root/drivers/net/ethernet/broadcom/sb1250-mac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sbmac_mii_sync
  2. sbmac_mii_senddata
  3. sbmac_mii_read
  4. sbmac_mii_write
  5. sbdma_initctx
  6. sbdma_channel_start
  7. sbdma_channel_stop
  8. sbdma_align_skb
  9. sbdma_add_rcvbuffer
  10. sbdma_add_txbuffer
  11. sbdma_emptyring
  12. sbdma_fillring
  13. sbmac_netpoll
  14. sbdma_rx_process
  15. sbdma_tx_process
  16. sbmac_initctx
  17. sbdma_uninitctx
  18. sbmac_uninitctx
  19. sbmac_channel_start
  20. sbmac_channel_stop
  21. sbmac_set_channel_state
  22. sbmac_promiscuous_mode
  23. sbmac_set_iphdr_offset
  24. sbmac_addr2reg
  25. sbmac_set_speed
  26. sbmac_set_duplex
  27. sbmac_intr
  28. sbmac_start_tx
  29. sbmac_setmulti
  30. sbmac_init
  31. sbmac_open
  32. sbmac_mii_probe
  33. sbmac_mii_poll
  34. sbmac_tx_timeout
  35. sbmac_set_rx_mode
  36. sbmac_mii_ioctl
  37. sbmac_close
  38. sbmac_poll
  39. sbmac_probe
  40. sbmac_remove

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   4  * Copyright (c) 2006, 2007  Maciej W. Rozycki
   5  *
   6  * This driver is designed for the Broadcom SiByte SOC built-in
   7  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
   8  *
   9  * Updated to the driver model and the PHY abstraction layer
  10  * by Maciej W. Rozycki.
  11  */
  12 
  13 #include <linux/bug.h>
  14 #include <linux/module.h>
  15 #include <linux/kernel.h>
  16 #include <linux/string.h>
  17 #include <linux/timer.h>
  18 #include <linux/errno.h>
  19 #include <linux/ioport.h>
  20 #include <linux/slab.h>
  21 #include <linux/interrupt.h>
  22 #include <linux/netdevice.h>
  23 #include <linux/etherdevice.h>
  24 #include <linux/skbuff.h>
  25 #include <linux/bitops.h>
  26 #include <linux/err.h>
  27 #include <linux/ethtool.h>
  28 #include <linux/mii.h>
  29 #include <linux/phy.h>
  30 #include <linux/platform_device.h>
  31 #include <linux/prefetch.h>
  32 
  33 #include <asm/cache.h>
  34 #include <asm/io.h>
  35 #include <asm/processor.h>      /* Processor type for cache alignment. */
  36 
  37 /* Operational parameters that usually are not changed. */
  38 
  39 #define CONFIG_SBMAC_COALESCE
  40 
  41 /* Time in jiffies before concluding the transmitter is hung. */
  42 #define TX_TIMEOUT  (2*HZ)
  43 
  44 
  45 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  46 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  47 
  48 /* A few user-configurable values which may be modified when a driver
  49    module is loaded. */
  50 
  51 /* 1 normal messages, 0 quiet .. 7 verbose. */
  52 static int debug = 1;
  53 module_param(debug, int, 0444);
  54 MODULE_PARM_DESC(debug, "Debug messages");
  55 
  56 #ifdef CONFIG_SBMAC_COALESCE
  57 static int int_pktcnt_tx = 255;
  58 module_param(int_pktcnt_tx, int, 0444);
  59 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  60 
  61 static int int_timeout_tx = 255;
  62 module_param(int_timeout_tx, int, 0444);
  63 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  64 
  65 static int int_pktcnt_rx = 64;
  66 module_param(int_pktcnt_rx, int, 0444);
  67 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  68 
  69 static int int_timeout_rx = 64;
  70 module_param(int_timeout_rx, int, 0444);
  71 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  72 #endif
  73 
  74 #include <asm/sibyte/board.h>
  75 #include <asm/sibyte/sb1250.h>
  76 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  77 #include <asm/sibyte/bcm1480_regs.h>
  78 #include <asm/sibyte/bcm1480_int.h>
  79 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
  80 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  81 #include <asm/sibyte/sb1250_regs.h>
  82 #include <asm/sibyte/sb1250_int.h>
  83 #else
  84 #error invalid SiByte MAC configuration
  85 #endif
  86 #include <asm/sibyte/sb1250_scd.h>
  87 #include <asm/sibyte/sb1250_mac.h>
  88 #include <asm/sibyte/sb1250_dma.h>
  89 
  90 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  91 #define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
  92 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  93 #define UNIT_INT(n)             (K_INT_MAC_0 + (n))
  94 #else
  95 #error invalid SiByte MAC configuration
  96 #endif
  97 
  98 #ifdef K_INT_PHY
  99 #define SBMAC_PHY_INT                   K_INT_PHY
 100 #else
 101 #define SBMAC_PHY_INT                   PHY_POLL
 102 #endif
 103 
 104 /**********************************************************************
 105  *  Simple types
 106  ********************************************************************* */
 107 
 108 enum sbmac_speed {
 109         sbmac_speed_none = 0,
 110         sbmac_speed_10 = SPEED_10,
 111         sbmac_speed_100 = SPEED_100,
 112         sbmac_speed_1000 = SPEED_1000,
 113 };
 114 
 115 enum sbmac_duplex {
 116         sbmac_duplex_none = -1,
 117         sbmac_duplex_half = DUPLEX_HALF,
 118         sbmac_duplex_full = DUPLEX_FULL,
 119 };
 120 
 121 enum sbmac_fc {
 122         sbmac_fc_none,
 123         sbmac_fc_disabled,
 124         sbmac_fc_frame,
 125         sbmac_fc_collision,
 126         sbmac_fc_carrier,
 127 };
 128 
 129 enum sbmac_state {
 130         sbmac_state_uninit,
 131         sbmac_state_off,
 132         sbmac_state_on,
 133         sbmac_state_broken,
 134 };
 135 
 136 
 137 /**********************************************************************
 138  *  Macros
 139  ********************************************************************* */
 140 
 141 
 142 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 143                           (d)->sbdma_dscrtable : (d)->f+1)
 144 
 145 
 146 #define NUMCACHEBLKS(x) DIV_ROUND_UP(x, SMP_CACHE_BYTES)
 147 
 148 #define SBMAC_MAX_TXDESCR       256
 149 #define SBMAC_MAX_RXDESCR       256
 150 
 151 #define ENET_PACKET_SIZE        1518
 152 /*#define ENET_PACKET_SIZE      9216 */
 153 
 154 /**********************************************************************
 155  *  DMA Descriptor structure
 156  ********************************************************************* */
 157 
 158 struct sbdmadscr {
 159         uint64_t  dscr_a;
 160         uint64_t  dscr_b;
 161 };
 162 
 163 /**********************************************************************
 164  *  DMA Controller structure
 165  ********************************************************************* */
 166 
 167 struct sbmacdma {
 168 
 169         /*
 170          * This stuff is used to identify the channel and the registers
 171          * associated with it.
