSHUT).
 735  * In this case, the driver needs to handle the TSHUT signal as an IRQ.
 736  * The IRQ is wired as a GPIO, and for this purpose, it is required
 737  * to specify which GPIO line is used. TSHUT IRQ is fired anytime
 738  * one of the bandgap sensors violates the TSHUT high/hot threshold.
 739  * And in that case, the system must go off.
 740  *
 741  * Return: 0 if no error, else error status
 742  */
 743 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
 744                                  struct platform_device *pdev)
 745 {
 746         int gpio_nr = bgp->tshut_gpio;
 747         int status;
 748 
 749         /* Request for gpio_86 line */
 750         status = gpio_request(gpio_nr, "tshut");
 751         if (status < 0) {
 752                 dev_err(bgp->dev, "Could not request for TSHUT GPIO:%i\n", 86);
 753                 return status;
 754         }
 755         status = gpio_direction_input(gpio_nr);
 756         if (status) {
 757                 dev_err(bgp->dev, "Cannot set input TSHUT GPIO %d\n", gpio_nr);
 758                 return status;
 759         }
 760 
 761         status = request_irq(gpio_to_irq(gpio_nr), ti_bandgap_tshut_irq_handler,
 762                              IRQF_TRIGGER_RISING, "tshut", NULL);
 763         if (status) {
 764                 gpio_free(gpio_nr);
 765                 dev_err(bgp->dev, "request irq failed for TSHUT");
 766         }
 767 
 768         return 0;
 769 }
 770 
 771 /**
 772  * ti_bandgap_alert_init() - setup and initialize talert handling
 773  * @bgp: pointer to struct ti_bandgap
 774  * @pdev: pointer to device struct platform_device
 775  *
 776  * Call this function only in case the bandgap features HAS(TALERT).
 777  * In this case, the driver needs to handle the TALERT signals as an IRQs.
 778  * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
 779  * are violated. In these situation, the driver must reprogram the thresholds,
 780  * accordingly to specified policy.
 781  *
 782  * Return: 0 if no error, else return corresponding error.
 783  */
 784 static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
 785                                   struct platform_device *pdev)
 786 {
 787         int ret;
 788 
 789         bgp->irq = platform_get_irq(pdev, 0);
 790         if (bgp->irq < 0) {
 791                 dev_err(&pdev->dev, "get_irq failed\n");
 792                 return bgp->irq;
 793         }
 794         ret = request_threaded_irq(bgp->irq, NULL,
 795                                    ti_bandgap_talert_irq_handler,
 796                                    IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
 797                                    "talert", bgp);
 798         if (ret) {
 799                 dev_err(&pdev->dev, "Request threaded irq failed.\n");
 800                 return ret;
 801         }
 802 
 803         return 0;
 804 }
 805 
 806 static const struct of_device_id of_ti_bandgap_match[];
 807 /**
 808  * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
 809  * @pdev: pointer to device struct platform_device
 810  *
 811  * Used to read the device tree properties accordingly to the bandgap
 812  * matching version. Based on bandgap version and its capabilities it
 813  * will build a struct ti_bandgap out of the required DT entries.
 814  *
 815  * Return: valid bandgap structure if successful, else returns ERR_PTR
 816  * return value must be verified with IS_ERR.
 817  */
 818 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
 819 {
 820         struct device_node *node = pdev->dev.of_node;
 821         const struct of_device_id *of_id;
 822         struct ti_bandgap *bgp;
 823         struct resource *res;
 824         int i;
 825 
 826         /* just for the sake */
 827         if (!node) {
 828                 dev_err(&pdev->dev, "no platform information available\n");
 829                 return ERR_PTR(-EINVAL);
 830         }
 831 
 832         bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
 833         if (!bgp)
 834                 return ERR_PTR(-ENOMEM);
 835 
 836         of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
 837         if (of_id)
 838                 bgp->conf = of_id->data;
 839 
 840         /* register shadow for context save and restore */
 841         bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count,
 842                                    sizeof(*bgp->regval), GFP_KERNEL);
 843         if (!bgp->regval)
 844                 return ERR_PTR(-ENOMEM);
 845 
 846         i = 0;
 847         do {
 848                 void __iomem *chunk;
 849 
 850                 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
 851                 if (!res)
 852                         break;
 853                 chunk = devm_ioremap_resource(&pdev->dev, res);
 854                 if (i == 0)
 855                         bgp->base = chunk;
 856                 if (IS_ERR(chunk))
 857                         return ERR_CAST(chunk);
 858 
 859                 i++;
 860         } while (res);
 861 
 862         if (TI_BANDGAP_HAS(bgp, TSHUT)) {
 863                 bgp->tshut_gpio = of_get_gpio(node, 0);
 864                 if (!gpio_is_valid(bgp->tshut_gpio)) {
 865                         dev_err(&pdev->dev, "invalid gpio for tshut (%d)\n",
 866                                 bgp->tshut_gpio);
 867                         return ERR_PTR(-EINVAL);
 868                 }
 869         }
 870 
 871         return bgp;
 872 }
 873 
 874 /***   Device driver call backs   ***/
 875 
 876 static
 877 int ti_bandgap_probe(struct platform_device *pdev)
 878 {
 879         struct ti_bandgap *bgp;
 880         int clk_rate, ret, i;
 881 
 882         bgp = ti_bandgap_build(pdev);
 883         if (IS_ERR(bgp)) {
 884                 dev_err(&pdev->dev, "failed to fetch platform data\n");
 885                 return PTR_ERR(bgp);
