root/drivers/net/ethernet/intel/igb/igb_ethtool.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. igb_get_link_ksettings
  2. igb_set_link_ksettings
  3. igb_get_link
  4. igb_get_pauseparam
  5. igb_set_pauseparam
  6. igb_get_msglevel
  7. igb_set_msglevel
  8. igb_get_regs_len
  9. igb_get_regs
  10. igb_get_eeprom_len
  11. igb_get_eeprom
  12. igb_set_eeprom
  13. igb_get_drvinfo
  14. igb_get_ringparam
  15. igb_set_ringparam
  16. reg_pattern_test
  17. reg_set_and_check
  18. igb_reg_test
  19. igb_eeprom_test
  20. igb_test_intr
  21. igb_intr_test
  22. igb_free_desc_rings
  23. igb_setup_desc_rings
  24. igb_phy_disable_receiver
  25. igb_integrated_phy_loopback
  26. igb_set_phy_loopback
  27. igb_setup_loopback_test
  28. igb_loopback_cleanup
  29. igb_create_lbtest_frame
  30. igb_check_lbtest_frame
  31. igb_clean_test_rings
  32. igb_run_loopback_test
  33. igb_loopback_test
  34. igb_link_test
  35. igb_diag_test
  36. igb_get_wol
  37. igb_set_wol
  38. igb_set_phys_id
  39. igb_set_coalesce
  40. igb_get_coalesce
  41. igb_nway_reset
  42. igb_get_sset_count
  43. igb_get_ethtool_stats
  44. igb_get_strings
  45. igb_get_ts_info
  46. igb_get_ethtool_nfc_entry
  47. igb_get_ethtool_nfc_all
  48. igb_get_rss_hash_opts
  49. igb_get_rxnfc
  50. igb_set_rss_hash_opt
  51. igb_rxnfc_write_etype_filter
  52. igb_rxnfc_write_vlan_prio_filter
  53. igb_add_filter
  54. igb_clear_etype_filter_regs
  55. igb_clear_vlan_prio_filter
  56. igb_erase_filter
  57. igb_update_ethtool_nfc_entry
  58. igb_add_ethtool_nfc_entry
  59. igb_del_ethtool_nfc_entry
  60. igb_set_rxnfc
  61. igb_get_eee
  62. igb_set_eee
  63. igb_get_module_info
  64. igb_get_module_eeprom
  65. igb_ethtool_begin
  66. igb_ethtool_complete
  67. igb_get_rxfh_indir_size
  68. igb_get_rxfh
  69. igb_write_rss_indir_tbl
  70. igb_set_rxfh
  71. igb_max_channels
  72. igb_get_channels
  73. igb_set_channels
  74. igb_get_priv_flags
  75. igb_set_priv_flags
  76. igb_set_ethtool_ops

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
   3 
   4 /* ethtool support for igb */
   5 
   6 #include <linux/vmalloc.h>
   7 #include <linux/netdevice.h>
   8 #include <linux/pci.h>
   9 #include <linux/delay.h>
  10 #include <linux/interrupt.h>
  11 #include <linux/if_ether.h>
  12 #include <linux/ethtool.h>
  13 #include <linux/sched.h>
  14 #include <linux/slab.h>
  15 #include <linux/pm_runtime.h>
  16 #include <linux/highmem.h>
  17 #include <linux/mdio.h>
  18 
  19 #include "igb.h"
  20 
  21 struct igb_stats {
  22         char stat_string[ETH_GSTRING_LEN];
  23         int sizeof_stat;
  24         int stat_offset;
  25 };
  26 
  27 #define IGB_STAT(_name, _stat) { \
  28         .stat_string = _name, \
  29         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  30         .stat_offset = offsetof(struct igb_adapter, _stat) \
  31 }
  32 static const struct igb_stats igb_gstrings_stats[] = {
  33         IGB_STAT("rx_packets", stats.gprc),
  34         IGB_STAT("tx_packets", stats.gptc),
  35         IGB_STAT("rx_bytes", stats.gorc),
  36         IGB_STAT("tx_bytes", stats.gotc),
  37         IGB_STAT("rx_broadcast", stats.bprc),
  38         IGB_STAT("tx_broadcast", stats.bptc),
  39         IGB_STAT("rx_multicast", stats.mprc),
  40         IGB_STAT("tx_multicast", stats.mptc),
  41         IGB_STAT("multicast", stats.mprc),
  42         IGB_STAT("collisions", stats.colc),
  43         IGB_STAT("rx_crc_errors", stats.crcerrs),
  44         IGB_STAT("rx_no_buffer_count", stats.rnbc),
  45         IGB_STAT("rx_missed_errors", stats.mpc),
  46         IGB_STAT("tx_aborted_errors", stats.ecol),
  47         IGB_STAT("tx_carrier_errors", stats.tncrs),
  48         IGB_STAT("tx_window_errors", stats.latecol),
  49         IGB_STAT("tx_abort_late_coll", stats.latecol),
  50         IGB_STAT("tx_deferred_ok", stats.dc),
  51         IGB_STAT("tx_single_coll_ok", stats.scc),
  52         IGB_STAT("tx_multi_coll_ok", stats.mcc),
  53         IGB_STAT("tx_timeout_count", tx_timeout_count),
  54         IGB_STAT("rx_long_length_errors", stats.roc),
  55         IGB_STAT("rx_short_length_errors", stats.ruc),
  56         IGB_STAT("rx_align_errors", stats.algnerrc),
  57         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  58         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  59         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  60         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  61         IGB_STAT("tx_flow_control_xon", stats.xontxc),
  62         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  63         IGB_STAT("rx_long_byte_count", stats.gorc),
  64         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  65         IGB_STAT("tx_smbus", stats.mgptc),
  66         IGB_STAT("rx_smbus", stats.mgprc),
  67         IGB_STAT("dropped_smbus", stats.mgpdc),
  68         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  69         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  70         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  71         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  72         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  73         IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  74         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  75 };
  76 
  77 #define IGB_NETDEV_STAT(_net_stat) { \
  78         .stat_string = __stringify(_net_stat), \
  79         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  80         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  81 }
  82 static const struct igb_stats igb_gstrings_net_stats[] = {
  83         IGB_NETDEV_STAT(rx_errors),
  84         IGB_NETDEV_STAT(tx_errors),
  85         IGB_NETDEV_STAT(tx_dropped),
  86         IGB_NETDEV_STAT(rx_length_errors),
  87         IGB_NETDEV_STAT(rx_over_errors),
  88         IGB_NETDEV_STAT(rx_frame_errors),
  89         IGB_NETDEV_STAT(rx_fifo_errors),
  90         IGB_NETDEV_STAT(tx_fifo_errors),
  91         IGB_NETDEV_STAT(tx_heartbeat_errors)
  92 };
  93 
  94 #define IGB_GLOBAL_STATS_LEN    \
  95         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  96 #define IGB_NETDEV_STATS_LEN    \
  97         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  98 #define IGB_RX_QUEUE_STATS_LEN \
  99         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 100 
 101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 102 
 103 #define IGB_QUEUE_STATS_LEN \
 104         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 105           IGB_RX_QUEUE_STATS_LEN) + \
 106          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 107           IGB_TX_QUEUE_STATS_LEN))
 108 #define IGB_STATS_LEN \
 109         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 110 
 111 enum igb_diagnostics_results {
 112         TEST_REG = 0,
 113         TEST_EEP,
 114         TEST_IRQ,
 115         TEST_LOOP,
 116         TEST_LINK
 117 };
 118 
 119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 120         [TEST_REG]  = "Register test  (offline)",
 121         [TEST_EEP]  = "Eeprom test    (offline)",
 122         [TEST_IRQ]  = "Interrupt test (offline)",
 123         [TEST_LOOP] = "Loopback test  (offline)",
 124         [TEST_LINK] = "Link test   (on/offline)"
 125 };
 126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 127 
 128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
 129 #define IGB_PRIV_FLAGS_LEGACY_RX        BIT(0)
 130         "legacy-rx",
 131 };
 132 
 133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
 134 
 135 static int igb_get_link_ksettings(struct net_device *netdev,
 136                                   struct ethtool_link_ksettings *cmd)
 137 {
 138         struct igb_adapter *adapter = netdev_priv(netdev);
 139         struct e1000_hw *hw = &adapter->hw;
 140         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 141         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 142         u32 status;
 143         u32 speed;
 144         u32 supported, advertising;
 145 
 146         status = rd32(E1000_STATUS);
 147         if (hw->phy.media_type == e1000_media_type_copper) {
 148 
 149                 supported = (SUPPORTED_10baseT_Half |
 150                              SUPPORTED_10baseT_Full |
 151                              SUPPORTED_100baseT_Half |
 152                              SUPPORTED_100baseT_Full |
 153                              SUPPORTED_1000baseT_Full|
 154                              SUPPORTED_Autoneg |
 155                              SUPPORTED_TP |
 156                              SUPPORTED_Pause);
 157                 advertising = ADVERTISED_TP;
 158 
 159                 if (hw->mac.autoneg == 1) {
 160                         advertising |= ADVERTISED_Autoneg;
 161                         /* the e1000 autoneg seems to match ethtool nicely */
 162                         advertising |= hw->phy.autoneg_advertised;
 163                 }
 164 
 165                 cmd->base.port = PORT_TP;
 166                 cmd->base.phy_address = hw->phy.addr;
 167         } else {
 168                 supported = (SUPPORTED_FIBRE |
 169                              SUPPORTED_1000baseKX_Full |
 170                              SUPPORTED_Autoneg |
 171                              SUPPORTED_Pause);
 172                 advertising = (ADVERTISED_FIBRE |
 173                                ADVERTISED_1000baseKX_Full);
 174                 if (hw->mac.type == e1000_i354) {
 175                         if ((hw->device_id ==
 176                              E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 177                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
 178                                 supported |= SUPPORTED_2500baseX_Full;
 179                                 supported &= ~SUPPORTED_1000baseKX_Full;
 180                                 advertising |= ADVERTISED_2500baseX_Full;
 181                                 advertising &= ~ADVERTISED_1000baseKX_Full;
 182                         }
 183                 }
 184                 if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 185                         supported |= SUPPORTED_100baseT_Full;
 186                         advertising |= ADVERTISED_100baseT_Full;
 187                 }
 188                 if (hw->mac.autoneg == 1)
 189                         advertising |= ADVERTISED_Autoneg;
 190 
 191                 cmd->base.port = PORT_FIBRE;
 192         }
 193         if (hw->mac.autoneg != 1)
 194                 advertising &= ~(ADVERTISED_Pause |
 195                                  ADVERTISED_Asym_Pause);
 196 
 197         switch (hw->fc.requested_mode) {
 198         case e1000_fc_full:
 199                 advertising |= ADVERTISED_Pause;
 200                 break;
 201         case e1000_fc_rx_pause:
 202                 advertising |= (ADVERTISED_Pause |
 203                                 ADVERTISED_Asym_Pause);
 204                 break;
 205         case e1000_fc_tx_pause:
 206                 advertising |=  ADVERTISED_Asym_Pause;
 207                 break;
 208         default:
 209                 advertising &= ~(ADVERTISED_Pause |
 210                                  ADVERTISED_Asym_Pause);
 211         }
 212         if (status & E1000_STATUS_LU) {
 213                 if ((status & E1000_STATUS_2P5_SKU) &&
 214                     !(status & E1000_STATUS_2P5_SKU_OVER)) {
 215                         speed = SPEED_2500;
 216                 } else if (status & E1000_STATUS_SPEED_1000) {
 217                         speed = SPEED_1000;
 218                 } else if (status & E1000_STATUS_SPEED_100) {
 219                         speed = SPEED_100;
 220                 } else {
 221                         speed = SPEED_10;
 222                 }
 223                 if ((status & E1000_STATUS_FD) ||
 224                     hw->phy.media_type != e1000_media_type_copper)
 225                         cmd->base.duplex = DUPLEX_FULL;
 226                 else
 227                         cmd->base.duplex = DUPLEX_HALF;
 228         } else {
 229                 speed = SPEED_UNKNOWN;
 230                 cmd->base.duplex = DUPLEX_UNKNOWN;
 231         }
 232         cmd->base.speed = speed;
 233         if ((hw->phy.media_type == e1000_media_type_fiber) ||
 234             hw->mac.autoneg)
 235                 cmd->base.autoneg = AUTONEG_ENABLE;
 236         else
 237                 cmd->base.autoneg = AUTONEG_DISABLE;
 238 
 239         /* MDI-X => 2; MDI =>1; Invalid =>0 */
 240         if (hw->phy.media_type == e1000_media_type_copper)
 241                 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 242                                                       ETH_TP_MDI;
 243         else
 244                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 245 
 246         if (hw->phy.mdix == AUTO_ALL_MODES)
 247                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 248         else
 249                 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 250 
 251         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 252                                                 supported);
 253         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 254                                                 advertising);
 255 
 256         return 0;
 257 }
 258 
 259 static int igb_set_link_ksettings(struct net_device *netdev,
 260                                   const struct ethtool_link_ksettings *cmd)
 261 {
 262         struct igb_adapter *adapter = netdev_priv(netdev);
 263         struct e1000_hw *hw = &adapter->hw;
 264         u32 advertising;
 265 
 266         /* When SoL/IDER sessions are active, autoneg/speed/duplex
 267          * cannot be changed
 268          */
 269         if (igb_check_reset_block(hw)) {
 270                 dev_err(&adapter->pdev->dev,
 271                         "Cannot change link characteristics when SoL/IDER is active.\n");
 272                 return -EINVAL;
 273         }
 274 
 275         /* MDI setting is only allowed when autoneg enabled because
 276          * some hardware doesn't allow MDI setting when speed or
 277          * duplex is forced.