 172          */
 173         struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
 174                                                    MAC */
 175         int                     sbdma_channel;  /* channel number */
 176         int                     sbdma_txdir;    /* direction (1=transmit) */
 177         int                     sbdma_maxdescr; /* total # of descriptors
 178                                                    in ring */
 179 #ifdef CONFIG_SBMAC_COALESCE
 180         int                     sbdma_int_pktcnt;
 181                                                 /* # descriptors rx/tx
 182                                                    before interrupt */
 183         int                     sbdma_int_timeout;
 184                                                 /* # usec rx/tx interrupt */
 185 #endif
 186         void __iomem            *sbdma_config0; /* DMA config register 0 */
 187         void __iomem            *sbdma_config1; /* DMA config register 1 */
 188         void __iomem            *sbdma_dscrbase;
 189                                                 /* descriptor base address */
 190         void __iomem            *sbdma_dscrcnt; /* descriptor count register */
 191         void __iomem            *sbdma_curdscr; /* current descriptor
 192                                                    address */
 193         void __iomem            *sbdma_oodpktlost;
 194                                                 /* pkt drop (rx only) */
 195 
 196         /*
 197          * This stuff is for maintenance of the ring
 198          */
 199         void                    *sbdma_dscrtable_unaligned;
 200         struct sbdmadscr        *sbdma_dscrtable;
 201                                                 /* base of descriptor table */
 202         struct sbdmadscr        *sbdma_dscrtable_end;
 203                                                 /* end of descriptor table */
 204         struct sk_buff          **sbdma_ctxtable;
 205                                                 /* context table, one
 206                                                    per descr */
 207         dma_addr_t              sbdma_dscrtable_phys;
 208                                                 /* and also the phys addr */
 209         struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
 210         struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
 211                                                    to remove */
 212 };
 213 
 214 
 215 /**********************************************************************
 216  *  Ethernet softc structure
 217  ********************************************************************* */
 218 
 219 struct sbmac_softc {
 220 
 221         /*
 222          * Linux-specific things
 223          */
 224         struct net_device       *sbm_dev;       /* pointer to linux device */
 225         struct napi_struct      napi;
 226         struct phy_device       *phy_dev;       /* the associated PHY device */
 227         struct mii_bus          *mii_bus;       /* the MII bus */
 228         spinlock_t              sbm_lock;       /* spin lock */
 229         int                     sbm_devflags;   /* current device flags */
 230 
 231         /*
 232          * Controller-specific things
 233          */
 234         void __iomem            *sbm_base;      /* MAC's base address */
 235         enum sbmac_state        sbm_state;      /* current state */
 236 
 237         void __iomem            *sbm_macenable; /* MAC Enable Register */
 238         void __iomem            *sbm_maccfg;    /* MAC Config Register */
 239         void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
 240         void __iomem            *sbm_framecfg;  /* Frame Config Register */
 241         void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
 242         void __iomem            *sbm_isr;       /* Interrupt Status Register */
 243         void __iomem            *sbm_imr;       /* Interrupt Mask Register */
 244         void __iomem            *sbm_mdio;      /* MDIO Register */
 245 
 246         enum sbmac_speed        sbm_speed;      /* current speed */
 247         enum sbmac_duplex       sbm_duplex;     /* current duplex */
 248         enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
 249         int                     sbm_pause;      /* current pause setting */
 250         int                     sbm_link;       /* current link state */
 251 
 252         unsigned char           sbm_hwaddr[ETH_ALEN];
 253 
 254         struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
 255         struct sbmacdma         sbm_rxdma;
 256         int                     rx_hw_checksum;
 257         int                     sbe_idx;
 258 };
 259 
 260 
 261 /**********************************************************************
 262  *  Externs
 263  ********************************************************************* */
 264 
 265 /**********************************************************************
 266  *  Prototypes
 267  ********************************************************************* */
 268 
 269 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 270                           int txrx, int maxdescr);
 271 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 272 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 273                                struct sk_buff *m);
 274 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 275 static void sbdma_emptyring(struct sbmacdma *d);
 276 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 277 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 278                             int work_to_do, int poll);
 279 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 280                              int poll);
 281 static int sbmac_initctx(struct sbmac_softc *s);
 282 static void sbmac_channel_start(struct sbmac_softc *s);
 283 static void sbmac_channel_stop(struct sbmac_softc *s);
 284 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 285                                                 enum sbmac_state);
 286 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 287 static uint64_t sbmac_addr2reg(unsigned char *ptr);
 288 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 289 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 290 static void sbmac_setmulti(struct sbmac_softc *sc);
 291 static int sbmac_init(struct platform_device *pldev, long long base);
 292 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 293 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 294                             enum sbmac_fc fc);
 295 
 296 static int sbmac_open(struct net_device *dev);
 297 static void sbmac_tx_timeout (struct net_device *dev);
 298 static void sbmac_set_rx_mode(struct net_device *dev);
 299 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 300 static int sbmac_close(struct net_device *dev);
 301 static int sbmac_poll(struct napi_struct *napi, int budget);
 302 
 303 static void sbmac_mii_poll(struct net_device *dev);
 304 static int sbmac_mii_probe(struct net_device *dev);
 305 
 306 static void sbmac_mii_sync(void __iomem *sbm_mdio);
 307 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 308                                int bitcnt);
 309 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 310 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 311                            u16 val);
 312 
 313 
 314 /**********************************************************************
 315  *  Globals
 316  ********************************************************************* */
 317 
 318 static char sbmac_string[] = "sb1250-mac";
 319 
 320 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 321 
 322 
 323 /**********************************************************************
 324  *  MDIO constants
 325  ********************************************************************* */
 326 
 327 #define MII_COMMAND_START       0x01
 328 #define MII_COMMAND_READ        0x02
 329 #define MII_COMMAND_WRITE       0x01
 330 #define MII_COMMAND_ACK         0x02
 331 
 332 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
 333 
 334 #define ENABLE          1
 335 #define DISABLE         0
 336 
 337 /**********************************************************************
 338  *  SBMAC_MII_SYNC(sbm_mdio)
 339  *
 340  *  Synchronize with the MII - send a pattern of bits to the MII
 341  *  that will guarantee that it is ready to accept a command.
 342  *
 343  *  Input parameters:
 344  *         sbm_mdio - address of the MAC's MDIO register
 345  *
 346  *  Return value:
 347  *         nothing
 348  ********************************************************************* */
 349 
 350 static void sbmac_mii_sync(void __iomem *sbm_mdio)
 351 {
 352         int cnt;
 353         uint64_t bits;
 354         int mac_mdio_genc;
 355 
 356         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 357 
 358         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 359 
 360         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 361 
 362         for (cnt = 0; cnt < 32; cnt++) {
 363                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 364                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 365         }
 366 }
 367 
 368 /**********************************************************************
 369  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 370  *
 371  *  Send some bits to the MII.  The bits to be sent are right-
 372  *  justified in the 'data' parameter.
 373  *
 374  *  Input parameters:
 375  *         sbm_mdio - address of the MAC's MDIO register
 376  *         data     - data to send
 377  *         bitcnt   - number of bits to send
 378  ********************************************************************* */
 379 
 380 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 381                                int bitcnt)
 382 {
 383         int i;
 384         uint64_t bits;
 385         unsigned int curmask;
 386         int mac_mdio_genc;
 387 
 388         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 389 
 390         bits = M_MAC_MDIO_DIR_OUTPUT;
 391         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 392 
 393         curmask = 1 << (bitcnt - 1);
 394 
 395         for (i = 0; i < bitcnt; i++) {
 396                 if (data & curmask)
 397                         bits |= M_MAC_MDIO_OUT;
 398                 else bits &= ~M_MAC_MDIO_OUT;
 399                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 400                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 401                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 402                 curmask >>= 1;
 403         }
 404 }
 405 
 406 
 407 
 408 /**********************************************************************
 409  *  SBMAC_MII_READ(bus, phyaddr, regidx)
 410  *  Read a PHY register.
 411  *
 412  *  Input parameters:
 413  *         bus     - MDIO bus handle
 414  *         phyaddr - PHY's address
 415  *         regnum  - index of register to read
 416  *
 417  *  Return value:
 418  *         value read, or 0xffff if an error occurred.
 419  ********************************************************************* */
 420 
 421 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 422 {
 423         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 424         void __iomem *sbm_mdio = sc->sbm_mdio;
 425         int idx;
 426         int error;
 427         int regval;
 428         int mac_mdio_genc;
 429 
 430         /*
 431          * Synchronize ourselves so that the PHY knows the next
 432          * thing coming down is a command
 433          */
 434         sbmac_mii_sync(sbm_mdio);
 435 
 436         /*
 437          * Send the data to the PHY.  The sequence is
 438          * a "start" command (2 bits)
 439          * a "read" command (2 bits)
 440          * the PHY addr (5 bits)
 441          * the register index (5 bits)
 442          */
 443         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 444         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 445         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 446         sbmac_mii_senddata(sbm_mdio, regidx, 5);
 447 
 448         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 449 
 450         /*
 451          * Switch the port around without a clock transition.
 452          */
 453         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 454 
 455         /*
 456          * Send out a clock pulse to signal we want the status
 457          */
 458         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 459                      sbm_mdio);
 460         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 461 
 462         /*
 463          * If an error occurred, the PHY will signal '1' back
 464          */
 465         error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 466 
 467         /*
 468          * Issue an 'idle' clock pulse, but keep the direction
 469          * the same.
 470          */
 471         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 472                      sbm_mdio);
 473         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 474 
 475         regval = 0;
 476 
 477         for (idx = 0; idx < 16; idx++) {
 478                 regval <<= 1;
 479 
 480                 if (error == 0) {
 481                         if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 482                                 regval |= 1;
 483                 }
 484 
 485                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 486                              sbm_mdio);
 487                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 488         }
 489 
 490         /* Switch back to output */
 491         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 492 
 493         if (error == 0)
 494                 return regval;
 495         return 0xffff;
 496 }
 497 
 498 
 499 /**********************************************************************
 500  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 501  *
 502  *  Write a value to a PHY register.
 503  *
 504  *  Input parameters:
 505  *         bus     - MDIO bus handle
 506  *         phyaddr - PHY to use
 507  *         regidx  - register within the PHY
 508  *         regval  - data to write to register
 509  *
 510  *  Return value:
 511  *         0 for success
 512  ********************************************************************* */
 513 
 514 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 515                            u16 regval)
 516 {
 517         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 518         void __iomem *sbm_mdio = sc->sbm_mdio;
 519         int mac_mdio_genc;
 520 
 521         sbmac_mii_sync(sbm_mdio);
 522 
 523         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 524         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 525         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 526         sbmac_mii_senddata(sbm_mdio, regidx, 5);
 527         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 528         sbmac_mii_senddata(sbm_mdio, regval, 16);
 529 
 530         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 531 
 532         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 533 
 534         return 0;
 535 }
 536 
 537 
 538 
 539 /**********************************************************************
 540  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 541  *
 542  *  Initialize a DMA channel context.  Since there are potentially
 543  *  eight DMA channels per MAC, it's nice to do this in a standard
 544  *  way.
 545  *
 546  *  Input parameters:
 547  *         d - struct sbmacdma (DMA channel context)
 548  *         s - struct sbmac_softc (pointer to a MAC)
 549  *         chan - channel number (0..1 right now)
 550  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
 551  *      maxdescr - number of descriptors
 552  *
 553  *  Return value:
 554  *         nothing
 555  ********************************************************************* */
 556 
 557 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 558                           int txrx, int maxdescr)
 559 {
 560 #ifdef CONFIG_SBMAC_COALESCE
 561         int int_pktcnt, int_timeout;
 562 #endif
 563 
 564         /*
 565          * Save away interesting stuff in the structure
 566          */
 567 
 568         d->sbdma_eth       = s;
 569         d->sbdma_channel   = chan;
 570         d->sbdma_txdir     = txrx;
 571 
 572 #if 0
 573         /* RMON clearing */
 574         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 575 #endif
 576 
 577         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 578         __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 579         __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 580         __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 581         __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 582         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 583         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 584         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 585         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 586         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 587         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 588         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 589         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 590         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 591         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 592         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 593         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 594         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 595         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 596         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 597         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 598 
 599         /*
 600          * initialize register pointers
 601          */
 602 
 603         d->sbdma_config0 =
 604                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 605         d->sbdma_config1 =
 606                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 607         d->sbdma_dscrbase =
 608                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 609         d->sbdma_dscrcnt =
 610                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 611         d->sbdma_curdscr =
 612                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 613         if (d->sbdma_txdir)
 614                 d->sbdma_oodpktlost = NULL;
 615         else
 616                 d->sbdma_oodpktlost =
 617                         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 618 
 619         /*
 620          * Allocate memory for the ring
 621          */
 622 
 623         d->sbdma_maxdescr = maxdescr;
 624 
 625         d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 626                                                sizeof(*d->sbdma_dscrtable),
 627                                                GFP_KERNEL);
 628 
 629         /*
 630          * The descriptor table must be aligned to at least 16 bytes or the
 631          * MAC will corrupt it.
