root/drivers/net/wireless/ath/ath9k/eeprom.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ath9k_hw_analog_shift_regwrite
  2. ath9k_hw_analog_shift_rmw
  3. ath9k_hw_interpolate
  4. ath9k_hw_get_lower_upper_index
  5. ath9k_hw_usb_gen_fill_eeprom
  6. ath9k_hw_nvram_read_array
  7. ath9k_hw_nvram_read_pdata
  8. ath9k_hw_nvram_read_firmware
  9. ath9k_hw_nvram_read
  10. ath9k_hw_nvram_swap_data
  11. ath9k_hw_nvram_validate_checksum
  12. ath9k_hw_nvram_check_version
  13. ath9k_hw_fill_vpd_table
  14. ath9k_hw_get_legacy_target_powers
  15. ath9k_hw_get_target_powers
  16. ath9k_hw_get_max_edge_power
  17. ath9k_hw_get_scaled_power
  18. ath9k_hw_update_regulatory_maxpower
  19. ath9k_hw_get_gain_boundaries_pdadcs
  20. ath9k_hw_eeprom_init

   1 /*
   2  * Copyright (c) 2008-2011 Atheros Communications Inc.
   3  *
   4  * Permission to use, copy, modify, and/or distribute this software for any
   5  * purpose with or without fee is hereby granted, provided that the above
   6  * copyright notice and this permission notice appear in all copies.
   7  *
   8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15  */
  16 
  17 #include "hw.h"
  18 #include <linux/ath9k_platform.h>
  19 
  20 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
  21 {
  22         REG_WRITE(ah, reg, val);
  23 
  24         if (ah->config.analog_shiftreg)
  25                 udelay(100);
  26 }
  27 
  28 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
  29                                u32 shift, u32 val)
  30 {
  31         REG_RMW(ah, reg, ((val << shift) & mask), mask);
  32 
  33         if (ah->config.analog_shiftreg)
  34                 udelay(100);
  35 }
  36 
  37 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
  38                              int16_t targetLeft, int16_t targetRight)
  39 {
  40         int16_t rv;
  41 
  42         if (srcRight == srcLeft) {
  43                 rv = targetLeft;
  44         } else {
  45                 rv = (int16_t) (((target - srcLeft) * targetRight +
  46                                  (srcRight - target) * targetLeft) /
  47                                 (srcRight - srcLeft));
  48         }
  49         return rv;
  50 }
  51 
  52 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
  53                                     u16 *indexL, u16 *indexR)
  54 {
  55         u16 i;
  56 
  57         if (target <= pList[0]) {
  58                 *indexL = *indexR = 0;
  59                 return true;
  60         }
  61         if (target >= pList[listSize - 1]) {
  62                 *indexL = *indexR = (u16) (listSize - 1);
  63                 return true;
  64         }
  65 
  66         for (i = 0; i < listSize - 1; i++) {
  67                 if (pList[i] == target) {
  68                         *indexL = *indexR = i;
  69                         return true;
  70                 }
  71                 if (target < pList[i + 1]) {
  72                         *indexL = i;
  73                         *indexR = (u16) (i + 1);
  74                         return false;
  75                 }
  76         }
  77         return false;
  78 }
  79 
  80 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
  81                                   int eep_start_loc, int size)
  82 {
  83         int i = 0, j, addr;
  84         u32 addrdata[8];
  85         u32 data[8];
  86 
  87         for (addr = 0; addr < size; addr++) {
  88                 addrdata[i] = AR5416_EEPROM_OFFSET +
  89                         ((addr + eep_start_loc) << AR5416_EEPROM_S);
  90                 i++;
  91                 if (i == 8) {
  92                         REG_READ_MULTI(ah, addrdata, data, i);
  93 
  94                         for (j = 0; j < i; j++) {
  95                                 *eep_data = data[j];
  96                                 eep_data++;
  97                         }
  98                         i = 0;
  99                 }
 100         }
 101 
 102         if (i != 0) {
 103                 REG_READ_MULTI(ah, addrdata, data, i);
 104 
 105                 for (j = 0; j < i; j++) {
 106                         *eep_data = data[j];
 107                         eep_data++;
 108                 }
 109         }
 110 }
 111 
 112 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
 113                                       off_t offset, u16 *data)
 114 {
 115         if (offset >= blob_size)
 116                 return false;
 117 
 118         *data =  blob[offset];
 119         return true;
 120 }
 121 
 122 static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
 123                                       off_t offset, u16 *data)
 124 {
 125         return ath9k_hw_nvram_read_array(pdata->eeprom_data,
 126                                          ARRAY_SIZE(pdata->eeprom_data),
 127                                          offset, data);
 128 }
 129 
 130 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
 131                                          off_t offset, u16 *data)
 132 {
 133         return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
 134                                          eeprom_blob->size / sizeof(u16),
 135                                          offset, data);
 136 }
 137 
 138 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
 139 {
 140         struct ath_common *common = ath9k_hw_common(ah);
 141         struct ath9k_platform_data *pdata = ah->dev->platform_data;
 142         bool ret;
 143 
 144         if (ah->eeprom_blob)
 145                 ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
 146         else if (pdata && !pdata->use_eeprom)
 147                 ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
 148         else
