root/drivers/macintosh/windfarm_rm31.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cpu_max_all_fans
  2. cpu_check_overtemp
  3. read_one_cpu_vals
  4. cpu_fans_tick
  5. cpu_setup_pid
  6. backside_fan_tick
  7. backside_setup_pid
  8. slots_fan_tick
  9. slots_setup_pid
  10. set_fail_state
  11. rm31_tick
  12. rm31_new_control
  13. rm31_new_sensor
  14. rm31_wf_notify
  15. wf_rm31_probe
  16. wf_rm31_remove
  17. wf_rm31_init
  18. wf_rm31_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Windfarm PowerMac thermal control.
   4  * Control loops for RackMack3,1 (Xserve G5)
   5  *
   6  * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
   7  */
   8 #include <linux/types.h>
   9 #include <linux/errno.h>
  10 #include <linux/kernel.h>
  11 #include <linux/device.h>
  12 #include <linux/platform_device.h>
  13 #include <linux/reboot.h>
  14 #include <asm/prom.h>
  15 #include <asm/smu.h>
  16 
  17 #include "windfarm.h"
  18 #include "windfarm_pid.h"
  19 #include "windfarm_mpu.h"
  20 
  21 #define VERSION "1.0"
  22 
  23 #undef DEBUG
  24 #undef LOTSA_DEBUG
  25 
  26 #ifdef DEBUG
  27 #define DBG(args...)    printk(args)
  28 #else
  29 #define DBG(args...)    do { } while(0)
  30 #endif
  31 
  32 #ifdef LOTSA_DEBUG
  33 #define DBG_LOTS(args...)       printk(args)
  34 #else
  35 #define DBG_LOTS(args...)       do { } while(0)
  36 #endif
  37 
  38 /* define this to force CPU overtemp to 60 degree, useful for testing
  39  * the overtemp code
  40  */
  41 #undef HACKED_OVERTEMP
  42 
  43 /* We currently only handle 2 chips */
  44 #define NR_CHIPS        2
  45 #define NR_CPU_FANS     3 * NR_CHIPS
  46 
  47 /* Controls and sensors */
  48 static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
  49 static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
  50 static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
  51 static struct wf_sensor *backside_temp;
  52 static struct wf_sensor *slots_temp;
  53 static struct wf_sensor *dimms_temp;
  54 
  55 static struct wf_control *cpu_fans[NR_CHIPS][3];
  56 static struct wf_control *backside_fan;
  57 static struct wf_control *slots_fan;
  58 static struct wf_control *cpufreq_clamp;
  59 
  60 /* We keep a temperature history for average calculation of 180s */
  61 #define CPU_TEMP_HIST_SIZE      180
  62 
  63 /* PID loop state */
  64 static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
  65 static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
  66 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
  67 static int cpu_thist_pt;
  68 static s64 cpu_thist_total;
  69 static s32 cpu_all_tmax = 100 << 16;
  70 static struct wf_pid_state backside_pid;
  71 static int backside_tick;
  72 static struct wf_pid_state slots_pid;
  73 static int slots_tick;
  74 static int slots_speed;
  75 static struct wf_pid_state dimms_pid;
  76 static int dimms_output_clamp;
  77 
  78 static int nr_chips;
  79 static bool have_all_controls;
  80 static bool have_all_sensors;
  81 static bool started;
  82 
  83 static int failure_state;
  84 #define FAILURE_SENSOR          1
  85 #define FAILURE_FAN             2
  86 #define FAILURE_PERM            4
  87 #define FAILURE_LOW_OVERTEMP    8
  88 #define FAILURE_HIGH_OVERTEMP   16
  89 
  90 /* Overtemp values */
  91 #define LOW_OVER_AVERAGE        0
  92 #define LOW_OVER_IMMEDIATE      (10 << 16)
  93 #define LOW_OVER_CLEAR          ((-10) << 16)
  94 #define HIGH_OVER_IMMEDIATE     (14 << 16)
  95 #define HIGH_OVER_AVERAGE       (10 << 16)
  96 #define HIGH_OVER_IMMEDIATE     (14 << 16)
  97 
  98 
  99 static void cpu_max_all_fans(void)
 100 {
 101         int i;
 102 
 103         /* We max all CPU fans in case of a sensor error. We also do the
 104          * cpufreq clamping now, even if it's supposedly done later by the
 105          * generic code anyway, we do it earlier here to react faster
 106          */
 107         if (cpufreq_clamp)
 108                 wf_control_set_max(cpufreq_clamp);
 109         for (i = 0; i < nr_chips; i++) {
 110                 if (cpu_fans[i][0])
 111                         wf_control_set_max(cpu_fans[i][0]);
 112                 if (cpu_fans[i][1])
 113                         wf_control_set_max(cpu_fans[i][1]);
 114                 if (cpu_fans[i][2])
 115                         wf_control_set_max(cpu_fans[i][2]);
 116         }
 117 }
 118 
 119 static int cpu_check_overtemp(s32 temp)
 120 {
 121         int new_state = 0;
 122         s32 t_avg, t_old;
 123         static bool first = true;
 124 
