root/arch/powerpc/kvm/e500.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. local_sid_setup_one
  2. local_sid_lookup
  3. local_sid_destroy_all
  4. kvmppc_e500_id_table_alloc
  5. kvmppc_e500_id_table_free
  6. kvmppc_e500_recalc_shadow_pid
  7. kvmppc_e500_id_table_reset_all
  8. kvmppc_e500_id_table_reset_one
  9. kvmppc_e500_get_sid
  10. kvmppc_e500_get_tlb_stid
  11. kvmppc_set_pid
  12. kvmppc_e500_tlbil_one
  13. kvmppc_e500_tlbil_all
  14. kvmppc_mmu_msr_notify
  15. kvmppc_core_vcpu_load_e500
  16. kvmppc_core_vcpu_put_e500
  17. kvmppc_core_check_processor_compat
  18. kvmppc_e500_tlb_setup
  19. kvmppc_core_vcpu_setup
  20. kvmppc_core_get_sregs_e500
  21. kvmppc_core_set_sregs_e500
  22. kvmppc_get_one_reg_e500
  23. kvmppc_set_one_reg_e500
  24. kvmppc_core_vcpu_create_e500
  25. kvmppc_core_vcpu_free_e500
  26. kvmppc_core_init_vm_e500
  27. kvmppc_core_destroy_vm_e500
  28. kvmppc_e500_init
  29. kvmppc_e500_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
   4  *
   5  * Author: Yu Liu, <yu.liu@freescale.com>
   6  *
   7  * Description:
   8  * This file is derived from arch/powerpc/kvm/44x.c,
   9  * by Hollis Blanchard <hollisb@us.ibm.com>.
  10  */
  11 
  12 #include <linux/kvm_host.h>
  13 #include <linux/slab.h>
  14 #include <linux/err.h>
  15 #include <linux/export.h>
  16 #include <linux/module.h>
  17 #include <linux/miscdevice.h>
  18 
  19 #include <asm/reg.h>
  20 #include <asm/cputable.h>
  21 #include <asm/kvm_ppc.h>
  22 
  23 #include "../mm/mmu_decl.h"
  24 #include "booke.h"
  25 #include "e500.h"
  26 
  27 struct id {
  28         unsigned long val;
  29         struct id **pentry;
  30 };
  31 
  32 #define NUM_TIDS 256
  33 
  34 /*
  35  * This table provide mappings from:
  36  * (guestAS,guestTID,guestPR) --> ID of physical cpu
  37  * guestAS      [0..1]
  38  * guestTID     [0..255]
  39  * guestPR      [0..1]
  40  * ID           [1..255]
  41  * Each vcpu keeps one vcpu_id_table.
  42  */
  43 struct vcpu_id_table {
  44         struct id id[2][NUM_TIDS][2];
  45 };
  46 
  47 /*
  48  * This table provide reversed mappings of vcpu_id_table:
  49  * ID --> address of vcpu_id_table item.
  50  * Each physical core has one pcpu_id_table.
  51  */
  52 struct pcpu_id_table {
  53         struct id *entry[NUM_TIDS];
  54 };
  55 
  56 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
  57 
  58 /* This variable keeps last used shadow ID on local core.
  59  * The valid range of shadow ID is [1..255] */
  60 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
  61 
  62 /*
  63  * Allocate a free shadow id and setup a valid sid mapping in given entry.
  64  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
  65  *
  66  * The caller must have preemption disabled, and keep it that way until
  67  * it has finished with the returned shadow id (either written into the
  68  * TLB or arch.shadow_pid, or discarded).
  69  */
  70 static inline int local_sid_setup_one(struct id *entry)
  71 {
  72         unsigned long sid;
  73         int ret = -1;
  74 
  75         sid = __this_cpu_inc_return(pcpu_last_used_sid);
  76         if (sid < NUM_TIDS) {
  77                 __this_cpu_write(pcpu_sids.entry[sid], entry);
  78                 entry->val = sid;
  79                 entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
  80                 ret = sid;
  81         }
  82 
  83         /*
  84          * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
  85          * the caller will invalidate everything and start over.
