root/drivers/net/wireless/intel/iwlwifi/dvm/calib.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. iwl_send_calib_results
  2. iwl_calib_set
  3. iwl_calib_free_results
  4. iwl_sens_energy_cck
  5. iwl_sens_auto_corr_ofdm
  6. iwl_prepare_legacy_sensitivity_tbl
  7. iwl_sensitivity_write
  8. iwl_enhance_sensitivity_write
  9. iwl_init_sensitivity
  10. iwl_sensitivity_calibration
  11. find_first_chain
  12. iwl_find_disconn_antenna
  13. iwlagn_gain_computation
  14. iwl_chain_noise_calibration
  15. iwl_reset_run_time_calib

   1 /******************************************************************************
   2  *
   3  * This file is provided under a dual BSD/GPLv2 license.  When using or
   4  * redistributing this file, you may do so under either license.
   5  *
   6  * GPL LICENSE SUMMARY
   7  *
   8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
   9  *
  10  * This program is free software; you can redistribute it and/or modify
  11  * it under the terms of version 2 of the GNU General Public License as
  12  * published by the Free Software Foundation.
  13  *
  14  * This program is distributed in the hope that it will be useful, but
  15  * WITHOUT ANY WARRANTY; without even the implied warranty of
  16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17  * General Public License for more details.
  18  *
  19  * The full GNU General Public License is included in this distribution
  20  * in the file called COPYING.
  21  *
  22  * Contact Information:
  23  *  Intel Linux Wireless <linuxwifi@intel.com>
  24  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25  *
  26  * BSD LICENSE
  27  *
  28  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
  29  * All rights reserved.
  30  *
  31  * Redistribution and use in source and binary forms, with or without
  32  * modification, are permitted provided that the following conditions
  33  * are met:
  34  *
  35  *  * Redistributions of source code must retain the above copyright
  36  *    notice, this list of conditions and the following disclaimer.
  37  *  * Redistributions in binary form must reproduce the above copyright
  38  *    notice, this list of conditions and the following disclaimer in
  39  *    the documentation and/or other materials provided with the
  40  *    distribution.
  41  *  * Neither the name Intel Corporation nor the names of its
  42  *    contributors may be used to endorse or promote products derived
  43  *    from this software without specific prior written permission.
  44  *
  45  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  46  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  47  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  48  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  49  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  50  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  51  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  52  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  53  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  54  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  55  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  56  *****************************************************************************/
  57 
  58 #include <linux/slab.h>
  59 #include <net/mac80211.h>
  60 
  61 #include "iwl-trans.h"
  62 
  63 #include "dev.h"
  64 #include "calib.h"
  65 #include "agn.h"
  66 
  67 /*****************************************************************************
  68  * INIT calibrations framework
  69  *****************************************************************************/
  70 
  71 /* Opaque calibration results */
  72 struct iwl_calib_result {
  73         struct list_head list;
  74         size_t cmd_len;
  75         struct iwl_calib_hdr hdr;
  76         /* data follows */
  77 };
  78 
  79 struct statistics_general_data {
  80         u32 beacon_silence_rssi_a;
  81         u32 beacon_silence_rssi_b;
  82         u32 beacon_silence_rssi_c;
  83         u32 beacon_energy_a;
  84         u32 beacon_energy_b;
  85         u32 beacon_energy_c;
  86 };
  87 
  88 int iwl_send_calib_results(struct iwl_priv *priv)
  89 {
  90         struct iwl_host_cmd hcmd = {
  91                 .id = REPLY_PHY_CALIBRATION_CMD,
  92         };
  93         struct iwl_calib_result *res;
  94 
  95         list_for_each_entry(res, &priv->calib_results, list) {
  96                 int ret;
  97 
  98                 hcmd.len[0] = res->cmd_len;
  99                 hcmd.data[0] = &res->hdr;
 100                 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
 101                 ret = iwl_dvm_send_cmd(priv, &hcmd);
 102                 if (ret) {
 103                         IWL_ERR(priv, "Error %d on calib cmd %d\n",
 104                                 ret, res->hdr.op_code);
 105                         return ret;
 106                 }
 107         }
 108 
 109         return 0;
 110 }
 111 
 112 int iwl_calib_set(struct iwl_priv *priv,
 113                   const struct iwl_calib_hdr *cmd, int len)
 114 {
 115         struct iwl_calib_result *res, *tmp;
 116 
 117         res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
 118                       GFP_ATOMIC);
 119         if (!res)
 120                 return -ENOMEM;
 121         memcpy(&res->hdr, cmd, len);
 122         res->cmd_len = len;
 123 
 124         list_for_each_entry(tmp, &priv->calib_results, list) {
 125                 if (tmp->hdr.op_code == res->hdr.op_code) {
 126                         list_replace(&tmp->list, &res->list);
 127                         kfree(tmp);
 128                         return 0;
 129                 }
 130         }
 131 
 132         /* wasn't in list already */
 133         list_add_tail(&res->list, &priv->calib_results);
 134 
 135         return 0;
 136 }
 137 
 138 void iwl_calib_free_results(struct iwl_priv *priv)
 139 {
 140         struct iwl_calib_result *res, *tmp;
 141 
 142         list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
 143                 list_del(&res->list);
 144                 kfree(res);
 145         }
 146 }
 147 
 148 /*****************************************************************************
 149  * RUNTIME calibrations framework
 150  *****************************************************************************/
 151 
 152 /* "false alarms" are signals that our DSP tries to lock onto,
 153  *   but then determines that they are either noise, or transmissions
 154  *   from a distant wireless network (also "noise", really) that get
 155  *   "stepped on" by stronger transmissions within our own network.