 125         /* First check for immediate overtemps */
 126         if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
 127                 new_state |= FAILURE_LOW_OVERTEMP;
 128                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
 129                         printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
 130                                " temperature !\n");
 131         }
 132         if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
 133                 new_state |= FAILURE_HIGH_OVERTEMP;
 134                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
 135                         printk(KERN_ERR "windfarm: Critical overtemp due to"
 136                                " immediate CPU temperature !\n");
 137         }
 138 
 139         /*
 140          * The first time around, initialize the array with the first
 141          * temperature reading
 142          */
 143         if (first) {
 144                 int i;
 145 
 146                 cpu_thist_total = 0;
 147                 for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
 148                         cpu_thist[i] = temp;
 149                         cpu_thist_total += temp;
 150                 }
 151                 first = false;
 152         }
 153 
 154         /*
 155          * We calculate a history of max temperatures and use that for the
 156          * overtemp management
 157          */
 158         t_old = cpu_thist[cpu_thist_pt];
 159         cpu_thist[cpu_thist_pt] = temp;
 160         cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
 161         cpu_thist_total -= t_old;
 162         cpu_thist_total += temp;
 163         t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
 164 
 165         DBG_LOTS("  t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
 166                  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
 167 
 168         /* Now check for average overtemps */
 169         if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
 170                 new_state |= FAILURE_LOW_OVERTEMP;
 171                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
 172                         printk(KERN_ERR "windfarm: Overtemp due to average CPU"
 173                                " temperature !\n");
 174         }
 175         if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
 176                 new_state |= FAILURE_HIGH_OVERTEMP;
 177                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
 178                         printk(KERN_ERR "windfarm: Critical overtemp due to"
 179                                " average CPU temperature !\n");
 180         }
 181 
 182         /* Now handle overtemp conditions. We don't currently use the windfarm
 183          * overtemp handling core as it's not fully suited to the needs of those
 184          * new machine. This will be fixed later.
 185          */
 186         if (new_state) {
 187                 /* High overtemp -> immediate shutdown */
 188                 if (new_state & FAILURE_HIGH_OVERTEMP)
 189                         machine_power_off();
 190                 if ((failure_state & new_state) != new_state)
 191                         cpu_max_all_fans();
 192                 failure_state |= new_state;
 193         } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
 194                    (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
 195                 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
 196                 failure_state &= ~FAILURE_LOW_OVERTEMP;
 197         }
 198 
 199         return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
 200 }
 201 
 202 static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
 203 {
 204         s32 dtemp, volts, amps;
 205         int rc;
 206 
 207         /* Get diode temperature */
 208         rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
 209         if (rc) {
 210                 DBG("  CPU%d: temp reading error !\n", cpu);
 211                 return -EIO;
 212         }
 213         DBG_LOTS("  CPU%d: temp   = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
 214         *temp = dtemp;
 215 
 216         /* Get voltage */
 217         rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
 218         if (rc) {
 219                 DBG("  CPU%d, volts reading error !\n", cpu);
 220                 return -EIO;
 221         }
 222         DBG_LOTS("  CPU%d: volts  = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
 223 
 224         /* Get current */