  86          *
  87          * sid > NUM_TIDS indicates a race, which we disable preemption to
  88          * avoid.
  89          */
  90         WARN_ON(sid > NUM_TIDS);
  91 
  92         return ret;
  93 }
  94 
  95 /*
  96  * Check if given entry contain a valid shadow id mapping.
  97  * An ID mapping is considered valid only if
  98  * both vcpu and pcpu know this mapping.
  99  *
 100  * The caller must have preemption disabled, and keep it that way until
 101  * it has finished with the returned shadow id (either written into the
 102  * TLB or arch.shadow_pid, or discarded).
 103  */
 104 static inline int local_sid_lookup(struct id *entry)
 105 {
 106         if (entry && entry->val != 0 &&
 107             __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
 108             entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
 109                 return entry->val;
 110         return -1;
 111 }
 112 
 113 /* Invalidate all id mappings on local core -- call with preempt disabled */
 114 static inline void local_sid_destroy_all(void)
 115 {
 116         __this_cpu_write(pcpu_last_used_sid, 0);
 117         memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
 118 }
 119 
 120 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
 121 {
 122         vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
 123         return vcpu_e500->idt;
 124 }
 125 
 126 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
 127 {
 128         kfree(vcpu_e500->idt);
 129         vcpu_e500->idt = NULL;
 130 }
 131 
 132 /* Map guest pid to shadow.
 133  * We use PID to keep shadow of current guest non-zero PID,
 134  * and use PID1 to keep shadow of guest zero PID.
 135  * So that guest tlbe with TID=0 can be accessed at any time */
 136 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
 137 {
 138         preempt_disable();
 139         vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
 140                         get_cur_as(&vcpu_e500->vcpu),
 141                         get_cur_pid(&vcpu_e500->vcpu),
 142                         get_cur_pr(&vcpu_e500->vcpu), 1);
 143         vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
 144                         get_cur_as(&vcpu_e500->vcpu), 0,
 145                         get_cur_pr(&vcpu_e500->vcpu), 1);
 146         preempt_enable();
 147 }
 148 
 149 /* Invalidate all mappings on vcpu */
 150 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
 151 {
 152         memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
 153 
 154         /* Update shadow pid when mappings are changed */
 155         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
 156 }
 157 
 158 /* Invalidate one ID mapping on vcpu */
 159 static inline void kvmppc_e500_id_table_reset_one(
 160                                struct kvmppc_vcpu_e500 *vcpu_e500,
 161                                int as, int pid, int pr)
 162 {
 163         struct vcpu_id_table *idt = vcpu_e500->idt;
 164 
 165         BUG_ON(as >= 2);
 166         BUG_ON(pid >= NUM_TIDS);
 167         BUG_ON(pr >= 2);
 168 
 169         idt->id[as][pid][pr].val = 0;
 170         idt->id[as][pid][pr].pentry = NULL;
 171 
 172         /* Update shadow pid when mappings are changed */
 173         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
 174 }
 175 
 176 /*
 177  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
 178  * This function first lookup if a valid mapping exists,
 179  * if not, then creates a new one.
 180  *
 181  * The caller must have preemption disabled, and keep it that way until
 182  * it has finished with the returned shadow id (either written into the
 183  * TLB or arch.shadow_pid, or discarded).