 156  * This algorithm attempts to set a sensitivity level that is high
 157  *   enough to receive all of our own network traffic, but not so
 158  *   high that our DSP gets too busy trying to lock onto non-network
 159  *   activity/noise. */
 160 static int iwl_sens_energy_cck(struct iwl_priv *priv,
 161                                    u32 norm_fa,
 162                                    u32 rx_enable_time,
 163                                    struct statistics_general_data *rx_info)
 164 {
 165         u32 max_nrg_cck = 0;
 166         int i = 0;
 167         u8 max_silence_rssi = 0;
 168         u32 silence_ref = 0;
 169         u8 silence_rssi_a = 0;
 170         u8 silence_rssi_b = 0;
 171         u8 silence_rssi_c = 0;
 172         u32 val;
 173 
 174         /* "false_alarms" values below are cross-multiplications to assess the
 175          *   numbers of false alarms within the measured period of actual Rx
 176          *   (Rx is off when we're txing), vs the min/max expected false alarms
 177          *   (some should be expected if rx is sensitive enough) in a
 178          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
 179          *
 180          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
 181          *
 182          * */
 183         u32 false_alarms = norm_fa * 200 * 1024;
 184         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
 185         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
 186         struct iwl_sensitivity_data *data = NULL;
 187         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 188 
 189         data = &(priv->sensitivity_data);
 190 
 191         data->nrg_auto_corr_silence_diff = 0;
 192 
 193         /* Find max silence rssi among all 3 receivers.
 194          * This is background noise, which may include transmissions from other
 195          *    networks, measured during silence before our network's beacon */
 196         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
 197                             ALL_BAND_FILTER) >> 8);
 198         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
 199                             ALL_BAND_FILTER) >> 8);
 200         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
 201                             ALL_BAND_FILTER) >> 8);
 202 
 203         val = max(silence_rssi_b, silence_rssi_c);
 204         max_silence_rssi = max(silence_rssi_a, (u8) val);
 205 
 206         /* Store silence rssi in 20-beacon history table */
 207         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
 208         data->nrg_silence_idx++;
 209         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
 210                 data->nrg_silence_idx = 0;
 211 
 212         /* Find max silence rssi across 20 beacon history */
 213         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
 214                 val = data->nrg_silence_rssi[i];
 215                 silence_ref = max(silence_ref, val);
 216         }
 217         IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
 218                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
 219                         silence_ref);
 220 
 221         /* Find max rx energy (min value!) among all 3 receivers,
 222          *   measured during beacon frame.
 223          * Save it in 10-beacon history table. */
 224         i = data->nrg_energy_idx;
 225         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
 226         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
 227 
 228         data->nrg_energy_idx++;
 229         if (data->nrg_energy_idx >= 10)
 230                 data->nrg_energy_idx = 0;
 231 
 232         /* Find min rx energy (max value) across 10 beacon history.
 233          * This is the minimum signal level that we want to receive well.
 234          * Add backoff (margin so we don't miss slightly lower energy frames).