 149                 ret = common->bus_ops->eeprom_read(common, off, data);
 150 
 151         if (!ret)
 152                 ath_dbg(common, EEPROM,
 153                         "unable to read eeprom region at offset %u\n", off);
 154 
 155         return ret;
 156 }
 157 
 158 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
 159 {
 160         u16 magic;
 161         u16 *eepdata;
 162         int i;
 163         bool needs_byteswap = false;
 164         struct ath_common *common = ath9k_hw_common(ah);
 165 
 166         if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
 167                 ath_err(common, "Reading Magic # failed\n");
 168                 return -EIO;
 169         }
 170 
 171         if (swab16(magic) == AR5416_EEPROM_MAGIC) {
 172                 needs_byteswap = true;
 173                 ath_dbg(common, EEPROM,
 174                         "EEPROM needs byte-swapping to correct endianness.\n");
 175         } else if (magic != AR5416_EEPROM_MAGIC) {
 176                 if (ath9k_hw_use_flash(ah)) {
 177                         ath_dbg(common, EEPROM,
 178                                 "Ignoring invalid EEPROM magic (0x%04x).\n",
 179                                 magic);
 180                 } else {
 181                         ath_err(common,
 182                                 "Invalid EEPROM magic (0x%04x).\n", magic);
 183                         return -EINVAL;
 184                 }
 185         }
 186 
 187         if (needs_byteswap) {
 188                 if (ah->ah_flags & AH_NO_EEP_SWAP) {
 189                         ath_info(common,
 190                                  "Ignoring endianness difference in EEPROM magic bytes.\n");
 191                 } else {
 192                         eepdata = (u16 *)(&ah->eeprom);
 193 
 194                         for (i = 0; i < size; i++)
 195                                 eepdata[i] = swab16(eepdata[i]);
 196                 }
 197         }
 198 
 199         if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
 200                 *swap_needed = true;
 201                 ath_dbg(common, EEPROM,
 202                         "Big Endian EEPROM detected according to EEPMISC register.\n");
 203         } else {
 204                 *swap_needed = false;
 205         }
 206 
 207         return 0;
 208 }
 209 
 210 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
 211 {
 212         u32 i, sum = 0;
 213         u16 *eepdata = (u16 *)(&ah->eeprom);
 214         struct ath_common *common = ath9k_hw_common(ah);
 215 
 216         for (i = 0; i < size; i++)
 217                 sum ^= eepdata[i];
 218 
 219         if (sum != 0xffff) {
 220                 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
 221                 return false;
 222         }
 223 
 224         return true;
 225 }
 226 
 227 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
 228 {
 229         struct ath_common *common = ath9k_hw_common(ah);
 230 
 231         if (ah->eep_ops->get_eeprom_ver(ah) != version ||
 232             ah->eep_ops->get_eeprom_rev(ah) < minrev) {
 233                 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
 234                         ah->eep_ops->get_eeprom_ver(ah),
 235                         ah->eep_ops->get_eeprom_rev(ah));
 236                 return false;
 237         }
 238 
 239         return true;
 240 }
 241 
 242 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
 243                              u8 *pVpdList, u16 numIntercepts,
 244                              u8 *pRetVpdList)
 245 {
 246         u16 i, k;
 247         u8 currPwr = pwrMin;
 248         u16 idxL = 0, idxR = 0;
 249 
 250         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
 251                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
 252                                                numIntercepts, &(idxL),
 253                                                &(idxR));
 254                 if (idxR < 1)
 255                         idxR = 1;
 256                 if (idxL == numIntercepts - 1)
 257                         idxL = (u16) (numIntercepts - 2);
 258                 if (pPwrList[idxL] == pPwrList[idxR])
 259                         k = pVpdList[idxL];
 260                 else
 261                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
 262                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
 263                                   (pPwrList[idxR] - pPwrList[idxL]));
 264                 pRetVpdList[i] = (u8) k;
 265                 currPwr += 2;
 266         }
 267 }
 268 
 269 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
 270                                        struct ath9k_channel *chan,
 271                                        struct cal_target_power_leg *powInfo,
 272                                        u16 numChannels,
 273                                        struct cal_target_power_leg *pNewPower,
 274                                        u16 numRates, bool isExtTarget)
 275 {
 276         struct chan_centers centers;
 277         u16 clo, chi;
 278         int i;
 279         int matchIndex = -1, lowIndex = -1;
 280         u16 freq;
 281 
 282         ath9k_hw_get_channel_centers(ah, chan, &centers);
 283         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
 284 
 285         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
 286                                        IS_CHAN_2GHZ(chan))) {
 287                 matchIndex = 0;
 288         } else {
 289                 for (i = 0; (i < numChannels) &&
 290                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 291                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
 292                                                        IS_CHAN_2GHZ(chan))) {
