root/drivers/net/dsa/bcm_sf2_cfp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bcm_sf2_get_num_udf_slices
  2. udf_upper_bits
  3. udf_lower_bits
  4. bcm_sf2_get_slice_number
  5. bcm_sf2_cfp_udf_set
  6. bcm_sf2_cfp_op
  7. bcm_sf2_cfp_rule_addr_set
  8. bcm_sf2_cfp_rule_size
  9. bcm_sf2_cfp_act_pol_set
  10. bcm_sf2_cfp_slice_ipv4
  11. bcm_sf2_cfp_ipv4_rule_set
  12. bcm_sf2_cfp_slice_ipv6
  13. bcm_sf2_cfp_rule_find
  14. bcm_sf2_cfp_rule_cmp
  15. bcm_sf2_cfp_ipv6_rule_set
  16. bcm_sf2_cfp_rule_insert
  17. bcm_sf2_cfp_rule_set
  18. bcm_sf2_cfp_rule_del_one
  19. bcm_sf2_cfp_rule_remove
  20. bcm_sf2_cfp_rule_del
  21. bcm_sf2_invert_masks
  22. bcm_sf2_cfp_rule_get
  23. bcm_sf2_cfp_rule_get_all
  24. bcm_sf2_get_rxnfc
  25. bcm_sf2_set_rxnfc
  26. bcm_sf2_cfp_rst
  27. bcm_sf2_cfp_exit
  28. bcm_sf2_cfp_resume
  29. bcm_sf2_cfp_get_strings
  30. bcm_sf2_cfp_get_ethtool_stats
  31. bcm_sf2_cfp_get_sset_count

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Broadcom Starfighter 2 DSA switch CFP support
   4  *
   5  * Copyright (C) 2016, Broadcom
   6  */
   7 
   8 #include <linux/list.h>
   9 #include <linux/ethtool.h>
  10 #include <linux/if_ether.h>
  11 #include <linux/in.h>
  12 #include <linux/netdevice.h>
  13 #include <net/dsa.h>
  14 #include <linux/bitmap.h>
  15 #include <net/flow_offload.h>
  16 
  17 #include "bcm_sf2.h"
  18 #include "bcm_sf2_regs.h"
  19 
  20 struct cfp_rule {
  21         int port;
  22         struct ethtool_rx_flow_spec fs;
  23         struct list_head next;
  24 };
  25 
  26 struct cfp_udf_slice_layout {
  27         u8 slices[UDFS_PER_SLICE];
  28         u32 mask_value;
  29         u32 base_offset;
  30 };
  31 
  32 struct cfp_udf_layout {
  33         struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
  34 };
  35 
  36 static const u8 zero_slice[UDFS_PER_SLICE] = { };
  37 
  38 /* UDF slices layout for a TCPv4/UDPv4 specification */
  39 static const struct cfp_udf_layout udf_tcpip4_layout = {
  40         .udfs = {
  41                 [1] = {
  42                         .slices = {
  43                                 /* End of L2, byte offset 12, src IP[0:15] */
  44                                 CFG_UDF_EOL2 | 6,
  45                                 /* End of L2, byte offset 14, src IP[16:31] */
  46                                 CFG_UDF_EOL2 | 7,
  47                                 /* End of L2, byte offset 16, dst IP[0:15] */
  48                                 CFG_UDF_EOL2 | 8,
  49                                 /* End of L2, byte offset 18, dst IP[16:31] */
  50                                 CFG_UDF_EOL2 | 9,
  51                                 /* End of L3, byte offset 0, src port */
  52                                 CFG_UDF_EOL3 | 0,
  53                                 /* End of L3, byte offset 2, dst port */
  54                                 CFG_UDF_EOL3 | 1,
  55                                 0, 0, 0
  56                         },
  57                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  58                         .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
  59                 },
  60         },
  61 };
  62 
  63 /* UDF slices layout for a TCPv6/UDPv6 specification */
  64 static const struct cfp_udf_layout udf_tcpip6_layout = {
  65         .udfs = {
  66                 [0] = {
  67                         .slices = {
  68                                 /* End of L2, byte offset 8, src IP[0:15] */
  69                                 CFG_UDF_EOL2 | 4,
  70                                 /* End of L2, byte offset 10, src IP[16:31] */
  71                                 CFG_UDF_EOL2 | 5,
  72                                 /* End of L2, byte offset 12, src IP[32:47] */
  73                                 CFG_UDF_EOL2 | 6,
  74                                 /* End of L2, byte offset 14, src IP[48:63] */
  75                                 CFG_UDF_EOL2 | 7,
  76                                 /* End of L2, byte offset 16, src IP[64:79] */
  77                                 CFG_UDF_EOL2 | 8,
  78                                 /* End of L2, byte offset 18, src IP[80:95] */
  79                                 CFG_UDF_EOL2 | 9,
  80                                 /* End of L2, byte offset 20, src IP[96:111] */
  81                                 CFG_UDF_EOL2 | 10,
  82                                 /* End of L2, byte offset 22, src IP[112:127] */
  83                                 CFG_UDF_EOL2 | 11,
  84                                 /* End of L3, byte offset 0, src port */
  85                                 CFG_UDF_EOL3 | 0,
  86                         },
  87                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  88                         .base_offset = CORE_UDF_0_B_0_8_PORT_0,
  89                 },
  90                 [3] = {
  91                         .slices = {