 225         rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
 226         if (rc) {
 227                 DBG("  CPU%d, current reading error !\n", cpu);
 228                 return -EIO;
 229         }
 230         DBG_LOTS("  CPU%d: amps   = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
 231 
 232         /* Calculate power */
 233 
 234         /* Scale voltage and current raw sensor values according to fixed scales
 235          * obtained in Darwin and calculate power from I and V
 236          */
 237         *power = (((u64)volts) * ((u64)amps)) >> 16;
 238 
 239         DBG_LOTS("  CPU%d: power  = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
 240 
 241         return 0;
 242 
 243 }
 244 
 245 static void cpu_fans_tick(void)
 246 {
 247         int err, cpu, i;
 248         s32 speed, temp, power, t_max = 0;
 249 
 250         DBG_LOTS("* cpu fans_tick_split()\n");
 251 
 252         for (cpu = 0; cpu < nr_chips; ++cpu) {
 253                 struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
 254 
 255                 /* Read current speed */
 256                 wf_control_get(cpu_fans[cpu][0], &sp->target);
 257 
 258                 err = read_one_cpu_vals(cpu, &temp, &power);
 259                 if (err) {
 260                         failure_state |= FAILURE_SENSOR;
 261                         cpu_max_all_fans();
 262                         return;
 263                 }
 264 
 265                 /* Keep track of highest temp */
 266                 t_max = max(t_max, temp);
 267 
 268                 /* Handle possible overtemps */
 269                 if (cpu_check_overtemp(t_max))
 270                         return;
 271 
 272                 /* Run PID */
 273                 wf_cpu_pid_run(sp, power, temp);
 274 
 275                 DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target);
 276 
 277                 /* Apply DIMMs clamp */
 278                 speed = max(sp->target, dimms_output_clamp);
 279 
 280                 /* Apply result to all cpu fans */
 281                 for (i = 0; i < 3; i++) {
 282                         err = wf_control_set(cpu_fans[cpu][i], speed);
 283                         if (err) {
 284                                 pr_warning("wf_rm31: Fan %s reports error %d\n",
 285                                            cpu_fans[cpu][i]->name, err);
 286                                 failure_state |= FAILURE_FAN;
 287                         }
 288                 }
 289         }
 290 }
 291 
 292 /* Implementation... */
 293 static int cpu_setup_pid(int cpu)
 294 {
 295         struct wf_cpu_pid_param pid;
 296         const struct mpu_data *mpu = cpu_mpu_data[cpu];
 297         s32 tmax, ttarget, ptarget;
 298         int fmin, fmax, hsize;
 299 
 300         /* Get PID params from the appropriate MPU EEPROM */
 301         tmax = mpu->tmax << 16;
 302         ttarget = mpu->ttarget << 16;
 303         ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
 304 
 305         DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
 306             cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
 307 
 308         /* We keep a global tmax for overtemp calculations */
 309         if (tmax < cpu_all_tmax)
 310                 cpu_all_tmax = tmax;
 311 
 312         /* Set PID min/max by using the rear fan min/max */
 313         fmin = wf_control_get_min(cpu_fans[cpu][0]);
 314         fmax = wf_control_get_max(cpu_fans[cpu][0]);
 315         DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
 316 
 317         /* History size */
 318         hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
 319         DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
 320 
 321         /* Initialize PID loop */
 322         pid.interval    = 1;    /* seconds */
 323         pid.history_len = hsize;
 324         pid.gd          = mpu->pid_gd;
 325         pid.gp          = mpu->pid_gp;
 326         pid.gr          = mpu->pid_gr;
 327         pid.tmax        = tmax;
 328         pid.ttarget     = ttarget;
 329         pid.pmaxadj     = ptarget;
 330         pid.min         = fmin;
 331         pid.max         = fmax;
 332 
 333         wf_cpu_pid_init(&cpu_pid[cpu], &pid);
 334         cpu_pid[cpu].target = 4000;
 335         
 336         return 0;
 337 }
 338 
 339 /* Backside/U3 fan */
 340 static const struct wf_pid_param backside_param = {
 341         .interval       = 1,
 342         .history_len    = 2,
 343         .gd             = 0x00500000,
 344         .gp             = 0x0004cccc,
 345         .gr             = 0,