 886         }
 887         bgp->dev = &pdev->dev;
 888 
 889         if (TI_BANDGAP_HAS(bgp, UNRELIABLE))
 890                 dev_warn(&pdev->dev,
 891                          "This OMAP thermal sensor is unreliable. You've been warned\n");
 892 
 893         if (TI_BANDGAP_HAS(bgp, TSHUT)) {
 894                 ret = ti_bandgap_tshut_init(bgp, pdev);
 895                 if (ret) {
 896                         dev_err(&pdev->dev,
 897                                 "failed to initialize system tshut IRQ\n");
 898                         return ret;
 899                 }
 900         }
 901 
 902         bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
 903         if (IS_ERR(bgp->fclock)) {
 904                 dev_err(&pdev->dev, "failed to request fclock reference\n");
 905                 ret = PTR_ERR(bgp->fclock);
 906                 goto free_irqs;
 907         }
 908 
 909         bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name);
 910         if (IS_ERR(bgp->div_clk)) {
 911                 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n");
 912                 ret = PTR_ERR(bgp->div_clk);
 913                 goto put_fclock;
 914         }
 915 
 916         for (i = 0; i < bgp->conf->sensor_count; i++) {
 917                 struct temp_sensor_registers *tsr;
 918                 u32 val;
 919 
 920                 tsr = bgp->conf->sensors[i].registers;
 921                 /*
 922                  * check if the efuse has a non-zero value if not
 923                  * it is an untrimmed sample and the temperatures
 924                  * may not be accurate
 925                  */
 926                 val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
 927                 if (!val)
 928                         dev_info(&pdev->dev,
 929                                  "Non-trimmed BGAP, Temp not accurate\n");
 930         }
 931 
 932         clk_rate = clk_round_rate(bgp->div_clk,
 933                                   bgp->conf->sensors[0].ts_data->max_freq);
 934         if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
 935             clk_rate <= 0) {
 936                 ret = -ENODEV;
 937                 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
 938                 goto put_clks;
 939         }
 940 
 941         ret = clk_set_rate(bgp->div_clk, clk_rate);
 942         if (ret)
 943                 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
 944 
 945         bgp->clk_rate = clk_rate;
 946         if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
 947                 clk_prepare_enable(bgp->fclock);
 948 
 949 
 950         spin_lock_init(&bgp->lock);
 951         bgp->dev = &pdev->dev;
 952         platform_set_drvdata(pdev, bgp);
 953 
 954         ti_bandgap_power(bgp, true);
 955 
 956         /* Set default counter to 1 for now */
 957         if (TI_BANDGAP_HAS(bgp, COUNTER))
 958                 for (i = 0; i < bgp->conf->sensor_count; i++)
 959                         RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
 960 
 961         /* Set default thresholds for alert and shutdown */
 962         for (i = 0; i < bgp->conf->sensor_count; i++) {
 963                 struct temp_sensor_data *ts_data;
 964 
 965                 ts_data = bgp->conf->sensors[i].ts_data;
 966 
 967                 if (TI_BANDGAP_HAS(bgp, TALERT)) {
 968                         /* Set initial Talert thresholds */
 969                         RMW_BITS(bgp, i, bgap_threshold,
 970                                  threshold_tcold_mask, ts_data->t_cold);
 971                         RMW_BITS(bgp, i, bgap_threshold,
 972                                  threshold_thot_mask, ts_data->t_hot);
 973                         /* Enable the alert events */
 974                         RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
 975                         RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
 976                 }
 977 
 978                 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
 979                         /* Set initial Tshut thresholds */
 980                         RMW_BITS(bgp, i, tshut_threshold,
 981                                  tshut_hot_mask, ts_data->tshut_hot);
 982                         RMW_BITS(bgp, i, tshut_threshold,
 983                                  tshut_cold_mask, ts_data->tshut_cold);
 984                 }
 985         }
 986 
 987         if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
 988                 ti_bandgap_set_continuous_mode(bgp);
 989 
 990         /* Set .250 seconds time as default counter */
 991         if (TI_BANDGAP_HAS(bgp, COUNTER))
 992                 for (i = 0; i < bgp->conf->sensor_count; i++)
 993                         RMW_BITS(bgp, i, bgap_counter, counter_mask,
 994                                  bgp->clk_rate / 4);
 995 
 996         /* Every thing is good? Then expose the sensors */
 997         for (i = 0; i < bgp->conf->sensor_count; i++) {
 998                 char *domain;
 999 
1000                 if (bgp->conf->sensors[i].register_cooling) {
1001                         ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1002                         if (ret)
1003                                 goto remove_sensors;
1004                 }
1005 
1006                 if (bgp->conf->expose_sensor) {
1007                         domain = bgp->conf->sensors[i].domain;
1008                         ret = bgp->conf->expose_sensor(bgp, i, domain);
1009                         if (ret)
1010                                 goto remove_last_cooling;
1011                 }
1012         }
1013 
1014         /*
1015          * Enable the Interrupts once everything is set. Otherwise irq handler
1016          * might be called as soon as it is enabled where as rest of framework
1017          * is still getting initialised.