  92                                 /* End of L2, byte offset 24, dst IP[0:15] */
  93                                 CFG_UDF_EOL2 | 12,
  94                                 /* End of L2, byte offset 26, dst IP[16:31] */
  95                                 CFG_UDF_EOL2 | 13,
  96                                 /* End of L2, byte offset 28, dst IP[32:47] */
  97                                 CFG_UDF_EOL2 | 14,
  98                                 /* End of L2, byte offset 30, dst IP[48:63] */
  99                                 CFG_UDF_EOL2 | 15,
 100                                 /* End of L2, byte offset 32, dst IP[64:79] */
 101                                 CFG_UDF_EOL2 | 16,
 102                                 /* End of L2, byte offset 34, dst IP[80:95] */
 103                                 CFG_UDF_EOL2 | 17,
 104                                 /* End of L2, byte offset 36, dst IP[96:111] */
 105                                 CFG_UDF_EOL2 | 18,
 106                                 /* End of L2, byte offset 38, dst IP[112:127] */
 107                                 CFG_UDF_EOL2 | 19,
 108                                 /* End of L3, byte offset 2, dst port */
 109                                 CFG_UDF_EOL3 | 1,
 110                         },
 111                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 112                         .base_offset = CORE_UDF_0_D_0_11_PORT_0,
 113                 },
 114         },
 115 };
 116 
 117 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 118 {
 119         unsigned int i, count = 0;
 120 
 121         for (i = 0; i < UDFS_PER_SLICE; i++) {
 122                 if (layout[i] != 0)
 123                         count++;
 124         }
 125 
 126         return count;
 127 }
 128 
 129 static inline u32 udf_upper_bits(unsigned int num_udf)
 130 {
 131         return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 132 }
 133 
 134 static inline u32 udf_lower_bits(unsigned int num_udf)
 135 {
 136         return (u8)GENMASK(num_udf - 1, 0);
 137 }
 138 
 139 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 140                                              unsigned int start)
 141 {
 142         const struct cfp_udf_slice_layout *slice_layout;
 143         unsigned int slice_idx;
 144 
 145         for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 146                 slice_layout = &l->udfs[slice_idx];
 147                 if (memcmp(slice_layout->slices, zero_slice,
 148                            sizeof(zero_slice)))
 149                         break;
 150         }
 151 
 152         return slice_idx;
 153 }
 154 
 155 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 156                                 const struct cfp_udf_layout *layout,
 157                                 unsigned int slice_num)
 158 {
 159         u32 offset = layout->udfs[slice_num].base_offset;
 160         unsigned int i;
 161 
 162         for (i = 0; i < UDFS_PER_SLICE; i++)
 163                 core_writel(priv, layout->udfs[slice_num].slices[i],
 164                             offset + i * 4);
 165 }
 166 
 167 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 168 {
 169         unsigned int timeout = 1000;
 170         u32 reg;
 171 
 172         reg = core_readl(priv, CORE_CFP_ACC);
 173         reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 174         reg |= OP_STR_DONE | op;
 175         core_writel(priv, reg, CORE_CFP_ACC);
 176 
 177         do {
 178                 reg = core_readl(priv, CORE_CFP_ACC);
 179                 if (!(reg & OP_STR_DONE))
 180                         break;
 181 
 182                 cpu_relax();
 183         } while (timeout--);
 184 
 185         if (!timeout)
 186                 return -ETIMEDOUT;
 187 
 188         return 0;
 189 }
 190 
 191 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 192                                              unsigned int addr)
 193 {
 194         u32 reg;
 195 
 196         WARN_ON(addr >= priv->num_cfp_rules);
 197 
 198         reg = core_readl(priv, CORE_CFP_ACC);
 199         reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 200         reg |= addr << XCESS_ADDR_SHIFT;
 201         core_writel(priv, reg, CORE_CFP_ACC);
 202 }
 203 
 204 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 205 {
 206         /* Entry #0 is reserved */
 207         return priv->num_cfp_rules - 1;
 208 }
 209 
 210 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 211                                    unsigned int rule_index,
 212                                    int src_port,
 213                                    unsigned int port_num,
 214                                    unsigned int queue_num,
 215                                    bool fwd_map_change)
 216 {
 217         int ret;
 218         u32 reg;
 219 
 220         /* Replace ARL derived destination with DST_MAP derived, define
 221          * which port and queue this should be forwarded to.