 278          */
 279         if (cmd->base.eth_tp_mdix_ctrl) {
 280                 if (hw->phy.media_type != e1000_media_type_copper)
 281                         return -EOPNOTSUPP;
 282 
 283                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 284                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
 285                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 286                         return -EINVAL;
 287                 }
 288         }
 289 
 290         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 291                 usleep_range(1000, 2000);
 292 
 293         ethtool_convert_link_mode_to_legacy_u32(&advertising,
 294                                                 cmd->link_modes.advertising);
 295 
 296         if (cmd->base.autoneg == AUTONEG_ENABLE) {
 297                 hw->mac.autoneg = 1;
 298                 if (hw->phy.media_type == e1000_media_type_fiber) {
 299                         hw->phy.autoneg_advertised = advertising |
 300                                                      ADVERTISED_FIBRE |
 301                                                      ADVERTISED_Autoneg;
 302                         switch (adapter->link_speed) {
 303                         case SPEED_2500:
 304                                 hw->phy.autoneg_advertised =
 305                                         ADVERTISED_2500baseX_Full;
 306                                 break;
 307                         case SPEED_1000:
 308                                 hw->phy.autoneg_advertised =
 309                                         ADVERTISED_1000baseT_Full;
 310                                 break;
 311                         case SPEED_100:
 312                                 hw->phy.autoneg_advertised =
 313                                         ADVERTISED_100baseT_Full;
 314                                 break;
 315                         default:
 316                                 break;
 317                         }
 318                 } else {
 319                         hw->phy.autoneg_advertised = advertising |
 320                                                      ADVERTISED_TP |
 321                                                      ADVERTISED_Autoneg;
 322                 }
 323                 advertising = hw->phy.autoneg_advertised;
 324                 if (adapter->fc_autoneg)
 325                         hw->fc.requested_mode = e1000_fc_default;
 326         } else {
 327                 u32 speed = cmd->base.speed;
 328                 /* calling this overrides forced MDI setting */
 329                 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 330                         clear_bit(__IGB_RESETTING, &adapter->state);
 331                         return -EINVAL;
 332                 }
 333         }
 334 
 335         /* MDI-X => 2; MDI => 1; Auto => 3 */
 336         if (cmd->base.eth_tp_mdix_ctrl) {
 337                 /* fix up the value for auto (3 => 0) as zero is mapped
 338                  * internally to auto
 339                  */
 340                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 341                         hw->phy.mdix = AUTO_ALL_MODES;
 342                 else
 343                         hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 344         }
 345 
 346         /* reset the link */
 347         if (netif_running(adapter->netdev)) {
 348                 igb_down(adapter);
 349                 igb_up(adapter);
 350         } else
 351                 igb_reset(adapter);
 352 
 353         clear_bit(__IGB_RESETTING, &adapter->state);
 354         return 0;
 355 }
 356 
 357 static u32 igb_get_link(struct net_device *netdev)
 358 {
 359         struct igb_adapter *adapter = netdev_priv(netdev);
 360         struct e1000_mac_info *mac = &adapter->hw.mac;
 361 
 362         /* If the link is not reported up to netdev, interrupts are disabled,
 363          * and so the physical link state may have changed since we last
 364          * looked. Set get_link_status to make sure that the true link
 365          * state is interrogated, rather than pulling a cached and possibly
 366          * stale link state from the driver.
 367          */
 368         if (!netif_carrier_ok(netdev))
 369                 mac->get_link_status = 1;
 370 
 371         return igb_has_link(adapter);
 372 }
 373 
 374 static void igb_get_pauseparam(struct net_device *netdev,
 375                                struct ethtool_pauseparam *pause)
 376 {
 377         struct igb_adapter *adapter = netdev_priv(netdev);
 378         struct e1000_hw *hw = &adapter->hw;
 379 
 380         pause->autoneg =
 381                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 382 
 383         if (hw->fc.current_mode == e1000_fc_rx_pause)
 384                 pause->rx_pause = 1;
 385         else if (hw->fc.current_mode == e1000_fc_tx_pause)
 386                 pause->tx_pause = 1;
 387         else if (hw->fc.current_mode == e1000_fc_full) {
 388                 pause->rx_pause = 1;
 389                 pause->tx_pause = 1;
 390         }
 391 }
 392 
 393 static int igb_set_pauseparam(struct net_device *netdev,
 394                               struct ethtool_pauseparam *pause)
 395 {
 396         struct igb_adapter *adapter = netdev_priv(netdev);
 397         struct e1000_hw *hw = &adapter->hw;
 398         int retval = 0;
 399 
 400         /* 100basefx does not support setting link flow control */
 401         if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 402                 return -EINVAL;
 403 
 404         adapter->fc_autoneg = pause->autoneg;
 405 
 406         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 407                 usleep_range(1000, 2000);
 408 
 409         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 410                 hw->fc.requested_mode = e1000_fc_default;
 411                 if (netif_running(adapter->netdev)) {
 412                         igb_down(adapter);
 413                         igb_up(adapter);
 414                 } else {
 415                         igb_reset(adapter);
 416                 }
 417         } else {
 418                 if (pause->rx_pause && pause->tx_pause)
 419                         hw->fc.requested_mode = e1000_fc_full;
 420                 else if (pause->rx_pause && !pause->tx_pause)
 421                         hw->fc.requested_mode = e1000_fc_rx_pause;
 422                 else if (!pause->rx_pause && pause->tx_pause)
 423                         hw->fc.requested_mode = e1000_fc_tx_pause;
 424                 else if (!pause->rx_pause && !pause->tx_pause)
 425                         hw->fc.requested_mode = e1000_fc_none;
 426 
 427                 hw->fc.current_mode = hw->fc.requested_mode;
 428 
 429                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 430                           igb_force_mac_fc(hw) : igb_setup_link(hw));
 431         }
 432 
 433         clear_bit(__IGB_RESETTING, &adapter->state);
 434         return retval;
 435 }
 436 
 437 static u32 igb_get_msglevel(struct net_device *netdev)
 438 {
 439         struct igb_adapter *adapter = netdev_priv(netdev);
 440         return adapter->msg_enable;
 441 }
 442 
 443 static void igb_set_msglevel(struct net_device *netdev, u32 data)
 444 {
 445         struct igb_adapter *adapter = netdev_priv(netdev);
 446         adapter->msg_enable = data;
 447 }
 448 
 449 static int igb_get_regs_len(struct net_device *netdev)
 450 {
 451 #define IGB_REGS_LEN 740
 452         return IGB_REGS_LEN * sizeof(u32);
 453 }
 454 
 455 static void igb_get_regs(struct net_device *netdev,
 456                          struct ethtool_regs *regs, void *p)
 457 {
 458         struct igb_adapter *adapter = netdev_priv(netdev);
 459         struct e1000_hw *hw = &adapter->hw;
 460         u32 *regs_buff = p;
 461         u8 i;
 462 
 463         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 464 
 465         regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
 466 
 467         /* General Registers */
 468         regs_buff[0] = rd32(E1000_CTRL);
 469         regs_buff[1] = rd32(E1000_STATUS);
 470         regs_buff[2] = rd32(E1000_CTRL_EXT);
 471         regs_buff[3] = rd32(E1000_MDIC);
 472         regs_buff[4] = rd32(E1000_SCTL);
 473         regs_buff[5] = rd32(E1000_CONNSW);
 474         regs_buff[6] = rd32(E1000_VET);
 475         regs_buff[7] = rd32(E1000_LEDCTL);
 476         regs_buff[8] = rd32(E1000_PBA);
 477         regs_buff[9] = rd32(E1000_PBS);
 478         regs_buff[10] = rd32(E1000_FRTIMER);
 479         regs_buff[11] = rd32(E1000_TCPTIMER);
 480 
 481         /* NVM Register */
 482         regs_buff[12] = rd32(E1000_EECD);
 483 
 484         /* Interrupt */
 485         /* Reading EICS for EICR because they read the
 486          * same but EICS does not clear on read
 487          */
 488         regs_buff[13] = rd32(E1000_EICS);
 489         regs_buff[14] = rd32(E1000_EICS);
 490         regs_buff[15] = rd32(E1000_EIMS);
 491         regs_buff[16] = rd32(E1000_EIMC);
 492         regs_buff[17] = rd32(E1000_EIAC);
 493         regs_buff[18] = rd32(E1000_EIAM);
 494         /* Reading ICS for ICR because they read the
 495          * same but ICS does not clear on read
 496          */
 497         regs_buff[19] = rd32(E1000_ICS);
 498         regs_buff[20] = rd32(E1000_ICS);
 499         regs_buff[21] = rd32(E1000_IMS);
 500         regs_buff[22] = rd32(E1000_IMC);
 501         regs_buff[23] = rd32(E1000_IAC);
 502         regs_buff[24] = rd32(E1000_IAM);
 503         regs_buff[25] = rd32(E1000_IMIRVP);
 504 
 505         /* Flow Control */
 506         regs_buff[26] = rd32(E1000_FCAL);
 507         regs_buff[27] = rd32(E1000_FCAH);
 508         regs_buff[28] = rd32(E1000_FCTTV);
 509         regs_buff[29] = rd32(E1000_FCRTL);
 510         regs_buff[30] = rd32(E1000_FCRTH);
 511         regs_buff[31] = rd32(E1000_FCRTV);
 512 
 513         /* Receive */
 514         regs_buff[32] = rd32(E1000_RCTL);
 515         regs_buff[33] = rd32(E1000_RXCSUM);
 516         regs_buff[34] = rd32(E1000_RLPML);
 517         regs_buff[35] = rd32(E1000_RFCTL);
 518         regs_buff[36] = rd32(E1000_MRQC);
 519         regs_buff[37] = rd32(E1000_VT_CTL);
 520 
 521         /* Transmit */
 522         regs_buff[38] = rd32(E1000_TCTL);
 523         regs_buff[39] = rd32(E1000_TCTL_EXT);
 524         regs_buff[40] = rd32(E1000_TIPG);
 525         regs_buff[41] = rd32(E1000_DTXCTL);
 526 
 527         /* Wake Up */
 528         regs_buff[42] = rd32(E1000_WUC);
 529         regs_buff[43] = rd32(E1000_WUFC);
 530         regs_buff[44] = rd32(E1000_WUS);
 531         regs_buff[45] = rd32(E1000_IPAV);
 532         regs_buff[46] = rd32(E1000_WUPL);
 533 
 534         /* MAC */
 535         regs_buff[47] = rd32(E1000_PCS_CFG0);
 536         regs_buff[48] = rd32(E1000_PCS_LCTL);
 537         regs_buff[49] = rd32(E1000_PCS_LSTAT);
 538         regs_buff[50] = rd32(E1000_PCS_ANADV);
 539         regs_buff[51] = rd32(E1000_PCS_LPAB);
 540         regs_buff[52] = rd32(E1000_PCS_NPTX);
 541         regs_buff[53] = rd32(E1000_PCS_LPABNP);
 542 
 543         /* Statistics */
 544         regs_buff[54] = adapter->stats.crcerrs;
 545         regs_buff[55] = adapter->stats.algnerrc;
 546         regs_buff[56] = adapter->stats.symerrs;
 547         regs_buff[57] = adapter->stats.rxerrc;
 548         regs_buff[58] = adapter->stats.mpc;
 549         regs_buff[59] = adapter->stats.scc;
 550         regs_buff[60] = adapter->stats.ecol;
 551         regs_buff[61] = adapter->stats.mcc;
 552         regs_buff[62] = adapter->stats.latecol;
 553         regs_buff[63] = adapter->stats.colc;
 554         regs_buff[64] = adapter->stats.dc;
 555         regs_buff[65] = adapter->stats.tncrs;
 556         regs_buff[66] = adapter->stats.sec;
 557         regs_buff[67] = adapter->stats.htdpmc;
 558         regs_buff[68] = adapter->stats.rlec;
 559         regs_buff[69] = adapter->stats.xonrxc;
 560         regs_buff[70] = adapter->stats.xontxc;
 561         regs_buff[71] = adapter->stats.xoffrxc;
 562         regs_buff[72] = adapter->stats.xofftxc;
 563         regs_buff[73] = adapter->stats.fcruc;
 564         regs_buff[74] = adapter->stats.prc64;
 565         regs_buff[75] = adapter->stats.prc127;
 566         regs_buff[76] = adapter->stats.prc255;
 567         regs_buff[77] = adapter->stats.prc511;
 568         regs_buff[78] = adapter->stats.prc1023;
 569         regs_buff[79] = adapter->stats.prc1522;
 570         regs_buff[80] = adapter->stats.gprc;
 571         regs_buff[81] = adapter->stats.bprc;
 572         regs_buff[82] = adapter->stats.mprc;
 573         regs_buff[83] = adapter->stats.gptc;
 574         regs_buff[84] = adapter->stats.gorc;
 575         regs_buff[86] = adapter->stats.gotc;
 576         regs_buff[88] = adapter->stats.rnbc;
 577         regs_buff[89] = adapter->stats.ruc;
 578         regs_buff[90] = adapter->stats.rfc;
 579         regs_buff[91] = adapter->stats.roc;
 580         regs_buff[92] = adapter->stats.rjc;
 581         regs_buff[93] = adapter->stats.mgprc;
 582         regs_buff[94] = adapter->stats.mgpdc;
 583         regs_buff[95] = adapter->stats.mgptc;
 584         regs_buff[96] = adapter->stats.tor;
 585         regs_buff[98] = adapter->stats.tot;
 586         regs_buff[100] = adapter->stats.tpr;
 587         regs_buff[101] = adapter->stats.tpt;
 588         regs_buff[102] = adapter->stats.ptc64;
 589         regs_buff[103] = adapter->stats.ptc127;
 590         regs_buff[104] = adapter->stats.ptc255;
 591         regs_buff[105] = adapter->stats.ptc511;
 592         regs_buff[106] = adapter->stats.ptc1023;
 593         regs_buff[107] = adapter->stats.ptc1522;
 594         regs_buff[108] = adapter->stats.mptc;
 595         regs_buff[109] = adapter->stats.bptc;
 596         regs_buff[110] = adapter->stats.tsctc;
 597         regs_buff[111] = adapter->stats.iac;
 598         regs_buff[112] = adapter->stats.rpthc;
 599         regs_buff[113] = adapter->stats.hgptc;
 600         regs_buff[114] = adapter->stats.hgorc;
 601         regs_buff[116] = adapter->stats.hgotc;
 602         regs_buff[118] = adapter->stats.lenerrs;
 603         regs_buff[119] = adapter->stats.scvpc;
 604         regs_buff[120] = adapter->stats.hrmpc;
 605 
 606         for (i = 0; i < 4; i++)
 607                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 608         for (i = 0; i < 4; i++)
 609                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 610         for (i = 0; i < 4; i++)
 611                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 612         for (i = 0; i < 4; i++)
 613                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 614         for (i = 0; i < 4; i++)
 615                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 616         for (i = 0; i < 4; i++)
 617                 regs_buff[141 + i] = rd32(E1000_RDH(i));
 618         for (i = 0; i < 4; i++)
 619                 regs_buff[145 + i] = rd32(E1000_RDT(i));
 620         for (i = 0; i < 4; i++)
 621                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 622 
 623         for (i = 0; i < 10; i++)
 624                 regs_buff[153 + i] = rd32(E1000_EITR(i));
 625         for (i = 0; i < 8; i++)
 626                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
 627         for (i = 0; i < 8; i++)
 628                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 629         for (i = 0; i < 16; i++)
 630                 regs_buff[179 + i] = rd32(E1000_RAL(i));
 631         for (i = 0; i < 16; i++)
 632                 regs_buff[195 + i] = rd32(E1000_RAH(i));
 633 
 634         for (i = 0; i < 4; i++)
 635                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 636         for (i = 0; i < 4; i++)