 632          */
 633         d->sbdma_dscrtable = (struct sbdmadscr *)
 634                              ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 635                                    sizeof(*d->sbdma_dscrtable));
 636 
 637         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 638 
 639         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 640 
 641         /*
 642          * And context table
 643          */
 644 
 645         d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 646                                     sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 647 
 648 #ifdef CONFIG_SBMAC_COALESCE
 649         /*
 650          * Setup Rx/Tx DMA coalescing defaults
 651          */
 652 
 653         int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 654         if ( int_pktcnt ) {
 655                 d->sbdma_int_pktcnt = int_pktcnt;
 656         } else {
 657                 d->sbdma_int_pktcnt = 1;
 658         }
 659 
 660         int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 661         if ( int_timeout ) {
 662                 d->sbdma_int_timeout = int_timeout;
 663         } else {
 664                 d->sbdma_int_timeout = 0;
 665         }
 666 #endif
 667 
 668 }
 669 
 670 /**********************************************************************
 671  *  SBDMA_CHANNEL_START(d)
 672  *
 673  *  Initialize the hardware registers for a DMA channel.
 674  *
 675  *  Input parameters:
 676  *         d - DMA channel to init (context must be previously init'd
 677  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 678  *
 679  *  Return value:
 680  *         nothing
 681  ********************************************************************* */
 682 
 683 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 684 {
 685         /*
 686          * Turn on the DMA channel
 687          */
 688 
 689 #ifdef CONFIG_SBMAC_COALESCE
 690         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 691                        0, d->sbdma_config1);
 692         __raw_writeq(M_DMA_EOP_INT_EN |
 693                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
 694                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 695                        0, d->sbdma_config0);
 696 #else
 697         __raw_writeq(0, d->sbdma_config1);
 698         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 699                        0, d->sbdma_config0);
 700 #endif
 701 
 702         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 703 
 704         /*
 705          * Initialize ring pointers
 706          */
 707 
 708         d->sbdma_addptr = d->sbdma_dscrtable;
 709         d->sbdma_remptr = d->sbdma_dscrtable;
 710 }
 711 
 712 /**********************************************************************
 713  *  SBDMA_CHANNEL_STOP(d)
 714  *
 715  *  Initialize the hardware registers for a DMA channel.
 716  *
 717  *  Input parameters:
 718  *         d - DMA channel to init (context must be previously init'd
 719  *
 720  *  Return value:
 721  *         nothing
 722  ********************************************************************* */
 723 
 724 static void sbdma_channel_stop(struct sbmacdma *d)
 725 {
 726         /*
 727          * Turn off the DMA channel
 728          */
 729 
 730         __raw_writeq(0, d->sbdma_config1);
 731 
 732         __raw_writeq(0, d->sbdma_dscrbase);
 733 
 734         __raw_writeq(0, d->sbdma_config0);
 735 
 736         /*
 737          * Zero ring pointers
 738          */
 739 
 740         d->sbdma_addptr = NULL;
 741         d->sbdma_remptr = NULL;
 742 }
 743 
 744 static inline void sbdma_align_skb(struct sk_buff *skb,
 745                                    unsigned int power2, unsigned int offset)
 746 {
 747         unsigned char *addr = skb->data;
 748         unsigned char *newaddr = PTR_ALIGN(addr, power2);
 749 
 750         skb_reserve(skb, newaddr - addr + offset);
 751 }
 752 
 753 
 754 /**********************************************************************
 755  *  SBDMA_ADD_RCVBUFFER(d,sb)
 756  *
 757  *  Add a buffer to the specified DMA channel.   For receive channels,
 758  *  this queues a buffer for inbound packets.
 759  *
 760  *  Input parameters:
 761  *         sc - softc structure
 762  *          d - DMA channel descriptor
 763  *         sb - sk_buff to add, or NULL if we should allocate one
 764  *
 765  *  Return value:
 766  *         0 if buffer could not be added (ring is full)
 767  *         1 if buffer added successfully
 768  ********************************************************************* */
 769 
 770 
 771 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 772                                struct sk_buff *sb)
 773 {
 774         struct net_device *dev = sc->sbm_dev;
 775         struct sbdmadscr *dsc;
 776         struct sbdmadscr *nextdsc;
 777         struct sk_buff *sb_new = NULL;
 778         int pktsize = ENET_PACKET_SIZE;
 779 
 780         /* get pointer to our current place in the ring */
 781 
 782         dsc = d->sbdma_addptr;
 783         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 784 
 785         /*
 786          * figure out if the ring is full - if the next descriptor
 787          * is the same as the one that we're going to remove from
 788          * the ring, the ring is full
 789          */
 790 
 791         if (nextdsc == d->sbdma_remptr) {
 792                 return -ENOSPC;
 793         }
 794 
 795         /*
 796          * Allocate a sk_buff if we don't already have one.
 797          * If we do have an sk_buff, reset it so that it's empty.
 798          *
 799          * Note: sk_buffs don't seem to be guaranteed to have any sort
 800          * of alignment when they are allocated.  Therefore, allocate enough
 801          * extra space to make sure that:
 802          *
 803          *    1. the data does not start in the middle of a cache line.
 804          *    2. The data does not end in the middle of a cache line
 805          *    3. The buffer can be aligned such that the IP addresses are
 806          *       naturally aligned.
 807          *
 808          *  Remember, the SOCs MAC writes whole cache lines at a time,
 809          *  without reading the old contents first.  So, if the sk_buff's
 810          *  data portion starts in the middle of a cache line, the SOC
 811          *  DMA will trash the beginning (and ending) portions.
 812          */
 813 
 814         if (sb == NULL) {
 815                 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 816                                                SMP_CACHE_BYTES * 2 +
 817                                                NET_IP_ALIGN);
 818                 if (sb_new == NULL)
 819                         return -ENOBUFS;
 820 
 821                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 822         }
 823         else {
 824                 sb_new = sb;
 825                 /*
 826                  * nothing special to reinit buffer, it's already aligned
 827                  * and sb->data already points to a good place.
 828                  */
 829         }
 830 
 831         /*
 832          * fill in the descriptor
 833          */
 834 
 835 #ifdef CONFIG_SBMAC_COALESCE
 836         /*
 837          * Do not interrupt per DMA transfer.
 838          */
 839         dsc->dscr_a = virt_to_phys(sb_new->data) |
 840                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 841 #else
 842         dsc->dscr_a = virt_to_phys(sb_new->data) |
 843                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 844                 M_DMA_DSCRA_INTERRUPT;
 845 #endif
 846 
 847         /* receiving: no options */
 848         dsc->dscr_b = 0;
 849 
 850         /*
 851          * fill in the context
 852          */
 853 
 854         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 855 
 856         /*
 857          * point at next packet
 858          */
 859 
 860         d->sbdma_addptr = nextdsc;
 861 
 862         /*
 863          * Give the buffer to the DMA engine.
 864          */
 865 
 866         __raw_writeq(1, d->sbdma_dscrcnt);
 867 
 868         return 0;                                       /* we did it */
 869 }
 870 
 871 /**********************************************************************
 872  *  SBDMA_ADD_TXBUFFER(d,sb)
 873  *
 874  *  Add a transmit buffer to the specified DMA channel, causing a
 875  *  transmit to start.
 876  *
 877  *  Input parameters:
 878  *         d - DMA channel descriptor
 879  *         sb - sk_buff to add
 880  *
 881  *  Return value:
 882  *         0 transmit queued successfully
 883  *         otherwise error code
 884  ********************************************************************* */
 885 
 886 
 887 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 888 {
 889         struct sbdmadscr *dsc;
 890         struct sbdmadscr *nextdsc;
 891         uint64_t phys;
 892         uint64_t ncb;
 893         int length;
 894 
 895         /* get pointer to our current place in the ring */
 896 
 897         dsc = d->sbdma_addptr;
 898         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 899 
 900         /*
 901          * figure out if the ring is full - if the next descriptor
 902          * is the same as the one that we're going to remove from
 903          * the ring, the ring is full
 904          */
 905 
 906         if (nextdsc == d->sbdma_remptr) {
 907                 return -ENOSPC;
 908         }
 909 
 910         /*
 911          * Under Linux, it's not necessary to copy/coalesce buffers
 912          * like it is on NetBSD.  We think they're all contiguous,
 913          * but that may not be true for GBE.
 914          */
 915 
 916         length = sb->len;
 917 
 918         /*
 919          * fill in the descriptor.  Note that the number of cache
 920          * blocks in the descriptor is the number of blocks
 921          * *spanned*, so we need to add in the offset (if any)
 922          * while doing the calculation.