 235          * This establishes an upper bound (min value) for energy threshold. */
 236         max_nrg_cck = data->nrg_value[0];
 237         for (i = 1; i < 10; i++)
 238                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
 239         max_nrg_cck += 6;
 240 
 241         IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
 242                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
 243                         rx_info->beacon_energy_c, max_nrg_cck - 6);
 244 
 245         /* Count number of consecutive beacons with fewer-than-desired
 246          *   false alarms. */
 247         if (false_alarms < min_false_alarms)
 248                 data->num_in_cck_no_fa++;
 249         else
 250                 data->num_in_cck_no_fa = 0;
 251         IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
 252                         data->num_in_cck_no_fa);
 253 
 254         /* If we got too many false alarms this time, reduce sensitivity */
 255         if ((false_alarms > max_false_alarms) &&
 256                 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
 257                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
 258                      false_alarms, max_false_alarms);
 259                 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
 260                 data->nrg_curr_state = IWL_FA_TOO_MANY;
 261                 /* Store for "fewer than desired" on later beacon */
 262                 data->nrg_silence_ref = silence_ref;
 263 
 264                 /* increase energy threshold (reduce nrg value)
 265                  *   to decrease sensitivity */
 266                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
 267         /* Else if we got fewer than desired, increase sensitivity */
 268         } else if (false_alarms < min_false_alarms) {
 269                 data->nrg_curr_state = IWL_FA_TOO_FEW;
 270 
 271                 /* Compare silence level with silence level for most recent
 272                  *   healthy number or too many false alarms */
 273                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
 274                                                    (s32)silence_ref;
 275 
 276                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
 277                          false_alarms, min_false_alarms,
 278                          data->nrg_auto_corr_silence_diff);
 279 
 280                 /* Increase value to increase sensitivity, but only if:
 281                  * 1a) previous beacon did *not* have *too many* false alarms
 282                  * 1b) AND there's a significant difference in Rx levels
 283                  *      from a previous beacon with too many, or healthy # FAs
 284                  * OR 2) We've seen a lot of beacons (100) with too few
 285                  *       false alarms */
 286                 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
 287                         ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 288                         (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 289 
 290                         IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
 291                         /* Increase nrg value to increase sensitivity */
 292                         val = data->nrg_th_cck + NRG_STEP_CCK;
 293                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
 294                 } else {
 295                         IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
 296                 }
 297 
 298         /* Else we got a healthy number of false alarms, keep status quo */
 299         } else {
 300                 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
 301                 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
 302 
 303                 /* Store for use in "fewer than desired" with later beacon */
 304                 data->nrg_silence_ref = silence_ref;
 305 
 306                 /* If previous beacon had too many false alarms,
 307                  *   give it some extra margin by reducing sensitivity again
 308                  *   (but don't go below measured energy of desired Rx) */
 309                 if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
 310                         IWL_DEBUG_CALIB(priv, "... increasing margin\n");
 311                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
 312                                 data->nrg_th_cck -= NRG_MARGIN;
 313                         else
 314                                 data->nrg_th_cck = max_nrg_cck;
 315                 }
 316         }
 317 
 318         /* Make sure the energy threshold does not go above the measured
 319          * energy of the desired Rx signals (reduced by backoff margin),
 320          * or else we might start missing Rx frames.
 321          * Lower value is higher energy, so we use max()!
 322          */
 323         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
 324         IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
 325 
 326         data->nrg_prev_state = data->nrg_curr_state;
 327 
 328         /* Auto-correlation CCK algorithm */
 329         if (false_alarms > min_false_alarms) {
 330 
 331                 /* increase auto_corr values to decrease sensitivity
 332                  * so the DSP won't be disturbed by the noise
 333                  */
 334                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
 335                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
 336                 else {
 337                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
 338                         data->auto_corr_cck =
 339                                 min((u32)ranges->auto_corr_max_cck, val);
 340                 }
 341                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
 342                 data->auto_corr_cck_mrc =
 343                         min((u32)ranges->auto_corr_max_cck_mrc, val);
 344         } else if ((false_alarms < min_false_alarms) &&
 345            ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 346            (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 347 
 348                 /* Decrease auto_corr values to increase sensitivity */
 349                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
 350                 data->auto_corr_cck =
 351                         max((u32)ranges->auto_corr_min_cck, val);
 352                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
 353                 data->auto_corr_cck_mrc =
 354                         max((u32)ranges->auto_corr_min_cck_mrc, val);
 355         }
 356 
 357         return 0;
 358 }
 359 
 360 
 361 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
 362                                        u32 norm_fa,
 363                                        u32 rx_enable_time)
 364 {
 365         u32 val;
 366         u32 false_alarms = norm_fa * 200 * 1024;
 367         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
 368         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
 369         struct iwl_sensitivity_data *data = NULL;