 637                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 638         for (i = 0; i < 4; i++)
 639                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 640         for (i = 0; i < 4; i++)
 641                 regs_buff[223 + i] = rd32(E1000_TDH(i));
 642         for (i = 0; i < 4; i++)
 643                 regs_buff[227 + i] = rd32(E1000_TDT(i));
 644         for (i = 0; i < 4; i++)
 645                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 646         for (i = 0; i < 4; i++)
 647                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 648         for (i = 0; i < 4; i++)
 649                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 650         for (i = 0; i < 4; i++)
 651                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 652 
 653         for (i = 0; i < 4; i++)
 654                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 655         for (i = 0; i < 4; i++)
 656                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 657         for (i = 0; i < 32; i++)
 658                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 659         for (i = 0; i < 128; i++)
 660                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 661         for (i = 0; i < 128; i++)
 662                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 663         for (i = 0; i < 4; i++)
 664                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 665 
 666         regs_buff[547] = rd32(E1000_TDFH);
 667         regs_buff[548] = rd32(E1000_TDFT);
 668         regs_buff[549] = rd32(E1000_TDFHS);
 669         regs_buff[550] = rd32(E1000_TDFPC);
 670 
 671         if (hw->mac.type > e1000_82580) {
 672                 regs_buff[551] = adapter->stats.o2bgptc;
 673                 regs_buff[552] = adapter->stats.b2ospc;
 674                 regs_buff[553] = adapter->stats.o2bspc;
 675                 regs_buff[554] = adapter->stats.b2ogprc;
 676         }
 677 
 678         if (hw->mac.type == e1000_82576) {
 679                 for (i = 0; i < 12; i++)
 680                         regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 681                 for (i = 0; i < 4; i++)
 682                         regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 683                 for (i = 0; i < 12; i++)
 684                         regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 685                 for (i = 0; i < 12; i++)
 686                         regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 687                 for (i = 0; i < 12; i++)
 688                         regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 689                 for (i = 0; i < 12; i++)
 690                         regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 691                 for (i = 0; i < 12; i++)
 692                         regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 693                 for (i = 0; i < 12; i++)
 694                         regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 695 
 696                 for (i = 0; i < 12; i++)
 697                         regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 698                 for (i = 0; i < 12; i++)
 699                         regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 700                 for (i = 0; i < 12; i++)
 701                         regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 702                 for (i = 0; i < 12; i++)
 703                         regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 704                 for (i = 0; i < 12; i++)
 705                         regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 706                 for (i = 0; i < 12; i++)
 707                         regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 708                 for (i = 0; i < 12; i++)
 709                         regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 710                 for (i = 0; i < 12; i++)
 711                         regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 712         }
 713 
 714         if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
 715                 regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
 716 }
 717 
 718 static int igb_get_eeprom_len(struct net_device *netdev)
 719 {
 720         struct igb_adapter *adapter = netdev_priv(netdev);
 721         return adapter->hw.nvm.word_size * 2;
 722 }
 723 
 724 static int igb_get_eeprom(struct net_device *netdev,
 725                           struct ethtool_eeprom *eeprom, u8 *bytes)
 726 {
 727         struct igb_adapter *adapter = netdev_priv(netdev);
 728         struct e1000_hw *hw = &adapter->hw;
 729         u16 *eeprom_buff;
 730         int first_word, last_word;
 731         int ret_val = 0;
 732         u16 i;
 733 
 734         if (eeprom->len == 0)
 735                 return -EINVAL;
 736 
 737         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 738 
 739         first_word = eeprom->offset >> 1;
 740         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 741 
 742         eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 743                                     GFP_KERNEL);
 744         if (!eeprom_buff)
 745                 return -ENOMEM;
 746 
 747         if (hw->nvm.type == e1000_nvm_eeprom_spi)
 748                 ret_val = hw->nvm.ops.read(hw, first_word,
 749                                            last_word - first_word + 1,
 750                                            eeprom_buff);
 751         else {
 752                 for (i = 0; i < last_word - first_word + 1; i++) {
 753                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 754                                                    &eeprom_buff[i]);
 755                         if (ret_val)
 756                                 break;
 757                 }
 758         }
 759 
 760         /* Device's eeprom is always little-endian, word addressable */
 761         for (i = 0; i < last_word - first_word + 1; i++)
 762                 le16_to_cpus(&eeprom_buff[i]);
 763 
 764         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 765                         eeprom->len);
 766         kfree(eeprom_buff);
 767 
 768         return ret_val;
 769 }
 770 
 771 static int igb_set_eeprom(struct net_device *netdev,
 772                           struct ethtool_eeprom *eeprom, u8 *bytes)
 773 {
 774         struct igb_adapter *adapter = netdev_priv(netdev);
 775         struct e1000_hw *hw = &adapter->hw;
 776         u16 *eeprom_buff;
 777         void *ptr;
 778         int max_len, first_word, last_word, ret_val = 0;
 779         u16 i;
 780 
 781         if (eeprom->len == 0)
 782                 return -EOPNOTSUPP;
 783 
 784         if ((hw->mac.type >= e1000_i210) &&
 785             !igb_get_flash_presence_i210(hw)) {
 786                 return -EOPNOTSUPP;
 787         }
 788 
 789         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 790                 return -EFAULT;
 791 
 792         max_len = hw->nvm.word_size * 2;
 793 
 794         first_word = eeprom->offset >> 1;
 795         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 796         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 797         if (!eeprom_buff)
 798                 return -ENOMEM;
 799 
 800         ptr = (void *)eeprom_buff;
 801 
 802         if (eeprom->offset & 1) {
 803                 /* need read/modify/write of first changed EEPROM word
 804                  * only the second byte of the word is being modified
 805                  */
 806                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
 807                                             &eeprom_buff[0]);
 808                 ptr++;
 809         }
 810         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 811                 /* need read/modify/write of last changed EEPROM word
 812                  * only the first byte of the word is being modified
 813                  */
 814                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
 815                                    &eeprom_buff[last_word - first_word]);
 816         }
 817 
 818         /* Device's eeprom is always little-endian, word addressable */
 819         for (i = 0; i < last_word - first_word + 1; i++)
 820                 le16_to_cpus(&eeprom_buff[i]);
 821 
 822         memcpy(ptr, bytes, eeprom->len);
 823 
 824         for (i = 0; i < last_word - first_word + 1; i++)
 825                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 826 
 827         ret_val = hw->nvm.ops.write(hw, first_word,
 828                                     last_word - first_word + 1, eeprom_buff);
 829 
 830         /* Update the checksum if nvm write succeeded */
 831         if (ret_val == 0)
 832                 hw->nvm.ops.update(hw);
 833 
 834         igb_set_fw_version(adapter);
 835         kfree(eeprom_buff);
 836         return ret_val;
 837 }
 838 
 839 static void igb_get_drvinfo(struct net_device *netdev,
 840                             struct ethtool_drvinfo *drvinfo)
 841 {
 842         struct igb_adapter *adapter = netdev_priv(netdev);
 843 
 844         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 845         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
 846 
 847         /* EEPROM image version # is reported as firmware version # for
 848          * 82575 controllers
 849          */
 850         strlcpy(drvinfo->fw_version, adapter->fw_version,
 851                 sizeof(drvinfo->fw_version));
 852         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 853                 sizeof(drvinfo->bus_info));
 854 
 855         drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
 856 }
 857 
 858 static void igb_get_ringparam(struct net_device *netdev,
 859                               struct ethtool_ringparam *ring)
 860 {
 861         struct igb_adapter *adapter = netdev_priv(netdev);
 862 
 863         ring->rx_max_pending = IGB_MAX_RXD;
 864         ring->tx_max_pending = IGB_MAX_TXD;
 865         ring->rx_pending = adapter->rx_ring_count;
 866         ring->tx_pending = adapter->tx_ring_count;
 867 }
 868 
 869 static int igb_set_ringparam(struct net_device *netdev,
 870                              struct ethtool_ringparam *ring)
 871 {
 872         struct igb_adapter *adapter = netdev_priv(netdev);
 873         struct igb_ring *temp_ring;
 874         int i, err = 0;
 875         u16 new_rx_count, new_tx_count;
 876 
 877         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 878                 return -EINVAL;
 879 
 880         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 881         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 882         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 883 
 884         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 885         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 886         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 887 
 888         if ((new_tx_count == adapter->tx_ring_count) &&
 889             (new_rx_count == adapter->rx_ring_count)) {
 890                 /* nothing to do */
 891                 return 0;
 892         }
 893 
 894         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 895                 usleep_range(1000, 2000);
 896 
 897         if (!netif_running(adapter->netdev)) {
 898                 for (i = 0; i < adapter->num_tx_queues; i++)
 899                         adapter->tx_ring[i]->count = new_tx_count;
 900                 for (i = 0; i < adapter->num_rx_queues; i++)
 901                         adapter->rx_ring[i]->count = new_rx_count;
 902                 adapter->tx_ring_count = new_tx_count;
 903                 adapter->rx_ring_count = new_rx_count;
 904                 goto clear_reset;
 905         }
 906 
 907         if (adapter->num_tx_queues > adapter->num_rx_queues)
 908                 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
 909                                                adapter->num_tx_queues));
 910         else
 911                 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
 912                                                adapter->num_rx_queues));
 913 
 914         if (!temp_ring) {
 915                 err = -ENOMEM;
 916                 goto clear_reset;
 917         }
 918 
 919         igb_down(adapter);
 920 
 921         /* We can't just free everything and then setup again,
 922          * because the ISRs in MSI-X mode get passed pointers
 923          * to the Tx and Rx ring structs.
 924          */
 925         if (new_tx_count != adapter->tx_ring_count) {
 926                 for (i = 0; i < adapter->num_tx_queues; i++) {
 927                         memcpy(&temp_ring[i], adapter->tx_ring[i],
 928                                sizeof(struct igb_ring));
 929 
 930                         temp_ring[i].count = new_tx_count;
 931                         err = igb_setup_tx_resources(&temp_ring[i]);
 932                         if (err) {
 933                                 while (i) {
 934                                         i--;
 935                                         igb_free_tx_resources(&temp_ring[i]);
 936                                 }
 937                                 goto err_setup;
 938                         }
 939                 }
 940 
 941                 for (i = 0; i < adapter->num_tx_queues; i++) {
 942                         igb_free_tx_resources(adapter->tx_ring[i]);
 943 
 944                         memcpy(adapter->tx_ring[i], &temp_ring[i],
 945                                sizeof(struct igb_ring));
 946                 }
 947 
 948                 adapter->tx_ring_count = new_tx_count;
 949         }
 950 
 951         if (new_rx_count != adapter->rx_ring_count) {
 952                 for (i = 0; i < adapter->num_rx_queues; i++) {
 953                         memcpy(&temp_ring[i], adapter->rx_ring[i],
 954                                sizeof(struct igb_ring));
 955 
 956                         temp_ring[i].count = new_rx_count;
 957                         err = igb_setup_rx_resources(&temp_ring[i]);
 958                         if (err) {
 959                                 while (i) {
 960                                         i--;
 961                                         igb_free_rx_resources(&temp_ring[i]);
 962                                 }
 963                                 goto err_setup;
 964                         }
 965 
 966                 }
 967 
 968                 for (i = 0; i < adapter->num_rx_queues; i++) {
 969                         igb_free_rx_resources(adapter->rx_ring[i]);
 970 
 971                         memcpy(adapter->rx_ring[i], &temp_ring[i],
 972                                sizeof(struct igb_ring));
 973                 }
 974 
 975                 adapter->rx_ring_count = new_rx_count;
 976         }
 977 err_setup:
 978         igb_up(adapter);
 979         vfree(temp_ring);
 980 clear_reset:
 981         clear_bit(__IGB_RESETTING, &adapter->state);
 982         return err;
 983 }
 984 
 985 /* ethtool register test data */
 986 struct igb_reg_test {
 987         u16 reg;
 988         u16 reg_offset;
 989         u16 array_len;
 990         u16 test_type;
 991         u32 mask;
 992         u32 write;
 993 };
 994 
 995 /* In the hardware, registers are laid out either singly, in arrays
 996  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 997  * most tests take place on arrays or single registers (handled
 998  * as a single-element array) and special-case the tables.
 999  * Table tests are always pattern tests.
1000  *
1001  * We also make provision for some required setup steps by specifying
1002  * registers to be written without any read-back testing.