 222          */
 223         if (fwd_map_change)
 224                 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 225                       BIT(port_num + DST_MAP_IB_SHIFT) |
 226                       CHANGE_TC | queue_num << NEW_TC_SHIFT;
 227         else
 228                 reg = 0;
 229 
 230         /* Enable looping back to the original port */
 231         if (src_port == port_num)
 232                 reg |= LOOP_BK_EN;
 233 
 234         core_writel(priv, reg, CORE_ACT_POL_DATA0);
 235 
 236         /* Set classification ID that needs to be put in Broadcom tag */
 237         core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 238 
 239         core_writel(priv, 0, CORE_ACT_POL_DATA2);
 240 
 241         /* Configure policer RAM now */
 242         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 243         if (ret) {
 244                 pr_err("Policer entry at %d failed\n", rule_index);
 245                 return ret;
 246         }
 247 
 248         /* Disable the policer */
 249         core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 250 
 251         /* Now the rate meter */
 252         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 253         if (ret) {
 254                 pr_err("Meter entry at %d failed\n", rule_index);
 255                 return ret;
 256         }
 257 
 258         return 0;
 259 }
 260 
 261 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 262                                    struct flow_dissector_key_ipv4_addrs *addrs,
 263                                    struct flow_dissector_key_ports *ports,
 264                                    unsigned int slice_num,
 265                                    bool mask)
 266 {
 267         u32 reg, offset;
 268 
 269         /* C-Tag                [31:24]
 270          * UDF_n_A8             [23:8]
 271          * UDF_n_A7             [7:0]
 272          */
 273         reg = 0;
 274         if (mask)
 275                 offset = CORE_CFP_MASK_PORT(4);
 276         else
 277                 offset = CORE_CFP_DATA_PORT(4);
 278         core_writel(priv, reg, offset);
 279 
 280         /* UDF_n_A7             [31:24]
 281          * UDF_n_A6             [23:8]
 282          * UDF_n_A5             [7:0]
 283          */
 284         reg = be16_to_cpu(ports->dst) >> 8;
 285         if (mask)
 286                 offset = CORE_CFP_MASK_PORT(3);
 287         else
 288                 offset = CORE_CFP_DATA_PORT(3);
 289         core_writel(priv, reg, offset);
 290 
 291         /* UDF_n_A5             [31:24]
 292          * UDF_n_A4             [23:8]
 293          * UDF_n_A3             [7:0]
 294          */
 295         reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
 296               (u32)be16_to_cpu(ports->src) << 8 |
 297               (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
 298         if (mask)
 299                 offset = CORE_CFP_MASK_PORT(2);
 300         else
 301                 offset = CORE_CFP_DATA_PORT(2);
 302         core_writel(priv, reg, offset);
 303 
 304         /* UDF_n_A3             [31:24]
 305          * UDF_n_A2             [23:8]
 306          * UDF_n_A1             [7:0]
 307          */
 308         reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
 309               (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
 310               (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
 311         if (mask)
 312                 offset = CORE_CFP_MASK_PORT(1);
 313         else
 314                 offset = CORE_CFP_DATA_PORT(1);
 315         core_writel(priv, reg, offset);
 316 
 317         /* UDF_n_A1             [31:24]
 318          * UDF_n_A0             [23:8]
 319          * Reserved             [7:4]
 320          * Slice ID             [3:2]
 321          * Slice valid          [1:0]
 322          */
 323         reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
 324               (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
 325               SLICE_NUM(slice_num) | SLICE_VALID;
 326         if (mask)
 327                 offset = CORE_CFP_MASK_PORT(0);
 328         else
 329                 offset = CORE_CFP_DATA_PORT(0);
 330         core_writel(priv, reg, offset);
 331 }
 332 
 333 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 334                                      unsigned int port_num,
 335                                      unsigned int queue_num,
 336                                      struct ethtool_rx_flow_spec *fs)
 337 {
 338         struct ethtool_rx_flow_spec_input input = {};
 339         const struct cfp_udf_layout *layout;
 340         unsigned int slice_num, rule_index;
 341         struct ethtool_rx_flow_rule *flow;
 342         struct flow_match_ipv4_addrs ipv4;
 343         struct flow_match_ports ports;
 344         struct flow_match_ip ip;
 345         u8 ip_proto, ip_frag;
 346         u8 num_udf;
 347         u32 reg;
 348         int ret;
 349 
 350         switch (fs->flow_type & ~FLOW_EXT) {
 351         case TCP_V4_FLOW:
 352                 ip_proto = IPPROTO_TCP;
 353                 break;
 354         case UDP_V4_FLOW:
 355                 ip_proto = IPPROTO_UDP;
 356                 break;
 357         default:
 358                 return -EINVAL;
 359         }
 360 
 361         ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
 362 
 363         /* Locate the first rule available */
 364         if (fs->location == RX_CLS_LOC_ANY)
 365                 rule_index = find_first_zero_bit(priv->cfp.used,
 366                                                  priv->num_cfp_rules);
 367         else
 368                 rule_index = fs->location;
 369 
 370         if (rule_index > bcm_sf2_cfp_rule_size(priv))
 371                 return -ENOSPC;
 372 
 373         input.fs = fs;
 374         flow = ethtool_rx_flow_rule_create(&input);
 375         if (IS_ERR(flow))
 376                 return PTR_ERR(flow);
 377 
 378         flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
 379         flow_rule_match_ports(flow->rule, &ports);
 380         flow_rule_match_ip(flow->rule, &ip);
 381 
 382         layout = &udf_tcpip4_layout;
 383         /* We only use one UDF slice for now */
 384         slice_num = bcm_sf2_get_slice_number(layout, 0);
 385         if (slice_num == UDF_NUM_SLICES) {
 386                 ret = -EINVAL;
 387                 goto out_err_flow_rule;
 388         }
 389 
 390         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 391 
 392         /* Apply the UDF layout for this filter */
 393         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 394 
 395         /* Apply to all packets received through this port */
 396         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 397 
 398         /* Source port map match */
 399         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 400 
 401         /* S-Tag status         [31:30]
 402          * C-Tag status         [29:28]
 403          * L2 framing           [27:26]
 404          * L3 framing           [25:24]
 405          * IP ToS               [23:16]