 370         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 371 
 372         data = &(priv->sensitivity_data);
 373 
 374         /* If we got too many false alarms this time, reduce sensitivity */
 375         if (false_alarms > max_false_alarms) {
 376 
 377                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
 378                              false_alarms, max_false_alarms);
 379 
 380                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
 381                 data->auto_corr_ofdm =
 382                         min((u32)ranges->auto_corr_max_ofdm, val);
 383 
 384                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
 385                 data->auto_corr_ofdm_mrc =
 386                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
 387 
 388                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
 389                 data->auto_corr_ofdm_x1 =
 390                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
 391 
 392                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
 393                 data->auto_corr_ofdm_mrc_x1 =
 394                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
 395         }
 396 
 397         /* Else if we got fewer than desired, increase sensitivity */
 398         else if (false_alarms < min_false_alarms) {
 399 
 400                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
 401                              false_alarms, min_false_alarms);
 402 
 403                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
 404                 data->auto_corr_ofdm =
 405                         max((u32)ranges->auto_corr_min_ofdm, val);
 406 
 407                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
 408                 data->auto_corr_ofdm_mrc =
 409                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
 410 
 411                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
 412                 data->auto_corr_ofdm_x1 =
 413                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
 414 
 415                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
 416                 data->auto_corr_ofdm_mrc_x1 =
 417                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
 418         } else {
 419                 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
 420                          min_false_alarms, false_alarms, max_false_alarms);
 421         }
 422         return 0;
 423 }
 424 
 425 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
 426                                 struct iwl_sensitivity_data *data,
 427                                 __le16 *tbl)
 428 {
 429         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
 430                                 cpu_to_le16((u16)data->auto_corr_ofdm);
 431         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
 432                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
 433         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
 434                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
 435         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
 436                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
 437 
 438         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
 439                                 cpu_to_le16((u16)data->auto_corr_cck);
 440         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
 441                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
 442 
 443         tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
 444                                 cpu_to_le16((u16)data->nrg_th_cck);
 445         tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
 446                                 cpu_to_le16((u16)data->nrg_th_ofdm);
 447 
 448         tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
 449                                 cpu_to_le16(data->barker_corr_th_min);
 450         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
 451                                 cpu_to_le16(data->barker_corr_th_min_mrc);
 452         tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
 453                                 cpu_to_le16(data->nrg_th_cca);
 454 
 455         IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
 456                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
 457                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
 458                         data->nrg_th_ofdm);
 459 
 460         IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
 461                         data->auto_corr_cck, data->auto_corr_cck_mrc,
 462                         data->nrg_th_cck);
 463 }
 464 
 465 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 466 static int iwl_sensitivity_write(struct iwl_priv *priv)
 467 {
 468         struct iwl_sensitivity_cmd cmd;
 469         struct iwl_sensitivity_data *data = NULL;
 470         struct iwl_host_cmd cmd_out = {
 471                 .id = SENSITIVITY_CMD,
 472                 .len = { sizeof(struct iwl_sensitivity_cmd), },
 473                 .flags = CMD_ASYNC,
 474                 .data = { &cmd, },
 475         };
 476 
 477         data = &(priv->sensitivity_data);
 478 
 479         memset(&cmd, 0, sizeof(cmd));
 480 
 481         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
 482 
 483         /* Update uCode's "work" table, and copy it to DSP */
 484         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 485 
 486         /* Don't send command to uCode if nothing has changed */
 487         if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
 488                     sizeof(u16)*HD_TABLE_SIZE)) {
 489                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 490                 return 0;
 491         }
 492 
 493         /* Copy table for comparison next time */
 494         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
 495                sizeof(u16)*HD_TABLE_SIZE);
 496 
 497         return iwl_dvm_send_cmd(priv, &cmd_out);
 498 }
 499 
 500 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 501 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
 502 {
 503         struct iwl_enhance_sensitivity_cmd cmd;
 504         struct iwl_sensitivity_data *data = NULL;
 505         struct iwl_host_cmd cmd_out = {
 506                 .id = SENSITIVITY_CMD,
 507                 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
 508                 .flags = CMD_ASYNC,
 509                 .data = { &cmd, },
 510         };
 511 
 512         data = &(priv->sensitivity_data);
 513 
 514         memset(&cmd, 0, sizeof(cmd));
 515 
 516         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
 517 
 518         if (priv->lib->hd_v2) {
 519                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 520                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
 521                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 522                         HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