1018          */
1019         if (TI_BANDGAP_HAS(bgp, TALERT)) {
1020                 ret = ti_bandgap_talert_init(bgp, pdev);
1021                 if (ret) {
1022                         dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1023                         i = bgp->conf->sensor_count;
1024                         goto disable_clk;
1025                 }
1026         }
1027 
1028         return 0;
1029 
1030 remove_last_cooling:
1031         if (bgp->conf->sensors[i].unregister_cooling)
1032                 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1033 remove_sensors:
1034         for (i--; i >= 0; i--) {
1035                 if (bgp->conf->sensors[i].unregister_cooling)
1036                         bgp->conf->sensors[i].unregister_cooling(bgp, i);
1037                 if (bgp->conf->remove_sensor)
1038                         bgp->conf->remove_sensor(bgp, i);
1039         }
1040         ti_bandgap_power(bgp, false);
1041 disable_clk:
1042         if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1043                 clk_disable_unprepare(bgp->fclock);
1044 put_clks:
1045         clk_put(bgp->div_clk);
1046 put_fclock:
1047         clk_put(bgp->fclock);
1048 free_irqs:
1049         if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1050                 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1051                 gpio_free(bgp->tshut_gpio);
1052         }
1053 
1054         return ret;
1055 }
1056 
1057 static
1058 int ti_bandgap_remove(struct platform_device *pdev)
1059 {
1060         struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1061         int i;
1062 
1063         /* First thing is to remove sensor interfaces */
1064         for (i = 0; i < bgp->conf->sensor_count; i++) {
1065                 if (bgp->conf->sensors[i].unregister_cooling)
1066                         bgp->conf->sensors[i].unregister_cooling(bgp, i);
1067 
1068                 if (bgp->conf->remove_sensor)
1069                         bgp->conf->remove_sensor(bgp, i);
1070         }
1071 
1072         ti_bandgap_power(bgp, false);
1073 
1074         if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1075                 clk_disable_unprepare(bgp->fclock);
1076         clk_put(bgp->fclock);
1077         clk_put(bgp->div_clk);
1078 
1079         if (TI_BANDGAP_HAS(bgp, TALERT))
1080                 free_irq(bgp->irq, bgp);
1081 
1082         if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1083                 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1084                 gpio_free(bgp->tshut_gpio);
1085         }
1086 
1087         return 0;
1088 }
1089 
1090 #ifdef CONFIG_PM_SLEEP
1091 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1092 {
1093         int i;
1094 
1095         for (i = 0; i < bgp->conf->sensor_count; i++) {
1096                 struct temp_sensor_registers *tsr;
1097                 struct temp_sensor_regval *rval;
1098 
1099                 rval = &bgp->regval[i];
1100                 tsr = bgp->conf->sensors[i].registers;
1101 
1102                 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1103                         rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1104                                                         tsr->bgap_mode_ctrl);
1105                 if (TI_BANDGAP_HAS(bgp, COUNTER))
1106                         rval->bg_counter = ti_bandgap_readl(bgp,
1107                                                         tsr->bgap_counter);
1108                 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1109                         rval->bg_threshold = ti_bandgap_readl(bgp,
1110                                                         tsr->bgap_threshold);
1111                         rval->bg_ctrl = ti_bandgap_readl(bgp,
1112                                                    tsr->bgap_mask_ctrl);
1113                 }
1114 
1115                 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1116                         rval->tshut_threshold = ti_bandgap_readl(bgp,
1117                                                    tsr->tshut_threshold);
1118         }
1119 
1120         return 0;
1121 }
1122 
1123 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1124 {
1125         int i;
1126 
1127         for (i = 0; i < bgp->conf->sensor_count; i++) {
1128                 struct temp_sensor_registers *tsr;
1129                 struct temp_sensor_regval *rval;
1130                 u32 val = 0;
1131 
1132                 rval = &bgp->regval[i];