 184  */
 185 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
 186                                  unsigned int as, unsigned int gid,
 187                                  unsigned int pr, int avoid_recursion)
 188 {
 189         struct vcpu_id_table *idt = vcpu_e500->idt;
 190         int sid;
 191 
 192         BUG_ON(as >= 2);
 193         BUG_ON(gid >= NUM_TIDS);
 194         BUG_ON(pr >= 2);
 195 
 196         sid = local_sid_lookup(&idt->id[as][gid][pr]);
 197 
 198         while (sid <= 0) {
 199                 /* No mapping yet */
 200                 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
 201                 if (sid <= 0) {
 202                         _tlbil_all();
 203                         local_sid_destroy_all();
 204                 }
 205 
 206                 /* Update shadow pid when mappings are changed */
 207                 if (!avoid_recursion)
 208                         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
 209         }
 210 
 211         return sid;
 212 }
 213 
 214 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
 215                                       struct kvm_book3e_206_tlb_entry *gtlbe)
 216 {
 217         return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
 218                                    get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
 219 }
 220 
 221 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
 222 {
 223         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 224 
 225         if (vcpu->arch.pid != pid) {
 226                 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
 227                 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
 228         }
 229 }
 230 
 231 /* gtlbe must not be mapped by more than one host tlbe */
 232 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
 233                            struct kvm_book3e_206_tlb_entry *gtlbe)
 234 {
 235         struct vcpu_id_table *idt = vcpu_e500->idt;
 236         unsigned int pr, tid, ts;
 237         int pid;
 238         u32 val, eaddr;
 239         unsigned long flags;
 240 
 241         ts = get_tlb_ts(gtlbe);
 242         tid = get_tlb_tid(gtlbe);
 243 
 244         preempt_disable();
 245 
 246         /* One guest ID may be mapped to two shadow IDs */
 247         for (pr = 0; pr < 2; pr++) {
 248                 /*
 249                  * The shadow PID can have a valid mapping on at most one
 250                  * host CPU.  In the common case, it will be valid on this
 251                  * CPU, in which case we do a local invalidation of the
 252                  * specific address.
 253                  *
 254                  * If the shadow PID is not valid on the current host CPU,
 255                  * we invalidate the entire shadow PID.
 256                  */
 257                 pid = local_sid_lookup(&idt->id[ts][tid][pr]);
 258                 if (pid <= 0) {
 259                         kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
 260                         continue;
 261                 }
 262 
 263                 /*
 264                  * The guest is invalidating a 4K entry which is in a PID
 265                  * that has a valid shadow mapping on this host CPU.  We
 266                  * search host TLB to invalidate it's shadow TLB entry,
 267                  * similar to __tlbil_va except that we need to look in AS1.
 268                  */
 269                 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
 270                 eaddr = get_tlb_eaddr(gtlbe);
 271 
 272                 local_irq_save(flags);
 273 
 274                 mtspr(SPRN_MAS6, val);
 275                 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
 276                 val = mfspr(SPRN_MAS1);
 277                 if (val & MAS1_VALID) {
 278                         mtspr(SPRN_MAS1, val & ~MAS1_VALID);
 279                         asm volatile("tlbwe");
 280                 }
 281 
 282                 local_irq_restore(flags);
 283         }
 284 
 285         preempt_enable();
 286 }
 287 
 288 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
 289 {
 290         kvmppc_e500_id_table_reset_all(vcpu_e500);
 291 }
 292 
 293 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
 294 {
 295         /* Recalc shadow pid since MSR changes */
 296         kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
 297 }
 298 
 299 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
 300 {
 301         kvmppc_booke_vcpu_load(vcpu, cpu);
 302 
 303         /* Shadow PID may be expired on local core */
 304         kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
 305 }
 306 
 307 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
 308 {
 309 #ifdef CONFIG_SPE