 523                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 524                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
 525                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 526                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 527                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 528                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 529                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 530                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
 531                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 532                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 533                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 534                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 535                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 536                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 537                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 538                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
 539                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 540                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 541         } else {
 542                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 543                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
 544                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 545                         HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
 546                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 547                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
 548                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 549                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 550                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 551                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 552                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 553                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
 554                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 555                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 556                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 557                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 558                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 559                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 560                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 561                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
 562                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 563                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 564         }
 565 
 566         /* Update uCode's "work" table, and copy it to DSP */
 567         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 568 
 569         /* Don't send command to uCode if nothing has changed */
 570         if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
 571                     sizeof(u16)*HD_TABLE_SIZE) &&
 572             !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
 573                     &(priv->enhance_sensitivity_tbl[0]),
 574                     sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
 575                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 576                 return 0;
 577         }
 578 
 579         /* Copy table for comparison next time */
 580         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
 581                sizeof(u16)*HD_TABLE_SIZE);
 582         memcpy(&(priv->enhance_sensitivity_tbl[0]),
 583                &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
 584                sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
 585 
 586         return iwl_dvm_send_cmd(priv, &cmd_out);
 587 }
 588 
 589 void iwl_init_sensitivity(struct iwl_priv *priv)
 590 {
 591         int ret = 0;
 592         int i;
 593         struct iwl_sensitivity_data *data = NULL;
 594         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 595 
 596         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 597                 return;
 598 
 599         IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
 600 
 601         /* Clear driver's sensitivity algo data */
 602         data = &(priv->sensitivity_data);
 603 
 604         if (ranges == NULL)
 605                 return;
 606 
 607         memset(data, 0, sizeof(struct iwl_sensitivity_data));
 608 
 609         data->num_in_cck_no_fa = 0;
 610         data->nrg_curr_state = IWL_FA_TOO_MANY;
 611         data->nrg_prev_state = IWL_FA_TOO_MANY;
 612         data->nrg_silence_ref = 0;
 613         data->nrg_silence_idx = 0;
 614         data->nrg_energy_idx = 0;
 615 
 616         for (i = 0; i < 10; i++)
 617                 data->nrg_value[i] = 0;
 618 
 619         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
 620                 data->nrg_silence_rssi[i] = 0;
 621 
 622         data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
 623         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
 624         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
 625         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
 626         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
 627         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
 628         data->nrg_th_cck = ranges->nrg_th_cck;
 629         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
 630         data->barker_corr_th_min = ranges->barker_corr_th_min;
 631         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
 632         data->nrg_th_cca = ranges->nrg_th_cca;
 633 
 634         data->last_bad_plcp_cnt_ofdm = 0;
 635         data->last_fa_cnt_ofdm = 0;
 636         data->last_bad_plcp_cnt_cck = 0;
 637         data->last_fa_cnt_cck = 0;
 638 
 639         if (priv->fw->enhance_sensitivity_table)
 640                 ret |= iwl_enhance_sensitivity_write(priv);
 641         else
 642                 ret |= iwl_sensitivity_write(priv);
 643         IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
 644 }
 645 
 646 void iwl_sensitivity_calibration(struct iwl_priv *priv)
 647 {
 648         u32 rx_enable_time;
 649         u32 fa_cck;
 650         u32 fa_ofdm;
 651         u32 bad_plcp_cck;
 652         u32 bad_plcp_ofdm;
 653         u32 norm_fa_ofdm;
 654         u32 norm_fa_cck;
 655         struct iwl_sensitivity_data *data = NULL;
 656         struct statistics_rx_non_phy *rx_info;
 657         struct statistics_rx_phy *ofdm, *cck;
 658         struct statistics_general_data statis;
 659 
 660         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 661                 return;
 662 
 663         data = &(priv->sensitivity_data);
 664 
 665         if (!iwl_is_any_associated(priv)) {
 666                 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