 293                                 matchIndex = i;
 294                                 break;
 295                         } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
 296                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
 297                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
 298                                                 IS_CHAN_2GHZ(chan))) {
 299                                 lowIndex = i - 1;
 300                                 break;
 301                         }
 302                 }
 303                 if ((matchIndex == -1) && (lowIndex == -1))
 304                         matchIndex = i - 1;
 305         }
 306 
 307         if (matchIndex != -1) {
 308                 *pNewPower = powInfo[matchIndex];
 309         } else {
 310                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
 311                                          IS_CHAN_2GHZ(chan));
 312                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
 313                                          IS_CHAN_2GHZ(chan));
 314 
 315                 for (i = 0; i < numRates; i++) {
 316                         pNewPower->tPow2x[i] =
 317                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
 318                                                 powInfo[lowIndex].tPow2x[i],
 319                                                 powInfo[lowIndex + 1].tPow2x[i]);
 320                 }
 321         }
 322 }
 323 
 324 void ath9k_hw_get_target_powers(struct ath_hw *ah,
 325                                 struct ath9k_channel *chan,
 326                                 struct cal_target_power_ht *powInfo,
 327                                 u16 numChannels,
 328                                 struct cal_target_power_ht *pNewPower,
 329                                 u16 numRates, bool isHt40Target)
 330 {
 331         struct chan_centers centers;
 332         u16 clo, chi;
 333         int i;
 334         int matchIndex = -1, lowIndex = -1;
 335         u16 freq;
 336 
 337         ath9k_hw_get_channel_centers(ah, chan, &centers);
 338         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
 339 
 340         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
 341                 matchIndex = 0;
 342         } else {
 343                 for (i = 0; (i < numChannels) &&
 344                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 345                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
 346                                                        IS_CHAN_2GHZ(chan))) {
 347                                 matchIndex = i;
 348                                 break;
 349                         } else
 350                                 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
 351                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
 352                                     freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
 353                                                 IS_CHAN_2GHZ(chan))) {
 354                                         lowIndex = i - 1;
 355                                         break;
 356                                 }
 357                 }
 358                 if ((matchIndex == -1) && (lowIndex == -1))
 359                         matchIndex = i - 1;
 360         }
 361 
 362         if (matchIndex != -1) {
 363                 *pNewPower = powInfo[matchIndex];
 364         } else {
 365                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
 366                                          IS_CHAN_2GHZ(chan));
 367                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
 368                                          IS_CHAN_2GHZ(chan));
 369 
 370                 for (i = 0; i < numRates; i++) {
 371                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
 372                                                 clo, chi,
 373                                                 powInfo[lowIndex].tPow2x[i],
 374                                                 powInfo[lowIndex + 1].tPow2x[i]);
 375                 }
 376         }
 377 }
 378 
 379 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
 380                                 bool is2GHz, int num_band_edges)
 381 {
 382         u16 twiceMaxEdgePower = MAX_RATE_POWER;
 383         int i;
 384 
 385         for (i = 0; (i < num_band_edges) &&
 386                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 387                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
 388                         twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
 389                         break;
 390                 } else if ((i > 0) &&
 391                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
 392                                                       is2GHz))) {
 393                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
 394                                                is2GHz) < freq &&
 395                             CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
 396                                 twiceMaxEdgePower =
 397                                         CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
 398                         }
 399                         break;
 400                 }
 401         }
 402 
 403         return twiceMaxEdgePower;
 404 }
 405 
 406 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
 407                               u8 antenna_reduction)
 408 {
 409         u16 reduction = antenna_reduction;
 410 
 411         /*
 412          * Reduce scaled Power by number of chains active
 413          * to get the per chain tx power level.