1003  */
1004 
1005 #define PATTERN_TEST    1
1006 #define SET_READ_TEST   2
1007 #define WRITE_NO_TEST   3
1008 #define TABLE32_TEST    4
1009 #define TABLE64_TEST_LO 5
1010 #define TABLE64_TEST_HI 6
1011 
1012 /* i210 reg test */
1013 static struct igb_reg_test reg_test_i210[] = {
1014         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1017         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1018         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1019         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1020         /* RDH is read-only for i210, only test RDT. */
1021         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1023         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1025         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1026         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1028         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1029         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1030         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1031         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1032         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1033         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1034                                                 0xFFFFFFFF, 0xFFFFFFFF },
1035         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1036                                                 0x900FFFFF, 0xFFFFFFFF },
1037         { E1000_MTA,       0, 128, TABLE32_TEST,
1038                                                 0xFFFFFFFF, 0xFFFFFFFF },
1039         { 0, 0, 0, 0, 0 }
1040 };
1041 
1042 /* i350 reg test */
1043 static struct igb_reg_test reg_test_i350[] = {
1044         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1046         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1047         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1048         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1049         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1051         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1052         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1054         /* RDH is read-only for i350, only test RDT. */
1055         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1058         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1059         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1060         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1069         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1070         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1071         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1072         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1073                                                 0xFFFFFFFF, 0xFFFFFFFF },
1074         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1075                                                 0xC3FFFFFF, 0xFFFFFFFF },
1076         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1077                                                 0xFFFFFFFF, 0xFFFFFFFF },
1078         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1079                                                 0xC3FFFFFF, 0xFFFFFFFF },
1080         { E1000_MTA,       0, 128, TABLE32_TEST,
1081                                                 0xFFFFFFFF, 0xFFFFFFFF },
1082         { 0, 0, 0, 0 }
1083 };
1084 
1085 /* 82580 reg test */
1086 static struct igb_reg_test reg_test_82580[] = {
1087         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1088         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1089         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1090         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1092         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1093         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1094         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1095         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1097         /* RDH is read-only for 82580, only test RDT. */
1098         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1101         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1102         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1103         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1110         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1112         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1113         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1114         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1115         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1116                                                 0xFFFFFFFF, 0xFFFFFFFF },
1117         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1118                                                 0x83FFFFFF, 0xFFFFFFFF },
1119         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1120                                                 0xFFFFFFFF, 0xFFFFFFFF },
1121         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1122                                                 0x83FFFFFF, 0xFFFFFFFF },
1123         { E1000_MTA,       0, 128, TABLE32_TEST,
1124                                                 0xFFFFFFFF, 0xFFFFFFFF },
1125         { 0, 0, 0, 0 }
1126 };
1127 
1128 /* 82576 reg test */
1129 static struct igb_reg_test reg_test_82576[] = {
1130         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1131         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1132         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1133         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1134         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1135         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1136         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1137         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1138         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1140         /* Enable all RX queues before testing. */
1141         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1142           E1000_RXDCTL_QUEUE_ENABLE },
1143         { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1144           E1000_RXDCTL_QUEUE_ENABLE },
1145         /* RDH is read-only for 82576, only test RDT. */
1146         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1147         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1148         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1149         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1150         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1151         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1152         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1153         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1154         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1155         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1156         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1157         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1158         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1159         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1160         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1161         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1162         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1163         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1164         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1165         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1166         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1167         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1168         { 0, 0, 0, 0 }
1169 };
1170 
1171 /* 82575 register test */
1172 static struct igb_reg_test reg_test_82575[] = {
1173         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1175         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1176         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1177         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1178         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1179         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1180         /* Enable all four RX queues before testing. */
1181         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1182           E1000_RXDCTL_QUEUE_ENABLE },
1183         /* RDH is read-only for 82575, only test RDT. */
1184         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1185         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1186         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1187         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1188         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1189         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1190         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1192         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1193         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1194         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1195         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1196         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1197         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1198         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1199         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1200         { 0, 0, 0, 0 }
1201 };
1202 
1203 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1204                              int reg, u32 mask, u32 write)
1205 {
1206         struct e1000_hw *hw = &adapter->hw;
1207         u32 pat, val;
1208         static const u32 _test[] = {
1209                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1210         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1211                 wr32(reg, (_test[pat] & write));
1212                 val = rd32(reg) & mask;
1213                 if (val != (_test[pat] & write & mask)) {
1214                         dev_err(&adapter->pdev->dev,
1215                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1216                                 reg, val, (_test[pat] & write & mask));
1217                         *data = reg;
1218                         return true;
1219                 }
1220         }
1221 
1222         return false;
1223 }
1224 
1225 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1226                               int reg, u32 mask, u32 write)
1227 {
1228         struct e1000_hw *hw = &adapter->hw;
1229         u32 val;
1230 
1231         wr32(reg, write & mask);
1232         val = rd32(reg);
1233         if ((write & mask) != (val & mask)) {
1234                 dev_err(&adapter->pdev->dev,
1235                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1236                         reg, (val & mask), (write & mask));
1237                 *data = reg;
1238                 return true;
1239         }
1240 
1241         return false;
1242 }
1243 
1244 #define REG_PATTERN_TEST(reg, mask, write) \
1245         do { \
1246                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1247                         return 1; \
1248         } while (0)
1249 
1250 #define REG_SET_AND_CHECK(reg, mask, write) \
1251         do { \
1252                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1253                         return 1; \
1254         } while (0)
1255 
1256 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1257 {
1258         struct e1000_hw *hw = &adapter->hw;
1259         struct igb_reg_test *test;
1260         u32 value, before, after;
1261         u32 i, toggle;
1262 
1263         switch (adapter->hw.mac.type) {
1264         case e1000_i350:
1265         case e1000_i354:
1266                 test = reg_test_i350;
1267                 toggle = 0x7FEFF3FF;
1268                 break;
1269         case e1000_i210:
1270         case e1000_i211:
1271                 test = reg_test_i210;
1272                 toggle = 0x7FEFF3FF;
1273                 break;
1274         case e1000_82580:
1275                 test = reg_test_82580;
1276                 toggle = 0x7FEFF3FF;
1277                 break;
1278         case e1000_82576:
1279                 test = reg_test_82576;
1280                 toggle = 0x7FFFF3FF;
1281                 break;
1282         default:
1283                 test = reg_test_82575;
1284                 toggle = 0x7FFFF3FF;
1285                 break;
1286         }
1287 
1288         /* Because the status register is such a special case,
1289          * we handle it separately from the rest of the register
1290          * tests.  Some bits are read-only, some toggle, and some
1291          * are writable on newer MACs.
1292          */
1293         before = rd32(E1000_STATUS);
1294         value = (rd32(E1000_STATUS) & toggle);
1295         wr32(E1000_STATUS, toggle);
1296         after = rd32(E1000_STATUS) & toggle;
1297         if (value != after) {
1298                 dev_err(&adapter->pdev->dev,
1299                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1300                         after, value);
1301                 *data = 1;
1302                 return 1;
1303         }
1304         /* restore previous status */
1305         wr32(E1000_STATUS, before);
1306 
1307         /* Perform the remainder of the register test, looping through
1308          * the test table until we either fail or reach the null entry.
1309          */
1310         while (test->reg) {
1311                 for (i = 0; i < test->array_len; i++) {
1312                         switch (test->test_type) {
1313                         case PATTERN_TEST:
1314                                 REG_PATTERN_TEST(test->reg +
1315                                                 (i * test->reg_offset),
1316                                                 test->mask,
1317                                                 test->write);
1318                                 break;
1319                         case SET_READ_TEST:
1320                                 REG_SET_AND_CHECK(test->reg +
1321                                                 (i * test->reg_offset),
1322                                                 test->mask,
1323                                                 test->write);
1324                                 break;
1325                         case WRITE_NO_TEST:
1326                                 writel(test->write,
1327                                     (adapter->hw.hw_addr + test->reg)
1328                                         + (i * test->reg_offset));
1329                                 break;
1330                         case TABLE32_TEST:
1331                                 REG_PATTERN_TEST(test->reg + (i * 4),
1332                                                 test->mask,
1333                                                 test->write);
1334                                 break;
1335                         case TABLE64_TEST_LO:
1336                                 REG_PATTERN_TEST(test->reg + (i * 8),
1337                                                 test->mask,
1338                                                 test->write);
1339                                 break;
1340                         case TABLE64_TEST_HI:
1341                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1342                                                 test->mask,
1343                                                 test->write);
1344                                 break;
1345                         }
1346                 }
1347                 test++;
1348         }
1349 
1350         *data = 0;
1351         return 0;
1352 }
1353 
1354 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1355 {
1356         struct e1000_hw *hw = &adapter->hw;
1357 
1358         *data = 0;
1359 
1360         /* Validate eeprom on all parts but flashless */
1361         switch (hw->mac.type) {
1362         case e1000_i210:
1363         case e1000_i211:
1364                 if (igb_get_flash_presence_i210(hw)) {
1365                         if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1366                                 *data = 2;
1367                 }
1368                 break;
1369         default:
1370                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1371                         *data = 2;
1372                 break;
1373         }
1374 
1375         return *data;
1376 }
1377 
1378 static irqreturn_t igb_test_intr(int irq, void *data)
1379 {
1380         struct igb_adapter *adapter = (struct igb_adapter *) data;
1381         struct e1000_hw *hw = &adapter->hw;
1382 
1383         adapter->test_icr |= rd32(E1000_ICR);
1384 
1385         return IRQ_HANDLED;
1386 }
1387 
1388 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1389 {
1390         struct e1000_hw *hw = &adapter->hw;
1391         struct net_device *netdev = adapter->netdev;
1392         u32 mask, ics_mask, i = 0, shared_int = true;
1393         u32 irq = adapter->pdev->irq;
1394 
1395         *data = 0;
1396 
1397         /* Hook up test interrupt handler just for this test */
1398         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1399                 if (request_irq(adapter->msix_entries[0].vector,
1400                                 igb_test_intr, 0, netdev->name, adapter)) {
1401                         *data = 1;
1402                         return -1;
1403                 }
1404         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1405                 shared_int = false;
1406                 if (request_irq(irq,
1407                                 igb_test_intr, 0, netdev->name, adapter)) {
1408                         *data = 1;
1409                         return -1;
1410                 }
1411         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1412                                 netdev->name, adapter)) {
1413                 shared_int = false;
1414         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1415                  netdev->name, adapter)) {
1416                 *data = 1;
1417                 return -1;
1418         }
1419         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1420                 (shared_int ? "shared" : "unshared"));
1421 
1422         /* Disable all the interrupts */
1423         wr32(E1000_IMC, ~0);
1424         wrfl();
1425         usleep_range(10000, 11000);
1426 
1427         /* Define all writable bits for ICS */
1428         switch (hw->mac.type) {
1429         case e1000_82575:
1430                 ics_mask = 0x37F47EDD;
1431                 break;
1432         case e1000_82576:
1433                 ics_mask = 0x77D4FBFD;
1434                 break;
1435         case e1000_82580:
1436                 ics_mask = 0x77DCFED5;
1437                 break;
1438         case e1000_i350:
1439         case e1000_i354:
1440         case e1000_i210:
1441         case e1000_i211:
1442                 ics_mask = 0x77DCFED5;
1443                 break;
1444         default:
1445                 ics_mask = 0x7FFFFFFF;
1446                 break;
1447         }
1448 
1449         /* Test each interrupt */
1450         for (; i < 31; i++) {
1451                 /* Interrupt to test */
1452                 mask = BIT(i);
1453 
1454                 if (!(mask & ics_mask))
1455                         continue;
1456 
1457                 if (!shared_int) {
1458                         /* Disable the interrupt to be reported in
1459                          * the cause register and then force the same
1460                          * interrupt and see if one gets posted.  If
1461                          * an interrupt was posted to the bus, the
1462                          * test failed.
1463                          */
1464                         adapter->test_icr = 0;
1465 
1466                         /* Flush any pending interrupts */
1467                         wr32(E1000_ICR, ~0);
1468 
1469                         wr32(E1000_IMC, mask);
1470                         wr32(E1000_ICS, mask);
1471                         wrfl();
1472                         usleep_range(10000, 11000);
1473 
1474                         if (adapter->test_icr & mask) {
1475                                 *data = 3;
1476                                 break;
1477                         }
1478                 }
1479 
1480                 /* Enable the interrupt to be reported in
1481                  * the cause register and then force the same
1482                  * interrupt and see if one gets posted.  If
1483                  * an interrupt was not posted to the bus, the
1484                  * test failed.
1485                  */
1486                 adapter->test_icr = 0;
1487 
1488                 /* Flush any pending interrupts */
1489                 wr32(E1000_ICR, ~0);
1490 
1491                 wr32(E1000_IMS, mask);
1492                 wr32(E1000_ICS, mask);
1493                 wrfl();
1494                 usleep_range(10000, 11000);
1495 
1496                 if (!(adapter->test_icr & mask)) {
1497                         *data = 4;
1498                         break;
1499                 }
1500 
1501                 if (!shared_int) {
1502                         /* Disable the other interrupts to be reported in
1503                          * the cause register and then force the other
1504                          * interrupts and see if any get posted.  If
1505                          * an interrupt was posted to the bus, the
1506                          * test failed.
1507                          */
1508                         adapter->test_icr = 0;
1509 
1510                         /* Flush any pending interrupts */
1511                         wr32(E1000_ICR, ~0);
1512 
1513                         wr32(E1000_IMC, ~mask);
1514                         wr32(E1000_ICS, ~mask);
1515                         wrfl();
1516                         usleep_range(10000, 11000);
1517 
1518                         if (adapter->test_icr & mask) {
1519                                 *data = 5;
1520                                 break;
1521                         }
1522                 }
1523         }
1524 
1525         /* Disable all the interrupts */
1526         wr32(E1000_IMC, ~0);
1527         wrfl();
1528         usleep_range(10000, 11000);
1529 
1530         /* Unhook test interrupt handler */
1531         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1532                 free_irq(adapter->msix_entries[0].vector, adapter);
1533         else
1534                 free_irq(irq, adapter);
1535 
1536         return *data;
1537 }
1538 
1539 static void igb_free_desc_rings(struct igb_adapter *adapter)
1540 {
1541         igb_free_tx_resources(&adapter->test_tx_ring);
1542         igb_free_rx_resources(&adapter->test_rx_ring);
1543 }
1544 
1545 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1546 {
1547         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1548         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1549         struct e1000_hw *hw = &adapter->hw;
1550         int ret_val;
1551 
1552         /* Setup Tx descriptor ring and Tx buffers */
1553         tx_ring->count = IGB_DEFAULT_TXD;
1554         tx_ring->dev = &adapter->pdev->dev;
1555         tx_ring->netdev = adapter->netdev;
1556         tx_ring->reg_idx = adapter->vfs_allocated_count;
1557 
1558         if (igb_setup_tx_resources(tx_ring)) {
1559                 ret_val = 1;
1560                 goto err_nomem;
1561         }
1562 
1563         igb_setup_tctl(adapter);
1564         igb_configure_tx_ring(adapter, tx_ring);
1565 
1566         /* Setup Rx descriptor ring and Rx buffers */
1567         rx_ring->count = IGB_DEFAULT_RXD;
1568         rx_ring->dev = &adapter->pdev->dev;
1569         rx_ring->netdev = adapter->netdev;
1570         rx_ring->reg_idx = adapter->vfs_allocated_count;
1571 
1572         if (igb_setup_rx_resources(rx_ring)) {
1573                 ret_val = 3;
1574                 goto err_nomem;
1575         }
1576 
1577         /* set the default queue to queue 0 of PF */
1578         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1579 
1580         /* enable receive ring */
1581         igb_setup_rctl(adapter);
1582         igb_configure_rx_ring(adapter, rx_ring);
1583 
1584         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1585 
1586         return 0;
1587 
1588 err_nomem:
1589         igb_free_desc_rings(adapter);
1590         return ret_val;
1591 }
1592 
1593 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1594 {
1595         struct e1000_hw *hw = &adapter->hw;
1596 
1597         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1598         igb_write_phy_reg(hw, 29, 0x001F);
1599         igb_write_phy_reg(hw, 30, 0x8FFC);
1600         igb_write_phy_reg(hw, 29, 0x001A);
1601         igb_write_phy_reg(hw, 30, 0x8FF0);
1602 }
1603 
1604 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1605 {
1606         struct e1000_hw *hw = &adapter->hw;
1607         u32 ctrl_reg = 0;
1608 
1609         hw->mac.autoneg = false;
1610 
1611         if (hw->phy.type == e1000_phy_m88) {
1612                 if (hw->phy.id != I210_I_PHY_ID) {
1613                         /* Auto-MDI/MDIX Off */
1614                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1615                         /* reset to update Auto-MDI/MDIX */
1616                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1617                         /* autoneg off */
1618                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1619                 } else {
1620                         /* force 1000, set loopback  */
1621                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1622                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1623                 }
1624         } else if (hw->phy.type == e1000_phy_82580) {
1625                 /* enable MII loopback */
1626                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1627         }
1628 
1629         /* add small delay to avoid loopback test failure */
1630         msleep(50);
1631 
1632         /* force 1000, set loopback */
1633         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1634 
1635         /* Now set up the MAC to the same speed/duplex as the PHY. */
1636         ctrl_reg = rd32(E1000_CTRL);
1637         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1638         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1639                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1640                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1641                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1642                      E1000_CTRL_SLU);    /* Set link up enable bit */
1643 
1644         if (hw->phy.type == e1000_phy_m88)
1645                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1646 
1647         wr32(E1000_CTRL, ctrl_reg);
1648 
1649         /* Disable the receiver on the PHY so when a cable is plugged in, the
1650          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1651          */
1652         if (hw->phy.type == e1000_phy_m88)
1653                 igb_phy_disable_receiver(adapter);
1654 
1655         msleep(500);
1656         return 0;
1657 }
1658 
1659 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1660 {
1661         return igb_integrated_phy_loopback(adapter);
1662 }
1663 
1664 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1665 {
1666         struct e1000_hw *hw = &adapter->hw;
1667         u32 reg;
1668 
1669         reg = rd32(E1000_CTRL_EXT);
1670 
1671         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1672         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1673                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1674                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1675                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1676                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1677                 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1678                 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1679                         /* Enable DH89xxCC MPHY for near end loopback */
1680                         reg = rd32(E1000_MPHY_ADDR_CTL);
1681                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1682                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1683                         wr32(E1000_MPHY_ADDR_CTL, reg);
1684 
1685                         reg = rd32(E1000_MPHY_DATA);
1686                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1687                         wr32(E1000_MPHY_DATA, reg);
1688                 }
1689 
1690                 reg = rd32(E1000_RCTL);
1691                 reg |= E1000_RCTL_LBM_TCVR;
1692                 wr32(E1000_RCTL, reg);
1693 
1694                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1695 
1696                 reg = rd32(E1000_CTRL);
1697                 reg &= ~(E1000_CTRL_RFCE |
1698                          E1000_CTRL_TFCE |
1699                          E1000_CTRL_LRST);
1700                 reg |= E1000_CTRL_SLU |
1701                        E1000_CTRL_FD;
1702                 wr32(E1000_CTRL, reg);
1703 
1704                 /* Unset switch control to serdes energy detect */
1705                 reg = rd32(E1000_CONNSW);
1706                 reg &= ~E1000_CONNSW_ENRGSRC;
1707                 wr32(E1000_CONNSW, reg);
1708 
1709                 /* Unset sigdetect for SERDES loopback on
1710                  * 82580 and newer devices.