 923          */
 924 
 925         phys = virt_to_phys(sb->data);
 926         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 927 
 928         dsc->dscr_a = phys |
 929                 V_DMA_DSCRA_A_SIZE(ncb) |
 930 #ifndef CONFIG_SBMAC_COALESCE
 931                 M_DMA_DSCRA_INTERRUPT |
 932 #endif
 933                 M_DMA_ETHTX_SOP;
 934 
 935         /* transmitting: set outbound options and length */
 936 
 937         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 938                 V_DMA_DSCRB_PKT_SIZE(length);
 939 
 940         /*
 941          * fill in the context
 942          */
 943 
 944         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 945 
 946         /*
 947          * point at next packet
 948          */
 949 
 950         d->sbdma_addptr = nextdsc;
 951 
 952         /*
 953          * Give the buffer to the DMA engine.
 954          */
 955 
 956         __raw_writeq(1, d->sbdma_dscrcnt);
 957 
 958         return 0;                                       /* we did it */
 959 }
 960 
 961 
 962 
 963 
 964 /**********************************************************************
 965  *  SBDMA_EMPTYRING(d)
 966  *
 967  *  Free all allocated sk_buffs on the specified DMA channel;
 968  *
 969  *  Input parameters:
 970  *         d  - DMA channel
 971  *
 972  *  Return value:
 973  *         nothing
 974  ********************************************************************* */
 975 
 976 static void sbdma_emptyring(struct sbmacdma *d)
 977 {
 978         int idx;
 979         struct sk_buff *sb;
 980 
 981         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
 982                 sb = d->sbdma_ctxtable[idx];
 983                 if (sb) {
 984                         dev_kfree_skb(sb);
 985                         d->sbdma_ctxtable[idx] = NULL;
 986                 }
 987         }
 988 }
 989 
 990 
 991 /**********************************************************************
 992  *  SBDMA_FILLRING(d)
 993  *
 994  *  Fill the specified DMA channel (must be receive channel)
 995  *  with sk_buffs
 996  *
 997  *  Input parameters:
 998  *         sc - softc structure
 999  *          d - DMA channel
1000  *
1001  *  Return value:
1002  *         nothing
1003  ********************************************************************* */
1004 
1005 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1006 {
1007         int idx;
1008 
1009         for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1010                 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1011                         break;
1012         }
1013 }
1014 
1015 #ifdef CONFIG_NET_POLL_CONTROLLER
1016 static void sbmac_netpoll(struct net_device *netdev)
1017 {
1018         struct sbmac_softc *sc = netdev_priv(netdev);
1019         int irq = sc->sbm_dev->irq;
1020 
1021         __raw_writeq(0, sc->sbm_imr);
1022 
1023         sbmac_intr(irq, netdev);
1024 
1025 #ifdef CONFIG_SBMAC_COALESCE
1026         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1027         ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1028         sc->sbm_imr);
1029 #else
1030         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1031         (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1032 #endif
1033 }
1034 #endif
1035 
1036 /**********************************************************************
1037  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1038  *
1039  *  Process "completed" receive buffers on the specified DMA channel.
1040  *
1041  *  Input parameters:
1042  *            sc - softc structure
1043  *             d - DMA channel context
1044  *    work_to_do - no. of packets to process before enabling interrupt
1045  *                 again (for NAPI)
1046  *          poll - 1: using polling (for NAPI)
1047  *
1048  *  Return value:
1049  *         nothing
1050  ********************************************************************* */
1051 
1052 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1053                             int work_to_do, int poll)
1054 {
1055         struct net_device *dev = sc->sbm_dev;
1056         int curidx;
1057         int hwidx;
1058         struct sbdmadscr *dsc;
1059         struct sk_buff *sb;
1060         int len;
1061         int work_done = 0;
1062         int dropped = 0;
1063 
1064         prefetch(d);
1065 
1066 again:
1067         /* Check if the HW dropped any frames */
1068         dev->stats.rx_fifo_errors
1069             += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1070         __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1071 
1072         while (work_to_do-- > 0) {
1073                 /*
1074                  * figure out where we are (as an index) and where
1075                  * the hardware is (also as an index)
1076                  *
1077                  * This could be done faster if (for example) the
1078                  * descriptor table was page-aligned and contiguous in
1079                  * both virtual and physical memory -- you could then
1080                  * just compare the low-order bits of the virtual address
1081                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1082                  */
1083 
1084                 dsc = d->sbdma_remptr;
1085                 curidx = dsc - d->sbdma_dscrtable;
1086 
1087                 prefetch(dsc);
1088                 prefetch(&d->sbdma_ctxtable[curidx]);
1089 
1090                 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1091                          d->sbdma_dscrtable_phys) /
1092                         sizeof(*d->sbdma_dscrtable);
1093 
1094                 /*
1095                  * If they're the same, that means we've processed all
1096                  * of the descriptors up to (but not including) the one that
1097                  * the hardware is working on right now.
1098                  */
1099 
1100                 if (curidx == hwidx)
1101                         goto done;
1102 
1103                 /*
1104                  * Otherwise, get the packet's sk_buff ptr back
1105                  */
1106 
1107                 sb = d->sbdma_ctxtable[curidx];
1108                 d->sbdma_ctxtable[curidx] = NULL;
1109 
1110                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1111 
1112                 /*
1113                  * Check packet status.  If good, process it.
1114                  * If not, silently drop it and put it back on the
1115                  * receive ring.
1116                  */
1117 
1118                 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1119 
1120                         /*
1121                          * Add a new buffer to replace the old one.  If we fail
1122                          * to allocate a buffer, we're going to drop this
1123                          * packet and put it right back on the receive ring.
1124                          */
1125 
1126                         if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1127                                      -ENOBUFS)) {
1128                                 dev->stats.rx_dropped++;
1129                                 /* Re-add old buffer */
1130                                 sbdma_add_rcvbuffer(sc, d, sb);
1131                                 /* No point in continuing at the moment */
1132                                 printk(KERN_ERR "dropped packet (1)\n");
1133                                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1134                                 goto done;
1135                         } else {
1136                                 /*
1137                                  * Set length into the packet
1138                                  */
1139                                 skb_put(sb,len);
1140 
1141                                 /*
1142                                  * Buffer has been replaced on the
1143                                  * receive ring.  Pass the buffer to
1144                                  * the kernel
1145                                  */
1146                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1147                                 /* Check hw IPv4/TCP checksum if supported */
1148                                 if (sc->rx_hw_checksum == ENABLE) {
1149                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1150                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1151                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1152                                                 /* don't need to set sb->csum */
1153                                         } else {
1154                                                 skb_checksum_none_assert(sb);
1155                                         }
1156                                 }
1157                                 prefetch(sb->data);
1158                                 prefetch((const void *)(((char *)sb->data)+32));
1159                                 if (poll)
1160                                         dropped = netif_receive_skb(sb);
1161                                 else
1162                                         dropped = netif_rx(sb);
1163 
1164                                 if (dropped == NET_RX_DROP) {
1165                                         dev->stats.rx_dropped++;
1166                                         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1167                                         goto done;
1168                                 }
1169                                 else {
1170                                         dev->stats.rx_bytes += len;
1171                                         dev->stats.rx_packets++;
1172                                 }
1173                         }
1174                 } else {
1175                         /*
1176                          * Packet was mangled somehow.  Just drop it and
1177                          * put it back on the receive ring.
1178                          */
1179                         dev->stats.rx_errors++;
1180                         sbdma_add_rcvbuffer(sc, d, sb);
1181                 }
1182 
1183 
1184                 /*
1185                  * .. and advance to the next buffer.
1186                  */
1187 
1188                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1189                 work_done++;
1190         }
1191         if (!poll) {
1192                 work_to_do = 32;
1193                 goto again; /* collect fifo drop statistics again */
1194         }
1195 done:
1196         return work_done;
1197 }
1198 
1199 /**********************************************************************
1200  *  SBDMA_TX_PROCESS(sc,d)
1201  *
1202  *  Process "completed" transmit buffers on the specified DMA channel.
1203  *  This is normally called within the interrupt service routine.
1204  *  Note that this isn't really ideal for priority channels, since
1205  *  it processes all of the packets on a given channel before
1206  *  returning.
1207  *
1208  *  Input parameters:
1209  *      sc - softc structure
1210  *       d - DMA channel context
1211  *    poll - 1: using polling (for NAPI)
1212  *
1213  *  Return value:
1214  *         nothing
1215  ********************************************************************* */
1216 
1217 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1218                              int poll)
1219 {
1220         struct net_device *dev = sc->sbm_dev;
1221         int curidx;
1222         int hwidx;
1223         struct sbdmadscr *dsc;
1224         struct sk_buff *sb;
1225         unsigned long flags;
1226         int packets_handled = 0;
1227 
1228         spin_lock_irqsave(&(sc->sbm_lock), flags);
1229 
1230         if (d->sbdma_remptr == d->sbdma_addptr)
1231           goto end_unlock;
1232 
1233         hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1234                  d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1235 
1236         for (;;) {
1237                 /*
1238                  * figure out where we are (as an index) and where
1239                  * the hardware is (also as an index)
1240                  *
1241                  * This could be done faster if (for example) the
1242                  * descriptor table was page-aligned and contiguous in
1243                  * both virtual and physical memory -- you could then
1244                  * just compare the low-order bits of the virtual address
1245                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1246                  */
1247 
1248                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1249 
1250                 /*
1251                  * If they're the same, that means we've processed all
1252                  * of the descriptors up to (but not including) the one that
1253                  * the hardware is working on right now.
1254                  */
1255 
1256                 if (curidx == hwidx)
1257                         break;
1258 
1259                 /*
1260                  * Otherwise, get the packet's sk_buff ptr back
1261                  */
1262 
1263                 dsc = &(d->sbdma_dscrtable[curidx]);
1264                 sb = d->sbdma_ctxtable[curidx];
1265                 d->sbdma_ctxtable[curidx] = NULL;
1266 
1267                 /*
1268                  * Stats
1269                  */
1270 
1271                 dev->stats.tx_bytes += sb->len;
1272                 dev->stats.tx_packets++;
1273 
1274                 /*
1275                  * for transmits, we just free buffers.