 406          * IP proto             [15:08]
 407          * IP Fragm             [7]
 408          * Non 1st frag         [6]
 409          * IP Authen            [5]
 410          * TTL range            [4:3]
 411          * PPPoE session        [2]
 412          * Reserved             [1]
 413          * UDF_Valid[8]         [0]
 414          */
 415         core_writel(priv, ip.key->tos << IPTOS_SHIFT |
 416                     ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 417                     udf_upper_bits(num_udf),
 418                     CORE_CFP_DATA_PORT(6));
 419 
 420         /* Mask with the specific layout for IPv4 packets */
 421         core_writel(priv, layout->udfs[slice_num].mask_value |
 422                     udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 423 
 424         /* UDF_Valid[7:0]       [31:24]
 425          * S-Tag                [23:8]
 426          * C-Tag                [7:0]
 427          */
 428         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 429 
 430         /* Mask all but valid UDFs */
 431         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 432 
 433         /* Program the match and the mask */
 434         bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
 435         bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
 436 
 437         /* Insert into TCAM now */
 438         bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 439 
 440         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 441         if (ret) {
 442                 pr_err("TCAM entry at addr %d failed\n", rule_index);
 443                 goto out_err_flow_rule;
 444         }
 445 
 446         /* Insert into Action and policer RAMs now */
 447         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
 448                                       queue_num, true);
 449         if (ret)
 450                 goto out_err_flow_rule;
 451 
 452         /* Turn on CFP for this rule now */
 453         reg = core_readl(priv, CORE_CFP_CTL_REG);
 454         reg |= BIT(port);
 455         core_writel(priv, reg, CORE_CFP_CTL_REG);
 456 
 457         /* Flag the rule as being used and return it */
 458         set_bit(rule_index, priv->cfp.used);
 459         set_bit(rule_index, priv->cfp.unique);
 460         fs->location = rule_index;
 461 
 462         return 0;
 463 
 464 out_err_flow_rule:
 465         ethtool_rx_flow_rule_destroy(flow);
 466         return ret;
 467 }
 468 
 469 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 470                                    const __be32 *ip6_addr, const __be16 port,
 471                                    unsigned int slice_num,
 472                                    bool mask)
 473 {
 474         u32 reg, tmp, val, offset;
 475 
 476         /* C-Tag                [31:24]
 477          * UDF_n_B8             [23:8]  (port)
 478          * UDF_n_B7 (upper)     [7:0]   (addr[15:8])
 479          */
 480         reg = be32_to_cpu(ip6_addr[3]);
 481         val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 482         if (mask)
 483                 offset = CORE_CFP_MASK_PORT(4);
 484         else
 485                 offset = CORE_CFP_DATA_PORT(4);
 486         core_writel(priv, val, offset);
 487 
 488         /* UDF_n_B7 (lower)     [31:24] (addr[7:0])
 489          * UDF_n_B6             [23:8] (addr[31:16])
 490          * UDF_n_B5 (upper)     [7:0] (addr[47:40])
 491          */
 492         tmp = be32_to_cpu(ip6_addr[2]);
 493         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 494               ((tmp >> 8) & 0xff);
 495         if (mask)
 496                 offset = CORE_CFP_MASK_PORT(3);
 497         else
 498                 offset = CORE_CFP_DATA_PORT(3);
 499         core_writel(priv, val, offset);
 500 
 501         /* UDF_n_B5 (lower)     [31:24] (addr[39:32])
 502          * UDF_n_B4             [23:8] (addr[63:48])
 503          * UDF_n_B3 (upper)     [7:0] (addr[79:72])
 504          */
 505         reg = be32_to_cpu(ip6_addr[1]);
 506         val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 507               ((reg >> 8) & 0xff);
 508         if (mask)
 509                 offset = CORE_CFP_MASK_PORT(2);
 510         else
 511                 offset = CORE_CFP_DATA_PORT(2);
 512         core_writel(priv, val, offset);
 513 
 514         /* UDF_n_B3 (lower)     [31:24] (addr[71:64])
 515          * UDF_n_B2             [23:8] (addr[95:80])
 516          * UDF_n_B1 (upper)     [7:0] (addr[111:104])
 517          */
 518         tmp = be32_to_cpu(ip6_addr[0]);
 519         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 520               ((tmp >> 8) & 0xff);
 521         if (mask)
 522                 offset = CORE_CFP_MASK_PORT(1);
 523         else
 524                 offset = CORE_CFP_DATA_PORT(1);
 525         core_writel(priv, val, offset);
 526 
 527         /* UDF_n_B1 (lower)     [31:24] (addr[103:96])
 528          * UDF_n_B0             [23:8] (addr[127:112])
 529          * Reserved             [7:4]
 530          * Slice ID             [3:2]
 531          * Slice valid          [1:0]
 532          */
 533         reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 534                SLICE_NUM(slice_num) | SLICE_VALID;
 535         if (mask)
 536                 offset = CORE_CFP_MASK_PORT(0);
 537         else
 538                 offset = CORE_CFP_DATA_PORT(0);
 539         core_writel(priv, reg, offset);
 540 }
 541 
 542 static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
 543                                               int port, u32 location)
 544 {
 545         struct cfp_rule *rule = NULL;
 546 
 547         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 548                 if (rule->port == port && rule->fs.location == location)
 549                         break;
 550         }
 551 
 552         return rule;
 553 }
 554 
 555 static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
 556                                 struct ethtool_rx_flow_spec *fs)
 557 {
 558         struct cfp_rule *rule = NULL;
 559         size_t fs_size = 0;
 560         int ret = 1;
 561 
 562         if (list_empty(&priv->cfp.rules_list))
 563                 return ret;
 564 
 565         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 566                 ret = 1;
 567                 if (rule->port != port)
 568                         continue;
 569 
 570                 if (rule->fs.flow_type != fs->flow_type ||
 571                     rule->fs.ring_cookie != fs->ring_cookie ||
 572                     rule->fs.h_ext.data[0] != fs->h_ext.data[0])
 573                         continue;
 574 
 575                 switch (fs->flow_type & ~FLOW_EXT) {
 576                 case TCP_V6_FLOW:
 577                 case UDP_V6_FLOW:
 578                         fs_size = sizeof(struct ethtool_tcpip6_spec);
 579                         break;
 580                 case TCP_V4_FLOW:
 581                 case UDP_V4_FLOW:
 582                         fs_size = sizeof(struct ethtool_tcpip4_spec);
 583                         break;