 667                 return;
 668         }
 669 
 670         spin_lock_bh(&priv->statistics.lock);
 671         rx_info = &priv->statistics.rx_non_phy;
 672         ofdm = &priv->statistics.rx_ofdm;
 673         cck = &priv->statistics.rx_cck;
 674         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 675                 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
 676                 spin_unlock_bh(&priv->statistics.lock);
 677                 return;
 678         }
 679 
 680         /* Extract Statistics: */
 681         rx_enable_time = le32_to_cpu(rx_info->channel_load);
 682         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
 683         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
 684         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
 685         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
 686 
 687         statis.beacon_silence_rssi_a =
 688                         le32_to_cpu(rx_info->beacon_silence_rssi_a);
 689         statis.beacon_silence_rssi_b =
 690                         le32_to_cpu(rx_info->beacon_silence_rssi_b);
 691         statis.beacon_silence_rssi_c =
 692                         le32_to_cpu(rx_info->beacon_silence_rssi_c);
 693         statis.beacon_energy_a =
 694                         le32_to_cpu(rx_info->beacon_energy_a);
 695         statis.beacon_energy_b =
 696                         le32_to_cpu(rx_info->beacon_energy_b);
 697         statis.beacon_energy_c =
 698                         le32_to_cpu(rx_info->beacon_energy_c);
 699 
 700         spin_unlock_bh(&priv->statistics.lock);
 701 
 702         IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
 703 
 704         if (!rx_enable_time) {
 705                 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
 706                 return;
 707         }
 708 
 709         /* These statistics increase monotonically, and do not reset
 710          *   at each beacon.  Calculate difference from last value, or just
 711          *   use the new statistics value if it has reset or wrapped around. */
 712         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
 713                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
 714         else {
 715                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
 716                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
 717         }
 718 
 719         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
 720                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
 721         else {
 722                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
 723                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
 724         }
 725 
 726         if (data->last_fa_cnt_ofdm > fa_ofdm)
 727                 data->last_fa_cnt_ofdm = fa_ofdm;
 728         else {
 729                 fa_ofdm -= data->last_fa_cnt_ofdm;
 730                 data->last_fa_cnt_ofdm += fa_ofdm;
 731         }
 732 
 733         if (data->last_fa_cnt_cck > fa_cck)
 734                 data->last_fa_cnt_cck = fa_cck;
 735         else {
 736                 fa_cck -= data->last_fa_cnt_cck;
 737                 data->last_fa_cnt_cck += fa_cck;
 738         }
 739 
 740         /* Total aborted signal locks */
 741         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
 742         norm_fa_cck = fa_cck + bad_plcp_cck;
 743 
 744         IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
 745                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
 746 
 747         iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
 748         iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
 749         if (priv->fw->enhance_sensitivity_table)
 750                 iwl_enhance_sensitivity_write(priv);
 751         else
 752                 iwl_sensitivity_write(priv);
 753 }
 754 
 755 static inline u8 find_first_chain(u8 mask)
 756 {
 757         if (mask & ANT_A)
 758                 return CHAIN_A;
 759         if (mask & ANT_B)
 760                 return CHAIN_B;
 761         return CHAIN_C;
 762 }
 763 
 764 /**
 765  * Run disconnected antenna algorithm to find out which antennas are
 766  * disconnected.
 767  */
 768 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
 769                                      struct iwl_chain_noise_data *data)
 770 {
 771         u32 active_chains = 0;
 772         u32 max_average_sig;
 773         u16 max_average_sig_antenna_i;
 774         u8 num_tx_chains;
 775         u8 first_chain;
 776         u16 i = 0;
 777 
 778         average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
 779         average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
 780         average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
 781 
 782         if (average_sig[0] >= average_sig[1]) {
 783                 max_average_sig = average_sig[0];
 784                 max_average_sig_antenna_i = 0;
 785                 active_chains = (1 << max_average_sig_antenna_i);
 786         } else {
 787                 max_average_sig = average_sig[1];
 788                 max_average_sig_antenna_i = 1;
 789                 active_chains = (1 << max_average_sig_antenna_i);
 790         }
 791 
 792         if (average_sig[2] >= max_average_sig) {
 793                 max_average_sig = average_sig[2];
 794                 max_average_sig_antenna_i = 2;
 795                 active_chains = (1 << max_average_sig_antenna_i);
 796         }
 797 
 798         IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
 799                      average_sig[0], average_sig[1], average_sig[2]);
 800         IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
 801                      max_average_sig, max_average_sig_antenna_i);
 802 
 803         /* Compare signal strengths for all 3 receivers. */
 804         for (i = 0; i < NUM_RX_CHAINS; i++) {
 805                 if (i != max_average_sig_antenna_i) {
 806                         s32 rssi_delta = (max_average_sig - average_sig[i]);
 807 
 808                         /* If signal is very weak, compared with
 809                          * strongest, mark it as disconnected. */
 810                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
 811                                 data->disconn_array[i] = 1;
 812                         else
 813                                 active_chains |= (1 << i);
 814                         IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
 815                              "disconn_array[i] = %d\n",
 816                              i, rssi_delta, data->disconn_array[i]);
 817                 }
 818         }
 819 
 820         /*
 821          * The above algorithm sometimes fails when the ucode
 822          * reports 0 for all chains. It's not clear why that
 823          * happens to start with, but it is then causing trouble
 824          * because this can make us enable more chains than the
 825          * hardware really has.
 826          *
 827          * To be safe, simply mask out any chains that we know
 828          * are not on the device.