 310         if (vcpu->arch.shadow_msr & MSR_SPE)
 311                 kvmppc_vcpu_disable_spe(vcpu);
 312 #endif
 313 
 314         kvmppc_booke_vcpu_put(vcpu);
 315 }
 316 
 317 int kvmppc_core_check_processor_compat(void)
 318 {
 319         int r;
 320 
 321         if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
 322                 r = 0;
 323         else
 324                 r = -ENOTSUPP;
 325 
 326         return r;
 327 }
 328 
 329 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
 330 {
 331         struct kvm_book3e_206_tlb_entry *tlbe;
 332 
 333         /* Insert large initial mapping for guest. */
 334         tlbe = get_entry(vcpu_e500, 1, 0);
 335         tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
 336         tlbe->mas2 = 0;
 337         tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
 338 
 339         /* 4K map for serial output. Used by kernel wrapper. */
 340         tlbe = get_entry(vcpu_e500, 1, 1);
 341         tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
 342         tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
 343         tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
 344 }
 345 
 346 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
 347 {
 348         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 349 
 350         kvmppc_e500_tlb_setup(vcpu_e500);
 351 
 352         /* Registers init */
 353         vcpu->arch.pvr = mfspr(SPRN_PVR);
 354         vcpu_e500->svr = mfspr(SPRN_SVR);
 355 
 356         vcpu->arch.cpu_type = KVM_CPU_E500V2;
 357 
 358         return 0;
 359 }
 360 
 361 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
 362                                       struct kvm_sregs *sregs)
 363 {
 364         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 365 
 366         sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
 367                                KVM_SREGS_E_PM;
 368         sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
 369 
 370         sregs->u.e.impl.fsl.features = 0;
 371         sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
 372         sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
 373         sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
 374 
 375         sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
 376         sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
 377         sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
 378         sregs->u.e.ivor_high[3] =
 379                 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
 380 
 381         kvmppc_get_sregs_ivor(vcpu, sregs);
 382         kvmppc_get_sregs_e500_tlb(vcpu, sregs);
 383         return 0;
 384 }
 385 
 386 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
 387                                       struct kvm_sregs *sregs)
 388 {
 389         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 390         int ret;
 391 
 392         if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
 393                 vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
 394                 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
 395                 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
 396         }
 397 
 398         ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
 399         if (ret < 0)
 400                 return ret;
 401 
 402         if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
 403                 return 0;
 404 
 405         if (sregs->u.e.features & KVM_SREGS_E_SPE) {
 406                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
 407                         sregs->u.e.ivor_high[0];
 408                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
 409                         sregs->u.e.ivor_high[1];
 410                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
 411                         sregs->u.e.ivor_high[2];
 412         }
 413 
 414         if (sregs->u.e.features & KVM_SREGS_E_PM) {
 415                 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
 416                         sregs->u.e.ivor_high[3];
 417         }
 418 
 419         return kvmppc_set_sregs_ivor(vcpu, sregs);
 420 }
 421 
 422 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
 423                                    union kvmppc_one_reg *val)
 424 {
 425         int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
 426         return r;
 427 }
 428 
 429 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
 430                                    union kvmppc_one_reg *val)
 431 {
 432         int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
 433         return r;
 434 }
 435 
 436 static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
 437                                                      unsigned int id)