 584                 default:
 585                         continue;
 586                 }
 587 
 588                 ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
 589                 ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
 590                 if (ret == 0)
 591                         break;
 592         }
 593 
 594         return ret;
 595 }
 596 
 597 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 598                                      unsigned int port_num,
 599                                      unsigned int queue_num,
 600                                      struct ethtool_rx_flow_spec *fs)
 601 {
 602         struct ethtool_rx_flow_spec_input input = {};
 603         unsigned int slice_num, rule_index[2];
 604         const struct cfp_udf_layout *layout;
 605         struct ethtool_rx_flow_rule *flow;
 606         struct flow_match_ipv6_addrs ipv6;
 607         struct flow_match_ports ports;
 608         u8 ip_proto, ip_frag;
 609         int ret = 0;
 610         u8 num_udf;
 611         u32 reg;
 612 
 613         switch (fs->flow_type & ~FLOW_EXT) {
 614         case TCP_V6_FLOW:
 615                 ip_proto = IPPROTO_TCP;
 616                 break;
 617         case UDP_V6_FLOW:
 618                 ip_proto = IPPROTO_UDP;
 619                 break;
 620         default:
 621                 return -EINVAL;
 622         }
 623 
 624         ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
 625 
 626         layout = &udf_tcpip6_layout;
 627         slice_num = bcm_sf2_get_slice_number(layout, 0);
 628         if (slice_num == UDF_NUM_SLICES)
 629                 return -EINVAL;
 630 
 631         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 632 
 633         /* Negotiate two indexes, one for the second half which we are chained
 634          * from, which is what we will return to user-space, and a second one
 635          * which is used to store its first half. That first half does not
 636          * allow any choice of placement, so it just needs to find the next
 637          * available bit. We return the second half as fs->location because
 638          * that helps with the rule lookup later on since the second half is
 639          * chained from its first half, we can easily identify IPv6 CFP rules
 640          * by looking whether they carry a CHAIN_ID.
 641          *
 642          * We also want the second half to have a lower rule_index than its
 643          * first half because the HW search is by incrementing addresses.
 644          */
 645         if (fs->location == RX_CLS_LOC_ANY)
 646                 rule_index[1] = find_first_zero_bit(priv->cfp.used,
 647                                                     priv->num_cfp_rules);
 648         else
 649                 rule_index[1] = fs->location;
 650         if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 651                 return -ENOSPC;
 652 
 653         /* Flag it as used (cleared on error path) such that we can immediately
 654          * obtain a second one to chain from.
 655          */
 656         set_bit(rule_index[1], priv->cfp.used);
 657 
 658         rule_index[0] = find_first_zero_bit(priv->cfp.used,
 659                                             priv->num_cfp_rules);
 660         if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 661                 ret = -ENOSPC;
 662                 goto out_err;
 663         }
 664 
 665         input.fs = fs;
 666         flow = ethtool_rx_flow_rule_create(&input);
 667         if (IS_ERR(flow)) {
 668                 ret = PTR_ERR(flow);
 669                 goto out_err;
 670         }
 671         flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
 672         flow_rule_match_ports(flow->rule, &ports);
 673 
 674         /* Apply the UDF layout for this filter */
 675         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 676 
 677         /* Apply to all packets received through this port */
 678         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 679 
 680         /* Source port map match */
 681         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 682 
 683         /* S-Tag status         [31:30]
 684          * C-Tag status         [29:28]
 685          * L2 framing           [27:26]
 686          * L3 framing           [25:24]
 687          * IP ToS               [23:16]
 688          * IP proto             [15:08]
 689          * IP Fragm             [7]
 690          * Non 1st frag         [6]
 691          * IP Authen            [5]
 692          * TTL range            [4:3]
 693          * PPPoE session        [2]
 694          * Reserved             [1]
 695          * UDF_Valid[8]         [0]
 696          */
 697         reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 698                 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 699         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 700 
 701         /* Mask with the specific layout for IPv6 packets including
 702          * UDF_Valid[8]
 703          */
 704         reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 705         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 706 
 707         /* UDF_Valid[7:0]       [31:24]
 708          * S-Tag                [23:8]
 709          * C-Tag                [7:0]
 710          */
 711         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 712 
 713         /* Mask all but valid UDFs */
 714         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 715 
 716         /* Slice the IPv6 source address and port */
 717         bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
 718                                ports.key->src, slice_num, false);
 719         bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
 720                                ports.mask->src, SLICE_NUM_MASK, true);
 721 
 722         /* Insert into TCAM now because we need to insert a second rule */
 723         bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 724 
 725         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 726         if (ret) {
 727                 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 728                 goto out_err_flow_rule;
 729         }
 730 
 731         /* Insert into Action and policer RAMs now */
 732         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
 733                                       queue_num, false);
 734         if (ret)
 735                 goto out_err_flow_rule;
 736 
 737         /* Now deal with the second slice to chain this rule */
 738         slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 739         if (slice_num == UDF_NUM_SLICES) {
 740                 ret = -EINVAL;
 741                 goto out_err_flow_rule;
 742         }
 743 
 744         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 745 
 746         /* Apply the UDF layout for this filter */
 747         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 748 
 749         /* Chained rule, source port match is coming from the rule we are
 750          * chained from.