 414          */
 415         switch (ar5416_get_ntxchains(ah->txchainmask)) {
 416         case 1:
 417                 break;
 418         case 2:
 419                 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
 420                 break;
 421         case 3:
 422                 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
 423                 break;
 424         }
 425 
 426         if (power_limit > reduction)
 427                 power_limit -= reduction;
 428         else
 429                 power_limit = 0;
 430 
 431         return min_t(u16, power_limit, MAX_RATE_POWER);
 432 }
 433 
 434 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
 435 {
 436         struct ath_common *common = ath9k_hw_common(ah);
 437         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 438 
 439         switch (ar5416_get_ntxchains(ah->txchainmask)) {
 440         case 1:
 441                 break;
 442         case 2:
 443                 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
 444                 break;
 445         case 3:
 446                 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
 447                 break;
 448         default:
 449                 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
 450                 break;
 451         }
 452 }
 453 
 454 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
 455                                 struct ath9k_channel *chan,
 456                                 void *pRawDataSet,
 457                                 u8 *bChans, u16 availPiers,
 458                                 u16 tPdGainOverlap,
 459                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
 460                                 u16 numXpdGains)
 461 {
 462         int i, j, k;
 463         int16_t ss;
 464         u16 idxL = 0, idxR = 0, numPiers;
 465         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
 466                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 467         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
 468                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 469         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
 470                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 471 
 472         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
 473         u8 minPwrT4[AR5416_NUM_PD_GAINS];
 474         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
 475         int16_t vpdStep;
 476         int16_t tmpVal;
 477         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
 478         bool match;
 479         int16_t minDelta = 0;
 480         struct chan_centers centers;
 481         int pdgain_boundary_default;
 482         struct cal_data_per_freq *data_def = pRawDataSet;
 483         struct cal_data_per_freq_4k *data_4k = pRawDataSet;
 484         struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
 485         bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
 486         int intercepts;
 487 
 488         if (AR_SREV_9287(ah))
 489                 intercepts = AR9287_PD_GAIN_ICEPTS;
 490         else
 491                 intercepts = AR5416_PD_GAIN_ICEPTS;
 492 
 493         memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
 494         ath9k_hw_get_channel_centers(ah, chan, &centers);
 495 
 496         for (numPiers = 0; numPiers < availPiers; numPiers++) {
 497                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
 498                         break;
 499         }
 500 
 501         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
 502                                                              IS_CHAN_2GHZ(chan)),
 503                                                bChans, numPiers, &idxL, &idxR);
 504 
 505         if (match) {
 506                 if (AR_SREV_9287(ah)) {
 507                         for (i = 0; i < numXpdGains; i++) {
 508                                 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
 509                                 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
 510                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 511                                                 data_9287[idxL].pwrPdg[i],
 512                                                 data_9287[idxL].vpdPdg[i],
 513                                                 intercepts,
 514                                                 vpdTableI[i]);
 515                         }
 516                 } else if (eeprom_4k) {
 517                         for (i = 0; i < numXpdGains; i++) {
 518                                 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
 519                                 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
 520                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 521                                                 data_4k[idxL].pwrPdg[i],
 522                                                 data_4k[idxL].vpdPdg[i],
 523                                                 intercepts,
 524                                                 vpdTableI[i]);
 525                         }
 526                 } else {
 527                         for (i = 0; i < numXpdGains; i++) {
 528                                 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
 529                                 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
 530                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 531                                                 data_def[idxL].pwrPdg[i],
 532                                                 data_def[idxL].vpdPdg[i],
 533                                                 intercepts,
 534                                                 vpdTableI[i]);
 535                         }
 536                 }
 537         } else {
 538                 for (i = 0; i < numXpdGains; i++) {
 539                         if (AR_SREV_9287(ah)) {
 540                                 pVpdL = data_9287[idxL].vpdPdg[i];
 541                                 pPwrL = data_9287[idxL].pwrPdg[i];
 542                                 pVpdR = data_9287[idxR].vpdPdg[i];
 543                                 pPwrR = data_9287[idxR].pwrPdg[i];
 544                         } else if (eeprom_4k) {
 545                                 pVpdL = data_4k[idxL].vpdPdg[i];
 546                                 pPwrL = data_4k[idxL].pwrPdg[i];
 547                                 pVpdR = data_4k[idxR].vpdPdg[i];
 548                                 pPwrR = data_4k[idxR].pwrPdg[i];
 549                         } else {
 550                                 pVpdL = data_def[idxL].vpdPdg[i];
 551                                 pPwrL = data_def[idxL].pwrPdg[i];
 552                                 pVpdR = data_def[idxR].vpdPdg[i];
 553                                 pPwrR = data_def[idxR].pwrPdg[i];
 554                         }
 555 
 556                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
 557 
 558                         maxPwrT4[i] =
 559                                 min(pPwrL[intercepts - 1],
 560                                     pPwrR[intercepts - 1]);
 561 
 562 
 563                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 564                                                 pPwrL, pVpdL,
 565                                                 intercepts,
 566                                                 vpdTableL[i]);
 567                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 568                                                 pPwrR, pVpdR,
 569                                                 intercepts,
 570                                                 vpdTableR[i]);
 571 
 572                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
 573                                 vpdTableI[i][j] =
 574                                         (u8)(ath9k_hw_interpolate((u16)