1711                  */
1712                 if (hw->mac.type >= e1000_82580) {
1713                         reg = rd32(E1000_PCS_CFG0);
1714                         reg |= E1000_PCS_CFG_IGN_SD;
1715                         wr32(E1000_PCS_CFG0, reg);
1716                 }
1717 
1718                 /* Set PCS register for forced speed */
1719                 reg = rd32(E1000_PCS_LCTL);
1720                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1721                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1722                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1723                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1724                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1725                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1726                 wr32(E1000_PCS_LCTL, reg);
1727 
1728                 return 0;
1729         }
1730 
1731         return igb_set_phy_loopback(adapter);
1732 }
1733 
1734 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1735 {
1736         struct e1000_hw *hw = &adapter->hw;
1737         u32 rctl;
1738         u16 phy_reg;
1739 
1740         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1741         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1742         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1743         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1744         (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1745                 u32 reg;
1746 
1747                 /* Disable near end loopback on DH89xxCC */
1748                 reg = rd32(E1000_MPHY_ADDR_CTL);
1749                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1750                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1751                 wr32(E1000_MPHY_ADDR_CTL, reg);
1752 
1753                 reg = rd32(E1000_MPHY_DATA);
1754                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1755                 wr32(E1000_MPHY_DATA, reg);
1756         }
1757 
1758         rctl = rd32(E1000_RCTL);
1759         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1760         wr32(E1000_RCTL, rctl);
1761 
1762         hw->mac.autoneg = true;
1763         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1764         if (phy_reg & MII_CR_LOOPBACK) {
1765                 phy_reg &= ~MII_CR_LOOPBACK;
1766                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1767                 igb_phy_sw_reset(hw);
1768         }
1769 }
1770 
1771 static void igb_create_lbtest_frame(struct sk_buff *skb,
1772                                     unsigned int frame_size)
1773 {
1774         memset(skb->data, 0xFF, frame_size);
1775         frame_size /= 2;
1776         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1777         memset(&skb->data[frame_size + 10], 0xBE, 1);
1778         memset(&skb->data[frame_size + 12], 0xAF, 1);
1779 }
1780 
1781 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1782                                   unsigned int frame_size)
1783 {
1784         unsigned char *data;
1785         bool match = true;
1786 
1787         frame_size >>= 1;
1788 
1789         data = kmap(rx_buffer->page);
1790 
1791         if (data[3] != 0xFF ||
1792             data[frame_size + 10] != 0xBE ||
1793             data[frame_size + 12] != 0xAF)
1794                 match = false;
1795 
1796         kunmap(rx_buffer->page);
1797 
1798         return match;
1799 }
1800 
1801 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1802                                 struct igb_ring *tx_ring,
1803                                 unsigned int size)
1804 {
1805         union e1000_adv_rx_desc *rx_desc;
1806         struct igb_rx_buffer *rx_buffer_info;
1807         struct igb_tx_buffer *tx_buffer_info;
1808         u16 rx_ntc, tx_ntc, count = 0;
1809 
1810         /* initialize next to clean and descriptor values */
1811         rx_ntc = rx_ring->next_to_clean;
1812         tx_ntc = tx_ring->next_to_clean;
1813         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1814 
1815         while (rx_desc->wb.upper.length) {
1816                 /* check Rx buffer */
1817                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1818 
1819                 /* sync Rx buffer for CPU read */
1820                 dma_sync_single_for_cpu(rx_ring->dev,
1821                                         rx_buffer_info->dma,
1822                                         size,
1823                                         DMA_FROM_DEVICE);
1824 
1825                 /* verify contents of skb */
1826                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1827                         count++;
1828 
1829                 /* sync Rx buffer for device write */
1830                 dma_sync_single_for_device(rx_ring->dev,
1831                                            rx_buffer_info->dma,
1832                                            size,
1833                                            DMA_FROM_DEVICE);
1834 
1835                 /* unmap buffer on Tx side */
1836                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1837 
1838                 /* Free all the Tx ring sk_buffs */
1839                 dev_kfree_skb_any(tx_buffer_info->skb);
1840 
1841                 /* unmap skb header data */
1842                 dma_unmap_single(tx_ring->dev,
1843                                  dma_unmap_addr(tx_buffer_info, dma),
1844                                  dma_unmap_len(tx_buffer_info, len),
1845                                  DMA_TO_DEVICE);
1846                 dma_unmap_len_set(tx_buffer_info, len, 0);
1847 
1848                 /* increment Rx/Tx next to clean counters */
1849                 rx_ntc++;
1850                 if (rx_ntc == rx_ring->count)
1851                         rx_ntc = 0;
1852                 tx_ntc++;
1853                 if (tx_ntc == tx_ring->count)
1854                         tx_ntc = 0;
1855 
1856                 /* fetch next descriptor */
1857                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1858         }
1859 
1860         netdev_tx_reset_queue(txring_txq(tx_ring));
1861 
1862         /* re-map buffers to ring, store next to clean values */
1863         igb_alloc_rx_buffers(rx_ring, count);
1864         rx_ring->next_to_clean = rx_ntc;
1865         tx_ring->next_to_clean = tx_ntc;
1866 
1867         return count;
1868 }
1869 
1870 static int igb_run_loopback_test(struct igb_adapter *adapter)
1871 {
1872         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1873         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1874         u16 i, j, lc, good_cnt;
1875         int ret_val = 0;
1876         unsigned int size = IGB_RX_HDR_LEN;
1877         netdev_tx_t tx_ret_val;
1878         struct sk_buff *skb;
1879 
1880         /* allocate test skb */
1881         skb = alloc_skb(size, GFP_KERNEL);
1882         if (!skb)
1883                 return 11;
1884 
1885         /* place data into test skb */
1886         igb_create_lbtest_frame(skb, size);
1887         skb_put(skb, size);
1888 
1889         /* Calculate the loop count based on the largest descriptor ring
1890          * The idea is to wrap the largest ring a number of times using 64
1891          * send/receive pairs during each loop
1892          */
1893 
1894         if (rx_ring->count <= tx_ring->count)
1895                 lc = ((tx_ring->count / 64) * 2) + 1;
1896         else
1897                 lc = ((rx_ring->count / 64) * 2) + 1;
1898 
1899         for (j = 0; j <= lc; j++) { /* loop count loop */
1900                 /* reset count of good packets */
1901                 good_cnt = 0;
1902 
1903                 /* place 64 packets on the transmit queue*/
1904                 for (i = 0; i < 64; i++) {
1905                         skb_get(skb);
1906                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1907                         if (tx_ret_val == NETDEV_TX_OK)
1908                                 good_cnt++;
1909                 }
1910 
1911                 if (good_cnt != 64) {
1912                         ret_val = 12;
1913                         break;
1914                 }
1915 
1916                 /* allow 200 milliseconds for packets to go from Tx to Rx */
1917                 msleep(200);
1918 
1919                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1920                 if (good_cnt != 64) {
1921                         ret_val = 13;
1922                         break;
1923                 }
1924         } /* end loop count loop */
1925 
1926         /* free the original skb */
1927         kfree_skb(skb);
1928 
1929         return ret_val;
1930 }
1931 
1932 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1933 {
1934         /* PHY loopback cannot be performed if SoL/IDER
1935          * sessions are active
1936          */
1937         if (igb_check_reset_block(&adapter->hw)) {
1938                 dev_err(&adapter->pdev->dev,
1939                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1940                 *data = 0;
1941                 goto out;
1942         }
1943 
1944         if (adapter->hw.mac.type == e1000_i354) {
1945                 dev_info(&adapter->pdev->dev,
1946                         "Loopback test not supported on i354.\n");
1947                 *data = 0;
1948                 goto out;
1949         }
1950         *data = igb_setup_desc_rings(adapter);
1951         if (*data)
1952                 goto out;
1953         *data = igb_setup_loopback_test(adapter);
1954         if (*data)
1955                 goto err_loopback;
1956         *data = igb_run_loopback_test(adapter);
1957         igb_loopback_cleanup(adapter);
1958 
1959 err_loopback:
1960         igb_free_desc_rings(adapter);
1961 out:
1962         return *data;
1963 }
1964 
1965 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1966 {
1967         struct e1000_hw *hw = &adapter->hw;
1968         *data = 0;
1969         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1970                 int i = 0;
1971 
1972                 hw->mac.serdes_has_link = false;
1973 
1974                 /* On some blade server designs, link establishment
1975                  * could take as long as 2-3 minutes
1976                  */
1977                 do {
1978                         hw->mac.ops.check_for_link(&adapter->hw);
1979                         if (hw->mac.serdes_has_link)
1980                                 return *data;
1981                         msleep(20);
1982                 } while (i++ < 3750);
1983 
1984                 *data = 1;
1985         } else {
1986                 hw->mac.ops.check_for_link(&adapter->hw);
1987                 if (hw->mac.autoneg)
1988                         msleep(5000);
1989 
1990                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1991                         *data = 1;
1992         }
1993         return *data;
1994 }
1995 
1996 static void igb_diag_test(struct net_device *netdev,
1997                           struct ethtool_test *eth_test, u64 *data)
1998 {
1999         struct igb_adapter *adapter = netdev_priv(netdev);
2000         u16 autoneg_advertised;
2001         u8 forced_speed_duplex, autoneg;
2002         bool if_running = netif_running(netdev);
2003 
2004         set_bit(__IGB_TESTING, &adapter->state);
2005 
2006         /* can't do offline tests on media switching devices */
2007         if (adapter->hw.dev_spec._82575.mas_capable)
2008                 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2009         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2010                 /* Offline tests */
2011 
2012                 /* save speed, duplex, autoneg settings */
2013                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2014                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2015                 autoneg = adapter->hw.mac.autoneg;
2016 
2017                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2018 
2019                 /* power up link for link test */
2020                 igb_power_up_link(adapter);
2021 
2022                 /* Link test performed before hardware reset so autoneg doesn't
2023                  * interfere with test result
2024                  */
2025                 if (igb_link_test(adapter, &data[TEST_LINK]))
2026                         eth_test->flags |= ETH_TEST_FL_FAILED;
2027 
2028                 if (if_running)
2029                         /* indicate we're in test mode */
2030                         igb_close(netdev);
2031                 else
2032                         igb_reset(adapter);
2033 
2034                 if (igb_reg_test(adapter, &data[TEST_REG]))
2035                         eth_test->flags |= ETH_TEST_FL_FAILED;
2036 
2037                 igb_reset(adapter);
2038                 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2039                         eth_test->flags |= ETH_TEST_FL_FAILED;
2040 
2041                 igb_reset(adapter);
2042                 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2043                         eth_test->flags |= ETH_TEST_FL_FAILED;
2044 
2045                 igb_reset(adapter);
2046                 /* power up link for loopback test */
2047                 igb_power_up_link(adapter);
2048                 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2049                         eth_test->flags |= ETH_TEST_FL_FAILED;
2050 
2051                 /* restore speed, duplex, autoneg settings */
2052                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2053                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2054                 adapter->hw.mac.autoneg = autoneg;
2055 
2056                 /* force this routine to wait until autoneg complete/timeout */
2057                 adapter->hw.phy.autoneg_wait_to_complete = true;
2058                 igb_reset(adapter);
2059                 adapter->hw.phy.autoneg_wait_to_complete = false;
2060 
2061                 clear_bit(__IGB_TESTING, &adapter->state);
2062                 if (if_running)
2063                         igb_open(netdev);
2064         } else {
2065                 dev_info(&adapter->pdev->dev, "online testing starting\n");
2066 
2067                 /* PHY is powered down when interface is down */
2068                 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2069                         eth_test->flags |= ETH_TEST_FL_FAILED;
2070                 else
2071                         data[TEST_LINK] = 0;
2072 
2073                 /* Online tests aren't run; pass by default */
2074                 data[TEST_REG] = 0;
2075                 data[TEST_EEP] = 0;
2076                 data[TEST_IRQ] = 0;
2077                 data[TEST_LOOP] = 0;
2078 
2079                 clear_bit(__IGB_TESTING, &adapter->state);
2080         }
2081         msleep_interruptible(4 * 1000);
2082 }
2083 
2084 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2085 {
2086         struct igb_adapter *adapter = netdev_priv(netdev);
2087 
2088         wol->wolopts = 0;
2089 
2090         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2091                 return;
2092 
2093         wol->supported = WAKE_UCAST | WAKE_MCAST |
2094                          WAKE_BCAST | WAKE_MAGIC |
2095                          WAKE_PHY;
2096 
2097         /* apply any specific unsupported masks here */
2098         switch (adapter->hw.device_id) {
2099         default:
2100                 break;
2101         }
2102 
2103         if (adapter->wol & E1000_WUFC_EX)
2104                 wol->wolopts |= WAKE_UCAST;
2105         if (adapter->wol & E1000_WUFC_MC)
2106                 wol->wolopts |= WAKE_MCAST;
2107         if (adapter->wol & E1000_WUFC_BC)
2108                 wol->wolopts |= WAKE_BCAST;
2109         if (adapter->wol & E1000_WUFC_MAG)
2110                 wol->wolopts |= WAKE_MAGIC;
2111         if (adapter->wol & E1000_WUFC_LNKC)
2112                 wol->wolopts |= WAKE_PHY;
2113 }
2114 
2115 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2116 {
2117         struct igb_adapter *adapter = netdev_priv(netdev);
2118 
2119         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2120                 return -EOPNOTSUPP;
2121 
2122         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2123                 return wol->wolopts ? -EOPNOTSUPP : 0;