 751          */
 752         core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 753         core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 754 
 755         /*
 756          * CHAIN ID             [31:24] chain to previous slice
 757          * Reserved             [23:20]
 758          * UDF_Valid[11:8]      [19:16]
 759          * UDF_Valid[7:0]       [15:8]
 760          * UDF_n_D11            [7:0]
 761          */
 762         reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 763                 udf_lower_bits(num_udf) << 8;
 764         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 765 
 766         /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 767         reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 768                 udf_lower_bits(num_udf) << 8;
 769         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 770 
 771         /* Don't care */
 772         core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
 773 
 774         /* Mask all */
 775         core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
 776 
 777         bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
 778                                ports.key->dst, slice_num, false);
 779         bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
 780                                ports.key->dst, SLICE_NUM_MASK, true);
 781 
 782         /* Insert into TCAM now */
 783         bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 784 
 785         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 786         if (ret) {
 787                 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 788                 goto out_err_flow_rule;
 789         }
 790 
 791         /* Insert into Action and policer RAMs now, set chain ID to
 792          * the one we are chained to
 793          */
 794         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
 795                                       queue_num, true);
 796         if (ret)
 797                 goto out_err_flow_rule;
 798 
 799         /* Turn on CFP for this rule now */
 800         reg = core_readl(priv, CORE_CFP_CTL_REG);
 801         reg |= BIT(port);
 802         core_writel(priv, reg, CORE_CFP_CTL_REG);
 803 
 804         /* Flag the second half rule as being used now, return it as the
 805          * location, and flag it as unique while dumping rules
 806          */
 807         set_bit(rule_index[0], priv->cfp.used);
 808         set_bit(rule_index[1], priv->cfp.unique);
 809         fs->location = rule_index[1];
 810 
 811         return ret;
 812 
 813 out_err_flow_rule:
 814         ethtool_rx_flow_rule_destroy(flow);
 815 out_err:
 816         clear_bit(rule_index[1], priv->cfp.used);
 817         return ret;
 818 }
 819 
 820 static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
 821                                    struct ethtool_rx_flow_spec *fs)
 822 {
 823         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 824         s8 cpu_port = ds->ports[port].cpu_dp->index;
 825         __u64 ring_cookie = fs->ring_cookie;
 826         unsigned int queue_num, port_num;
 827         int ret;
 828 
 829         /* This rule is a Wake-on-LAN filter and we must specifically
 830          * target the CPU port in order for it to be working.
 831          */
 832         if (ring_cookie == RX_CLS_FLOW_WAKE)
 833                 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
 834 
 835         /* We do not support discarding packets, check that the
 836          * destination port is enabled and that we are within the
 837          * number of ports supported by the switch
 838          */
 839         port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
 840 
 841         if (ring_cookie == RX_CLS_FLOW_DISC ||
 842             !(dsa_is_user_port(ds, port_num) ||
 843               dsa_is_cpu_port(ds, port_num)) ||
 844             port_num >= priv->hw_params.num_ports)
 845                 return -EINVAL;
 846         /*
 847          * We have a small oddity where Port 6 just does not have a
 848          * valid bit here (so we substract by one).
 849          */
 850         queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
 851         if (port_num >= 7)
 852                 port_num -= 1;
 853 
 854         switch (fs->flow_type & ~FLOW_EXT) {
 855         case TCP_V4_FLOW:
 856         case UDP_V4_FLOW:
 857                 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 858                                                 queue_num, fs);
 859                 break;
 860         case TCP_V6_FLOW:
 861         case UDP_V6_FLOW:
 862                 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 863                                                 queue_num, fs);
 864                 break;
 865         default:
 866                 ret = -EINVAL;
 867                 break;
 868         }
 869 
 870         return ret;
 871 }
 872 
 873 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 874                                 struct ethtool_rx_flow_spec *fs)
 875 {
 876         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 877         struct cfp_rule *rule = NULL;
 878         int ret = -EINVAL;
 879 
 880         /* Check for unsupported extensions */
 881         if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
 882              fs->m_ext.data[1]))
 883                 return -EINVAL;
 884 
 885         if (fs->location != RX_CLS_LOC_ANY &&
 886             fs->location > bcm_sf2_cfp_rule_size(priv))
 887                 return -EINVAL;
 888 
 889         if (fs->location != RX_CLS_LOC_ANY &&
 890             test_bit(fs->location, priv->cfp.used))
 891                 return -EBUSY;
 892 
 893         ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
 894         if (ret == 0)
 895                 return -EEXIST;
 896 
 897         rule = kzalloc(sizeof(*rule), GFP_KERNEL);
 898         if (!rule)
 899                 return -ENOMEM;
 900 
 901         ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
 902         if (ret) {
 903                 kfree(rule);
 904                 return ret;
 905         }
 906 
 907         rule->port = port;
 908         memcpy(&rule->fs, fs, sizeof(*fs));
 909         list_add_tail(&rule->next, &priv->cfp.rules_list);
 910 
 911         return ret;
 912 }
 913 
 914 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 915                                     u32 loc, u32 *next_loc)
 916 {
 917         int ret;
 918         u32 reg;
 919 
 920         /* Indicate which rule we want to read */
 921         bcm_sf2_cfp_rule_addr_set(priv, loc);