1276                  */
1277 
1278                 dev_consume_skb_irq(sb);
1279 
1280                 /*
1281                  * .. and advance to the next buffer.
1282                  */
1283 
1284                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1285 
1286                 packets_handled++;
1287 
1288         }
1289 
1290         /*
1291          * Decide if we should wake up the protocol or not.
1292          * Other drivers seem to do this when we reach a low
1293          * watermark on the transmit queue.
1294          */
1295 
1296         if (packets_handled)
1297                 netif_wake_queue(d->sbdma_eth->sbm_dev);
1298 
1299 end_unlock:
1300         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1301 
1302 }
1303 
1304 
1305 
1306 /**********************************************************************
1307  *  SBMAC_INITCTX(s)
1308  *
1309  *  Initialize an Ethernet context structure - this is called
1310  *  once per MAC on the 1250.  Memory is allocated here, so don't
1311  *  call it again from inside the ioctl routines that bring the
1312  *  interface up/down
1313  *
1314  *  Input parameters:
1315  *         s - sbmac context structure
1316  *
1317  *  Return value:
1318  *         0
1319  ********************************************************************* */
1320 
1321 static int sbmac_initctx(struct sbmac_softc *s)
1322 {
1323 
1324         /*
1325          * figure out the addresses of some ports
1326          */
1327 
1328         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1329         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1330         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1331         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1332         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1333         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1334         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1335         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1336 
1337         /*
1338          * Initialize the DMA channels.  Right now, only one per MAC is used
1339          * Note: Only do this _once_, as it allocates memory from the kernel!
1340          */
1341 
1342         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1343         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1344 
1345         /*
1346          * initial state is OFF
1347          */
1348 
1349         s->sbm_state = sbmac_state_off;
1350 
1351         return 0;
1352 }
1353 
1354 
1355 static void sbdma_uninitctx(struct sbmacdma *d)
1356 {
1357         kfree(d->sbdma_dscrtable_unaligned);
1358         d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1359 
1360         kfree(d->sbdma_ctxtable);
1361         d->sbdma_ctxtable = NULL;
1362 }
1363 
1364 
1365 static void sbmac_uninitctx(struct sbmac_softc *sc)
1366 {
1367         sbdma_uninitctx(&(sc->sbm_txdma));
1368         sbdma_uninitctx(&(sc->sbm_rxdma));
1369 }
1370 
1371 
1372 /**********************************************************************
1373  *  SBMAC_CHANNEL_START(s)
1374  *
1375  *  Start packet processing on this MAC.
1376  *
1377  *  Input parameters:
1378  *         s - sbmac structure
1379  *
1380  *  Return value:
1381  *         nothing
1382  ********************************************************************* */
1383 
1384 static void sbmac_channel_start(struct sbmac_softc *s)
1385 {
1386         uint64_t reg;
1387         void __iomem *port;
1388         uint64_t cfg,fifo,framecfg;
1389         int idx, th_value;
1390 
1391         /*
1392          * Don't do this if running
1393          */
1394 
1395         if (s->sbm_state == sbmac_state_on)
1396                 return;
1397 
1398         /*
1399          * Bring the controller out of reset, but leave it off.
1400          */
1401 
1402         __raw_writeq(0, s->sbm_macenable);
1403 
1404         /*
1405          * Ignore all received packets
1406          */
1407 
1408         __raw_writeq(0, s->sbm_rxfilter);
1409 
1410         /*
1411          * Calculate values for various control registers.
1412          */
1413 
1414         cfg = M_MAC_RETRY_EN |
1415                 M_MAC_TX_HOLD_SOP_EN |
1416                 V_MAC_TX_PAUSE_CNT_16K |
1417                 M_MAC_AP_STAT_EN |
1418                 M_MAC_FAST_SYNC |
1419                 M_MAC_SS_EN |
1420                 0;
1421 
1422         /*
1423          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1424          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1425          * Use a larger RD_THRSH for gigabit
1426          */
1427         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1428                 th_value = 28;
1429         else
1430                 th_value = 64;
1431 
1432         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1433                 ((s->sbm_speed == sbmac_speed_1000)
1434                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1435                 V_MAC_TX_RL_THRSH(4) |
1436                 V_MAC_RX_PL_THRSH(4) |
1437                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1438                 V_MAC_RX_RL_THRSH(8) |
1439                 0;
1440 
1441         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1442                 V_MAC_MAX_FRAMESZ_DEFAULT |
1443                 V_MAC_BACKOFF_SEL(1);
1444 
1445         /*
1446          * Clear out the hash address map
1447          */
1448 
1449         port = s->sbm_base + R_MAC_HASH_BASE;
1450         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1451                 __raw_writeq(0, port);
1452                 port += sizeof(uint64_t);
1453         }
1454 
1455         /*
1456          * Clear out the exact-match table
1457          */
1458 
1459         port = s->sbm_base + R_MAC_ADDR_BASE;
1460         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1461                 __raw_writeq(0, port);
1462                 port += sizeof(uint64_t);
1463         }
1464 
1465         /*
1466          * Clear out the DMA Channel mapping table registers
1467          */
1468 
1469         port = s->sbm_base + R_MAC_CHUP0_BASE;
1470         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1471                 __raw_writeq(0, port);
1472                 port += sizeof(uint64_t);
1473         }
1474 
1475 
1476         port = s->sbm_base + R_MAC_CHLO0_BASE;
1477         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1478                 __raw_writeq(0, port);
1479                 port += sizeof(uint64_t);
1480         }
1481 
1482         /*
1483          * Program the hardware address.  It goes into the hardware-address
1484          * register as well as the first filter register.
1485          */
1486 
1487         reg = sbmac_addr2reg(s->sbm_hwaddr);
1488 
1489         port = s->sbm_base + R_MAC_ADDR_BASE;
1490         __raw_writeq(reg, port);
1491         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1492 
1493         __raw_writeq(reg, port);
1494 
1495         /*
1496          * Set the receive filter for no packets, and write values
1497          * to the various config registers
1498          */
1499 
1500         __raw_writeq(0, s->sbm_rxfilter);
1501         __raw_writeq(0, s->sbm_imr);
1502         __raw_writeq(framecfg, s->sbm_framecfg);
1503         __raw_writeq(fifo, s->sbm_fifocfg);
1504         __raw_writeq(cfg, s->sbm_maccfg);
1505 
1506         /*
1507          * Initialize DMA channels (rings should be ok now)
1508          */
1509 
1510         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1511         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1512 
1513         /*
1514          * Configure the speed, duplex, and flow control
1515          */
1516 
1517         sbmac_set_speed(s,s->sbm_speed);
1518         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1519 
1520         /*
1521          * Fill the receive ring
1522          */
1523 
1524         sbdma_fillring(s, &(s->sbm_rxdma));
1525 
1526         /*
1527          * Turn on the rest of the bits in the enable register
1528          */
1529 
1530 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1531         __raw_writeq(M_MAC_RXDMA_EN0 |
1532                        M_MAC_TXDMA_EN0, s->sbm_macenable);
1533 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1534         __raw_writeq(M_MAC_RXDMA_EN0 |
1535                        M_MAC_TXDMA_EN0 |
1536                        M_MAC_RX_ENABLE |
1537                        M_MAC_TX_ENABLE, s->sbm_macenable);
1538 #else
1539 #error invalid SiByte MAC configuration
1540 #endif
1541 
1542 #ifdef CONFIG_SBMAC_COALESCE
1543         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1544                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1545 #else
1546         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1547                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1548 #endif
1549 
1550         /*
1551          * Enable receiving unicasts and broadcasts
1552          */
1553 
1554         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1555 
1556         /*
1557          * we're running now.
1558          */
1559 
1560         s->sbm_state = sbmac_state_on;
1561 
1562         /*
1563          * Program multicast addresses
1564          */
1565 
1566         sbmac_setmulti(s);
1567 
1568         /*
1569          * If channel was in promiscuous mode before, turn that on
1570          */
1571 
1572         if (s->sbm_devflags & IFF_PROMISC) {
1573                 sbmac_promiscuous_mode(s,1);
1574         }
1575 
1576 }
1577 
1578 
1579 /**********************************************************************
1580  *  SBMAC_CHANNEL_STOP(s)
1581  *
1582  *  Stop packet processing on this MAC.