 346         .itarget        = 70 << 16,
 347         .additive       = 0,
 348         .min            = 20,
 349         .max            = 100,
 350 };
 351 
 352 /* DIMMs temperature (clamp the backside fan) */
 353 static const struct wf_pid_param dimms_param = {
 354         .interval       = 1,
 355         .history_len    = 20,
 356         .gd             = 0,
 357         .gp             = 0,
 358         .gr             = 0x06553600,
 359         .itarget        = 50 << 16,
 360         .additive       = 0,
 361         .min            = 4000,
 362         .max            = 14000,
 363 };
 364 
 365 static void backside_fan_tick(void)
 366 {
 367         s32 temp, dtemp;
 368         int speed, dspeed, fan_min;
 369         int err;
 370 
 371         if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick)
 372                 return;
 373         if (--backside_tick > 0)
 374                 return;
 375         backside_tick = backside_pid.param.interval;
 376 
 377         DBG_LOTS("* backside fans tick\n");
 378 
 379         /* Update fan speed from actual fans */
 380         err = wf_control_get(backside_fan, &speed);
 381         if (!err)
 382                 backside_pid.target = speed;
 383 
 384         err = wf_sensor_get(backside_temp, &temp);
 385         if (err) {
 386                 printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n",
 387                        err);
 388                 failure_state |= FAILURE_SENSOR;
 389                 wf_control_set_max(backside_fan);
 390                 return;
 391         }
 392         speed = wf_pid_run(&backside_pid, temp);
 393 
 394         DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
 395                  FIX32TOPRINT(temp), speed);
 396 
 397         err = wf_sensor_get(dimms_temp, &dtemp);
 398         if (err) {
 399                 printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n",
 400                        err);
 401                 failure_state |= FAILURE_SENSOR;
 402                 wf_control_set_max(backside_fan);
 403                 return;
 404         }
 405         dspeed = wf_pid_run(&dimms_pid, dtemp);
 406         dimms_output_clamp = dspeed;
 407 
 408         fan_min = (dspeed * 100) / 14000;
 409         fan_min = max(fan_min, backside_param.min);
 410         speed = max(speed, fan_min);
 411 
 412         err = wf_control_set(backside_fan, speed);
 413         if (err) {
 414                 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
 415                 failure_state |= FAILURE_FAN;
 416         }
 417 }
 418 
 419 static void backside_setup_pid(void)
 420 {
 421         /* first time initialize things */
 422         s32 fmin = wf_control_get_min(backside_fan);
 423         s32 fmax = wf_control_get_max(backside_fan);
 424         struct wf_pid_param param;
 425 
 426         param = backside_param;
 427         param.min = max(param.min, fmin);
 428         param.max = min(param.max, fmax);
 429         wf_pid_init(&backside_pid, &param);
 430 
 431         param = dimms_param;
 432         wf_pid_init(&dimms_pid, &param);
 433 
 434         backside_tick = 1;
 435 
 436         pr_info("wf_rm31: Backside control loop started.\n");
 437 }
 438 
 439 /* Slots fan */
 440 static const struct wf_pid_param slots_param = {
 441         .interval       = 1,
 442         .history_len    = 20,
 443         .gd             = 0,
 444         .gp             = 0,
 445         .gr             = 0x00100000,
 446         .itarget        = 3200000,
 447         .additive       = 0,
 448         .min            = 20,
 449         .max            = 100,
 450 };
 451 
 452 static void slots_fan_tick(void)
 453 {
 454         s32 temp;
 455         int speed;
 456         int err;
 457 
 458         if (!slots_fan || !slots_temp || !slots_tick)
 459                 return;
 460         if (--slots_tick > 0)
 461                 return;
 462         slots_tick = slots_pid.param.interval;
 463 
 464         DBG_LOTS("* slots fans tick\n");
 465 
 466         err = wf_sensor_get(slots_temp, &temp);
 467         if (err) {
 468                 pr_warning("wf_rm31: slots temp sensor error %d\n", err);
 469                 failure_state |= FAILURE_SENSOR;
 470                 wf_control_set_max(slots_fan);
 471                 return;
 472         }
 473         speed = wf_pid_run(&slots_pid, temp);
 474 
 475         DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n",
 476                  FIX32TOPRINT(temp), speed);
 477 
 478         slots_speed = speed;