2124 
2125         /* these settings will always override what we currently have */
2126         adapter->wol = 0;
2127 
2128         if (wol->wolopts & WAKE_UCAST)
2129                 adapter->wol |= E1000_WUFC_EX;
2130         if (wol->wolopts & WAKE_MCAST)
2131                 adapter->wol |= E1000_WUFC_MC;
2132         if (wol->wolopts & WAKE_BCAST)
2133                 adapter->wol |= E1000_WUFC_BC;
2134         if (wol->wolopts & WAKE_MAGIC)
2135                 adapter->wol |= E1000_WUFC_MAG;
2136         if (wol->wolopts & WAKE_PHY)
2137                 adapter->wol |= E1000_WUFC_LNKC;
2138         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2139 
2140         return 0;
2141 }
2142 
2143 /* bit defines for adapter->led_status */
2144 #define IGB_LED_ON              0
2145 
2146 static int igb_set_phys_id(struct net_device *netdev,
2147                            enum ethtool_phys_id_state state)
2148 {
2149         struct igb_adapter *adapter = netdev_priv(netdev);
2150         struct e1000_hw *hw = &adapter->hw;
2151 
2152         switch (state) {
2153         case ETHTOOL_ID_ACTIVE:
2154                 igb_blink_led(hw);
2155                 return 2;
2156         case ETHTOOL_ID_ON:
2157                 igb_blink_led(hw);
2158                 break;
2159         case ETHTOOL_ID_OFF:
2160                 igb_led_off(hw);
2161                 break;
2162         case ETHTOOL_ID_INACTIVE:
2163                 igb_led_off(hw);
2164                 clear_bit(IGB_LED_ON, &adapter->led_status);
2165                 igb_cleanup_led(hw);
2166                 break;
2167         }
2168 
2169         return 0;
2170 }
2171 
2172 static int igb_set_coalesce(struct net_device *netdev,
2173                             struct ethtool_coalesce *ec)
2174 {
2175         struct igb_adapter *adapter = netdev_priv(netdev);
2176         int i;
2177 
2178         if (ec->rx_max_coalesced_frames ||
2179             ec->rx_coalesce_usecs_irq ||
2180             ec->rx_max_coalesced_frames_irq ||
2181             ec->tx_max_coalesced_frames ||
2182             ec->tx_coalesce_usecs_irq ||
2183             ec->stats_block_coalesce_usecs ||
2184             ec->use_adaptive_rx_coalesce ||
2185             ec->use_adaptive_tx_coalesce ||
2186             ec->pkt_rate_low ||
2187             ec->rx_coalesce_usecs_low ||
2188             ec->rx_max_coalesced_frames_low ||
2189             ec->tx_coalesce_usecs_low ||
2190             ec->tx_max_coalesced_frames_low ||
2191             ec->pkt_rate_high ||
2192             ec->rx_coalesce_usecs_high ||
2193             ec->rx_max_coalesced_frames_high ||
2194             ec->tx_coalesce_usecs_high ||
2195             ec->tx_max_coalesced_frames_high ||
2196             ec->rate_sample_interval)
2197                 return -ENOTSUPP;
2198 
2199         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2200             ((ec->rx_coalesce_usecs > 3) &&
2201              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2202             (ec->rx_coalesce_usecs == 2))
2203                 return -EINVAL;
2204 
2205         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2206             ((ec->tx_coalesce_usecs > 3) &&
2207              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2208             (ec->tx_coalesce_usecs == 2))
2209                 return -EINVAL;
2210 
2211         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2212                 return -EINVAL;
2213 
2214         /* If ITR is disabled, disable DMAC */
2215         if (ec->rx_coalesce_usecs == 0) {
2216                 if (adapter->flags & IGB_FLAG_DMAC)
2217                         adapter->flags &= ~IGB_FLAG_DMAC;
2218         }
2219 
2220         /* convert to rate of irq's per second */
2221         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2222                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2223         else
2224                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2225 
2226         /* convert to rate of irq's per second */
2227         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2228                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2229         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2230                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2231         else
2232                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2233 
2234         for (i = 0; i < adapter->num_q_vectors; i++) {
2235                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2236                 q_vector->tx.work_limit = adapter->tx_work_limit;
2237                 if (q_vector->rx.ring)
2238                         q_vector->itr_val = adapter->rx_itr_setting;
2239                 else
2240                         q_vector->itr_val = adapter->tx_itr_setting;
2241                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2242                         q_vector->itr_val = IGB_START_ITR;
2243                 q_vector->set_itr = 1;
2244         }
2245 
2246         return 0;
2247 }
2248 
2249 static int igb_get_coalesce(struct net_device *netdev,
2250                             struct ethtool_coalesce *ec)
2251 {
2252         struct igb_adapter *adapter = netdev_priv(netdev);
2253 
2254         if (adapter->rx_itr_setting <= 3)
2255                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2256         else
2257                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2258 
2259         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2260                 if (adapter->tx_itr_setting <= 3)
2261                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2262                 else
2263                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2264         }
2265 
2266         return 0;
2267 }
2268 
2269 static int igb_nway_reset(struct net_device *netdev)
2270 {
2271         struct igb_adapter *adapter = netdev_priv(netdev);
2272         if (netif_running(netdev))
2273                 igb_reinit_locked(adapter);
2274         return 0;
2275 }
2276 
2277 static int igb_get_sset_count(struct net_device *netdev, int sset)
2278 {
2279         switch (sset) {
2280         case ETH_SS_STATS:
2281                 return IGB_STATS_LEN;
2282         case ETH_SS_TEST:
2283                 return IGB_TEST_LEN;
2284         case ETH_SS_PRIV_FLAGS:
2285                 return IGB_PRIV_FLAGS_STR_LEN;
2286         default:
2287                 return -ENOTSUPP;
2288         }
2289 }
2290 
2291 static void igb_get_ethtool_stats(struct net_device *netdev,
2292                                   struct ethtool_stats *stats, u64 *data)
2293 {
2294         struct igb_adapter *adapter = netdev_priv(netdev);
2295         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2296         unsigned int start;
2297         struct igb_ring *ring;
2298         int i, j;
2299         char *p;
2300 
2301         spin_lock(&adapter->stats64_lock);
2302         igb_update_stats(adapter);
2303 
2304         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2305                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2306                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2307                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2308         }
2309         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2310                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2311                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2312                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2313         }
2314         for (j = 0; j < adapter->num_tx_queues; j++) {
2315                 u64     restart2;
2316 
2317                 ring = adapter->tx_ring[j];
2318                 do {
2319                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2320                         data[i]   = ring->tx_stats.packets;
2321                         data[i+1] = ring->tx_stats.bytes;
2322                         data[i+2] = ring->tx_stats.restart_queue;
2323                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2324                 do {
2325                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2326                         restart2  = ring->tx_stats.restart_queue2;
2327                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2328                 data[i+2] += restart2;
2329 
2330                 i += IGB_TX_QUEUE_STATS_LEN;
2331         }
2332         for (j = 0; j < adapter->num_rx_queues; j++) {
2333                 ring = adapter->rx_ring[j];
2334                 do {
2335                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2336                         data[i]   = ring->rx_stats.packets;
2337                         data[i+1] = ring->rx_stats.bytes;
2338                         data[i+2] = ring->rx_stats.drops;
2339                         data[i+3] = ring->rx_stats.csum_err;
2340                         data[i+4] = ring->rx_stats.alloc_failed;
2341                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2342                 i += IGB_RX_QUEUE_STATS_LEN;
2343         }
2344         spin_unlock(&adapter->stats64_lock);
2345 }
2346 
2347 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2348 {
2349         struct igb_adapter *adapter = netdev_priv(netdev);
2350         u8 *p = data;
2351         int i;
2352 
2353         switch (stringset) {
2354         case ETH_SS_TEST:
2355                 memcpy(data, *igb_gstrings_test,
2356                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2357                 break;
2358         case ETH_SS_STATS:
2359                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2360                         memcpy(p, igb_gstrings_stats[i].stat_string,
2361                                ETH_GSTRING_LEN);
2362                         p += ETH_GSTRING_LEN;
2363                 }
2364                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2365                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2366                                ETH_GSTRING_LEN);
2367                         p += ETH_GSTRING_LEN;
2368                 }
2369                 for (i = 0; i < adapter->num_tx_queues; i++) {
2370                         sprintf(p, "tx_queue_%u_packets", i);
2371                         p += ETH_GSTRING_LEN;
2372                         sprintf(p, "tx_queue_%u_bytes", i);
2373                         p += ETH_GSTRING_LEN;
2374                         sprintf(p, "tx_queue_%u_restart", i);
2375                         p += ETH_GSTRING_LEN;
2376                 }
2377                 for (i = 0; i < adapter->num_rx_queues; i++) {
2378                         sprintf(p, "rx_queue_%u_packets", i);
2379                         p += ETH_GSTRING_LEN;
2380                         sprintf(p, "rx_queue_%u_bytes", i);
2381                         p += ETH_GSTRING_LEN;
2382                         sprintf(p, "rx_queue_%u_drops", i);
2383                         p += ETH_GSTRING_LEN;
2384                         sprintf(p, "rx_queue_%u_csum_err", i);
2385                         p += ETH_GSTRING_LEN;
2386                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2387                         p += ETH_GSTRING_LEN;
2388                 }
2389                 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2390                 break;
2391         case ETH_SS_PRIV_FLAGS:
2392                 memcpy(data, igb_priv_flags_strings,
2393                        IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2394                 break;
2395         }
2396 }
2397 
2398 static int igb_get_ts_info(struct net_device *dev,
2399                            struct ethtool_ts_info *info)
2400 {
2401         struct igb_adapter *adapter = netdev_priv(dev);
2402 
2403         if (adapter->ptp_clock)
2404                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2405         else
2406                 info->phc_index = -1;
2407 
2408         switch (adapter->hw.mac.type) {
2409         case e1000_82575:
2410                 info->so_timestamping =
2411                         SOF_TIMESTAMPING_TX_SOFTWARE |
2412                         SOF_TIMESTAMPING_RX_SOFTWARE |
2413                         SOF_TIMESTAMPING_SOFTWARE;
2414                 return 0;
2415         case e1000_82576:
2416         case e1000_82580:
2417         case e1000_i350:
2418         case e1000_i354:
2419         case e1000_i210:
2420         case e1000_i211:
2421                 info->so_timestamping =
2422                         SOF_TIMESTAMPING_TX_SOFTWARE |
2423                         SOF_TIMESTAMPING_RX_SOFTWARE |
2424                         SOF_TIMESTAMPING_SOFTWARE |
2425                         SOF_TIMESTAMPING_TX_HARDWARE |
2426                         SOF_TIMESTAMPING_RX_HARDWARE |
2427                         SOF_TIMESTAMPING_RAW_HARDWARE;
2428 
2429                 info->tx_types =
2430                         BIT(HWTSTAMP_TX_OFF) |
2431                         BIT(HWTSTAMP_TX_ON);
2432 
2433                 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2434 
2435                 /* 82576 does not support timestamping all packets. */
2436                 if (adapter->hw.mac.type >= e1000_82580)
2437                         info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2438                 else
2439                         info->rx_filters |=
2440                                 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2441                                 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2442                                 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2443 
2444                 return 0;
2445         default:
2446                 return -EOPNOTSUPP;
2447         }
2448 }
2449 
2450 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2451 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2452                                      struct ethtool_rxnfc *cmd)
2453 {
2454         struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2455         struct igb_nfc_filter *rule = NULL;
2456 
2457         /* report total rule count */
2458         cmd->data = IGB_MAX_RXNFC_FILTERS;
2459 
2460         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2461                 if (fsp->location <= rule->sw_idx)
2462                         break;
2463         }
2464 
2465         if (!rule || fsp->location != rule->sw_idx)
2466                 return -EINVAL;
2467 
2468         if (rule->filter.match_flags) {
2469                 fsp->flow_type = ETHER_FLOW;
2470                 fsp->ring_cookie = rule->action;
2471                 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2472                         fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2473                         fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2474                 }
2475                 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2476                         fsp->flow_type |= FLOW_EXT;
2477                         fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2478                         fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2479                 }
2480                 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2481                         ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2482                                         rule->filter.dst_addr);
2483                         /* As we only support matching by the full
2484                          * mask, return the mask to userspace
2485                          */
2486                         eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2487                 }
2488                 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2489                         ether_addr_copy(fsp->h_u.ether_spec.h_source,
2490                                         rule->filter.src_addr);
2491                         /* As we only support matching by the full
2492                          * mask, return the mask to userspace
2493                          */
2494                         eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2495                 }
2496 
2497                 return 0;
2498         }
2499         return -EINVAL;
2500 }
2501 