 829          */
 830         active_chains &= priv->nvm_data->valid_rx_ant;
 831 
 832         num_tx_chains = 0;
 833         for (i = 0; i < NUM_RX_CHAINS; i++) {
 834                 /* loops on all the bits of
 835                  * priv->hw_setting.valid_tx_ant */
 836                 u8 ant_msk = (1 << i);
 837                 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
 838                         continue;
 839 
 840                 num_tx_chains++;
 841                 if (data->disconn_array[i] == 0)
 842                         /* there is a Tx antenna connected */
 843                         break;
 844                 if (num_tx_chains == priv->hw_params.tx_chains_num &&
 845                     data->disconn_array[i]) {
 846                         /*
 847                          * If all chains are disconnected
 848                          * connect the first valid tx chain
 849                          */
 850                         first_chain =
 851                                 find_first_chain(priv->nvm_data->valid_tx_ant);
 852                         data->disconn_array[first_chain] = 0;
 853                         active_chains |= BIT(first_chain);
 854                         IWL_DEBUG_CALIB(priv,
 855                                         "All Tx chains are disconnected W/A - declare %d as connected\n",
 856                                         first_chain);
 857                         break;
 858                 }
 859         }
 860 
 861         if (active_chains != priv->nvm_data->valid_rx_ant &&
 862             active_chains != priv->chain_noise_data.active_chains)
 863                 IWL_DEBUG_CALIB(priv,
 864                                 "Detected that not all antennas are connected! "
 865                                 "Connected: %#x, valid: %#x.\n",
 866                                 active_chains,
 867                                 priv->nvm_data->valid_rx_ant);
 868 
 869         /* Save for use within RXON, TX, SCAN commands, etc. */
 870         data->active_chains = active_chains;
 871         IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
 872                         active_chains);
 873 }
 874 
 875 static void iwlagn_gain_computation(struct iwl_priv *priv,
 876                                     u32 average_noise[NUM_RX_CHAINS],
 877                                     u8 default_chain)
 878 {
 879         int i;
 880         s32 delta_g;
 881         struct iwl_chain_noise_data *data = &priv->chain_noise_data;
 882 
 883         /*
 884          * Find Gain Code for the chains based on "default chain"
 885          */
 886         for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
 887                 if ((data->disconn_array[i])) {
 888                         data->delta_gain_code[i] = 0;
 889                         continue;
 890                 }
 891 
 892                 delta_g = (priv->lib->chain_noise_scale *
 893                         ((s32)average_noise[default_chain] -
 894                         (s32)average_noise[i])) / 1500;
 895 
 896                 /* bound gain by 2 bits value max, 3rd bit is sign */
 897                 data->delta_gain_code[i] =
 898                         min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
 899 
 900                 if (delta_g < 0)
 901                         /*
 902                          * set negative sign ...
 903                          * note to Intel developers:  This is uCode API format,
 904                          *   not the format of any internal device registers.
 905                          *   Do not change this format for e.g. 6050 or similar
 906                          *   devices.  Change format only if more resolution
 907                          *   (i.e. more than 2 bits magnitude) is needed.
 908                          */
 909                         data->delta_gain_code[i] |= (1 << 2);
 910         }
 911 
 912         IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
 913                         data->delta_gain_code[1], data->delta_gain_code[2]);
 914 
 915         if (!data->radio_write) {
 916                 struct iwl_calib_chain_noise_gain_cmd cmd;
 917 
 918                 memset(&cmd, 0, sizeof(cmd));
 919 
 920                 iwl_set_calib_hdr(&cmd.hdr,
 921                         priv->phy_calib_chain_noise_gain_cmd);
 922                 cmd.delta_gain_1 = data->delta_gain_code[1];
 923                 cmd.delta_gain_2 = data->delta_gain_code[2];
 924                 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
 925                         CMD_ASYNC, sizeof(cmd), &cmd);
 926 
 927                 data->radio_write = 1;
 928                 data->state = IWL_CHAIN_NOISE_CALIBRATED;
 929         }
 930 }
 931 
 932 /*
 933  * Accumulate 16 beacons of signal and noise statistics for each of
 934  *   3 receivers/antennas/rx-chains, then figure out:
 935  * 1)  Which antennas are connected.
 936  * 2)  Differential rx gain settings to balance the 3 receivers.
 937  */
 938 void iwl_chain_noise_calibration(struct iwl_priv *priv)
 939 {
 940         struct iwl_chain_noise_data *data = NULL;
 941 
 942         u32 chain_noise_a;
 943         u32 chain_noise_b;
 944         u32 chain_noise_c;
 945         u32 chain_sig_a;
 946         u32 chain_sig_b;
 947         u32 chain_sig_c;
 948         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 949         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 950         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
 951         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
 952         u16 i = 0;
 953         u16 rxon_chnum = INITIALIZATION_VALUE;
 954         u16 stat_chnum = INITIALIZATION_VALUE;
 955         u8 rxon_band24;
 956         u8 stat_band24;
 957         struct statistics_rx_non_phy *rx_info;
 958 
 959         /*
 960          * MULTI-FIXME:
 961          * When we support multiple interfaces on different channels,
 962          * this must be modified/fixed.