 922 
 923         ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 924         if (ret)
 925                 return ret;
 926 
 927         /* Check if this is possibly an IPv6 rule that would
 928          * indicate we need to delete its companion rule
 929          * as well
 930          */
 931         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 932         if (next_loc)
 933                 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
 934 
 935         /* Clear its valid bits */
 936         reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 937         reg &= ~SLICE_VALID;
 938         core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 939 
 940         /* Write back this entry into the TCAM now */
 941         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 942         if (ret)
 943                 return ret;
 944 
 945         clear_bit(loc, priv->cfp.used);
 946         clear_bit(loc, priv->cfp.unique);
 947 
 948         return 0;
 949 }
 950 
 951 static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
 952                                    u32 loc)
 953 {
 954         u32 next_loc = 0;
 955         int ret;
 956 
 957         ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
 958         if (ret)
 959                 return ret;
 960 
 961         /* If this was an IPv6 rule, delete is companion rule too */
 962         if (next_loc)
 963                 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
 964 
 965         return ret;
 966 }
 967 
 968 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
 969 {
 970         struct cfp_rule *rule;
 971         int ret;
 972 
 973         if (loc > bcm_sf2_cfp_rule_size(priv))
 974                 return -EINVAL;
 975 
 976         /* Refuse deleting unused rules, and those that are not unique since
 977          * that could leave IPv6 rules with one of the chained rule in the
 978          * table.
 979          */
 980         if (!test_bit(loc, priv->cfp.unique) || loc == 0)
 981                 return -EINVAL;
 982 
 983         rule = bcm_sf2_cfp_rule_find(priv, port, loc);
 984         if (!rule)
 985                 return -EINVAL;
 986 
 987         ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
 988 
 989         list_del(&rule->next);
 990         kfree(rule);
 991 
 992         return ret;
 993 }
 994 
 995 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 996 {
 997         unsigned int i;
 998 
 999         for (i = 0; i < sizeof(flow->m_u); i++)
1000                 flow->m_u.hdata[i] ^= 0xff;
1001 
1002         flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1003         flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1004         flow->m_ext.data[0] ^= cpu_to_be32(~0);
1005         flow->m_ext.data[1] ^= cpu_to_be32(~0);
1006 }
1007 
1008 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1009                                 struct ethtool_rxnfc *nfc)
1010 {
1011         struct cfp_rule *rule;
1012 
1013         rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1014         if (!rule)
1015                 return -EINVAL;
1016 
1017         memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1018 
1019         bcm_sf2_invert_masks(&nfc->fs);
1020 
1021         /* Put the TCAM size here */
1022         nfc->data = bcm_sf2_cfp_rule_size(priv);
1023 
1024         return 0;
1025 }
1026 
1027 /* We implement the search doing a TCAM search operation */
1028 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1029                                     int port, struct ethtool_rxnfc *nfc,
1030                                     u32 *rule_locs)
1031 {
1032         unsigned int index = 1, rules_cnt = 0;
1033 
1034         for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1035                 rule_locs[rules_cnt] = index;
1036                 rules_cnt++;
1037         }
1038 
1039         /* Put the TCAM size here */
1040         nfc->data = bcm_sf2_cfp_rule_size(priv);
1041         nfc->rule_cnt = rules_cnt;
1042 
1043         return 0;
1044 }
1045 
1046 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1047                       struct ethtool_rxnfc *nfc, u32 *rule_locs)
1048 {
1049         struct net_device *p = ds->ports[port].cpu_dp->master;
1050         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1051         int ret = 0;
1052 
1053         mutex_lock(&priv->cfp.lock);
1054 
1055         switch (nfc->cmd) {
1056         case ETHTOOL_GRXCLSRLCNT:
1057                 /* Subtract the default, unusable rule */
1058                 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1059                                               priv->num_cfp_rules) - 1;
1060                 /* We support specifying rule locations */
1061                 nfc->data |= RX_CLS_LOC_SPECIAL;
1062                 break;
1063         case ETHTOOL_GRXCLSRULE:
1064                 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1065                 break;
1066         case ETHTOOL_GRXCLSRLALL:
1067                 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1068                 break;
1069         default:
1070                 ret = -EOPNOTSUPP;
1071                 break;
1072         }
1073 
1074         mutex_unlock(&priv->cfp.lock);
1075 
1076         if (ret)
1077                 return ret;
1078 
1079         /* Pass up the commands to the attached master network device */
1080         if (p->ethtool_ops->get_rxnfc) {
1081                 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1082                 if (ret == -EOPNOTSUPP)
1083                         ret = 0;
1084         }
1085 
1086         return ret;
1087 }
1088 
1089 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1090                       struct ethtool_rxnfc *nfc)
1091 {
1092         struct net_device *p = ds->ports[port].cpu_dp->master;
1093         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1094         int ret = 0;
1095 
1096         mutex_lock(&priv->cfp.lock);
1097 
1098         switch (nfc->cmd) {
1099         case ETHTOOL_SRXCLSRLINS:
1100                 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1101                 break;
1102 
1103         case ETHTOOL_SRXCLSRLDEL:
1104                 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1105                 break;
1106         default:
1107                 ret = -EOPNOTSUPP;
1108                 break;
1109         }
1110 
1111         mutex_unlock(&priv->cfp.lock);
1112 
1113         if (ret)
1114                 return ret;
1115 
1116         /* Pass up the commands to the attached master network device.