 479         err = wf_control_set(slots_fan, speed);
 480         if (err) {
 481                 printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err);
 482                 failure_state |= FAILURE_FAN;
 483         }
 484 }
 485 
 486 static void slots_setup_pid(void)
 487 {
 488         /* first time initialize things */
 489         s32 fmin = wf_control_get_min(slots_fan);
 490         s32 fmax = wf_control_get_max(slots_fan);
 491         struct wf_pid_param param = slots_param;
 492 
 493         param.min = max(param.min, fmin);
 494         param.max = min(param.max, fmax);
 495         wf_pid_init(&slots_pid, &param);
 496         slots_tick = 1;
 497 
 498         pr_info("wf_rm31: Slots control loop started.\n");
 499 }
 500 
 501 static void set_fail_state(void)
 502 {
 503         cpu_max_all_fans();
 504 
 505         if (backside_fan)
 506                 wf_control_set_max(backside_fan);
 507         if (slots_fan)
 508                 wf_control_set_max(slots_fan);
 509 }
 510 
 511 static void rm31_tick(void)
 512 {
 513         int i, last_failure;
 514 
 515         if (!started) {
 516                 started = true;
 517                 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
 518                 for (i = 0; i < nr_chips; ++i) {
 519                         if (cpu_setup_pid(i) < 0) {
 520                                 failure_state = FAILURE_PERM;
 521                                 set_fail_state();
 522                                 break;
 523                         }
 524                 }
 525                 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
 526 
 527                 backside_setup_pid();
 528                 slots_setup_pid();
 529 
 530 #ifdef HACKED_OVERTEMP
 531                 cpu_all_tmax = 60 << 16;
 532 #endif
 533         }
 534 
 535         /* Permanent failure, bail out */
 536         if (failure_state & FAILURE_PERM)
 537                 return;
 538 
 539         /*
 540          * Clear all failure bits except low overtemp which will be eventually
 541          * cleared by the control loop itself
 542          */
 543         last_failure = failure_state;
 544         failure_state &= FAILURE_LOW_OVERTEMP;
 545         backside_fan_tick();
 546         slots_fan_tick();
 547 
 548         /* We do CPUs last because they can be clamped high by
 549          * DIMM temperature
 550          */
 551         cpu_fans_tick();
 552 
 553         DBG_LOTS("  last_failure: 0x%x, failure_state: %x\n",
 554                  last_failure, failure_state);
 555 
 556         /* Check for failures. Any failure causes cpufreq clamping */
 557         if (failure_state && last_failure == 0 && cpufreq_clamp)
 558                 wf_control_set_max(cpufreq_clamp);
 559         if (failure_state == 0 && last_failure && cpufreq_clamp)
 560                 wf_control_set_min(cpufreq_clamp);
 561 
 562         /* That's it for now, we might want to deal with other failures
 563          * differently in the future though
 564          */
 565 }
 566 
 567 static void rm31_new_control(struct wf_control *ct)
 568 {
 569         bool all_controls;
 570 
 571         if (!strcmp(ct->name, "cpu-fan-a-0"))
 572                 cpu_fans[0][0] = ct;
 573         else if (!strcmp(ct->name, "cpu-fan-b-0"))
 574                 cpu_fans[0][1] = ct;
 575         else if (!strcmp(ct->name, "cpu-fan-c-0"))
 576                 cpu_fans[0][2] = ct;
 577         else if (!strcmp(ct->name, "cpu-fan-a-1"))
 578                 cpu_fans[1][0] = ct;
 579         else if (!strcmp(ct->name, "cpu-fan-b-1"))
 580                 cpu_fans[1][1] = ct;
 581         else if (!strcmp(ct->name, "cpu-fan-c-1"))
 582                 cpu_fans[1][2] = ct;
 583         else if (!strcmp(ct->name, "backside-fan"))
 584                 backside_fan = ct;
 585         else if (!strcmp(ct->name, "slots-fan"))
 586                 slots_fan = ct;
 587         else if (!strcmp(ct->name, "cpufreq-clamp"))
 588                 cpufreq_clamp = ct;
 589 
 590         all_controls =
 591                 cpu_fans[0][0] &&
 592                 cpu_fans[0][1] &&
 593                 cpu_fans[0][2] &&
 594                 backside_fan &&
 595                 slots_fan;
 596         if (nr_chips > 1)
 597                 all_controls &=
 598                         cpu_fans[1][0] &&
 599                         cpu_fans[1][1] &&
 600                         cpu_fans[1][2];
 601         have_all_controls = all_controls;
 602 }
 603 
 604 
 605 static void rm31_new_sensor(struct wf_sensor *sr)