 963          */
 964         struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
 965 
 966         if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
 967                 return;
 968 
 969         data = &(priv->chain_noise_data);
 970 
 971         /*
 972          * Accumulate just the first "chain_noise_num_beacons" after
 973          * the first association, then we're done forever.
 974          */
 975         if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
 976                 if (data->state == IWL_CHAIN_NOISE_ALIVE)
 977                         IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
 978                 return;
 979         }
 980 
 981         spin_lock_bh(&priv->statistics.lock);
 982 
 983         rx_info = &priv->statistics.rx_non_phy;
 984 
 985         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 986                 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
 987                 spin_unlock_bh(&priv->statistics.lock);
 988                 return;
 989         }
 990 
 991         rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
 992         rxon_chnum = le16_to_cpu(ctx->staging.channel);
 993         stat_band24 =
 994                 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
 995         stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
 996 
 997         /* Make sure we accumulate data for just the associated channel
 998          *   (even if scanning). */
 999         if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1000                 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1001                                 rxon_chnum, rxon_band24);
1002                 spin_unlock_bh(&priv->statistics.lock);
1003                 return;
1004         }
1005 
1006         /*
1007          *  Accumulate beacon statistics values across
1008          * "chain_noise_num_beacons"
1009          */
1010         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1011                                 IN_BAND_FILTER;
1012         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1013                                 IN_BAND_FILTER;
1014         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1015                                 IN_BAND_FILTER;
1016 
1017         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1018         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1019         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1020 
1021         spin_unlock_bh(&priv->statistics.lock);
1022 
1023         data->beacon_count++;
1024 
1025         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1026         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1027         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1028 
1029         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1030         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1031         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1032 
1033         IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1034                         rxon_chnum, rxon_band24, data->beacon_count);
1035         IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1036                         chain_sig_a, chain_sig_b, chain_sig_c);
1037         IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1038                         chain_noise_a, chain_noise_b, chain_noise_c);
1039 
1040         /* If this is the "chain_noise_num_beacons", determine:
1041          * 1)  Disconnected antennas (using signal strengths)
1042          * 2)  Differential gain (using silence noise) to balance receivers */
1043         if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1044                 return;
1045 
1046         /* Analyze signal for disconnected antenna */
1047         if (priv->lib->bt_params &&
1048             priv->lib->bt_params->advanced_bt_coexist) {
1049                 /* Disable disconnected antenna algorithm for advanced
1050                    bt coex, assuming valid antennas are connected */
1051                 data->active_chains = priv->nvm_data->valid_rx_ant;
1052                 for (i = 0; i < NUM_RX_CHAINS; i++)
1053                         if (!(data->active_chains & (1<<i)))
1054                                 data->disconn_array[i] = 1;
1055         } else
1056                 iwl_find_disconn_antenna(priv, average_sig, data);
1057 
1058         /* Analyze noise for rx balance */
1059         average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1060         average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1061         average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1062 
1063         for (i = 0; i < NUM_RX_CHAINS; i++) {
1064                 if (!(data->disconn_array[i]) &&
1065                    (average_noise[i] <= min_average_noise)) {
1066                         /* This means that chain i is active and has
1067                          * lower noise values so far: */
1068                         min_average_noise = average_noise[i];
1069                         min_average_noise_antenna_i = i;
1070                 }
1071         }
1072 
1073         IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1074                         average_noise[0], average_noise[1],
1075                         average_noise[2]);
1076 
1077         IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1078                         min_average_noise, min_average_noise_antenna_i);
1079 
1080         iwlagn_gain_computation(
1081                 priv, average_noise,
1082                 find_first_chain(priv->nvm_data->valid_rx_ant));
1083 
1084         /* Some power changes may have been made during the calibration.
1085          * Update and commit the RXON
1086          */
1087         iwl_update_chain_flags(priv);
1088 
1089         data->state = IWL_CHAIN_NOISE_DONE;
1090         iwl_power_update_mode(priv, false);
1091 }
1092 
1093 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1094 {
1095         int i;
1096         memset(&(priv->sensitivity_data), 0,
1097                sizeof(struct iwl_sensitivity_data));
1098         memset(&(priv->chain_noise_data), 0,
1099                sizeof(struct iwl_chain_noise_data));
1100         for (i = 0; i < NUM_RX_CHAINS; i++)
1101                 priv->chain_noise_data.delta_gain_code[i] =
1102                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1103 
1104         /* Ask for statistics now, the uCode will send notification
1105          * periodically after association */
1106         iwl_send_statistics_request(priv, CMD_ASYNC, true);
1107 }

/* [<][>][^][v][top][bottom][index][help] */