2502 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2503                                    struct ethtool_rxnfc *cmd,
2504                                    u32 *rule_locs)
2505 {
2506         struct igb_nfc_filter *rule;
2507         int cnt = 0;
2508 
2509         /* report total rule count */
2510         cmd->data = IGB_MAX_RXNFC_FILTERS;
2511 
2512         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2513                 if (cnt == cmd->rule_cnt)
2514                         return -EMSGSIZE;
2515                 rule_locs[cnt] = rule->sw_idx;
2516                 cnt++;
2517         }
2518 
2519         cmd->rule_cnt = cnt;
2520 
2521         return 0;
2522 }
2523 
2524 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2525                                  struct ethtool_rxnfc *cmd)
2526 {
2527         cmd->data = 0;
2528 
2529         /* Report default options for RSS on igb */
2530         switch (cmd->flow_type) {
2531         case TCP_V4_FLOW:
2532                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2533                 /* Fall through */
2534         case UDP_V4_FLOW:
2535                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2536                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2537                 /* Fall through */
2538         case SCTP_V4_FLOW:
2539         case AH_ESP_V4_FLOW:
2540         case AH_V4_FLOW:
2541         case ESP_V4_FLOW:
2542         case IPV4_FLOW:
2543                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2544                 break;
2545         case TCP_V6_FLOW:
2546                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2547                 /* Fall through */
2548         case UDP_V6_FLOW:
2549                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2550                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2551                 /* Fall through */
2552         case SCTP_V6_FLOW:
2553         case AH_ESP_V6_FLOW:
2554         case AH_V6_FLOW:
2555         case ESP_V6_FLOW:
2556         case IPV6_FLOW:
2557                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2558                 break;
2559         default:
2560                 return -EINVAL;
2561         }
2562 
2563         return 0;
2564 }
2565 
2566 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2567                          u32 *rule_locs)
2568 {
2569         struct igb_adapter *adapter = netdev_priv(dev);
2570         int ret = -EOPNOTSUPP;
2571 
2572         switch (cmd->cmd) {
2573         case ETHTOOL_GRXRINGS:
2574                 cmd->data = adapter->num_rx_queues;
2575                 ret = 0;
2576                 break;
2577         case ETHTOOL_GRXCLSRLCNT:
2578                 cmd->rule_cnt = adapter->nfc_filter_count;
2579                 ret = 0;
2580                 break;
2581         case ETHTOOL_GRXCLSRULE:
2582                 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2583                 break;
2584         case ETHTOOL_GRXCLSRLALL:
2585                 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2586                 break;
2587         case ETHTOOL_GRXFH:
2588                 ret = igb_get_rss_hash_opts(adapter, cmd);
2589                 break;
2590         default:
2591                 break;
2592         }
2593 
2594         return ret;
2595 }
2596 
2597 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2598                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2599 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2600                                 struct ethtool_rxnfc *nfc)
2601 {
2602         u32 flags = adapter->flags;
2603 
2604         /* RSS does not support anything other than hashing
2605          * to queues on src and dst IPs and ports
2606          */
2607         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2608                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2609                 return -EINVAL;
2610 
2611         switch (nfc->flow_type) {
2612         case TCP_V4_FLOW:
2613         case TCP_V6_FLOW:
2614                 if (!(nfc->data & RXH_IP_SRC) ||
2615                     !(nfc->data & RXH_IP_DST) ||
2616                     !(nfc->data & RXH_L4_B_0_1) ||
2617                     !(nfc->data & RXH_L4_B_2_3))
2618                         return -EINVAL;
2619                 break;
2620         case UDP_V4_FLOW:
2621                 if (!(nfc->data & RXH_IP_SRC) ||
2622                     !(nfc->data & RXH_IP_DST))
2623                         return -EINVAL;
2624                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2625                 case 0:
2626                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2627                         break;
2628                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2629                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2630                         break;
2631                 default:
2632                         return -EINVAL;
2633                 }
2634                 break;
2635         case UDP_V6_FLOW:
2636                 if (!(nfc->data & RXH_IP_SRC) ||
2637                     !(nfc->data & RXH_IP_DST))
2638                         return -EINVAL;
2639                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2640                 case 0:
2641                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2642                         break;
2643                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2644                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2645                         break;
2646                 default:
2647                         return -EINVAL;
2648                 }
2649                 break;
2650         case AH_ESP_V4_FLOW:
2651         case AH_V4_FLOW:
2652         case ESP_V4_FLOW:
2653         case SCTP_V4_FLOW:
2654         case AH_ESP_V6_FLOW:
2655         case AH_V6_FLOW:
2656         case ESP_V6_FLOW:
2657         case SCTP_V6_FLOW:
2658                 if (!(nfc->data & RXH_IP_SRC) ||
2659                     !(nfc->data & RXH_IP_DST) ||
2660                     (nfc->data & RXH_L4_B_0_1) ||
2661                     (nfc->data & RXH_L4_B_2_3))
2662                         return -EINVAL;
2663                 break;
2664         default:
2665                 return -EINVAL;
2666         }
2667 
2668         /* if we changed something we need to update flags */
2669         if (flags != adapter->flags) {
2670                 struct e1000_hw *hw = &adapter->hw;
2671                 u32 mrqc = rd32(E1000_MRQC);
2672 
2673                 if ((flags & UDP_RSS_FLAGS) &&
2674                     !(adapter->flags & UDP_RSS_FLAGS))
2675                         dev_err(&adapter->pdev->dev,
2676                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2677 
2678                 adapter->flags = flags;
2679 
2680                 /* Perform hash on these packet types */
2681                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2682                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2683                         E1000_MRQC_RSS_FIELD_IPV6 |
2684                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2685 
2686                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2687                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2688 
2689                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2690                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2691 
2692                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2693                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2694 
2695                 wr32(E1000_MRQC, mrqc);
2696         }
2697 
2698         return 0;
2699 }
2700 
2701 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2702                                         struct igb_nfc_filter *input)
2703 {
2704         struct e1000_hw *hw = &adapter->hw;
2705         u8 i;
2706         u32 etqf;
2707         u16 etype;
2708 
2709         /* find an empty etype filter register */
2710         for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2711                 if (!adapter->etype_bitmap[i])
2712                         break;
2713         }
2714         if (i == MAX_ETYPE_FILTER) {
2715                 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2716                 return -EINVAL;
2717         }
2718 
2719         adapter->etype_bitmap[i] = true;
2720 
2721         etqf = rd32(E1000_ETQF(i));
2722         etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2723 
2724         etqf |= E1000_ETQF_FILTER_ENABLE;
2725         etqf &= ~E1000_ETQF_ETYPE_MASK;
2726         etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2727 
2728         etqf &= ~E1000_ETQF_QUEUE_MASK;
2729         etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2730                 & E1000_ETQF_QUEUE_MASK);
2731         etqf |= E1000_ETQF_QUEUE_ENABLE;
2732 
2733         wr32(E1000_ETQF(i), etqf);
2734 
2735         input->etype_reg_index = i;
2736 
2737         return 0;
2738 }
2739 
2740 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2741                                             struct igb_nfc_filter *input)
2742 {
2743         struct e1000_hw *hw = &adapter->hw;
2744         u8 vlan_priority;
2745         u16 queue_index;
2746         u32 vlapqf;
2747 
2748         vlapqf = rd32(E1000_VLAPQF);
2749         vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2750                                 >> VLAN_PRIO_SHIFT;
2751         queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2752 
2753         /* check whether this vlan prio is already set */
2754         if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2755             (queue_index != input->action)) {
2756                 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2757                 return -EEXIST;
2758         }
2759 
2760         vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2761         vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2762 
2763         wr32(E1000_VLAPQF, vlapqf);
2764 
2765         return 0;
2766 }
2767 
2768 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2769 {
2770         struct e1000_hw *hw = &adapter->hw;
2771         int err = -EINVAL;
2772 
2773         if (hw->mac.type == e1000_i210 &&
2774             !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2775                 dev_err(&adapter->pdev->dev,
2776                         "i210 doesn't support flow classification rules specifying only source addresses.\n");
2777                 return -EOPNOTSUPP;
2778         }
2779 
2780         if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2781                 err = igb_rxnfc_write_etype_filter(adapter, input);
2782                 if (err)
2783                         return err;
2784         }
2785 
2786         if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2787                 err = igb_add_mac_steering_filter(adapter,
2788                                                   input->filter.dst_addr,
2789                                                   input->action, 0);
2790                 err = min_t(int, err, 0);
2791                 if (err)
2792                         return err;
2793         }
2794 
2795         if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2796                 err = igb_add_mac_steering_filter(adapter,
2797                                                   input->filter.src_addr,
2798                                                   input->action,
2799                                                   IGB_MAC_STATE_SRC_ADDR);
2800                 err = min_t(int, err, 0);
2801                 if (err)
2802                         return err;
2803         }
2804 
2805         if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2806                 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2807 
2808         return err;
2809 }
2810 
2811 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2812                                         u16 reg_index)
2813 {
2814         struct e1000_hw *hw = &adapter->hw;
2815         u32 etqf = rd32(E1000_ETQF(reg_index));
2816 
2817         etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2818         etqf &= ~E1000_ETQF_QUEUE_MASK;
2819         etqf &= ~E1000_ETQF_FILTER_ENABLE;
2820 
2821         wr32(E1000_ETQF(reg_index), etqf);
2822 
2823         adapter->etype_bitmap[reg_index] = false;
2824 }
2825 
2826 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2827                                        u16 vlan_tci)
2828 {
2829         struct e1000_hw *hw = &adapter->hw;
2830         u8 vlan_priority;
2831         u32 vlapqf;
2832 
2833         vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2834 
2835         vlapqf = rd32(E1000_VLAPQF);
2836         vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2837         vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2838                                                 E1000_VLAPQF_QUEUE_MASK);
2839 
2840         wr32(E1000_VLAPQF, vlapqf);
2841 }
2842 
2843 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2844 {
2845         if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2846                 igb_clear_etype_filter_regs(adapter,
2847                                             input->etype_reg_index);
2848 
2849         if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2850                 igb_clear_vlan_prio_filter(adapter,
2851                                            ntohs(input->filter.vlan_tci));
2852 
2853         if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2854                 igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2855                                             input->action,
2856                                             IGB_MAC_STATE_SRC_ADDR);
2857 
2858         if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2859                 igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2860                                             input->action, 0);
2861 
2862         return 0;
2863 }
2864 
2865 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2866                                         struct igb_nfc_filter *input,
2867                                         u16 sw_idx)
2868 {
2869         struct igb_nfc_filter *rule, *parent;
2870         int err = -EINVAL;
2871 
2872         parent = NULL;
2873         rule = NULL;
2874 
2875         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2876                 /* hash found, or no matching entry */
2877                 if (rule->sw_idx >= sw_idx)
2878                         break;
2879                 parent = rule;
2880         }
2881 
2882         /* if there is an old rule occupying our place remove it */
2883         if (rule && (rule->sw_idx == sw_idx)) {
2884                 if (!input)
2885                         err = igb_erase_filter(adapter, rule);
2886 
2887                 hlist_del(&rule->nfc_node);
2888                 kfree(rule);
2889                 adapter->nfc_filter_count--;
2890         }
2891 
2892         /* If no input this was a delete, err should be 0 if a rule was
2893          * successfully found and removed from the list else -EINVAL
2894          */
2895         if (!input)
2896                 return err;
2897 
2898         /* initialize node */
2899         INIT_HLIST_NODE(&input->nfc_node);
2900 
2901         /* add filter to the list */
2902         if (parent)
2903                 hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2904         else
2905                 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2906 
2907         /* update counts */
2908         adapter->nfc_filter_count++;
2909 
2910         return 0;
2911 }
2912 
2913 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2914                                      struct ethtool_rxnfc *cmd)
2915 {
2916         struct net_device *netdev = adapter->netdev;
2917         struct ethtool_rx_flow_spec *fsp =
2918                 (struct ethtool_rx_flow_spec *)&cmd->fs;
2919         struct igb_nfc_filter *input, *rule;
2920         int err = 0;
2921 
2922         if (!(netdev->hw_features & NETIF_F_NTUPLE))
2923                 return -EOPNOTSUPP;
2924 
2925         /* Don't allow programming if the action is a queue greater than
2926          * the number of online Rx queues.