1583  *
1584  *  Input parameters:
1585  *         s - sbmac structure
1586  *
1587  *  Return value:
1588  *         nothing
1589  ********************************************************************* */
1590 
1591 static void sbmac_channel_stop(struct sbmac_softc *s)
1592 {
1593         /* don't do this if already stopped */
1594 
1595         if (s->sbm_state == sbmac_state_off)
1596                 return;
1597 
1598         /* don't accept any packets, disable all interrupts */
1599 
1600         __raw_writeq(0, s->sbm_rxfilter);
1601         __raw_writeq(0, s->sbm_imr);
1602 
1603         /* Turn off ticker */
1604 
1605         /* XXX */
1606 
1607         /* turn off receiver and transmitter */
1608 
1609         __raw_writeq(0, s->sbm_macenable);
1610 
1611         /* We're stopped now. */
1612 
1613         s->sbm_state = sbmac_state_off;
1614 
1615         /*
1616          * Stop DMA channels (rings should be ok now)
1617          */
1618 
1619         sbdma_channel_stop(&(s->sbm_rxdma));
1620         sbdma_channel_stop(&(s->sbm_txdma));
1621 
1622         /* Empty the receive and transmit rings */
1623 
1624         sbdma_emptyring(&(s->sbm_rxdma));
1625         sbdma_emptyring(&(s->sbm_txdma));
1626 
1627 }
1628 
1629 /**********************************************************************
1630  *  SBMAC_SET_CHANNEL_STATE(state)
1631  *
1632  *  Set the channel's state ON or OFF
1633  *
1634  *  Input parameters:
1635  *         state - new state
1636  *
1637  *  Return value:
1638  *         old state
1639  ********************************************************************* */
1640 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1641                                                 enum sbmac_state state)
1642 {
1643         enum sbmac_state oldstate = sc->sbm_state;
1644 
1645         /*
1646          * If same as previous state, return
1647          */
1648 
1649         if (state == oldstate) {
1650                 return oldstate;
1651         }
1652 
1653         /*
1654          * If new state is ON, turn channel on
1655          */
1656 
1657         if (state == sbmac_state_on) {
1658                 sbmac_channel_start(sc);
1659         }
1660         else {
1661                 sbmac_channel_stop(sc);
1662         }
1663 
1664         /*
1665          * Return previous state
1666          */
1667 
1668         return oldstate;
1669 }
1670 
1671 
1672 /**********************************************************************
1673  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1674  *
1675  *  Turn on or off promiscuous mode
1676  *
1677  *  Input parameters:
1678  *         sc - softc
1679  *      onoff - 1 to turn on, 0 to turn off
1680  *
1681  *  Return value:
1682  *         nothing
1683  ********************************************************************* */
1684 
1685 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1686 {
1687         uint64_t reg;
1688 
1689         if (sc->sbm_state != sbmac_state_on)
1690                 return;
1691 
1692         if (onoff) {
1693                 reg = __raw_readq(sc->sbm_rxfilter);
1694                 reg |= M_MAC_ALLPKT_EN;
1695                 __raw_writeq(reg, sc->sbm_rxfilter);
1696         }
1697         else {
1698                 reg = __raw_readq(sc->sbm_rxfilter);
1699                 reg &= ~M_MAC_ALLPKT_EN;
1700                 __raw_writeq(reg, sc->sbm_rxfilter);
1701         }
1702 }
1703 
1704 /**********************************************************************
1705  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1706  *
1707  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1708  *
1709  *  Input parameters:
1710  *         sc - softc
1711  *
1712  *  Return value:
1713  *         nothing
1714  ********************************************************************* */
1715 
1716 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1717 {
1718         uint64_t reg;
1719 
1720         /* Hard code the off set to 15 for now */
1721         reg = __raw_readq(sc->sbm_rxfilter);
1722         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1723         __raw_writeq(reg, sc->sbm_rxfilter);
1724 
1725         /* BCM1250 pass1 didn't have hardware checksum.  Everything
1726            later does.  */
1727         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1728                 sc->rx_hw_checksum = DISABLE;
1729         } else {
1730                 sc->rx_hw_checksum = ENABLE;
1731         }
1732 }
1733 
1734 
1735 /**********************************************************************
1736  *  SBMAC_ADDR2REG(ptr)
1737  *
1738  *  Convert six bytes into the 64-bit register value that
1739  *  we typically write into the SBMAC's address/mcast registers
1740  *
1741  *  Input parameters:
1742  *         ptr - pointer to 6 bytes
1743  *
1744  *  Return value:
1745  *         register value
1746  ********************************************************************* */
1747 
1748 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1749 {
1750         uint64_t reg = 0;
1751 
1752         ptr += 6;
1753 
1754         reg |= (uint64_t) *(--ptr);
1755         reg <<= 8;
1756         reg |= (uint64_t) *(--ptr);
1757         reg <<= 8;
1758         reg |= (uint64_t) *(--ptr);
1759         reg <<= 8;
1760         reg |= (uint64_t) *(--ptr);
1761         reg <<= 8;
1762         reg |= (uint64_t) *(--ptr);
1763         reg <<= 8;
1764         reg |= (uint64_t) *(--ptr);
1765 
1766         return reg;
1767 }
1768 
1769 
1770 /**********************************************************************
1771  *  SBMAC_SET_SPEED(s,speed)
1772  *
1773  *  Configure LAN speed for the specified MAC.
1774  *  Warning: must be called when MAC is off!
1775  *
1776  *  Input parameters:
1777  *         s - sbmac structure
1778  *         speed - speed to set MAC to (see enum sbmac_speed)
1779  *
1780  *  Return value:
1781  *         1 if successful
1782  *      0 indicates invalid parameters
1783  ********************************************************************* */
1784 
1785 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1786 {
1787         uint64_t cfg;
1788         uint64_t framecfg;
1789 
1790         /*
1791          * Save new current values
1792          */
1793 
1794         s->sbm_speed = speed;
1795 
1796         if (s->sbm_state == sbmac_state_on)
1797                 return 0;       /* save for next restart */
1798 
1799         /*
1800          * Read current register values
1801          */
1802 
1803         cfg = __raw_readq(s->sbm_maccfg);
1804         framecfg = __raw_readq(s->sbm_framecfg);
1805 
1806         /*
1807          * Mask out the stuff we want to change
1808          */
1809 
1810         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1811         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1812                       M_MAC_SLOT_SIZE);
1813 
1814         /*
1815          * Now add in the new bits
1816          */
1817 
1818         switch (speed) {
1819         case sbmac_speed_10:
1820                 framecfg |= V_MAC_IFG_RX_10 |
1821                         V_MAC_IFG_TX_10 |
1822                         K_MAC_IFG_THRSH_10 |
1823                         V_MAC_SLOT_SIZE_10;
1824                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1825                 break;
1826 
1827         case sbmac_speed_100:
1828                 framecfg |= V_MAC_IFG_RX_100 |
1829                         V_MAC_IFG_TX_100 |
1830                         V_MAC_IFG_THRSH_100 |
1831                         V_MAC_SLOT_SIZE_100;
1832                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1833                 break;
1834 
1835         case sbmac_speed_1000:
1836                 framecfg |= V_MAC_IFG_RX_1000 |
1837                         V_MAC_IFG_TX_1000 |
1838                         V_MAC_IFG_THRSH_1000 |
1839                         V_MAC_SLOT_SIZE_1000;
1840                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1841                 break;
1842 
1843         default:
1844                 return 0;
1845         }
1846 
1847         /*
1848          * Send the bits back to the hardware
1849          */
1850 
1851         __raw_writeq(framecfg, s->sbm_framecfg);
1852         __raw_writeq(cfg, s->sbm_maccfg);
1853 
1854         return 1;
1855 }
1856 
1857 /**********************************************************************
1858  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1859  *
1860  *  Set Ethernet duplex and flow control options for this MAC
1861  *  Warning: must be called when MAC is off!
1862  *
1863  *  Input parameters:
1864  *         s - sbmac structure
1865  *         duplex - duplex setting (see enum sbmac_duplex)
1866  *         fc - flow control setting (see enum sbmac_fc)
1867  *
1868  *  Return value:
1869  *         1 if ok
1870  *         0 if an invalid parameter combination was specified
1871  ********************************************************************* */
1872 
1873 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1874                             enum sbmac_fc fc)
1875 {
1876         uint64_t cfg;
1877 
1878         /*
1879          * Save new current values
1880          */
1881 
1882         s->sbm_duplex = duplex;
1883         s->sbm_fc = fc;
1884 
1885         if (s->sbm_state == sbmac_state_on)
1886                 return 0;       /* save for next restart */
1887 
1888         /*
1889          * Read current register values
1890          */
1891 
1892         cfg = __raw_readq(s->sbm_maccfg);
1893 
1894         /*
1895          * Mask off the stuff we're about to change
1896          */
1897 
1898         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1899 
1900 
1901         switch (duplex) {
1902         case sbmac_duplex_half:
1903                 switch (fc) {
1904                 case sbmac_fc_disabled:
1905                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1906                         break;
1907 
1908                 case sbmac_fc_collision:
1909                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1910                         break;
1911 
1912                 case sbmac_fc_carrier:
1913                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1914                         break;
1915 
1916                 case sbmac_fc_frame:            /* not valid in half duplex */
1917                 default:                        /* invalid selection */
1918                         return 0;
1919                 }
1920                 break;
1921 
1922         case sbmac_duplex_full:
1923                 switch (fc) {
1924                 case sbmac_fc_disabled:
1925                         cfg |= V_MAC_FC_CMD_DISABLED;
1926                         break;
1927 
1928                 case sbmac_fc_frame:
1929                         cfg |= V_MAC_FC_CMD_ENABLED;
1930                         break;
1931 
1932                 case sbmac_fc_collision:        /* not valid in full duplex */
1933                 case sbmac_fc_carrier:          /* not valid in full duplex */
1934                 default:
1935                         return 0;
1936                 }
1937                 break;
1938         default:
1939                 return 0;
1940         }
1941 
1942         /*
1943          * Send the bits back to the hardware
1944          */
1945 
1946         __raw_writeq(cfg, s->sbm_maccfg);
1947 
1948         return 1;
1949 }
1950 
1951 
1952 
1953 
1954 /**********************************************************************
1955  *  SBMAC_INTR()
1956  *
1957  *  Interrupt handler for MAC interrupts
1958  *
1959  *  Input parameters:
1960  *         MAC structure
1961  *
1962  *  Return value:
1963  *         nothing
1964  ********************************************************************* */
1965 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1966 {
1967         struct net_device *dev = (struct net_device *) dev_instance;
1968         struct sbmac_softc *sc = netdev_priv(dev);
1969         uint64_t isr;
1970         int handled = 0;
1971 
1972         /*
1973          * Read the ISR (this clears the bits in the real
1974          * register, except for counter addr)
1975          */
1976 
1977         isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1978 
1979         if (isr == 0)
1980                 return IRQ_RETVAL(0);
1981         handled = 1;
1982 
1983         /*
1984          * Transmits on channel 0
1985          */
1986 
1987         if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
1988                 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
1989 
1990         if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1991                 if (napi_schedule_prep(&sc->napi)) {
1992                         __raw_writeq(0, sc->sbm_imr);
1993                         __napi_schedule(&sc->napi);
1994                         /* Depend on the exit from poll to reenable intr */
1995                 }
1996                 else {
1997                         /* may leave some packets behind */
1998                         sbdma_rx_process(sc,&(sc->sbm_rxdma),
1999                                          SBMAC_MAX_RXDESCR * 2, 0);
2000                 }
2001         }
2002         return IRQ_RETVAL(handled);
2003 }
2004 
2005 /**********************************************************************
2006  *  SBMAC_START_TX(skb,dev)
2007  *
2008  *  Start output on the specified interface.  Basically, we
2009  *  queue as many buffers as we can until the ring fills up, or
2010  *  we run off the end of the queue, whichever comes first.