1117          * This can fail, so rollback the operation if we need to.
1118          */
1119         if (p->ethtool_ops->set_rxnfc) {
1120                 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1121                 if (ret && ret != -EOPNOTSUPP) {
1122                         mutex_lock(&priv->cfp.lock);
1123                         bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1124                         mutex_unlock(&priv->cfp.lock);
1125                 } else {
1126                         ret = 0;
1127                 }
1128         }
1129 
1130         return ret;
1131 }
1132 
1133 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1134 {
1135         unsigned int timeout = 1000;
1136         u32 reg;
1137 
1138         reg = core_readl(priv, CORE_CFP_ACC);
1139         reg |= TCAM_RESET;
1140         core_writel(priv, reg, CORE_CFP_ACC);
1141 
1142         do {
1143                 reg = core_readl(priv, CORE_CFP_ACC);
1144                 if (!(reg & TCAM_RESET))
1145                         break;
1146 
1147                 cpu_relax();
1148         } while (timeout--);
1149 
1150         if (!timeout)
1151                 return -ETIMEDOUT;
1152 
1153         return 0;
1154 }
1155 
1156 void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1157 {
1158         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1159         struct cfp_rule *rule, *n;
1160 
1161         if (list_empty(&priv->cfp.rules_list))
1162                 return;
1163 
1164         list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1165                 bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1166 }
1167 
1168 int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1169 {
1170         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1171         struct cfp_rule *rule;
1172         int ret = 0;
1173         u32 reg;
1174 
1175         if (list_empty(&priv->cfp.rules_list))
1176                 return ret;
1177 
1178         reg = core_readl(priv, CORE_CFP_CTL_REG);
1179         reg &= ~CFP_EN_MAP_MASK;
1180         core_writel(priv, reg, CORE_CFP_CTL_REG);
1181 
1182         ret = bcm_sf2_cfp_rst(priv);
1183         if (ret)
1184                 return ret;
1185 
1186         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1187                 ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1188                                               rule->fs.location);
1189                 if (ret) {
1190                         dev_err(ds->dev, "failed to remove rule\n");
1191                         return ret;
1192                 }
1193 
1194                 ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1195                 if (ret) {
1196                         dev_err(ds->dev, "failed to restore rule\n");
1197                         return ret;
1198                 }
1199         }
1200 
1201         return ret;
1202 }
1203 
1204 static const struct bcm_sf2_cfp_stat {
1205         unsigned int offset;
1206         unsigned int ram_loc;
1207         const char *name;
1208 } bcm_sf2_cfp_stats[] = {
1209         {
1210                 .offset = CORE_STAT_GREEN_CNTR,
1211                 .ram_loc = GREEN_STAT_RAM,
1212                 .name = "Green"
1213         },
1214         {
1215                 .offset = CORE_STAT_YELLOW_CNTR,
1216                 .ram_loc = YELLOW_STAT_RAM,
1217                 .name = "Yellow"
1218         },
1219         {
1220                 .offset = CORE_STAT_RED_CNTR,
1221                 .ram_loc = RED_STAT_RAM,
1222                 .name = "Red"
1223         },
1224 };
1225 
1226 void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1227                              u32 stringset, uint8_t *data)
1228 {
1229         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1230         unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1231         char buf[ETH_GSTRING_LEN];
1232         unsigned int i, j, iter;
1233 
1234         if (stringset != ETH_SS_STATS)
1235                 return;
1236 
1237         for (i = 1; i < priv->num_cfp_rules; i++) {
1238                 for (j = 0; j < s; j++) {
1239                         snprintf(buf, sizeof(buf),
1240                                  "CFP%03d_%sCntr",
1241                                  i, bcm_sf2_cfp_stats[j].name);
1242                         iter = (i - 1) * s + j;
1243                         strlcpy(data + iter * ETH_GSTRING_LEN,
1244                                 buf, ETH_GSTRING_LEN);
1245                 }
1246         }
1247 }
1248 
1249 void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1250                                    uint64_t *data)
1251 {
1252         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1253         unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1254         const struct bcm_sf2_cfp_stat *stat;
1255         unsigned int i, j, iter;
1256         struct cfp_rule *rule;
1257         int ret;
1258 
1259         mutex_lock(&priv->cfp.lock);
1260         for (i = 1; i < priv->num_cfp_rules; i++) {
1261                 rule = bcm_sf2_cfp_rule_find(priv, port, i);
1262                 if (!rule)
1263                         continue;
1264 
1265                 for (j = 0; j < s; j++) {
1266                         stat = &bcm_sf2_cfp_stats[j];
1267 
1268                         bcm_sf2_cfp_rule_addr_set(priv, i);
1269                         ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1270                         if (ret)
1271                                 continue;
1272 
1273                         iter = (i - 1) * s + j;
1274                         data[iter] = core_readl(priv, stat->offset);
1275                 }
1276 
1277         }
1278         mutex_unlock(&priv->cfp.lock);
1279 }
1280 
1281 int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1282 {
1283         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1284 
1285         if (sset != ETH_SS_STATS)
1286                 return 0;
1287 
1288         /* 3 counters per CFP rules */
1289         return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1290 }

/* [<][>][^][v][top][bottom][index][help] */