1133                 tsr = bgp->conf->sensors[i].registers;
1134 
1135                 if (TI_BANDGAP_HAS(bgp, COUNTER))
1136                         val = ti_bandgap_readl(bgp, tsr->bgap_counter);
1137 
1138                 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1139                         ti_bandgap_writel(bgp, rval->tshut_threshold,
1140                                           tsr->tshut_threshold);
1141                 /* Force immediate temperature measurement and update
1142                  * of the DTEMP field
1143                  */
1144                 ti_bandgap_force_single_read(bgp, i);
1145 
1146                 if (TI_BANDGAP_HAS(bgp, COUNTER))
1147                         ti_bandgap_writel(bgp, rval->bg_counter,
1148                                           tsr->bgap_counter);
1149                 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1150                         ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1151                                           tsr->bgap_mode_ctrl);
1152                 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1153                         ti_bandgap_writel(bgp, rval->bg_threshold,
1154                                           tsr->bgap_threshold);
1155                         ti_bandgap_writel(bgp, rval->bg_ctrl,
1156                                           tsr->bgap_mask_ctrl);
1157                 }
1158         }
1159 
1160         return 0;
1161 }
1162 
1163 static int ti_bandgap_suspend(struct device *dev)
1164 {
1165         struct ti_bandgap *bgp = dev_get_drvdata(dev);
1166         int err;
1167 
1168         err = ti_bandgap_save_ctxt(bgp);
1169         ti_bandgap_power(bgp, false);
1170 
1171         if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1172                 clk_disable_unprepare(bgp->fclock);
1173 
1174         return err;
1175 }
1176 
1177 static int ti_bandgap_resume(struct device *dev)
1178 {
1179         struct ti_bandgap *bgp = dev_get_drvdata(dev);
1180 
1181         if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1182                 clk_prepare_enable(bgp->fclock);
1183 
1184         ti_bandgap_power(bgp, true);
1185 
1186         return ti_bandgap_restore_ctxt(bgp);
1187 }
1188 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
1189                          ti_bandgap_resume);
1190 
1191 #define DEV_PM_OPS      (&ti_bandgap_dev_pm_ops)
1192 #else
1193 #define DEV_PM_OPS      NULL
1194 #endif
1195 
1196 static const struct of_device_id of_ti_bandgap_match[] = {
1197 #ifdef CONFIG_OMAP3_THERMAL
1198         {
1199                 .compatible = "ti,omap34xx-bandgap",
1200                 .data = (void *)&omap34xx_data,
1201         },
1202         {
1203                 .compatible = "ti,omap36xx-bandgap",
1204                 .data = (void *)&omap36xx_data,
1205         },
1206 #endif
1207 #ifdef CONFIG_OMAP4_THERMAL
1208         {
1209                 .compatible = "ti,omap4430-bandgap",
1210                 .data = (void *)&omap4430_data,
1211         },
1212         {
1213                 .compatible = "ti,omap4460-bandgap",
1214                 .data = (void *)&omap4460_data,
1215         },
1216         {
1217                 .compatible = "ti,omap4470-bandgap",
1218                 .data = (void *)&omap4470_data,
1219         },
1220 #endif
1221 #ifdef CONFIG_OMAP5_THERMAL
1222         {
1223                 .compatible = "ti,omap5430-bandgap",
1224                 .data = (void *)&omap5430_data,
1225         },
1226 #endif
1227 #ifdef CONFIG_DRA752_THERMAL
1228         {
1229                 .compatible = "ti,dra752-bandgap",
1230                 .data = (void *)&dra752_data,
1231         },
1232 #endif
1233         /* Sentinel */
1234         { },
1235 };
1236 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1237 
1238 static struct platform_driver ti_bandgap_sensor_driver = {
1239         .probe = ti_bandgap_probe,
1240         .remove = ti_bandgap_remove,
1241         .driver = {
1242                         .name = "ti-soc-thermal",
1243                         .pm = DEV_PM_OPS,
1244                         .of_match_table = of_ti_bandgap_match,
1245         },
1246 };
1247 
1248 module_platform_driver(ti_bandgap_sensor_driver);
1249 
1250 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1251 MODULE_LICENSE("GPL v2");
1252 MODULE_ALIAS("platform:ti-soc-thermal");
1253 MODULE_AUTHOR("Texas Instrument Inc.");

/* [<][>][^][v][top][bottom][index][help] */