 438 {
 439         struct kvmppc_vcpu_e500 *vcpu_e500;
 440         struct kvm_vcpu *vcpu;
 441         int err;
 442 
 443         BUILD_BUG_ON_MSG(offsetof(struct kvmppc_vcpu_e500, vcpu) != 0,
 444                 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
 445 
 446         vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 447         if (!vcpu_e500) {
 448                 err = -ENOMEM;
 449                 goto out;
 450         }
 451 
 452         vcpu = &vcpu_e500->vcpu;
 453         err = kvm_vcpu_init(vcpu, kvm, id);
 454         if (err)
 455                 goto free_vcpu;
 456 
 457         if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) {
 458                 err = -ENOMEM;
 459                 goto uninit_vcpu;
 460         }
 461 
 462         err = kvmppc_e500_tlb_init(vcpu_e500);
 463         if (err)
 464                 goto uninit_id;
 465 
 466         vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
 467         if (!vcpu->arch.shared) {
 468                 err = -ENOMEM;
 469                 goto uninit_tlb;
 470         }
 471 
 472         return vcpu;
 473 
 474 uninit_tlb:
 475         kvmppc_e500_tlb_uninit(vcpu_e500);
 476 uninit_id:
 477         kvmppc_e500_id_table_free(vcpu_e500);
 478 uninit_vcpu:
 479         kvm_vcpu_uninit(vcpu);
 480 free_vcpu:
 481         kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
 482 out:
 483         return ERR_PTR(err);
 484 }
 485 
 486 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
 487 {
 488         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 489 
 490         free_page((unsigned long)vcpu->arch.shared);
 491         kvmppc_e500_tlb_uninit(vcpu_e500);
 492         kvmppc_e500_id_table_free(vcpu_e500);
 493         kvm_vcpu_uninit(vcpu);
 494         kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
 495 }
 496 
 497 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
 498 {
 499         return 0;
 500 }
 501 
 502 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
 503 {
 504 }
 505 
 506 static struct kvmppc_ops kvm_ops_e500 = {
 507         .get_sregs = kvmppc_core_get_sregs_e500,
 508         .set_sregs = kvmppc_core_set_sregs_e500,
 509         .get_one_reg = kvmppc_get_one_reg_e500,
 510         .set_one_reg = kvmppc_set_one_reg_e500,
 511         .vcpu_load   = kvmppc_core_vcpu_load_e500,
 512         .vcpu_put    = kvmppc_core_vcpu_put_e500,
 513         .vcpu_create = kvmppc_core_vcpu_create_e500,
 514         .vcpu_free   = kvmppc_core_vcpu_free_e500,
 515         .mmu_destroy  = kvmppc_mmu_destroy_e500,
 516         .init_vm = kvmppc_core_init_vm_e500,
 517         .destroy_vm = kvmppc_core_destroy_vm_e500,
 518         .emulate_op = kvmppc_core_emulate_op_e500,
 519         .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
 520         .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
 521 };
 522 
 523 static int __init kvmppc_e500_init(void)
 524 {
 525         int r, i;
 526         unsigned long ivor[3];
 527         /* Process remaining handlers above the generic first 16 */
 528         unsigned long *handler = &kvmppc_booke_handler_addr[16];
 529         unsigned long handler_len;
 530         unsigned long max_ivor = 0;
 531 
 532         r = kvmppc_core_check_processor_compat();
 533         if (r)
 534                 goto err_out;
 535 
 536         r = kvmppc_booke_init();
 537         if (r)
 538                 goto err_out;
 539 
 540         /* copy extra E500 exception handlers */
 541         ivor[0] = mfspr(SPRN_IVOR32);
 542         ivor[1] = mfspr(SPRN_IVOR33);
 543         ivor[2] = mfspr(SPRN_IVOR34);
 544         for (i = 0; i < 3; i++) {
 545                 if (ivor[i] > ivor[max_ivor])
 546                         max_ivor = i;
 547 
 548                 handler_len = handler[i + 1] - handler[i];
 549                 memcpy((void *)kvmppc_booke_handlers + ivor[i],
 550                        (void *)handler[i], handler_len);
 551         }
 552         handler_len = handler[max_ivor + 1] - handler[max_ivor];
 553         flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
 554                            ivor[max_ivor] + handler_len);
 555 
 556         r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
 557         if (r)
 558                 goto err_out;
 559         kvm_ops_e500.owner = THIS_MODULE;
 560         kvmppc_pr_ops = &kvm_ops_e500;
 561 
 562 err_out:
 563         return r;
 564 }
 565 
 566 static void __exit kvmppc_e500_exit(void)
 567 {
 568         kvmppc_pr_ops = NULL;
 569         kvmppc_booke_exit();
 570 }
 571 
 572 module_init(kvmppc_e500_init);
 573 module_exit(kvmppc_e500_exit);
 574 MODULE_ALIAS_MISCDEV(KVM_MINOR);
 575 MODULE_ALIAS("devname:kvm");

/* [<][>][^][v][top][bottom][index][help] */