2927          */
2928         if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2929             (fsp->ring_cookie >= adapter->num_rx_queues)) {
2930                 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2931                 return -EINVAL;
2932         }
2933 
2934         /* Don't allow indexes to exist outside of available space */
2935         if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2936                 dev_err(&adapter->pdev->dev, "Location out of range\n");
2937                 return -EINVAL;
2938         }
2939 
2940         if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2941                 return -EINVAL;
2942 
2943         input = kzalloc(sizeof(*input), GFP_KERNEL);
2944         if (!input)
2945                 return -ENOMEM;
2946 
2947         if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2948                 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2949                 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2950         }
2951 
2952         /* Only support matching addresses by the full mask */
2953         if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2954                 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2955                 ether_addr_copy(input->filter.src_addr,
2956                                 fsp->h_u.ether_spec.h_source);
2957         }
2958 
2959         /* Only support matching addresses by the full mask */
2960         if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2961                 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2962                 ether_addr_copy(input->filter.dst_addr,
2963                                 fsp->h_u.ether_spec.h_dest);
2964         }
2965 
2966         if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2967                 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2968                         err = -EINVAL;
2969                         goto err_out;
2970                 }
2971                 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2972                 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2973         }
2974 
2975         input->action = fsp->ring_cookie;
2976         input->sw_idx = fsp->location;
2977 
2978         spin_lock(&adapter->nfc_lock);
2979 
2980         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2981                 if (!memcmp(&input->filter, &rule->filter,
2982                             sizeof(input->filter))) {
2983                         err = -EEXIST;
2984                         dev_err(&adapter->pdev->dev,
2985                                 "ethtool: this filter is already set\n");
2986                         goto err_out_w_lock;
2987                 }
2988         }
2989 
2990         err = igb_add_filter(adapter, input);
2991         if (err)
2992                 goto err_out_w_lock;
2993 
2994         igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2995 
2996         spin_unlock(&adapter->nfc_lock);
2997         return 0;
2998 
2999 err_out_w_lock:
3000         spin_unlock(&adapter->nfc_lock);
3001 err_out:
3002         kfree(input);
3003         return err;
3004 }
3005 
3006 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
3007                                      struct ethtool_rxnfc *cmd)
3008 {
3009         struct ethtool_rx_flow_spec *fsp =
3010                 (struct ethtool_rx_flow_spec *)&cmd->fs;
3011         int err;
3012 
3013         spin_lock(&adapter->nfc_lock);
3014         err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3015         spin_unlock(&adapter->nfc_lock);
3016 
3017         return err;
3018 }
3019 
3020 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3021 {
3022         struct igb_adapter *adapter = netdev_priv(dev);
3023         int ret = -EOPNOTSUPP;
3024 
3025         switch (cmd->cmd) {
3026         case ETHTOOL_SRXFH:
3027                 ret = igb_set_rss_hash_opt(adapter, cmd);
3028                 break;
3029         case ETHTOOL_SRXCLSRLINS:
3030                 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3031                 break;
3032         case ETHTOOL_SRXCLSRLDEL:
3033                 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3034         default:
3035                 break;
3036         }
3037 
3038         return ret;
3039 }
3040 
3041 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3042 {
3043         struct igb_adapter *adapter = netdev_priv(netdev);
3044         struct e1000_hw *hw = &adapter->hw;
3045         u32 ret_val;
3046         u16 phy_data;
3047 
3048         if ((hw->mac.type < e1000_i350) ||
3049             (hw->phy.media_type != e1000_media_type_copper))
3050                 return -EOPNOTSUPP;
3051 
3052         edata->supported = (SUPPORTED_1000baseT_Full |
3053                             SUPPORTED_100baseT_Full);
3054         if (!hw->dev_spec._82575.eee_disable)
3055                 edata->advertised =
3056                         mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3057 
3058         /* The IPCNFG and EEER registers are not supported on I354. */
3059         if (hw->mac.type == e1000_i354) {
3060                 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3061         } else {
3062                 u32 eeer;
3063 
3064                 eeer = rd32(E1000_EEER);
3065 
3066                 /* EEE status on negotiated link */
3067                 if (eeer & E1000_EEER_EEE_NEG)
3068                         edata->eee_active = true;
3069 
3070                 if (eeer & E1000_EEER_TX_LPI_EN)
3071                         edata->tx_lpi_enabled = true;
3072         }
3073 
3074         /* EEE Link Partner Advertised */
3075         switch (hw->mac.type) {
3076         case e1000_i350:
3077                 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3078                                            &phy_data);
3079                 if (ret_val)
3080                         return -ENODATA;
3081 
3082                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3083                 break;
3084         case e1000_i354:
3085         case e1000_i210:
3086         case e1000_i211:
3087                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3088                                              E1000_EEE_LP_ADV_DEV_I210,
3089                                              &phy_data);
3090                 if (ret_val)
3091                         return -ENODATA;
3092 
3093                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3094 
3095                 break;
3096         default:
3097                 break;
3098         }
3099 
3100         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3101 
3102         if ((hw->mac.type == e1000_i354) &&
3103             (edata->eee_enabled))
3104                 edata->tx_lpi_enabled = true;
3105 
3106         /* Report correct negotiated EEE status for devices that
3107          * wrongly report EEE at half-duplex
3108          */
3109         if (adapter->link_duplex == HALF_DUPLEX) {
3110                 edata->eee_enabled = false;
3111                 edata->eee_active = false;
3112                 edata->tx_lpi_enabled = false;
3113                 edata->advertised &= ~edata->advertised;
3114         }
3115 
3116         return 0;
3117 }
3118 
3119 static int igb_set_eee(struct net_device *netdev,
3120                        struct ethtool_eee *edata)
3121 {
3122         struct igb_adapter *adapter = netdev_priv(netdev);
3123         struct e1000_hw *hw = &adapter->hw;
3124         struct ethtool_eee eee_curr;
3125         bool adv1g_eee = true, adv100m_eee = true;
3126         s32 ret_val;
3127 
3128         if ((hw->mac.type < e1000_i350) ||
3129             (hw->phy.media_type != e1000_media_type_copper))
3130                 return -EOPNOTSUPP;
3131 
3132         memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3133 
3134         ret_val = igb_get_eee(netdev, &eee_curr);
3135         if (ret_val)
3136                 return ret_val;
3137 
3138         if (eee_curr.eee_enabled) {
3139                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3140                         dev_err(&adapter->pdev->dev,
3141                                 "Setting EEE tx-lpi is not supported\n");
3142                         return -EINVAL;
3143                 }
3144 
3145                 /* Tx LPI timer is not implemented currently */
3146                 if (edata->tx_lpi_timer) {
3147                         dev_err(&adapter->pdev->dev,
3148                                 "Setting EEE Tx LPI timer is not supported\n");
3149                         return -EINVAL;
3150                 }
3151 
3152                 if (!edata->advertised || (edata->advertised &
3153                     ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3154                         dev_err(&adapter->pdev->dev,
3155                                 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3156                         return -EINVAL;
3157                 }
3158                 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3159                 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3160 
3161         } else if (!edata->eee_enabled) {
3162                 dev_err(&adapter->pdev->dev,
3163                         "Setting EEE options are not supported with EEE disabled\n");
3164                 return -EINVAL;
3165         }
3166 
3167         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3168         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3169                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3170                 adapter->flags |= IGB_FLAG_EEE;
3171 
3172                 /* reset link */
3173                 if (netif_running(netdev))
3174                         igb_reinit_locked(adapter);
3175                 else
3176                         igb_reset(adapter);
3177         }
3178 
3179         if (hw->mac.type == e1000_i354)
3180                 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3181         else
3182                 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3183 
3184         if (ret_val) {
3185                 dev_err(&adapter->pdev->dev,
3186                         "Problem setting EEE advertisement options\n");
3187                 return -EINVAL;
3188         }
3189 
3190         return 0;
3191 }
3192 
3193 static int igb_get_module_info(struct net_device *netdev,
3194                                struct ethtool_modinfo *modinfo)
3195 {
3196         struct igb_adapter *adapter = netdev_priv(netdev);
3197         struct e1000_hw *hw = &adapter->hw;
3198         u32 status = 0;
3199         u16 sff8472_rev, addr_mode;
3200         bool page_swap = false;
3201 
3202         if ((hw->phy.media_type == e1000_media_type_copper) ||
3203             (hw->phy.media_type == e1000_media_type_unknown))
3204                 return -EOPNOTSUPP;
3205 
3206         /* Check whether we support SFF-8472 or not */
3207         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3208         if (status)
3209                 return -EIO;
3210 
3211         /* addressing mode is not supported */
3212         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3213         if (status)
3214                 return -EIO;
3215 
3216         /* addressing mode is not supported */
3217         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3218                 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3219                 page_swap = true;
3220         }
3221 
3222         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3223                 /* We have an SFP, but it does not support SFF-8472 */
3224                 modinfo->type = ETH_MODULE_SFF_8079;
3225                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3226         } else {
3227                 /* We have an SFP which supports a revision of SFF-8472 */
3228                 modinfo->type = ETH_MODULE_SFF_8472;
3229                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3230         }
3231 
3232         return 0;
3233 }
3234 
3235 static int igb_get_module_eeprom(struct net_device *netdev,
3236                                  struct ethtool_eeprom *ee, u8 *data)
3237 {
3238         struct igb_adapter *adapter = netdev_priv(netdev);
3239         struct e1000_hw *hw = &adapter->hw;
3240         u32 status = 0;
3241         u16 *dataword;
3242         u16 first_word, last_word;
3243         int i = 0;
3244 
3245         if (ee->len == 0)
3246                 return -EINVAL;
3247 
3248         first_word = ee->offset >> 1;
3249         last_word = (ee->offset + ee->len - 1) >> 1;
3250 
3251         dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3252                                  GFP_KERNEL);
3253         if (!dataword)
3254                 return -ENOMEM;
3255 
3256         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3257         for (i = 0; i < last_word - first_word + 1; i++) {
3258                 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3259                                               &dataword[i]);
3260                 if (status) {
3261                         /* Error occurred while reading module */
3262                         kfree(dataword);
3263                         return -EIO;
3264                 }
3265 
3266                 be16_to_cpus(&dataword[i]);
3267         }
3268 
3269         memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3270         kfree(dataword);
3271 
3272         return 0;
3273 }
3274 
3275 static int igb_ethtool_begin(struct net_device *netdev)
3276 {
3277         struct igb_adapter *adapter = netdev_priv(netdev);
3278         pm_runtime_get_sync(&adapter->pdev->dev);
3279         return 0;
3280 }
3281 
3282 static void igb_ethtool_complete(struct net_device *netdev)
3283 {
3284         struct igb_adapter *adapter = netdev_priv(netdev);
3285         pm_runtime_put(&adapter->pdev->dev);
3286 }
3287 
3288 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3289 {
3290         return IGB_RETA_SIZE;
3291 }
3292 
3293 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3294                         u8 *hfunc)
3295 {
3296         struct igb_adapter *adapter = netdev_priv(netdev);
3297         int i;
3298 
3299         if (hfunc)
3300                 *hfunc = ETH_RSS_HASH_TOP;
3301         if (!indir)
3302                 return 0;
3303         for (i = 0; i < IGB_RETA_SIZE; i++)
3304                 indir[i] = adapter->rss_indir_tbl[i];
3305 
3306         return 0;
3307 }
3308 
3309 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3310 {
3311         struct e1000_hw *hw = &adapter->hw;
3312         u32 reg = E1000_RETA(0);
3313         u32 shift = 0;
3314         int i = 0;
3315 
3316         switch (hw->mac.type) {
3317         case e1000_82575:
3318                 shift = 6;
3319                 break;
3320         case e1000_82576:
3321                 /* 82576 supports 2 RSS queues for SR-IOV */
3322                 if (adapter->vfs_allocated_count)
3323                         shift = 3;
3324                 break;
3325         default:
3326                 break;
3327         }
3328 
3329         while (i < IGB_RETA_SIZE) {
3330                 u32 val = 0;
3331                 int j;
3332 
3333                 for (j = 3; j >= 0; j--) {
3334                         val <<= 8;
3335                         val |= adapter->rss_indir_tbl[i + j];
3336                 }
3337 
3338                 wr32(reg, val << shift);
3339                 reg += 4;
3340                 i += 4;
3341         }
3342 }
3343 
3344 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3345                         const u8 *key, const u8 hfunc)
3346 {
3347         struct igb_adapter *adapter = netdev_priv(netdev);
3348         struct e1000_hw *hw = &adapter->hw;
3349         int i;
3350         u32 num_queues;
3351 
3352         /* We do not allow change in unsupported parameters */
3353         if (key ||
3354             (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3355                 return -EOPNOTSUPP;
3356         if (!indir)
3357                 return 0;
3358 
3359         num_queues = adapter->rss_queues;
3360 
3361         switch (hw->mac.type) {
3362         case e1000_82576:
3363                 /* 82576 supports 2 RSS queues for SR-IOV */
3364                 if (adapter->vfs_allocated_count)
3365                         num_queues = 2;
3366                 break;
3367         default:
3368                 break;
3369         }
3370 
3371         /* Verify user input. */
3372         for (i = 0; i < IGB_RETA_SIZE; i++)
3373                 if (indir[i] >= num_queues)
3374                         return -EINVAL;
3375 
3376 
3377         for (i = 0; i < IGB_RETA_SIZE; i++)
3378                 adapter->rss_indir_tbl[i] = indir[i];
3379 
3380         igb_write_rss_indir_tbl(adapter);
3381 
3382         return 0;
3383 }
3384 
3385 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3386 {
3387         return igb_get_max_rss_queues(adapter);
3388 }
3389 
3390 static void igb_get_channels(struct net_device *netdev,
3391                              struct ethtool_channels *ch)
3392 {
3393         struct igb_adapter *adapter = netdev_priv(netdev);
3394 
3395         /* Report maximum channels */
3396         ch->max_combined = igb_max_channels(adapter);
3397 
3398         /* Report info for other vector */
3399         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3400                 ch->max_other = NON_Q_VECTORS;
3401                 ch->other_count = NON_Q_VECTORS;
3402         }
3403 
3404         ch->combined_count = adapter->rss_queues;
3405 }
3406 
3407 static int igb_set_channels(struct net_device *netdev,
3408                             struct ethtool_channels *ch)
3409 {
3410         struct igb_adapter *adapter = netdev_priv(netdev);
3411         unsigned int count = ch->combined_count;
3412         unsigned int max_combined = 0;
3413 
3414         /* Verify they are not requesting separate vectors */
3415         if (!count || ch->rx_count || ch->tx_count)
3416                 return -EINVAL;
3417 
3418         /* Verify other_count is valid and has not been changed */
3419         if (ch->other_count != NON_Q_VECTORS)
3420                 return -EINVAL;
3421 
3422         /* Verify the number of channels doesn't exceed hw limits */
3423         max_combined = igb_max_channels(adapter);
3424         if (count > max_combined)
3425                 return -EINVAL;
3426 
3427         if (count != adapter->rss_queues) {
3428                 adapter->rss_queues = count;
3429                 igb_set_flag_queue_pairs(adapter, max_combined);
3430 
3431                 /* Hardware has to reinitialize queues and interrupts to
3432                  * match the new configuration.
3433                  */
3434                 return igb_reinit_queues(adapter);
3435         }
3436 
3437         return 0;
3438 }
3439 
3440 static u32 igb_get_priv_flags(struct net_device *netdev)
3441 {
3442         struct igb_adapter *adapter = netdev_priv(netdev);
3443         u32 priv_flags = 0;
3444 
3445         if (adapter->flags & IGB_FLAG_RX_LEGACY)
3446                 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3447 
3448         return priv_flags;
3449 }
3450 
3451 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3452 {
3453         struct igb_adapter *adapter = netdev_priv(netdev);
3454         unsigned int flags = adapter->flags;
3455 
3456         flags &= ~IGB_FLAG_RX_LEGACY;
3457         if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3458                 flags |= IGB_FLAG_RX_LEGACY;
3459 
3460         if (flags != adapter->flags) {
3461                 adapter->flags = flags;
3462 
3463                 /* reset interface to repopulate queues */
3464                 if (netif_running(netdev))
3465                         igb_reinit_locked(adapter);
3466         }
3467 
3468         return 0;
3469 }
3470 
3471 static const struct ethtool_ops igb_ethtool_ops = {
3472         .get_drvinfo            = igb_get_drvinfo,
3473         .get_regs_len           = igb_get_regs_len,
3474         .get_regs               = igb_get_regs,
3475         .get_wol                = igb_get_wol,
3476         .set_wol                = igb_set_wol,
3477         .get_msglevel           = igb_get_msglevel,
3478         .set_msglevel           = igb_set_msglevel,
3479         .nway_reset             = igb_nway_reset,
3480         .get_link               = igb_get_link,
3481         .get_eeprom_len         = igb_get_eeprom_len,
3482         .get_eeprom             = igb_get_eeprom,
3483         .set_eeprom             = igb_set_eeprom,
3484         .get_ringparam          = igb_get_ringparam,
3485         .set_ringparam          = igb_set_ringparam,
3486         .get_pauseparam         = igb_get_pauseparam,
3487         .set_pauseparam         = igb_set_pauseparam,
3488         .self_test              = igb_diag_test,
3489         .get_strings            = igb_get_strings,
3490         .set_phys_id            = igb_set_phys_id,
3491         .get_sset_count         = igb_get_sset_count,
3492         .get_ethtool_stats      = igb_get_ethtool_stats,
3493         .get_coalesce           = igb_get_coalesce,
3494         .set_coalesce           = igb_set_coalesce,
3495         .get_ts_info            = igb_get_ts_info,
3496         .get_rxnfc              = igb_get_rxnfc,
3497         .set_rxnfc              = igb_set_rxnfc,
3498         .get_eee                = igb_get_eee,
3499         .set_eee                = igb_set_eee,
3500         .get_module_info        = igb_get_module_info,
3501         .get_module_eeprom      = igb_get_module_eeprom,
3502         .get_rxfh_indir_size    = igb_get_rxfh_indir_size,
3503         .get_rxfh               = igb_get_rxfh,
3504         .set_rxfh               = igb_set_rxfh,
3505         .get_channels           = igb_get_channels,
3506         .set_channels           = igb_set_channels,
3507         .get_priv_flags         = igb_get_priv_flags,
3508         .set_priv_flags         = igb_set_priv_flags,
3509         .begin                  = igb_ethtool_begin,
3510         .complete               = igb_ethtool_complete,
3511         .get_link_ksettings     = igb_get_link_ksettings,
3512         .set_link_ksettings     = igb_set_link_ksettings,
3513 };
3514 
3515 void igb_set_ethtool_ops(struct net_device *netdev)
3516 {
3517         netdev->ethtool_ops = &igb_ethtool_ops;
3518 }

/* [<][>][^][v][top][bottom][index][help] */