 606 {
 607         bool all_sensors;
 608 
 609         if (!strcmp(sr->name, "cpu-diode-temp-0"))
 610                 sens_cpu_temp[0] = sr;
 611         else if (!strcmp(sr->name, "cpu-diode-temp-1"))
 612                 sens_cpu_temp[1] = sr;
 613         else if (!strcmp(sr->name, "cpu-voltage-0"))
 614                 sens_cpu_volts[0] = sr;
 615         else if (!strcmp(sr->name, "cpu-voltage-1"))
 616                 sens_cpu_volts[1] = sr;
 617         else if (!strcmp(sr->name, "cpu-current-0"))
 618                 sens_cpu_amps[0] = sr;
 619         else if (!strcmp(sr->name, "cpu-current-1"))
 620                 sens_cpu_amps[1] = sr;
 621         else if (!strcmp(sr->name, "backside-temp"))
 622                 backside_temp = sr;
 623         else if (!strcmp(sr->name, "slots-temp"))
 624                 slots_temp = sr;
 625         else if (!strcmp(sr->name, "dimms-temp"))
 626                 dimms_temp = sr;
 627 
 628         all_sensors =
 629                 sens_cpu_temp[0] &&
 630                 sens_cpu_volts[0] &&
 631                 sens_cpu_amps[0] &&
 632                 backside_temp &&
 633                 slots_temp &&
 634                 dimms_temp;
 635         if (nr_chips > 1)
 636                 all_sensors &=
 637                         sens_cpu_temp[1] &&
 638                         sens_cpu_volts[1] &&
 639                         sens_cpu_amps[1];
 640 
 641         have_all_sensors = all_sensors;
 642 }
 643 
 644 static int rm31_wf_notify(struct notifier_block *self,
 645                           unsigned long event, void *data)
 646 {
 647         switch (event) {
 648         case WF_EVENT_NEW_SENSOR:
 649                 rm31_new_sensor(data);
 650                 break;
 651         case WF_EVENT_NEW_CONTROL:
 652                 rm31_new_control(data);
 653                 break;
 654         case WF_EVENT_TICK:
 655                 if (have_all_controls && have_all_sensors)
 656                         rm31_tick();
 657         }
 658         return 0;
 659 }
 660 
 661 static struct notifier_block rm31_events = {
 662         .notifier_call = rm31_wf_notify,
 663 };
 664 
 665 static int wf_rm31_probe(struct platform_device *dev)
 666 {
 667         wf_register_client(&rm31_events);
 668         return 0;
 669 }
 670 
 671 static int wf_rm31_remove(struct platform_device *dev)
 672 {
 673         wf_unregister_client(&rm31_events);
 674 
 675         /* should release all sensors and controls */
 676         return 0;
 677 }
 678 
 679 static struct platform_driver wf_rm31_driver = {
 680         .probe  = wf_rm31_probe,
 681         .remove = wf_rm31_remove,
 682         .driver = {
 683                 .name = "windfarm",
 684         },
 685 };
 686 
 687 static int __init wf_rm31_init(void)
 688 {
 689         struct device_node *cpu;
 690         int i;
 691 
 692         if (!of_machine_is_compatible("RackMac3,1"))
 693                 return -ENODEV;
 694 
 695         /* Count the number of CPU cores */
 696         nr_chips = 0;
 697         for_each_node_by_type(cpu, "cpu")
 698                 ++nr_chips;
 699         if (nr_chips > NR_CHIPS)
 700                 nr_chips = NR_CHIPS;
 701 
 702         pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
 703                 nr_chips);
 704 
 705         /* Get MPU data for each CPU */
 706         for (i = 0; i < nr_chips; i++) {
 707                 cpu_mpu_data[i] = wf_get_mpu(i);
 708                 if (!cpu_mpu_data[i]) {
 709                         pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i);
 710                         return -ENXIO;
 711                 }
 712         }
 713 
 714 #ifdef MODULE
 715         request_module("windfarm_fcu_controls");
 716         request_module("windfarm_lm75_sensor");
 717         request_module("windfarm_lm87_sensor");
 718         request_module("windfarm_ad7417_sensor");
 719         request_module("windfarm_max6690_sensor");
 720         request_module("windfarm_cpufreq_clamp");
 721 #endif /* MODULE */
 722 
 723         platform_driver_register(&wf_rm31_driver);
 724         return 0;
 725 }
 726 
 727 static void __exit wf_rm31_exit(void)
 728 {
 729         platform_driver_unregister(&wf_rm31_driver);
 730 }
 731 
 732 module_init(wf_rm31_init);
 733 module_exit(wf_rm31_exit);
 734 
 735 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
 736 MODULE_DESCRIPTION("Thermal control for Xserve G5");
 737 MODULE_LICENSE("GPL");
 738 MODULE_ALIAS("platform:windfarm");

/* [<][>][^][v][top][bottom][index][help] */