2011  *
2012  *  Input parameters:
2013  *
2014  *
2015  *  Return value:
2016  *         nothing
2017  ********************************************************************* */
2018 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2019 {
2020         struct sbmac_softc *sc = netdev_priv(dev);
2021         unsigned long flags;
2022 
2023         /* lock eth irq */
2024         spin_lock_irqsave(&sc->sbm_lock, flags);
2025 
2026         /*
2027          * Put the buffer on the transmit ring.  If we
2028          * don't have room, stop the queue.
2029          */
2030 
2031         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2032                 /* XXX save skb that we could not send */
2033                 netif_stop_queue(dev);
2034                 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2035 
2036                 return NETDEV_TX_BUSY;
2037         }
2038 
2039         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2040 
2041         return NETDEV_TX_OK;
2042 }
2043 
2044 /**********************************************************************
2045  *  SBMAC_SETMULTI(sc)
2046  *
2047  *  Reprogram the multicast table into the hardware, given
2048  *  the list of multicasts associated with the interface
2049  *  structure.
2050  *
2051  *  Input parameters:
2052  *         sc - softc
2053  *
2054  *  Return value:
2055  *         nothing
2056  ********************************************************************* */
2057 
2058 static void sbmac_setmulti(struct sbmac_softc *sc)
2059 {
2060         uint64_t reg;
2061         void __iomem *port;
2062         int idx;
2063         struct netdev_hw_addr *ha;
2064         struct net_device *dev = sc->sbm_dev;
2065 
2066         /*
2067          * Clear out entire multicast table.  We do this by nuking
2068          * the entire hash table and all the direct matches except
2069          * the first one, which is used for our station address
2070          */
2071 
2072         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2073                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2074                 __raw_writeq(0, port);
2075         }
2076 
2077         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2078                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2079                 __raw_writeq(0, port);
2080         }
2081 
2082         /*
2083          * Clear the filter to say we don't want any multicasts.
2084          */
2085 
2086         reg = __raw_readq(sc->sbm_rxfilter);
2087         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2088         __raw_writeq(reg, sc->sbm_rxfilter);
2089 
2090         if (dev->flags & IFF_ALLMULTI) {
2091                 /*
2092                  * Enable ALL multicasts.  Do this by inverting the
2093                  * multicast enable bit.
2094                  */
2095                 reg = __raw_readq(sc->sbm_rxfilter);
2096                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2097                 __raw_writeq(reg, sc->sbm_rxfilter);
2098                 return;
2099         }
2100 
2101 
2102         /*
2103          * Progam new multicast entries.  For now, only use the
2104          * perfect filter.  In the future we'll need to use the
2105          * hash filter if the perfect filter overflows
2106          */
2107 
2108         /* XXX only using perfect filter for now, need to use hash
2109          * XXX if the table overflows */
2110 
2111         idx = 1;                /* skip station address */
2112         netdev_for_each_mc_addr(ha, dev) {
2113                 if (idx == MAC_ADDR_COUNT)
2114                         break;
2115                 reg = sbmac_addr2reg(ha->addr);
2116                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2117                 __raw_writeq(reg, port);
2118                 idx++;
2119         }
2120 
2121         /*
2122          * Enable the "accept multicast bits" if we programmed at least one
2123          * multicast.
2124          */
2125 
2126         if (idx > 1) {
2127                 reg = __raw_readq(sc->sbm_rxfilter);
2128                 reg |= M_MAC_MCAST_EN;
2129                 __raw_writeq(reg, sc->sbm_rxfilter);
2130         }
2131 }
2132 
2133 static const struct net_device_ops sbmac_netdev_ops = {
2134         .ndo_open               = sbmac_open,
2135         .ndo_stop               = sbmac_close,
2136         .ndo_start_xmit         = sbmac_start_tx,
2137         .ndo_set_rx_mode        = sbmac_set_rx_mode,
2138         .ndo_tx_timeout         = sbmac_tx_timeout,
2139         .ndo_do_ioctl           = sbmac_mii_ioctl,
2140         .ndo_validate_addr      = eth_validate_addr,
2141         .ndo_set_mac_address    = eth_mac_addr,
2142 #ifdef CONFIG_NET_POLL_CONTROLLER
2143         .ndo_poll_controller    = sbmac_netpoll,
2144 #endif
2145 };
2146 
2147 /**********************************************************************
2148  *  SBMAC_INIT(dev)
2149  *
2150  *  Attach routine - init hardware and hook ourselves into linux
2151  *
2152  *  Input parameters:
2153  *         dev - net_device structure
2154  *
2155  *  Return value:
2156  *         status
2157  ********************************************************************* */
2158 
2159 static int sbmac_init(struct platform_device *pldev, long long base)
2160 {
2161         struct net_device *dev = platform_get_drvdata(pldev);
2162         int idx = pldev->id;
2163         struct sbmac_softc *sc = netdev_priv(dev);
2164         unsigned char *eaddr;
2165         uint64_t ea_reg;
2166         int i;
2167         int err;
2168 
2169         sc->sbm_dev = dev;
2170         sc->sbe_idx = idx;
2171 
2172         eaddr = sc->sbm_hwaddr;
2173 
2174         /*
2175          * Read the ethernet address.  The firmware left this programmed
2176          * for us in the ethernet address register for each mac.
2177          */
2178 
2179         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2180         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2181         for (i = 0; i < 6; i++) {
2182                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2183                 ea_reg >>= 8;
2184         }
2185 
2186         for (i = 0; i < 6; i++) {
2187                 dev->dev_addr[i] = eaddr[i];
2188         }
2189 
2190         /*
2191          * Initialize context (get pointers to registers and stuff), then
2192          * allocate the memory for the descriptor tables.