 575                                              FREQ2FBIN(centers.
 576                                                        synth_center,
 577                                                        IS_CHAN_2GHZ
 578                                                        (chan)),
 579                                              bChans[idxL], bChans[idxR],
 580                                              vpdTableL[i][j], vpdTableR[i][j]));
 581                         }
 582                 }
 583         }
 584 
 585         k = 0;
 586 
 587         for (i = 0; i < numXpdGains; i++) {
 588                 if (i == (numXpdGains - 1))
 589                         pPdGainBoundaries[i] =
 590                                 (u16)(maxPwrT4[i] / 2);
 591                 else
 592                         pPdGainBoundaries[i] =
 593                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
 594 
 595                 pPdGainBoundaries[i] =
 596                         min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
 597 
 598                 minDelta = 0;
 599 
 600                 if (i == 0) {
 601                         if (AR_SREV_9280_20_OR_LATER(ah))
 602                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
 603                         else
 604                                 ss = 0;
 605                 } else {
 606                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
 607                                         (minPwrT4[i] / 2)) -
 608                                        tPdGainOverlap + 1 + minDelta);
 609                 }
 610                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
 611                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 612 
 613                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 614                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
 615                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
 616                         ss++;
 617                 }
 618 
 619                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
 620                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
 621                                 (minPwrT4[i] / 2));
 622                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
 623                         tgtIndex : sizeCurrVpdTable;
 624 
 625                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 626                         pPDADCValues[k++] = vpdTableI[i][ss++];
 627                 }
 628 
 629                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
 630                                     vpdTableI[i][sizeCurrVpdTable - 2]);
 631                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 632 
 633                 if (tgtIndex >= maxIndex) {
 634                         while ((ss <= tgtIndex) &&
 635                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 636                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
 637                                                     (ss - maxIndex + 1) * vpdStep));
 638                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
 639                                                          255 : tmpVal);
 640                                 ss++;
 641                         }
 642                 }
 643         }
 644 
 645         if (eeprom_4k)
 646                 pdgain_boundary_default = 58;
 647         else
 648                 pdgain_boundary_default = pPdGainBoundaries[i - 1];
 649 
 650         while (i < AR5416_PD_GAINS_IN_MASK) {
 651                 pPdGainBoundaries[i] = pdgain_boundary_default;
 652                 i++;
 653         }
 654 
 655         while (k < AR5416_NUM_PDADC_VALUES) {
 656                 pPDADCValues[k] = pPDADCValues[k - 1];
 657                 k++;
 658         }
 659 }
 660 
 661 int ath9k_hw_eeprom_init(struct ath_hw *ah)
 662 {
 663         int status;
 664 
 665         if (AR_SREV_9300_20_OR_LATER(ah))
 666                 ah->eep_ops = &eep_ar9300_ops;
 667         else if (AR_SREV_9287(ah)) {
 668                 ah->eep_ops = &eep_ar9287_ops;
 669         } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
 670                 ah->eep_ops = &eep_4k_ops;
 671         } else {
 672                 ah->eep_ops = &eep_def_ops;
 673         }
 674 
 675         if (!ah->eep_ops->fill_eeprom(ah))
 676                 return -EIO;
 677 
 678         status = ah->eep_ops->check_eeprom(ah);
 679 
 680         return status;
 681 }

/* [<][>][^][v][top][bottom][index][help] */