2193          */
2194 
2195         sbmac_initctx(sc);
2196 
2197         /*
2198          * Set up Linux device callins
2199          */
2200 
2201         spin_lock_init(&(sc->sbm_lock));
2202 
2203         dev->netdev_ops = &sbmac_netdev_ops;
2204         dev->watchdog_timeo = TX_TIMEOUT;
2205         dev->min_mtu = 0;
2206         dev->max_mtu = ENET_PACKET_SIZE;
2207 
2208         netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2209 
2210         dev->irq                = UNIT_INT(idx);
2211 
2212         /* This is needed for PASS2 for Rx H/W checksum feature */
2213         sbmac_set_iphdr_offset(sc);
2214 
2215         sc->mii_bus = mdiobus_alloc();
2216         if (sc->mii_bus == NULL) {
2217                 err = -ENOMEM;
2218                 goto uninit_ctx;
2219         }
2220 
2221         sc->mii_bus->name = sbmac_mdio_string;
2222         snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2223                 pldev->name, idx);
2224         sc->mii_bus->priv = sc;
2225         sc->mii_bus->read = sbmac_mii_read;
2226         sc->mii_bus->write = sbmac_mii_write;
2227 
2228         sc->mii_bus->parent = &pldev->dev;
2229         /*
2230          * Probe PHY address
2231          */
2232         err = mdiobus_register(sc->mii_bus);
2233         if (err) {
2234                 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2235                        dev->name);
2236                 goto free_mdio;
2237         }
2238         platform_set_drvdata(pldev, sc->mii_bus);
2239 
2240         err = register_netdev(dev);
2241         if (err) {
2242                 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2243                        sbmac_string, idx);
2244                 goto unreg_mdio;
2245         }
2246 
2247         pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2248 
2249         if (sc->rx_hw_checksum == ENABLE)
2250                 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2251 
2252         /*
2253          * Display Ethernet address (this is called during the config
2254          * process so we need to finish off the config message that
2255          * was being displayed)
2256          */
2257         pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2258                dev->name, base, eaddr);
2259 
2260         return 0;
2261 unreg_mdio:
2262         mdiobus_unregister(sc->mii_bus);
2263 free_mdio:
2264         mdiobus_free(sc->mii_bus);
2265 uninit_ctx:
2266         sbmac_uninitctx(sc);
2267         return err;
2268 }
2269 
2270 
2271 static int sbmac_open(struct net_device *dev)
2272 {
2273         struct sbmac_softc *sc = netdev_priv(dev);
2274         int err;
2275 
2276         if (debug > 1)
2277                 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2278 
2279         /*
2280          * map/route interrupt (clear status first, in case something
2281          * weird is pending; we haven't initialized the mac registers
2282          * yet)
2283          */
2284 
2285         __raw_readq(sc->sbm_isr);
2286         err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2287         if (err) {
2288                 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2289                        dev->irq);
2290                 goto out_err;
2291         }
2292 
2293         sc->sbm_speed = sbmac_speed_none;
2294         sc->sbm_duplex = sbmac_duplex_none;
2295         sc->sbm_fc = sbmac_fc_none;
2296         sc->sbm_pause = -1;
2297         sc->sbm_link = 0;
2298 
2299         /*
2300          * Attach to the PHY
2301          */
2302         err = sbmac_mii_probe(dev);
2303         if (err)
2304                 goto out_unregister;
2305 
2306         /*
2307          * Turn on the channel
2308          */
2309 
2310         sbmac_set_channel_state(sc,sbmac_state_on);
2311 
2312         netif_start_queue(dev);
2313 
2314         sbmac_set_rx_mode(dev);
2315 
2316         phy_start(sc->phy_dev);
2317 
2318         napi_enable(&sc->napi);
2319 
2320         return 0;
2321 
2322 out_unregister:
2323         free_irq(dev->irq, dev);
2324 out_err:
2325         return err;
2326 }
2327 
2328 static int sbmac_mii_probe(struct net_device *dev)
2329 {
2330         struct sbmac_softc *sc = netdev_priv(dev);
2331         struct phy_device *phy_dev;
2332 
2333         phy_dev = phy_find_first(sc->mii_bus);
2334         if (!phy_dev) {
2335                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2336                 return -ENXIO;
2337         }
2338 
2339         phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2340                               &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2341         if (IS_ERR(phy_dev)) {
2342                 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2343                 return PTR_ERR(phy_dev);
2344         }
2345 
2346         /* Remove any features not supported by the controller */
2347         phy_set_max_speed(phy_dev, SPEED_1000);
2348         phy_support_asym_pause(phy_dev);
2349 
2350         phy_attached_info(phy_dev);
2351 
2352         sc->phy_dev = phy_dev;
2353 
2354         return 0;
2355 }
2356 
2357 
2358 static void sbmac_mii_poll(struct net_device *dev)
2359 {
2360         struct sbmac_softc *sc = netdev_priv(dev);
2361         struct phy_device *phy_dev = sc->phy_dev;
2362         unsigned long flags;
2363         enum sbmac_fc fc;
2364         int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2365 
2366         link_chg = (sc->sbm_link != phy_dev->link);
2367         speed_chg = (sc->sbm_speed != phy_dev->speed);
2368         duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2369         pause_chg = (sc->sbm_pause != phy_dev->pause);
2370 
2371         if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2372                 return;                                 /* Hmmm... */
2373 
2374         if (!phy_dev->link) {
2375                 if (link_chg) {
2376                         sc->sbm_link = phy_dev->link;
2377                         sc->sbm_speed = sbmac_speed_none;
2378                         sc->sbm_duplex = sbmac_duplex_none;
2379                         sc->sbm_fc = sbmac_fc_disabled;
2380                         sc->sbm_pause = -1;
2381                         pr_info("%s: link unavailable\n", dev->name);
2382                 }
2383                 return;
2384         }
2385 
2386         if (phy_dev->duplex == DUPLEX_FULL) {
2387                 if (phy_dev->pause)
2388                         fc = sbmac_fc_frame;
2389                 else
2390                         fc = sbmac_fc_disabled;
2391         } else
2392                 fc = sbmac_fc_collision;
2393         fc_chg = (sc->sbm_fc != fc);
2394 
2395         pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2396                 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2397 
2398         spin_lock_irqsave(&sc->sbm_lock, flags);
2399 
2400         sc->sbm_speed = phy_dev->speed;
2401         sc->sbm_duplex = phy_dev->duplex;
2402         sc->sbm_fc = fc;
2403         sc->sbm_pause = phy_dev->pause;
2404         sc->sbm_link = phy_dev->link;
2405 
2406         if ((speed_chg || duplex_chg || fc_chg) &&
2407             sc->sbm_state != sbmac_state_off) {
2408                 /*
2409                  * something changed, restart the channel
2410                  */
2411                 if (debug > 1)
2412                         pr_debug("%s: restarting channel "
2413                                  "because PHY state changed\n", dev->name);
2414                 sbmac_channel_stop(sc);
2415                 sbmac_channel_start(sc);
2416         }
2417 
2418         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2419 }
2420 
2421 
2422 static void sbmac_tx_timeout (struct net_device *dev)
2423 {
2424         struct sbmac_softc *sc = netdev_priv(dev);
2425         unsigned long flags;
2426 
2427         spin_lock_irqsave(&sc->sbm_lock, flags);
2428 
2429 
2430         netif_trans_update(dev); /* prevent tx timeout */
2431         dev->stats.tx_errors++;
2432 
2433         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2434 
2435         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2436 }
2437 
2438 
2439 
2440 
2441 static void sbmac_set_rx_mode(struct net_device *dev)
2442 {
2443         unsigned long flags;
2444         struct sbmac_softc *sc = netdev_priv(dev);
2445 
2446         spin_lock_irqsave(&sc->sbm_lock, flags);
2447         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2448                 /*
2449                  * Promiscuous changed.
2450                  */
2451 
2452                 if (dev->flags & IFF_PROMISC) {
2453                         sbmac_promiscuous_mode(sc,1);
2454                 }
2455                 else {
2456                         sbmac_promiscuous_mode(sc,0);
2457                 }
2458         }
2459         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2460 
2461         /*
2462          * Program the multicasts.  Do this every time.
2463          */
2464 
2465         sbmac_setmulti(sc);
2466 
2467 }
2468 
2469 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2470 {
2471         struct sbmac_softc *sc = netdev_priv(dev);
2472 
2473         if (!netif_running(dev) || !sc->phy_dev)
2474                 return -EINVAL;
2475 
2476         return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2477 }
2478 
2479 static int sbmac_close(struct net_device *dev)
2480 {
2481         struct sbmac_softc *sc = netdev_priv(dev);
2482 
2483         napi_disable(&sc->napi);
2484 
2485         phy_stop(sc->phy_dev);
2486 
2487         sbmac_set_channel_state(sc, sbmac_state_off);
2488 
2489         netif_stop_queue(dev);
2490 
2491         if (debug > 1)
2492                 pr_debug("%s: Shutting down ethercard\n", dev->name);
2493 
2494         phy_disconnect(sc->phy_dev);
2495         sc->phy_dev = NULL;
2496         free_irq(dev->irq, dev);
2497 
2498         sbdma_emptyring(&(sc->sbm_txdma));
2499         sbdma_emptyring(&(sc->sbm_rxdma));
2500 
2501         return 0;
2502 }
2503 
2504 static int sbmac_poll(struct napi_struct *napi, int budget)
2505 {
2506         struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2507         int work_done;
2508 
2509         work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2510         sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2511 
2512         if (work_done < budget) {
2513                 napi_complete_done(napi, work_done);
2514 
2515 #ifdef CONFIG_SBMAC_COALESCE
2516                 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2517                              ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2518                              sc->sbm_imr);
2519 #else
2520                 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2521                              (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2522 #endif
2523         }
2524 
2525         return work_done;
2526 }
2527 
2528 
2529 static int sbmac_probe(struct platform_device *pldev)
2530 {
2531         struct net_device *dev;
2532         struct sbmac_softc *sc;
2533         void __iomem *sbm_base;
2534         struct resource *res;
2535         u64 sbmac_orig_hwaddr;
2536         int err;
2537 
2538         res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2539         BUG_ON(!res);
2540         sbm_base = ioremap_nocache(res->start, resource_size(res));
2541         if (!sbm_base) {
2542                 printk(KERN_ERR "%s: unable to map device registers\n",
2543                        dev_name(&pldev->dev));
2544                 err = -ENOMEM;
2545                 goto out_out;
2546         }
2547 
2548         /*
2549          * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2550          * value for us by the firmware if we're going to use this MAC.
2551          * If we find a zero, skip this MAC.
2552          */
2553         sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2554         pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2555                  sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2556         if (sbmac_orig_hwaddr == 0) {
2557                 err = 0;
2558                 goto out_unmap;
2559         }
2560 
2561         /*
2562          * Okay, cool.  Initialize this MAC.
2563          */
2564         dev = alloc_etherdev(sizeof(struct sbmac_softc));
2565         if (!dev) {
2566                 err = -ENOMEM;
2567                 goto out_unmap;
2568         }
2569 
2570         platform_set_drvdata(pldev, dev);
2571         SET_NETDEV_DEV(dev, &pldev->dev);
2572 
2573         sc = netdev_priv(dev);
2574         sc->sbm_base = sbm_base;
2575 
2576         err = sbmac_init(pldev, res->start);
2577         if (err)
2578                 goto out_kfree;
2579 
2580         return 0;
2581 
2582 out_kfree:
2583         free_netdev(dev);
2584         __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2585 
2586 out_unmap:
2587         iounmap(sbm_base);
2588 
2589 out_out:
2590         return err;
2591 }
2592 
2593 static int sbmac_remove(struct platform_device *pldev)
2594 {
2595         struct net_device *dev = platform_get_drvdata(pldev);
2596         struct sbmac_softc *sc = netdev_priv(dev);
2597 
2598         unregister_netdev(dev);
2599         sbmac_uninitctx(sc);
2600         mdiobus_unregister(sc->mii_bus);
2601         mdiobus_free(sc->mii_bus);
2602         iounmap(sc->sbm_base);
2603         free_netdev(dev);
2604 
2605         return 0;
2606 }
2607 
2608 static struct platform_driver sbmac_driver = {
2609         .probe = sbmac_probe,
2610         .remove = sbmac_remove,
2611         .driver = {
2612                 .name = sbmac_string,
2613         },
2614 };
2615 
2616 module_platform_driver(sbmac_driver);
2617 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */