root/drivers/net/ethernet/intel/ice/ice_lib.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ice_setup_rx_ctx
  2. ice_setup_tx_ctx
  3. ice_pf_rxq_wait
  4. ice_vsi_ctrl_rx_ring
  5. ice_vsi_ctrl_rx_rings
  6. ice_vsi_alloc_arrays
  7. ice_vsi_set_num_desc
  8. ice_vsi_set_num_qs
  9. ice_get_free_slot
  10. ice_vsi_delete
  11. ice_vsi_free_arrays
  12. ice_vsi_clear
  13. ice_msix_clean_rings
  14. ice_vsi_alloc
  15. __ice_vsi_get_qs_contig
  16. __ice_vsi_get_qs_sc
  17. __ice_vsi_get_qs
  18. ice_vsi_get_qs
  19. ice_vsi_put_qs
  20. ice_is_safe_mode
  21. ice_rss_clean
  22. ice_vsi_set_rss_params
  23. ice_set_dflt_vsi_ctx
  24. ice_vsi_setup_q_map
  25. ice_set_rss_vsi_ctx
  26. ice_vsi_init
  27. ice_free_q_vector
  28. ice_vsi_free_q_vectors
  29. ice_vsi_alloc_q_vector
  30. ice_vsi_alloc_q_vectors
  31. ice_vsi_setup_vector_base
  32. ice_vsi_clear_rings
  33. ice_vsi_alloc_rings
  34. ice_vsi_map_rings_to_vectors
  35. ice_vsi_manage_rss_lut
  36. ice_vsi_cfg_rss_lut_key
  37. ice_add_mac_to_list
  38. ice_update_eth_stats
  39. ice_free_fltr_list
  40. ice_vsi_add_vlan
  41. ice_vsi_kill_vlan
  42. ice_vsi_cfg_rxqs
  43. ice_vsi_cfg_txq
  44. ice_vsi_cfg_txqs
  45. ice_vsi_cfg_lan_txqs
  46. ice_intrl_usec_to_reg
  47. ice_cfg_itr_gran
  48. ice_cfg_itr
  49. ice_cfg_txq_interrupt
  50. ice_cfg_rxq_interrupt
  51. ice_vsi_cfg_msix
  52. ice_vsi_manage_vlan_insertion
  53. ice_vsi_manage_vlan_stripping
  54. ice_vsi_start_rx_rings
  55. ice_vsi_stop_rx_rings
  56. ice_trigger_sw_intr
  57. ice_vsi_stop_tx_ring
  58. ice_fill_txq_meta
  59. ice_vsi_stop_tx_rings
  60. ice_vsi_stop_lan_tx_rings
  61. ice_cfg_vlan_pruning
  62. ice_vsi_set_tc_cfg
  63. ice_vsi_set_q_vectors_reg_idx
  64. ice_vsi_add_rem_eth_mac
  65. ice_cfg_sw_lldp
  66. ice_vsi_setup
  67. ice_vsi_release_msix
  68. ice_vsi_free_irq
  69. ice_vsi_free_tx_rings
  70. ice_vsi_free_rx_rings
  71. ice_vsi_close
  72. ice_free_res
  73. ice_search_res
  74. ice_get_res
  75. ice_vsi_dis_irq
  76. ice_napi_del
  77. ice_vsi_release
  78. ice_vsi_rebuild
  79. ice_is_reset_in_progress
  80. ice_vsi_update_q_map
  81. ice_vsi_cfg_tc
  82. ice_nvm_version_str
  83. ice_vsi_cfg_mac_fltr

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright (c) 2018, Intel Corporation. */
   3 
   4 #include "ice.h"
   5 #include "ice_lib.h"
   6 #include "ice_dcb_lib.h"
   7 
   8 /**
   9  * ice_setup_rx_ctx - Configure a receive ring context
  10  * @ring: The Rx ring to configure
  11  *
  12  * Configure the Rx descriptor ring in RLAN context.
  13  */
  14 static int ice_setup_rx_ctx(struct ice_ring *ring)
  15 {
  16         struct ice_vsi *vsi = ring->vsi;
  17         struct ice_hw *hw = &vsi->back->hw;
  18         u32 rxdid = ICE_RXDID_FLEX_NIC;
  19         struct ice_rlan_ctx rlan_ctx;
  20         u32 regval;
  21         u16 pf_q;
  22         int err;
  23 
  24         /* what is Rx queue number in global space of 2K Rx queues */
  25         pf_q = vsi->rxq_map[ring->q_index];
  26 
  27         /* clear the context structure first */
  28         memset(&rlan_ctx, 0, sizeof(rlan_ctx));
  29 
  30         rlan_ctx.base = ring->dma >> 7;
  31 
  32         rlan_ctx.qlen = ring->count;
  33 
  34         /* Receive Packet Data Buffer Size.
  35          * The Packet Data Buffer Size is defined in 128 byte units.
  36          */
  37         rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
  38 
  39         /* use 32 byte descriptors */
  40         rlan_ctx.dsize = 1;
  41 
  42         /* Strip the Ethernet CRC bytes before the packet is posted to host
  43          * memory.
  44          */
  45         rlan_ctx.crcstrip = 1;
  46 
  47         /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
  48         rlan_ctx.l2tsel = 1;
  49 
  50         rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
  51         rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
  52         rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
  53 
  54         /* This controls whether VLAN is stripped from inner headers
  55          * The VLAN in the inner L2 header is stripped to the receive
  56          * descriptor if enabled by this flag.
  57          */
  58         rlan_ctx.showiv = 0;
  59 
  60         /* Max packet size for this queue - must not be set to a larger value
  61          * than 5 x DBUF
  62          */
  63         rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
  64                                ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
  65 
  66         /* Rx queue threshold in units of 64 */
  67         rlan_ctx.lrxqthresh = 1;
  68 
  69          /* Enable Flexible Descriptors in the queue context which
  70           * allows this driver to select a specific receive descriptor format
  71           */
  72         if (vsi->type != ICE_VSI_VF) {
  73                 regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
  74                 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
  75                         QRXFLXP_CNTXT_RXDID_IDX_M;
  76 
  77                 /* increasing context priority to pick up profile ID;
  78                  * default is 0x01; setting to 0x03 to ensure profile
  79                  * is programming if prev context is of same priority
  80                  */
  81                 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
  82                         QRXFLXP_CNTXT_RXDID_PRIO_M;
  83 
  84                 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
  85         }
  86 
  87         /* Absolute queue number out of 2K needs to be passed */
  88         err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
  89         if (err) {
  90                 dev_err(&vsi->back->pdev->dev,
  91                         "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
  92                         pf_q, err);
  93                 return -EIO;
  94         }
  95 
  96         if (vsi->type == ICE_VSI_VF)
  97                 return 0;
  98 
  99         /* init queue specific tail register */
 100         ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 101         writel(0, ring->tail);
 102         ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
 103 
 104         return 0;
 105 }
 106 
 107 /**
 108  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 109  * @ring: The Tx ring to configure
 110  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 111  * @pf_q: queue index in the PF space
 112  *
 113  * Configure the Tx descriptor ring in TLAN context.
 114  */
 115 static void
 116 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 117 {
 118         struct ice_vsi *vsi = ring->vsi;
 119         struct ice_hw *hw = &vsi->back->hw;
 120 
 121         tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 122 
 123         tlan_ctx->port_num = vsi->port_info->lport;
 124 
 125         /* Transmit Queue Length */
 126         tlan_ctx->qlen = ring->count;
 127 
 128         ice_set_cgd_num(tlan_ctx, ring);
 129 
 130         /* PF number */
 131         tlan_ctx->pf_num = hw->pf_id;
 132 
 133         /* queue belongs to a specific VSI type
 134          * VF / VM index should be programmed per vmvf_type setting:
 135          * for vmvf_type = VF, it is VF number between 0-256
 136          * for vmvf_type = VM, it is VM number between 0-767
 137          * for PF or EMP this field should be set to zero
 138          */
 139         switch (vsi->type) {
 140         case ICE_VSI_LB:
 141                 /* fall through */
 142         case ICE_VSI_PF:
 143                 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 144                 break;
 145         case ICE_VSI_VF:
 146                 /* Firmware expects vmvf_num to be absolute VF ID */
 147                 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
 148                 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 149                 break;
 150         default:
 151                 return;
 152         }
 153 
 154         /* make sure the context is associated with the right VSI */
 155         tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 156 
 157         tlan_ctx->tso_ena = ICE_TX_LEGACY;
 158         tlan_ctx->tso_qnum = pf_q;
 159 
 160         /* Legacy or Advanced Host Interface:
 161          * 0: Advanced Host Interface
 162          * 1: Legacy Host Interface
 163          */
 164         tlan_ctx->legacy_int = ICE_TX_LEGACY;
 165 }
 166 
 167 /**
 168  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 169  * @pf: the PF being configured
 170  * @pf_q: the PF queue
 171  * @ena: enable or disable state of the queue
 172  *
 173  * This routine will wait for the given Rx queue of the PF to reach the
 174  * enabled or disabled state.
 175  * Returns -ETIMEDOUT in case of failing to reach the requested state after
 176  * multiple retries; else will return 0 in case of success.
 177  */
 178 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 179 {
 180         int i;
 181 
 182         for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 183                 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 184                               QRX_CTRL_QENA_STAT_M))
 185                         return 0;
 186 
 187                 usleep_range(20, 40);
 188         }
 189 
 190         return -ETIMEDOUT;
 191 }
 192 
 193 /**
 194  * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
 195  * @vsi: the VSI being configured
 196  * @ena: start or stop the Rx rings
 197  * @rxq_idx: Rx queue index
 198  */
 199 #ifndef CONFIG_PCI_IOV
 200 static
 201 #endif /* !CONFIG_PCI_IOV */
 202 int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 203 {
 204         int pf_q = vsi->rxq_map[rxq_idx];
 205         struct ice_pf *pf = vsi->back;
 206         struct ice_hw *hw = &pf->hw;
 207         int ret = 0;
 208         u32 rx_reg;
 209 
 210         rx_reg = rd32(hw, QRX_CTRL(pf_q));
 211 
 212         /* Skip if the queue is already in the requested state */
 213         if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 214                 return 0;
 215 
 216         /* turn on/off the queue */
 217         if (ena)
 218                 rx_reg |= QRX_CTRL_QENA_REQ_M;
 219         else
 220                 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 221         wr32(hw, QRX_CTRL(pf_q), rx_reg);
 222 
 223         /* wait for the change to finish */
 224         ret = ice_pf_rxq_wait(pf, pf_q, ena);
 225         if (ret)
 226                 dev_err(&pf->pdev->dev,
 227                         "VSI idx %d Rx ring %d %sable timeout\n",
 228                         vsi->idx, pf_q, (ena ? "en" : "dis"));
 229 
 230         return ret;
 231 }
 232 
 233 /**
 234  * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
 235  * @vsi: the VSI being configured
 236  * @ena: start or stop the Rx rings
 237  */
 238 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
 239 {
 240         int i, ret = 0;
 241 
 242         for (i = 0; i < vsi->num_rxq; i++) {
 243                 ret = ice_vsi_ctrl_rx_ring(vsi, ena, i);
 244                 if (ret)
 245                         break;
 246         }
 247 
 248         return ret;
 249 }
 250 
 251 /**
 252  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
 253  * @vsi: VSI pointer
 254  *
 255  * On error: returns error code (negative)
 256  * On success: returns 0
 257  */
 258 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
 259 {
 260         struct ice_pf *pf = vsi->back;
 261 
 262         /* allocate memory for both Tx and Rx ring pointers */
 263         vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 264                                      sizeof(*vsi->tx_rings), GFP_KERNEL);
 265         if (!vsi->tx_rings)
 266                 return -ENOMEM;
 267 
 268         vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 269                                      sizeof(*vsi->rx_rings), GFP_KERNEL);
 270         if (!vsi->rx_rings)
 271                 goto err_rings;
 272 
 273         vsi->txq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 274                                     sizeof(*vsi->txq_map), GFP_KERNEL);
 275 
 276         if (!vsi->txq_map)
 277                 goto err_txq_map;
 278 
 279         vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 280                                     sizeof(*vsi->rxq_map), GFP_KERNEL);
 281         if (!vsi->rxq_map)
 282                 goto err_rxq_map;
 283 
 284 
 285         /* There is no need to allocate q_vectors for a loopback VSI. */
 286         if (vsi->type == ICE_VSI_LB)
 287                 return 0;
 288 
 289         /* allocate memory for q_vector pointers */
 290         vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
 291                                       sizeof(*vsi->q_vectors), GFP_KERNEL);
 292         if (!vsi->q_vectors)
 293                 goto err_vectors;
 294 
 295         return 0;
 296 
 297 err_vectors:
 298         devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 299 err_rxq_map:
 300         devm_kfree(&pf->pdev->dev, vsi->txq_map);
 301 err_txq_map:
 302         devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 303 err_rings:
 304         devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 305         return -ENOMEM;
 306 }
 307 
 308 /**
 309  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 310  * @vsi: the VSI being configured
 311  */
 312 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 313 {
 314         switch (vsi->type) {
 315         case ICE_VSI_PF:
 316                 /* fall through */
 317         case ICE_VSI_LB:
 318                 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 319                 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 320                 break;
 321         default:
 322                 dev_dbg(&vsi->back->pdev->dev,
 323                         "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 324                         vsi->type);
 325                 break;
 326         }
 327 }
 328 
 329 /**
 330  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 331  * @vsi: the VSI being configured
 332  * @vf_id: ID of the VF being configured
 333  *
 334  * Return 0 on success and a negative value on error
 335  */
 336 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 337 {
 338         struct ice_pf *pf = vsi->back;
 339         struct ice_vf *vf = NULL;
 340 
 341         if (vsi->type == ICE_VSI_VF)
 342                 vsi->vf_id = vf_id;
 343 
 344         switch (vsi->type) {
 345         case ICE_VSI_PF:
 346                 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
 347                                        num_online_cpus());
 348 
 349                 pf->num_lan_tx = vsi->alloc_txq;
 350 
 351                 /* only 1 Rx queue unless RSS is enabled */
 352                 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 353                         vsi->alloc_rxq = 1;
 354                 else
 355                         vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
 356                                                num_online_cpus());
 357 
 358                 pf->num_lan_rx = vsi->alloc_rxq;
 359 
 360                 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
 361                 break;
 362         case ICE_VSI_VF:
 363                 vf = &pf->vf[vsi->vf_id];
 364                 vsi->alloc_txq = vf->num_vf_qs;
 365                 vsi->alloc_rxq = vf->num_vf_qs;
 366                 /* pf->num_vf_msix includes (VF miscellaneous vector +
 367                  * data queue interrupts). Since vsi->num_q_vectors is number
 368                  * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 369                  * original vector count
 370                  */
 371                 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
 372                 break;
 373         case ICE_VSI_LB:
 374                 vsi->alloc_txq = 1;
 375                 vsi->alloc_rxq = 1;
 376                 break;
 377         default:
 378                 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 379                 break;
 380         }
 381 
 382         ice_vsi_set_num_desc(vsi);
 383 }
 384 
 385 /**
 386  * ice_get_free_slot - get the next non-NULL location index in array
 387  * @array: array to search
 388  * @size: size of the array
 389  * @curr: last known occupied index to be used as a search hint
 390  *
 391  * void * is being used to keep the functionality generic. This lets us use this
 392  * function on any array of pointers.
 393  */
 394 static int ice_get_free_slot(void *array, int size, int curr)
 395 {
 396         int **tmp_array = (int **)array;
 397         int next;
 398 
 399         if (curr < (size - 1) && !tmp_array[curr + 1]) {
 400                 next = curr + 1;
 401         } else {
 402                 int i = 0;
 403 
 404                 while ((i < size) && (tmp_array[i]))
 405                         i++;
 406                 if (i == size)
 407                         next = ICE_NO_VSI;
 408                 else
 409                         next = i;
 410         }
 411         return next;
 412 }
 413 
 414 /**
 415  * ice_vsi_delete - delete a VSI from the switch
 416  * @vsi: pointer to VSI being removed
 417  */
 418 void ice_vsi_delete(struct ice_vsi *vsi)
 419 {
 420         struct ice_pf *pf = vsi->back;
 421         struct ice_vsi_ctx *ctxt;
 422         enum ice_status status;
 423 
 424         ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 425         if (!ctxt)
 426                 return;
 427 
 428         if (vsi->type == ICE_VSI_VF)
 429                 ctxt->vf_num = vsi->vf_id;
 430         ctxt->vsi_num = vsi->vsi_num;
 431 
 432         memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 433 
 434         status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 435         if (status)
 436                 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
 437                         vsi->vsi_num);
 438 
 439         devm_kfree(&pf->pdev->dev, ctxt);
 440 }
 441 
 442 /**
 443  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 444  * @vsi: pointer to VSI being cleared
 445  */
 446 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 447 {
 448         struct ice_pf *pf = vsi->back;
 449 
 450         /* free the ring and vector containers */
 451         if (vsi->q_vectors) {
 452                 devm_kfree(&pf->pdev->dev, vsi->q_vectors);
 453                 vsi->q_vectors = NULL;
 454         }
 455         if (vsi->tx_rings) {
 456                 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 457                 vsi->tx_rings = NULL;
 458         }
 459         if (vsi->rx_rings) {
 460                 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 461                 vsi->rx_rings = NULL;
 462         }
 463         if (vsi->txq_map) {
 464                 devm_kfree(&pf->pdev->dev, vsi->txq_map);
 465                 vsi->txq_map = NULL;
 466         }
 467         if (vsi->rxq_map) {
 468                 devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 469                 vsi->rxq_map = NULL;
 470         }
 471 }
 472 
 473 /**
 474  * ice_vsi_clear - clean up and deallocate the provided VSI
 475  * @vsi: pointer to VSI being cleared
 476  *
 477  * This deallocates the VSI's queue resources, removes it from the PF's
 478  * VSI array if necessary, and deallocates the VSI
 479  *
 480  * Returns 0 on success, negative on failure
 481  */
 482 int ice_vsi_clear(struct ice_vsi *vsi)
 483 {
 484         struct ice_pf *pf = NULL;
 485 
 486         if (!vsi)
 487                 return 0;
 488 
 489         if (!vsi->back)
 490                 return -EINVAL;
 491 
 492         pf = vsi->back;
 493 
 494         if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 495                 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
 496                         vsi->idx);
 497                 return -EINVAL;
 498         }
 499 
 500         mutex_lock(&pf->sw_mutex);
 501         /* updates the PF for this cleared VSI */
 502 
 503         pf->vsi[vsi->idx] = NULL;
 504         if (vsi->idx < pf->next_vsi)
 505                 pf->next_vsi = vsi->idx;
 506 
 507         ice_vsi_free_arrays(vsi);
 508         mutex_unlock(&pf->sw_mutex);
 509         devm_kfree(&pf->pdev->dev, vsi);
 510 
 511         return 0;
 512 }
 513 
 514 /**
 515  * ice_msix_clean_rings - MSIX mode Interrupt Handler
 516  * @irq: interrupt number
 517  * @data: pointer to a q_vector
 518  */
 519 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 520 {
 521         struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 522 
 523         if (!q_vector->tx.ring && !q_vector->rx.ring)
 524                 return IRQ_HANDLED;
 525 
 526         napi_schedule(&q_vector->napi);
 527 
 528         return IRQ_HANDLED;
 529 }
 530 
 531 /**
 532  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 533  * @pf: board private structure
 534  * @type: type of VSI
 535  * @vf_id: ID of the VF being configured
 536  *
 537  * returns a pointer to a VSI on success, NULL on failure.
 538  */
 539 static struct ice_vsi *
 540 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
 541 {
 542         struct ice_vsi *vsi = NULL;
 543 
 544         /* Need to protect the allocation of the VSIs at the PF level */
 545         mutex_lock(&pf->sw_mutex);
 546 
 547         /* If we have already allocated our maximum number of VSIs,
 548          * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 549          * is available to be populated
 550          */
 551         if (pf->next_vsi == ICE_NO_VSI) {
 552                 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
 553                 goto unlock_pf;
 554         }
 555 
 556         vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
 557         if (!vsi)
 558                 goto unlock_pf;
 559 
 560         vsi->type = type;
 561         vsi->back = pf;
 562         set_bit(__ICE_DOWN, vsi->state);
 563 
 564         vsi->idx = pf->next_vsi;
 565 
 566         if (type == ICE_VSI_VF)
 567                 ice_vsi_set_num_qs(vsi, vf_id);
 568         else
 569                 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 570 
 571         switch (vsi->type) {
 572         case ICE_VSI_PF:
 573                 if (ice_vsi_alloc_arrays(vsi))
 574                         goto err_rings;
 575 
 576                 /* Setup default MSIX irq handler for VSI */
 577                 vsi->irq_handler = ice_msix_clean_rings;
 578                 break;
 579         case ICE_VSI_VF:
 580                 if (ice_vsi_alloc_arrays(vsi))
 581                         goto err_rings;
 582                 break;
 583         case ICE_VSI_LB:
 584                 if (ice_vsi_alloc_arrays(vsi))
 585                         goto err_rings;
 586                 break;
 587         default:
 588                 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 589                 goto unlock_pf;
 590         }
 591 
 592         /* fill VSI slot in the PF struct */
 593         pf->vsi[pf->next_vsi] = vsi;
 594 
 595         /* prepare pf->next_vsi for next use */
 596         pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 597                                          pf->next_vsi);
 598         goto unlock_pf;
 599 
 600 err_rings:
 601         devm_kfree(&pf->pdev->dev, vsi);
 602         vsi = NULL;
 603 unlock_pf:
 604         mutex_unlock(&pf->sw_mutex);
 605         return vsi;
 606 }
 607 
 608 /**
 609  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 610  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 611  *
 612  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 613  */
 614 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 615 {
 616         int offset, i;
 617 
 618         mutex_lock(qs_cfg->qs_mutex);
 619         offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 620                                             0, qs_cfg->q_count, 0);
 621         if (offset >= qs_cfg->pf_map_size) {
 622                 mutex_unlock(qs_cfg->qs_mutex);
 623                 return -ENOMEM;
 624         }
 625 
 626         bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 627         for (i = 0; i < qs_cfg->q_count; i++)
 628                 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
 629         mutex_unlock(qs_cfg->qs_mutex);
 630 
 631         return 0;
 632 }
 633 
 634 /**
 635  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 636  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 637  *
 638  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 639  */
 640 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 641 {
 642         int i, index = 0;
 643 
 644         mutex_lock(qs_cfg->qs_mutex);
 645         for (i = 0; i < qs_cfg->q_count; i++) {
 646                 index = find_next_zero_bit(qs_cfg->pf_map,
 647                                            qs_cfg->pf_map_size, index);
 648                 if (index >= qs_cfg->pf_map_size)
 649                         goto err_scatter;
 650                 set_bit(index, qs_cfg->pf_map);
 651                 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
 652         }
 653         mutex_unlock(qs_cfg->qs_mutex);
 654 
 655         return 0;
 656 err_scatter:
 657         for (index = 0; index < i; index++) {
 658                 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 659                 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 660         }
 661         mutex_unlock(qs_cfg->qs_mutex);
 662 
 663         return -ENOMEM;
 664 }
 665 
 666 /**
 667  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 668  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 669  *
 670  * This function first tries to find contiguous space. If it is not successful,
 671  * it tries with the scatter approach.
 672  *
 673  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 674  */
 675 static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 676 {
 677         int ret = 0;
 678 
 679         ret = __ice_vsi_get_qs_contig(qs_cfg);
 680         if (ret) {
 681                 /* contig failed, so try with scatter approach */
 682                 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 683                 qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
 684                                         qs_cfg->scatter_count);
 685                 ret = __ice_vsi_get_qs_sc(qs_cfg);
 686         }
 687         return ret;
 688 }
 689 
 690 /**
 691  * ice_vsi_get_qs - Assign queues from PF to VSI
 692  * @vsi: the VSI to assign queues to
 693  *
 694  * Returns 0 on success and a negative value on error
 695  */
 696 static int ice_vsi_get_qs(struct ice_vsi *vsi)
 697 {
 698         struct ice_pf *pf = vsi->back;
 699         struct ice_qs_cfg tx_qs_cfg = {
 700                 .qs_mutex = &pf->avail_q_mutex,
 701                 .pf_map = pf->avail_txqs,
 702                 .pf_map_size = pf->max_pf_txqs,
 703                 .q_count = vsi->alloc_txq,
 704                 .scatter_count = ICE_MAX_SCATTER_TXQS,
 705                 .vsi_map = vsi->txq_map,
 706                 .vsi_map_offset = 0,
 707                 .mapping_mode = vsi->tx_mapping_mode
 708         };
 709         struct ice_qs_cfg rx_qs_cfg = {
 710                 .qs_mutex = &pf->avail_q_mutex,
 711                 .pf_map = pf->avail_rxqs,
 712                 .pf_map_size = pf->max_pf_rxqs,
 713                 .q_count = vsi->alloc_rxq,
 714                 .scatter_count = ICE_MAX_SCATTER_RXQS,
 715                 .vsi_map = vsi->rxq_map,
 716                 .vsi_map_offset = 0,
 717                 .mapping_mode = vsi->rx_mapping_mode
 718         };
 719         int ret = 0;
 720 
 721         vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
 722         vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
 723 
 724         ret = __ice_vsi_get_qs(&tx_qs_cfg);
 725         if (!ret)
 726                 ret = __ice_vsi_get_qs(&rx_qs_cfg);
 727 
 728         return ret;
 729 }
 730 
 731 /**
 732  * ice_vsi_put_qs - Release queues from VSI to PF
 733  * @vsi: the VSI that is going to release queues
 734  */
 735 void ice_vsi_put_qs(struct ice_vsi *vsi)
 736 {
 737         struct ice_pf *pf = vsi->back;
 738         int i;
 739 
 740         mutex_lock(&pf->avail_q_mutex);
 741 
 742         for (i = 0; i < vsi->alloc_txq; i++) {
 743                 clear_bit(vsi->txq_map[i], pf->avail_txqs);
 744                 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 745         }
 746 
 747         for (i = 0; i < vsi->alloc_rxq; i++) {
 748                 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 749                 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 750         }
 751 
 752         mutex_unlock(&pf->avail_q_mutex);
 753 }
 754 
 755 /**
 756  * ice_is_safe_mode
 757  * @pf: pointer to the PF struct
 758  *
 759  * returns true if driver is in safe mode, false otherwise
 760  */
 761 bool ice_is_safe_mode(struct ice_pf *pf)
 762 {
 763         return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 764 }
 765 
 766 /**
 767  * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
 768  * @vsi: the VSI being removed
 769  */
 770 static void ice_rss_clean(struct ice_vsi *vsi)
 771 {
 772         struct ice_pf *pf;
 773 
 774         pf = vsi->back;
 775 
 776         if (vsi->rss_hkey_user)
 777                 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
 778         if (vsi->rss_lut_user)
 779                 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
 780 }
 781 
 782 /**
 783  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 784  * @vsi: the VSI being configured
 785  */
 786 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 787 {
 788         struct ice_hw_common_caps *cap;
 789         struct ice_pf *pf = vsi->back;
 790 
 791         if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 792                 vsi->rss_size = 1;
 793                 return;
 794         }
 795 
 796         cap = &pf->hw.func_caps.common_cap;
 797         switch (vsi->type) {
 798         case ICE_VSI_PF:
 799                 /* PF VSI will inherit RSS instance of PF */
 800                 vsi->rss_table_size = cap->rss_table_size;
 801                 vsi->rss_size = min_t(int, num_online_cpus(),
 802                                       BIT(cap->rss_table_entry_width));
 803                 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 804                 break;
 805         case ICE_VSI_VF:
 806                 /* VF VSI will gets a small RSS table
 807                  * For VSI_LUT, LUT size should be set to 64 bytes
 808                  */
 809                 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 810                 vsi->rss_size = min_t(int, num_online_cpus(),
 811                                       BIT(cap->rss_table_entry_width));
 812                 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 813                 break;
 814         case ICE_VSI_LB:
 815                 break;
 816         default:
 817                 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
 818                          vsi->type);
 819                 break;
 820         }
 821 }
 822 
 823 /**
 824  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 825  * @ctxt: the VSI context being set
 826  *
 827  * This initializes a default VSI context for all sections except the Queues.
 828  */
 829 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 830 {
 831         u32 table = 0;
 832 
 833         memset(&ctxt->info, 0, sizeof(ctxt->info));
 834         /* VSI's should be allocated from shared pool */
 835         ctxt->alloc_from_pool = true;
 836         /* Src pruning enabled by default */
 837         ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 838         /* Traffic from VSI can be sent to LAN */
 839         ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 840         /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 841          * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 842          * packets untagged/tagged.
 843          */
 844         ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 845                                   ICE_AQ_VSI_VLAN_MODE_M) >>
 846                                  ICE_AQ_VSI_VLAN_MODE_S);
 847         /* Have 1:1 UP mapping for both ingress/egress tables */
 848         table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 849         table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 850         table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 851         table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 852         table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 853         table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 854         table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 855         table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 856         ctxt->info.ingress_table = cpu_to_le32(table);
 857         ctxt->info.egress_table = cpu_to_le32(table);
 858         /* Have 1:1 UP mapping for outer to inner UP table */
 859         ctxt->info.outer_up_table = cpu_to_le32(table);
 860         /* No Outer tag support outer_tag_flags remains to zero */
 861 }
 862 
 863 /**
 864  * ice_vsi_setup_q_map - Setup a VSI queue map
 865  * @vsi: the VSI being configured
 866  * @ctxt: VSI context structure
 867  */
 868 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 869 {
 870         u16 offset = 0, qmap = 0, tx_count = 0;
 871         u16 qcount_tx = vsi->alloc_txq;
 872         u16 qcount_rx = vsi->alloc_rxq;
 873         u16 tx_numq_tc, rx_numq_tc;
 874         u16 pow = 0, max_rss = 0;
 875         bool ena_tc0 = false;
 876         u8 netdev_tc = 0;
 877         int i;
 878 
 879         /* at least TC0 should be enabled by default */
 880         if (vsi->tc_cfg.numtc) {
 881                 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 882                         ena_tc0 = true;
 883         } else {
 884                 ena_tc0 = true;
 885         }
 886 
 887         if (ena_tc0) {
 888                 vsi->tc_cfg.numtc++;
 889                 vsi->tc_cfg.ena_tc |= 1;
 890         }
 891 
 892         rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
 893         if (!rx_numq_tc)
 894                 rx_numq_tc = 1;
 895         tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
 896         if (!tx_numq_tc)
 897                 tx_numq_tc = 1;
 898 
 899         /* TC mapping is a function of the number of Rx queues assigned to the
 900          * VSI for each traffic class and the offset of these queues.
 901          * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 902          * queues allocated to TC0. No:of queues is a power-of-2.
 903          *
 904          * If TC is not enabled, the queue offset is set to 0, and allocate one
 905          * queue, this way, traffic for the given TC will be sent to the default
 906          * queue.
 907          *
 908          * Setup number and offset of Rx queues for all TCs for the VSI
 909          */
 910 
 911         qcount_rx = rx_numq_tc;
 912 
 913         /* qcount will change if RSS is enabled */
 914         if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
 915                 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
 916                         if (vsi->type == ICE_VSI_PF)
 917                                 max_rss = ICE_MAX_LG_RSS_QS;
 918                         else
 919                                 max_rss = ICE_MAX_SMALL_RSS_QS;
 920                         qcount_rx = min_t(int, rx_numq_tc, max_rss);
 921                         qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
 922                 }
 923         }
 924 
 925         /* find the (rounded up) power-of-2 of qcount */
 926         pow = order_base_2(qcount_rx);
 927 
 928         ice_for_each_traffic_class(i) {
 929                 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 930                         /* TC is not enabled */
 931                         vsi->tc_cfg.tc_info[i].qoffset = 0;
 932                         vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 933                         vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 934                         vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 935                         ctxt->info.tc_mapping[i] = 0;
 936                         continue;
 937                 }
 938 
 939                 /* TC is enabled */
 940                 vsi->tc_cfg.tc_info[i].qoffset = offset;
 941                 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
 942                 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
 943                 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 944 
 945                 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 946                         ICE_AQ_VSI_TC_Q_OFFSET_M) |
 947                         ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 948                          ICE_AQ_VSI_TC_Q_NUM_M);
 949                 offset += qcount_rx;
 950                 tx_count += tx_numq_tc;
 951                 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 952         }
 953 
 954         /* if offset is non-zero, means it is calculated correctly based on
 955          * enabled TCs for a given VSI otherwise qcount_rx will always
 956          * be correct and non-zero because it is based off - VSI's
 957          * allocated Rx queues which is at least 1 (hence qcount_tx will be
 958          * at least 1)
 959          */
 960         if (offset)
 961                 vsi->num_rxq = offset;
 962         else
 963                 vsi->num_rxq = qcount_rx;
 964 
 965         vsi->num_txq = tx_count;
 966 
 967         if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 968                 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 969                 /* since there is a chance that num_rxq could have been changed
 970                  * in the above for loop, make num_txq equal to num_rxq.
 971                  */
 972                 vsi->num_txq = vsi->num_rxq;
 973         }
 974 
 975         /* Rx queue mapping */
 976         ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 977         /* q_mapping buffer holds the info for the first queue allocated for
 978          * this VSI in the PF space and also the number of queues associated
 979          * with this VSI.
 980          */
 981         ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 982         ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 983 }
 984 
 985 /**
 986  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 987  * @ctxt: the VSI context being set
 988  * @vsi: the VSI being configured
 989  */
 990 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 991 {
 992         u8 lut_type, hash_type;
 993         struct ice_pf *pf;
 994 
 995         pf = vsi->back;
 996 
 997         switch (vsi->type) {
 998         case ICE_VSI_PF:
 999                 /* PF VSI will inherit RSS instance of PF */
1000                 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1001                 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1002                 break;
1003         case ICE_VSI_VF:
1004                 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1005                 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1006                 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1007                 break;
1008         case ICE_VSI_LB:
1009                 dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
1010                 return;
1011         default:
1012                 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1013                 return;
1014         }
1015 
1016         ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1017                                 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1018                                 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1019                                  ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1020 }
1021 
1022 /**
1023  * ice_vsi_init - Create and initialize a VSI
1024  * @vsi: the VSI being configured
1025  *
1026  * This initializes a VSI context depending on the VSI type to be added and
1027  * passes it down to the add_vsi aq command to create a new VSI.
1028  */
1029 static int ice_vsi_init(struct ice_vsi *vsi)
1030 {
1031         struct ice_pf *pf = vsi->back;
1032         struct ice_hw *hw = &pf->hw;
1033         struct ice_vsi_ctx *ctxt;
1034         int ret = 0;
1035 
1036         ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
1037         if (!ctxt)
1038                 return -ENOMEM;
1039 
1040         ctxt->info = vsi->info;
1041         switch (vsi->type) {
1042         case ICE_VSI_LB:
1043                 /* fall through */
1044         case ICE_VSI_PF:
1045                 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1046                 break;
1047         case ICE_VSI_VF:
1048                 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1049                 /* VF number here is the absolute VF number (0-255) */
1050                 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
1051                 break;
1052         default:
1053                 return -ENODEV;
1054         }
1055 
1056         ice_set_dflt_vsi_ctx(ctxt);
1057         /* if the switch is in VEB mode, allow VSI loopback */
1058         if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1059                 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1060 
1061         /* Set LUT type and HASH type if RSS is enabled */
1062         if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1063                 ice_set_rss_vsi_ctx(ctxt, vsi);
1064 
1065         ctxt->info.sw_id = vsi->port_info->sw_id;
1066         ice_vsi_setup_q_map(vsi, ctxt);
1067 
1068         /* Enable MAC Antispoof with new VSI being initialized or updated */
1069         if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
1070                 ctxt->info.valid_sections |=
1071                         cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1072                 ctxt->info.sec_flags |=
1073                         ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
1074         }
1075 
1076         /* Allow control frames out of main VSI */
1077         if (vsi->type == ICE_VSI_PF) {
1078                 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1079                 ctxt->info.valid_sections |=
1080                         cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1081         }
1082 
1083         ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1084         if (ret) {
1085                 dev_err(&pf->pdev->dev,
1086                         "Add VSI failed, err %d\n", ret);
1087                 return -EIO;
1088         }
1089 
1090         /* keep context for update VSI operations */
1091         vsi->info = ctxt->info;
1092 
1093         /* record VSI number returned */
1094         vsi->vsi_num = ctxt->vsi_num;
1095 
1096         devm_kfree(&pf->pdev->dev, ctxt);
1097         return ret;
1098 }
1099 
1100 /**
1101  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1102  * @vsi: VSI having the memory freed
1103  * @v_idx: index of the vector to be freed
1104  */
1105 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1106 {
1107         struct ice_q_vector *q_vector;
1108         struct ice_pf *pf = vsi->back;
1109         struct ice_ring *ring;
1110 
1111         if (!vsi->q_vectors[v_idx]) {
1112                 dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1113                         v_idx);
1114                 return;
1115         }
1116         q_vector = vsi->q_vectors[v_idx];
1117 
1118         ice_for_each_ring(ring, q_vector->tx)
1119                 ring->q_vector = NULL;
1120         ice_for_each_ring(ring, q_vector->rx)
1121                 ring->q_vector = NULL;
1122 
1123         /* only VSI with an associated netdev is set up with NAPI */
1124         if (vsi->netdev)
1125                 netif_napi_del(&q_vector->napi);
1126 
1127         devm_kfree(&pf->pdev->dev, q_vector);
1128         vsi->q_vectors[v_idx] = NULL;
1129 }
1130 
1131 /**
1132  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1133  * @vsi: the VSI having memory freed
1134  */
1135 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1136 {
1137         int v_idx;
1138 
1139         ice_for_each_q_vector(vsi, v_idx)
1140                 ice_free_q_vector(vsi, v_idx);
1141 }
1142 
1143 /**
1144  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1145  * @vsi: the VSI being configured
1146  * @v_idx: index of the vector in the VSI struct
1147  *
1148  * We allocate one q_vector. If allocation fails we return -ENOMEM.
1149  */
1150 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1151 {
1152         struct ice_pf *pf = vsi->back;
1153         struct ice_q_vector *q_vector;
1154 
1155         /* allocate q_vector */
1156         q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1157         if (!q_vector)
1158                 return -ENOMEM;
1159 
1160         q_vector->vsi = vsi;
1161         q_vector->v_idx = v_idx;
1162         if (vsi->type == ICE_VSI_VF)
1163                 goto out;
1164         /* only set affinity_mask if the CPU is online */
1165         if (cpu_online(v_idx))
1166                 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1167 
1168         /* This will not be called in the driver load path because the netdev
1169          * will not be created yet. All other cases with register the NAPI
1170          * handler here (i.e. resume, reset/rebuild, etc.)
1171          */
1172         if (vsi->netdev)
1173                 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1174                                NAPI_POLL_WEIGHT);
1175 
1176 out:
1177         /* tie q_vector and VSI together */
1178         vsi->q_vectors[v_idx] = q_vector;
1179 
1180         return 0;
1181 }
1182 
1183 /**
1184  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1185  * @vsi: the VSI being configured
1186  *
1187  * We allocate one q_vector per queue interrupt. If allocation fails we
1188  * return -ENOMEM.
1189  */
1190 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1191 {
1192         struct ice_pf *pf = vsi->back;
1193         int v_idx = 0, num_q_vectors;
1194         int err;
1195 
1196         if (vsi->q_vectors[0]) {
1197                 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1198                         vsi->vsi_num);
1199                 return -EEXIST;
1200         }
1201 
1202         num_q_vectors = vsi->num_q_vectors;
1203 
1204         for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1205                 err = ice_vsi_alloc_q_vector(vsi, v_idx);
1206                 if (err)
1207                         goto err_out;
1208         }
1209 
1210         return 0;
1211 
1212 err_out:
1213         while (v_idx--)
1214                 ice_free_q_vector(vsi, v_idx);
1215 
1216         dev_err(&pf->pdev->dev,
1217                 "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1218                 vsi->num_q_vectors, vsi->vsi_num, err);
1219         vsi->num_q_vectors = 0;
1220         return err;
1221 }
1222 
1223 /**
1224  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1225  * @vsi: ptr to the VSI
1226  *
1227  * This should only be called after ice_vsi_alloc() which allocates the
1228  * corresponding SW VSI structure and initializes num_queue_pairs for the
1229  * newly allocated VSI.
1230  *
1231  * Returns 0 on success or negative on failure
1232  */
1233 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1234 {
1235         struct ice_pf *pf = vsi->back;
1236         u16 num_q_vectors;
1237 
1238         /* SRIOV doesn't grab irq_tracker entries for each VSI */
1239         if (vsi->type == ICE_VSI_VF)
1240                 return 0;
1241 
1242         if (vsi->base_vector) {
1243                 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1244                         vsi->vsi_num, vsi->base_vector);
1245                 return -EEXIST;
1246         }
1247 
1248         num_q_vectors = vsi->num_q_vectors;
1249         /* reserve slots from OS requested IRQs */
1250         vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1251                                        vsi->idx);
1252         if (vsi->base_vector < 0) {
1253                 dev_err(&pf->pdev->dev,
1254                         "Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1255                         num_q_vectors, vsi->vsi_num, vsi->base_vector);
1256                 return -ENOENT;
1257         }
1258         pf->num_avail_sw_msix -= num_q_vectors;
1259 
1260         return 0;
1261 }
1262 
1263 /**
1264  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1265  * @vsi: the VSI having rings deallocated
1266  */
1267 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1268 {
1269         int i;
1270 
1271         if (vsi->tx_rings) {
1272                 for (i = 0; i < vsi->alloc_txq; i++) {
1273                         if (vsi->tx_rings[i]) {
1274                                 kfree_rcu(vsi->tx_rings[i], rcu);
1275                                 vsi->tx_rings[i] = NULL;
1276                         }
1277                 }
1278         }
1279         if (vsi->rx_rings) {
1280                 for (i = 0; i < vsi->alloc_rxq; i++) {
1281                         if (vsi->rx_rings[i]) {
1282                                 kfree_rcu(vsi->rx_rings[i], rcu);
1283                                 vsi->rx_rings[i] = NULL;
1284                         }
1285                 }
1286         }
1287 }
1288 
1289 /**
1290  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1291  * @vsi: VSI which is having rings allocated
1292  */
1293 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1294 {
1295         struct ice_pf *pf = vsi->back;
1296         int i;
1297 
1298         /* Allocate Tx rings */
1299         for (i = 0; i < vsi->alloc_txq; i++) {
1300                 struct ice_ring *ring;
1301 
1302                 /* allocate with kzalloc(), free with kfree_rcu() */
1303                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1304 
1305                 if (!ring)
1306                         goto err_out;
1307 
1308                 ring->q_index = i;
1309                 ring->reg_idx = vsi->txq_map[i];
1310                 ring->ring_active = false;
1311                 ring->vsi = vsi;
1312                 ring->dev = &pf->pdev->dev;
1313                 ring->count = vsi->num_tx_desc;
1314                 vsi->tx_rings[i] = ring;
1315         }
1316 
1317         /* Allocate Rx rings */
1318         for (i = 0; i < vsi->alloc_rxq; i++) {
1319                 struct ice_ring *ring;
1320 
1321                 /* allocate with kzalloc(), free with kfree_rcu() */
1322                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1323                 if (!ring)
1324                         goto err_out;
1325 
1326                 ring->q_index = i;
1327                 ring->reg_idx = vsi->rxq_map[i];
1328                 ring->ring_active = false;
1329                 ring->vsi = vsi;
1330                 ring->netdev = vsi->netdev;
1331                 ring->dev = &pf->pdev->dev;
1332                 ring->count = vsi->num_rx_desc;
1333                 vsi->rx_rings[i] = ring;
1334         }
1335 
1336         return 0;
1337 
1338 err_out:
1339         ice_vsi_clear_rings(vsi);
1340         return -ENOMEM;
1341 }
1342 
1343 /**
1344  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1345  * @vsi: the VSI being configured
1346  *
1347  * This function maps descriptor rings to the queue-specific vectors allotted
1348  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1349  * and Rx rings to the vector as "efficiently" as possible.
1350  */
1351 #ifdef CONFIG_DCB
1352 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1353 #else
1354 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1355 #endif /* CONFIG_DCB */
1356 {
1357         int q_vectors = vsi->num_q_vectors;
1358         int tx_rings_rem, rx_rings_rem;
1359         int v_id;
1360 
1361         /* initially assigning remaining rings count to VSIs num queue value */
1362         tx_rings_rem = vsi->num_txq;
1363         rx_rings_rem = vsi->num_rxq;
1364 
1365         for (v_id = 0; v_id < q_vectors; v_id++) {
1366                 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1367                 int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1368 
1369                 /* Tx rings mapping to vector */
1370                 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1371                 q_vector->num_ring_tx = tx_rings_per_v;
1372                 q_vector->tx.ring = NULL;
1373                 q_vector->tx.itr_idx = ICE_TX_ITR;
1374                 q_base = vsi->num_txq - tx_rings_rem;
1375 
1376                 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1377                         struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1378 
1379                         tx_ring->q_vector = q_vector;
1380                         tx_ring->next = q_vector->tx.ring;
1381                         q_vector->tx.ring = tx_ring;
1382                 }
1383                 tx_rings_rem -= tx_rings_per_v;
1384 
1385                 /* Rx rings mapping to vector */
1386                 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1387                 q_vector->num_ring_rx = rx_rings_per_v;
1388                 q_vector->rx.ring = NULL;
1389                 q_vector->rx.itr_idx = ICE_RX_ITR;
1390                 q_base = vsi->num_rxq - rx_rings_rem;
1391 
1392                 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1393                         struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1394 
1395                         rx_ring->q_vector = q_vector;
1396                         rx_ring->next = q_vector->rx.ring;
1397                         q_vector->rx.ring = rx_ring;
1398                 }
1399                 rx_rings_rem -= rx_rings_per_v;
1400         }
1401 }
1402 
1403 /**
1404  * ice_vsi_manage_rss_lut - disable/enable RSS
1405  * @vsi: the VSI being changed
1406  * @ena: boolean value indicating if this is an enable or disable request
1407  *
1408  * In the event of disable request for RSS, this function will zero out RSS
1409  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1410  * LUT.
1411  */
1412 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1413 {
1414         int err = 0;
1415         u8 *lut;
1416 
1417         lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1418                            GFP_KERNEL);
1419         if (!lut)
1420                 return -ENOMEM;
1421 
1422         if (ena) {
1423                 if (vsi->rss_lut_user)
1424                         memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1425                 else
1426                         ice_fill_rss_lut(lut, vsi->rss_table_size,
1427                                          vsi->rss_size);
1428         }
1429 
1430         err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1431         devm_kfree(&vsi->back->pdev->dev, lut);
1432         return err;
1433 }
1434 
1435 /**
1436  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1437  * @vsi: VSI to be configured
1438  */
1439 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1440 {
1441         struct ice_aqc_get_set_rss_keys *key;
1442         struct ice_pf *pf = vsi->back;
1443         enum ice_status status;
1444         int err = 0;
1445         u8 *lut;
1446 
1447         vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
1448 
1449         lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1450         if (!lut)
1451                 return -ENOMEM;
1452 
1453         if (vsi->rss_lut_user)
1454                 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1455         else
1456                 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1457 
1458         status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1459                                     vsi->rss_table_size);
1460 
1461         if (status) {
1462                 dev_err(&pf->pdev->dev,
1463                         "set_rss_lut failed, error %d\n", status);
1464                 err = -EIO;
1465                 goto ice_vsi_cfg_rss_exit;
1466         }
1467 
1468         key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1469         if (!key) {
1470                 err = -ENOMEM;
1471                 goto ice_vsi_cfg_rss_exit;
1472         }
1473 
1474         if (vsi->rss_hkey_user)
1475                 memcpy(key,
1476                        (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1477                        ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1478         else
1479                 netdev_rss_key_fill((void *)key,
1480                                     ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1481 
1482         status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1483 
1484         if (status) {
1485                 dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1486                         status);
1487                 err = -EIO;
1488         }
1489 
1490         devm_kfree(&pf->pdev->dev, key);
1491 ice_vsi_cfg_rss_exit:
1492         devm_kfree(&pf->pdev->dev, lut);
1493         return err;
1494 }
1495 
1496 /**
1497  * ice_add_mac_to_list - Add a MAC address filter entry to the list
1498  * @vsi: the VSI to be forwarded to
1499  * @add_list: pointer to the list which contains MAC filter entries
1500  * @macaddr: the MAC address to be added.
1501  *
1502  * Adds MAC address filter entry to the temp list
1503  *
1504  * Returns 0 on success or ENOMEM on failure.
1505  */
1506 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1507                         const u8 *macaddr)
1508 {
1509         struct ice_fltr_list_entry *tmp;
1510         struct ice_pf *pf = vsi->back;
1511 
1512         tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1513         if (!tmp)
1514                 return -ENOMEM;
1515 
1516         tmp->fltr_info.flag = ICE_FLTR_TX;
1517         tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1518         tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1519         tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1520         tmp->fltr_info.vsi_handle = vsi->idx;
1521         ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1522 
1523         INIT_LIST_HEAD(&tmp->list_entry);
1524         list_add(&tmp->list_entry, add_list);
1525 
1526         return 0;
1527 }
1528 
1529 /**
1530  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1531  * @vsi: the VSI to be updated
1532  */
1533 void ice_update_eth_stats(struct ice_vsi *vsi)
1534 {
1535         struct ice_eth_stats *prev_es, *cur_es;
1536         struct ice_hw *hw = &vsi->back->hw;
1537         u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1538 
1539         prev_es = &vsi->eth_stats_prev;
1540         cur_es = &vsi->eth_stats;
1541 
1542         ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1543                           &prev_es->rx_bytes, &cur_es->rx_bytes);
1544 
1545         ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1546                           &prev_es->rx_unicast, &cur_es->rx_unicast);
1547 
1548         ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1549                           &prev_es->rx_multicast, &cur_es->rx_multicast);
1550 
1551         ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1552                           &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1553 
1554         ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1555                           &prev_es->rx_discards, &cur_es->rx_discards);
1556 
1557         ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1558                           &prev_es->tx_bytes, &cur_es->tx_bytes);
1559 
1560         ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1561                           &prev_es->tx_unicast, &cur_es->tx_unicast);
1562 
1563         ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1564                           &prev_es->tx_multicast, &cur_es->tx_multicast);
1565 
1566         ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1567                           &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1568 
1569         ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1570                           &prev_es->tx_errors, &cur_es->tx_errors);
1571 
1572         vsi->stat_offsets_loaded = true;
1573 }
1574 
1575 /**
1576  * ice_free_fltr_list - free filter lists helper
1577  * @dev: pointer to the device struct
1578  * @h: pointer to the list head to be freed
1579  *
1580  * Helper function to free filter lists previously created using
1581  * ice_add_mac_to_list
1582  */
1583 void ice_free_fltr_list(struct device *dev, struct list_head *h)
1584 {
1585         struct ice_fltr_list_entry *e, *tmp;
1586 
1587         list_for_each_entry_safe(e, tmp, h, list_entry) {
1588                 list_del(&e->list_entry);
1589                 devm_kfree(dev, e);
1590         }
1591 }
1592 
1593 /**
1594  * ice_vsi_add_vlan - Add VSI membership for given VLAN
1595  * @vsi: the VSI being configured
1596  * @vid: VLAN ID to be added
1597  */
1598 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
1599 {
1600         struct ice_fltr_list_entry *tmp;
1601         struct ice_pf *pf = vsi->back;
1602         LIST_HEAD(tmp_add_list);
1603         enum ice_status status;
1604         int err = 0;
1605 
1606         tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1607         if (!tmp)
1608                 return -ENOMEM;
1609 
1610         tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1611         tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1612         tmp->fltr_info.flag = ICE_FLTR_TX;
1613         tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1614         tmp->fltr_info.vsi_handle = vsi->idx;
1615         tmp->fltr_info.l_data.vlan.vlan_id = vid;
1616 
1617         INIT_LIST_HEAD(&tmp->list_entry);
1618         list_add(&tmp->list_entry, &tmp_add_list);
1619 
1620         status = ice_add_vlan(&pf->hw, &tmp_add_list);
1621         if (status) {
1622                 err = -ENODEV;
1623                 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1624                         vid, vsi->vsi_num);
1625         }
1626 
1627         ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1628         return err;
1629 }
1630 
1631 /**
1632  * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1633  * @vsi: the VSI being configured
1634  * @vid: VLAN ID to be removed
1635  *
1636  * Returns 0 on success and negative on failure
1637  */
1638 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1639 {
1640         struct ice_fltr_list_entry *list;
1641         struct ice_pf *pf = vsi->back;
1642         LIST_HEAD(tmp_add_list);
1643         enum ice_status status;
1644         int err = 0;
1645 
1646         list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1647         if (!list)
1648                 return -ENOMEM;
1649 
1650         list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1651         list->fltr_info.vsi_handle = vsi->idx;
1652         list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1653         list->fltr_info.l_data.vlan.vlan_id = vid;
1654         list->fltr_info.flag = ICE_FLTR_TX;
1655         list->fltr_info.src_id = ICE_SRC_ID_VSI;
1656 
1657         INIT_LIST_HEAD(&list->list_entry);
1658         list_add(&list->list_entry, &tmp_add_list);
1659 
1660         status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1661         if (status == ICE_ERR_DOES_NOT_EXIST) {
1662                 dev_dbg(&pf->pdev->dev,
1663                         "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1664                         vid, vsi->vsi_num, status);
1665         } else if (status) {
1666                 dev_err(&pf->pdev->dev,
1667                         "Error removing VLAN %d on vsi %i error: %d\n",
1668                         vid, vsi->vsi_num, status);
1669                 err = -EIO;
1670         }
1671 
1672         ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1673         return err;
1674 }
1675 
1676 /**
1677  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1678  * @vsi: the VSI being configured
1679  *
1680  * Return 0 on success and a negative value on error
1681  * Configure the Rx VSI for operation.
1682  */
1683 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1684 {
1685         u16 i;
1686 
1687         if (vsi->type == ICE_VSI_VF)
1688                 goto setup_rings;
1689 
1690         if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1691                 vsi->max_frame = vsi->netdev->mtu +
1692                         ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1693         else
1694                 vsi->max_frame = ICE_RXBUF_2048;
1695 
1696         vsi->rx_buf_len = ICE_RXBUF_2048;
1697 setup_rings:
1698         /* set up individual rings */
1699         for (i = 0; i < vsi->num_rxq; i++) {
1700                 int err;
1701 
1702                 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1703                 if (err) {
1704                         dev_err(&vsi->back->pdev->dev,
1705                                 "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1706                                 i, err);
1707                         return err;
1708                 }
1709         }
1710 
1711         return 0;
1712 }
1713 
1714 /**
1715  * ice_vsi_cfg_txq - Configure single Tx queue
1716  * @vsi: the VSI that queue belongs to
1717  * @ring: Tx ring to be configured
1718  * @tc_q_idx: queue index within given TC
1719  * @qg_buf: queue group buffer
1720  * @tc: TC that Tx ring belongs to
1721  */
1722 static int
1723 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
1724                 struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
1725 {
1726         struct ice_tlan_ctx tlan_ctx = { 0 };
1727         struct ice_aqc_add_txqs_perq *txq;
1728         struct ice_pf *pf = vsi->back;
1729         u8 buf_len = sizeof(*qg_buf);
1730         enum ice_status status;
1731         u16 pf_q;
1732 
1733         pf_q = ring->reg_idx;
1734         ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
1735         /* copy context contents into the qg_buf */
1736         qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1737         ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1738                     ice_tlan_ctx_info);
1739 
1740         /* init queue specific tail reg. It is referred as
1741          * transmit comm scheduler queue doorbell.
1742          */
1743         ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1744 
1745         /* Add unique software queue handle of the Tx queue per
1746          * TC into the VSI Tx ring
1747          */
1748         ring->q_handle = tc_q_idx;
1749 
1750         status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1751                                  1, qg_buf, buf_len, NULL);
1752         if (status) {
1753                 dev_err(&pf->pdev->dev,
1754                         "Failed to set LAN Tx queue context, error: %d\n",
1755                         status);
1756                 return -ENODEV;
1757         }
1758 
1759         /* Add Tx Queue TEID into the VSI Tx ring from the
1760          * response. This will complete configuring and
1761          * enabling the queue.
1762          */
1763         txq = &qg_buf->txqs[0];
1764         if (pf_q == le16_to_cpu(txq->txq_id))
1765                 ring->txq_teid = le32_to_cpu(txq->q_teid);
1766 
1767         return 0;
1768 }
1769 
1770 /**
1771  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1772  * @vsi: the VSI being configured
1773  * @rings: Tx ring array to be configured
1774  * @offset: offset within vsi->txq_map
1775  *
1776  * Return 0 on success and a negative value on error
1777  * Configure the Tx VSI for operation.
1778  */
1779 static int
1780 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1781 {
1782         struct ice_aqc_add_tx_qgrp *qg_buf;
1783         struct ice_pf *pf = vsi->back;
1784         u16 q_idx = 0, i;
1785         int err = 0;
1786         u8 tc;
1787 
1788         qg_buf = devm_kzalloc(&pf->pdev->dev, sizeof(*qg_buf), GFP_KERNEL);
1789         if (!qg_buf)
1790                 return -ENOMEM;
1791 
1792         qg_buf->num_txqs = 1;
1793 
1794         /* set up and configure the Tx queues for each enabled TC */
1795         ice_for_each_traffic_class(tc) {
1796                 if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1797                         break;
1798 
1799                 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1800                         err = ice_vsi_cfg_txq(vsi, rings[q_idx], i + offset,
1801                                               qg_buf, tc);
1802                         if (err)
1803                                 goto err_cfg_txqs;
1804 
1805                         q_idx++;
1806                 }
1807         }
1808 err_cfg_txqs:
1809         devm_kfree(&pf->pdev->dev, qg_buf);
1810         return err;
1811 }
1812 
1813 /**
1814  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1815  * @vsi: the VSI being configured
1816  *
1817  * Return 0 on success and a negative value on error
1818  * Configure the Tx VSI for operation.
1819  */
1820 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1821 {
1822         return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
1823 }
1824 
1825 /**
1826  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1827  * @intrl: interrupt rate limit in usecs
1828  * @gran: interrupt rate limit granularity in usecs
1829  *
1830  * This function converts a decimal interrupt rate limit in usecs to the format
1831  * expected by firmware.
1832  */
1833 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1834 {
1835         u32 val = intrl / gran;
1836 
1837         if (val)
1838                 return val | GLINT_RATE_INTRL_ENA_M;
1839         return 0;
1840 }
1841 
1842 /**
1843  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1844  * @hw: board specific structure
1845  */
1846 static void ice_cfg_itr_gran(struct ice_hw *hw)
1847 {
1848         u32 regval = rd32(hw, GLINT_CTL);
1849 
1850         /* no need to update global register if ITR gran is already set */
1851         if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1852             (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1853              GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1854             (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1855              GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1856             (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1857              GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1858             (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1859               GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1860                 return;
1861 
1862         regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1863                   GLINT_CTL_ITR_GRAN_200_M) |
1864                  ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1865                   GLINT_CTL_ITR_GRAN_100_M) |
1866                  ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1867                   GLINT_CTL_ITR_GRAN_50_M) |
1868                  ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1869                   GLINT_CTL_ITR_GRAN_25_M);
1870         wr32(hw, GLINT_CTL, regval);
1871 }
1872 
1873 /**
1874  * ice_cfg_itr - configure the initial interrupt throttle values
1875  * @hw: pointer to the HW structure
1876  * @q_vector: interrupt vector that's being configured
1877  *
1878  * Configure interrupt throttling values for the ring containers that are
1879  * associated with the interrupt vector passed in.
1880  */
1881 static void
1882 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1883 {
1884         ice_cfg_itr_gran(hw);
1885 
1886         if (q_vector->num_ring_rx) {
1887                 struct ice_ring_container *rc = &q_vector->rx;
1888 
1889                 /* if this value is set then don't overwrite with default */
1890                 if (!rc->itr_setting)
1891                         rc->itr_setting = ICE_DFLT_RX_ITR;
1892 
1893                 rc->target_itr = ITR_TO_REG(rc->itr_setting);
1894                 rc->next_update = jiffies + 1;
1895                 rc->current_itr = rc->target_itr;
1896                 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1897                      ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1898         }
1899 
1900         if (q_vector->num_ring_tx) {
1901                 struct ice_ring_container *rc = &q_vector->tx;
1902 
1903                 /* if this value is set then don't overwrite with default */
1904                 if (!rc->itr_setting)
1905                         rc->itr_setting = ICE_DFLT_TX_ITR;
1906 
1907                 rc->target_itr = ITR_TO_REG(rc->itr_setting);
1908                 rc->next_update = jiffies + 1;
1909                 rc->current_itr = rc->target_itr;
1910                 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1911                      ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1912         }
1913 }
1914 
1915 /**
1916  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1917  * @vsi: the VSI being configured
1918  * @txq: Tx queue being mapped to MSI-X vector
1919  * @msix_idx: MSI-X vector index within the function
1920  * @itr_idx: ITR index of the interrupt cause
1921  *
1922  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1923  * within the function space.
1924  */
1925 #ifdef CONFIG_PCI_IOV
1926 void
1927 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1928 #else
1929 static void
1930 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1931 #endif /* CONFIG_PCI_IOV */
1932 {
1933         struct ice_pf *pf = vsi->back;
1934         struct ice_hw *hw = &pf->hw;
1935         u32 val;
1936 
1937         itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1938 
1939         val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1940               ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
1941 
1942         wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1943 }
1944 
1945 /**
1946  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1947  * @vsi: the VSI being configured
1948  * @rxq: Rx queue being mapped to MSI-X vector
1949  * @msix_idx: MSI-X vector index within the function
1950  * @itr_idx: ITR index of the interrupt cause
1951  *
1952  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1953  * within the function space.
1954  */
1955 #ifdef CONFIG_PCI_IOV
1956 void
1957 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1958 #else
1959 static void
1960 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1961 #endif /* CONFIG_PCI_IOV */
1962 {
1963         struct ice_pf *pf = vsi->back;
1964         struct ice_hw *hw = &pf->hw;
1965         u32 val;
1966 
1967         itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1968 
1969         val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1970               ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1971 
1972         wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1973 
1974         ice_flush(hw);
1975 }
1976 
1977 /**
1978  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1979  * @vsi: the VSI being configured
1980  *
1981  * This configures MSIX mode interrupts for the PF VSI, and should not be used
1982  * for the VF VSI.
1983  */
1984 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1985 {
1986         struct ice_pf *pf = vsi->back;
1987         struct ice_hw *hw = &pf->hw;
1988         u32 txq = 0, rxq = 0;
1989         int i, q;
1990 
1991         for (i = 0; i < vsi->num_q_vectors; i++) {
1992                 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1993                 u16 reg_idx = q_vector->reg_idx;
1994 
1995                 ice_cfg_itr(hw, q_vector);
1996 
1997                 wr32(hw, GLINT_RATE(reg_idx),
1998                      ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1999 
2000                 /* Both Transmit Queue Interrupt Cause Control register
2001                  * and Receive Queue Interrupt Cause control register
2002                  * expects MSIX_INDX field to be the vector index
2003                  * within the function space and not the absolute
2004                  * vector index across PF or across device.
2005                  * For SR-IOV VF VSIs queue vector index always starts
2006                  * with 1 since first vector index(0) is used for OICR
2007                  * in VF space. Since VMDq and other PF VSIs are within
2008                  * the PF function space, use the vector index that is
2009                  * tracked for this PF.
2010                  */
2011                 for (q = 0; q < q_vector->num_ring_tx; q++) {
2012                         ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2013                                               q_vector->tx.itr_idx);
2014                         txq++;
2015                 }
2016 
2017                 for (q = 0; q < q_vector->num_ring_rx; q++) {
2018                         ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2019                                               q_vector->rx.itr_idx);
2020                         rxq++;
2021                 }
2022         }
2023 }
2024 
2025 /**
2026  * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
2027  * @vsi: the VSI being changed
2028  */
2029 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
2030 {
2031         struct device *dev = &vsi->back->pdev->dev;
2032         struct ice_hw *hw = &vsi->back->hw;
2033         struct ice_vsi_ctx *ctxt;
2034         enum ice_status status;
2035         int ret = 0;
2036 
2037         ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2038         if (!ctxt)
2039                 return -ENOMEM;
2040 
2041         /* Here we are configuring the VSI to let the driver add VLAN tags by
2042          * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
2043          * insertion happens in the Tx hot path, in ice_tx_map.
2044          */
2045         ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
2046 
2047         /* Preserve existing VLAN strip setting */
2048         ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
2049                                   ICE_AQ_VSI_VLAN_EMOD_M);
2050 
2051         ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2052 
2053         status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2054         if (status) {
2055                 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
2056                         status, hw->adminq.sq_last_status);
2057                 ret = -EIO;
2058                 goto out;
2059         }
2060 
2061         vsi->info.vlan_flags = ctxt->info.vlan_flags;
2062 out:
2063         devm_kfree(dev, ctxt);
2064         return ret;
2065 }
2066 
2067 /**
2068  * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
2069  * @vsi: the VSI being changed
2070  * @ena: boolean value indicating if this is a enable or disable request
2071  */
2072 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
2073 {
2074         struct device *dev = &vsi->back->pdev->dev;
2075         struct ice_hw *hw = &vsi->back->hw;
2076         struct ice_vsi_ctx *ctxt;
2077         enum ice_status status;
2078         int ret = 0;
2079 
2080         ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2081         if (!ctxt)
2082                 return -ENOMEM;
2083 
2084         /* Here we are configuring what the VSI should do with the VLAN tag in
2085          * the Rx packet. We can either leave the tag in the packet or put it in
2086          * the Rx descriptor.
2087          */
2088         if (ena)
2089                 /* Strip VLAN tag from Rx packet and put it in the desc */
2090                 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2091         else
2092                 /* Disable stripping. Leave tag in packet */
2093                 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2094 
2095         /* Allow all packets untagged/tagged */
2096         ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2097 
2098         ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2099 
2100         status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2101         if (status) {
2102                 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2103                         ena, status, hw->adminq.sq_last_status);
2104                 ret = -EIO;
2105                 goto out;
2106         }
2107 
2108         vsi->info.vlan_flags = ctxt->info.vlan_flags;
2109 out:
2110         devm_kfree(dev, ctxt);
2111         return ret;
2112 }
2113 
2114 /**
2115  * ice_vsi_start_rx_rings - start VSI's Rx rings
2116  * @vsi: the VSI whose rings are to be started
2117  *
2118  * Returns 0 on success and a negative value on error
2119  */
2120 int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2121 {
2122         return ice_vsi_ctrl_rx_rings(vsi, true);
2123 }
2124 
2125 /**
2126  * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2127  * @vsi: the VSI
2128  *
2129  * Returns 0 on success and a negative value on error
2130  */
2131 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2132 {
2133         return ice_vsi_ctrl_rx_rings(vsi, false);
2134 }
2135 
2136 /**
2137  * ice_trigger_sw_intr - trigger a software interrupt
2138  * @hw: pointer to the HW structure
2139  * @q_vector: interrupt vector to trigger the software interrupt for
2140  */
2141 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2142 {
2143         wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2144              (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2145              GLINT_DYN_CTL_SWINT_TRIG_M |
2146              GLINT_DYN_CTL_INTENA_M);
2147 }
2148 
2149 /**
2150  * ice_vsi_stop_tx_ring - Disable single Tx ring
2151  * @vsi: the VSI being configured
2152  * @rst_src: reset source
2153  * @rel_vmvf_num: Relative ID of VF/VM
2154  * @ring: Tx ring to be stopped
2155  * @txq_meta: Meta data of Tx ring to be stopped
2156  */
2157 #ifndef CONFIG_PCI_IOV
2158 static
2159 #endif /* !CONFIG_PCI_IOV */
2160 int
2161 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2162                      u16 rel_vmvf_num, struct ice_ring *ring,
2163                      struct ice_txq_meta *txq_meta)
2164 {
2165         struct ice_pf *pf = vsi->back;
2166         struct ice_q_vector *q_vector;
2167         struct ice_hw *hw = &pf->hw;
2168         enum ice_status status;
2169         u32 val;
2170 
2171         /* clear cause_ena bit for disabled queues */
2172         val = rd32(hw, QINT_TQCTL(ring->reg_idx));
2173         val &= ~QINT_TQCTL_CAUSE_ENA_M;
2174         wr32(hw, QINT_TQCTL(ring->reg_idx), val);
2175 
2176         /* software is expected to wait for 100 ns */
2177         ndelay(100);
2178 
2179         /* trigger a software interrupt for the vector
2180          * associated to the queue to schedule NAPI handler
2181          */
2182         q_vector = ring->q_vector;
2183         if (q_vector)
2184                 ice_trigger_sw_intr(hw, q_vector);
2185 
2186         status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
2187                                  txq_meta->tc, 1, &txq_meta->q_handle,
2188                                  &txq_meta->q_id, &txq_meta->q_teid, rst_src,
2189                                  rel_vmvf_num, NULL);
2190 
2191         /* if the disable queue command was exercised during an
2192          * active reset flow, ICE_ERR_RESET_ONGOING is returned.
2193          * This is not an error as the reset operation disables
2194          * queues at the hardware level anyway.
2195          */
2196         if (status == ICE_ERR_RESET_ONGOING) {
2197                 dev_dbg(&vsi->back->pdev->dev,
2198                         "Reset in progress. LAN Tx queues already disabled\n");
2199         } else if (status == ICE_ERR_DOES_NOT_EXIST) {
2200                 dev_dbg(&vsi->back->pdev->dev,
2201                         "LAN Tx queues do not exist, nothing to disable\n");
2202         } else if (status) {
2203                 dev_err(&vsi->back->pdev->dev,
2204                         "Failed to disable LAN Tx queues, error: %d\n", status);
2205                 return -ENODEV;
2206         }
2207 
2208         return 0;
2209 }
2210 
2211 /**
2212  * ice_fill_txq_meta - Prepare the Tx queue's meta data
2213  * @vsi: VSI that ring belongs to
2214  * @ring: ring that txq_meta will be based on
2215  * @txq_meta: a helper struct that wraps Tx queue's information
2216  *
2217  * Set up a helper struct that will contain all the necessary fields that
2218  * are needed for stopping Tx queue
2219  */
2220 #ifndef CONFIG_PCI_IOV
2221 static
2222 #endif /* !CONFIG_PCI_IOV */
2223 void
2224 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
2225                   struct ice_txq_meta *txq_meta)
2226 {
2227         u8 tc = 0;
2228 
2229 #ifdef CONFIG_DCB
2230         tc = ring->dcb_tc;
2231 #endif /* CONFIG_DCB */
2232         txq_meta->q_id = ring->reg_idx;
2233         txq_meta->q_teid = ring->txq_teid;
2234         txq_meta->q_handle = ring->q_handle;
2235         txq_meta->vsi_idx = vsi->idx;
2236         txq_meta->tc = tc;
2237 }
2238 
2239 /**
2240  * ice_vsi_stop_tx_rings - Disable Tx rings
2241  * @vsi: the VSI being configured
2242  * @rst_src: reset source
2243  * @rel_vmvf_num: Relative ID of VF/VM
2244  * @rings: Tx ring array to be stopped
2245  */
2246 static int
2247 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2248                       u16 rel_vmvf_num, struct ice_ring **rings)
2249 {
2250         u16 i, q_idx = 0;
2251         int status;
2252         u8 tc;
2253 
2254         if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2255                 return -EINVAL;
2256 
2257         /* set up the Tx queue list to be disabled for each enabled TC */
2258         ice_for_each_traffic_class(tc) {
2259                 if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2260                         break;
2261 
2262                 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2263                         struct ice_txq_meta txq_meta = { };
2264 
2265                         if (!rings || !rings[q_idx])
2266                                 return -EINVAL;
2267 
2268                         ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2269                         status = ice_vsi_stop_tx_ring(vsi, rst_src,
2270                                                       rel_vmvf_num,
2271                                                       rings[q_idx], &txq_meta);
2272 
2273                         if (status)
2274                                 return status;
2275 
2276                         q_idx++;
2277                 }
2278         }
2279 
2280         return 0;
2281 }
2282 
2283 /**
2284  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2285  * @vsi: the VSI being configured
2286  * @rst_src: reset source
2287  * @rel_vmvf_num: Relative ID of VF/VM
2288  */
2289 int
2290 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2291                           u16 rel_vmvf_num)
2292 {
2293         return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
2294 }
2295 
2296 /**
2297  * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2298  * @vsi: VSI to enable or disable VLAN pruning on
2299  * @ena: set to true to enable VLAN pruning and false to disable it
2300  * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2301  *
2302  * returns 0 if VSI is updated, negative otherwise
2303  */
2304 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2305 {
2306         struct ice_vsi_ctx *ctxt;
2307         struct device *dev;
2308         struct ice_pf *pf;
2309         int status;
2310 
2311         if (!vsi)
2312                 return -EINVAL;
2313 
2314         pf = vsi->back;
2315         dev = &pf->pdev->dev;
2316         ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2317         if (!ctxt)
2318                 return -ENOMEM;
2319 
2320         ctxt->info = vsi->info;
2321 
2322         if (ena) {
2323                 ctxt->info.sec_flags |=
2324                         ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2325                         ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2326                 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2327         } else {
2328                 ctxt->info.sec_flags &=
2329                         ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2330                           ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2331                 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2332         }
2333 
2334         if (!vlan_promisc)
2335                 ctxt->info.valid_sections =
2336                         cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2337                                     ICE_AQ_VSI_PROP_SW_VALID);
2338 
2339         status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2340         if (status) {
2341                 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2342                            ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2343                            pf->hw.adminq.sq_last_status);
2344                 goto err_out;
2345         }
2346 
2347         vsi->info.sec_flags = ctxt->info.sec_flags;
2348         vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2349 
2350         devm_kfree(dev, ctxt);
2351         return 0;
2352 
2353 err_out:
2354         devm_kfree(dev, ctxt);
2355         return -EIO;
2356 }
2357 
2358 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2359 {
2360         struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2361 
2362         vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2363         vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2364 }
2365 
2366 /**
2367  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2368  * @vsi: VSI to set the q_vectors register index on
2369  */
2370 static int
2371 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2372 {
2373         u16 i;
2374 
2375         if (!vsi || !vsi->q_vectors)
2376                 return -EINVAL;
2377 
2378         ice_for_each_q_vector(vsi, i) {
2379                 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2380 
2381                 if (!q_vector) {
2382                         dev_err(&vsi->back->pdev->dev,
2383                                 "Failed to set reg_idx on q_vector %d VSI %d\n",
2384                                 i, vsi->vsi_num);
2385                         goto clear_reg_idx;
2386                 }
2387 
2388                 if (vsi->type == ICE_VSI_VF) {
2389                         struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2390 
2391                         q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2392                 } else {
2393                         q_vector->reg_idx =
2394                                 q_vector->v_idx + vsi->base_vector;
2395                 }
2396         }
2397 
2398         return 0;
2399 
2400 clear_reg_idx:
2401         ice_for_each_q_vector(vsi, i) {
2402                 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2403 
2404                 if (q_vector)
2405                         q_vector->reg_idx = 0;
2406         }
2407 
2408         return -EINVAL;
2409 }
2410 
2411 /**
2412  * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2413  * @vsi: the VSI being configured
2414  * @add_rule: boolean value to add or remove ethertype filter rule
2415  */
2416 static void
2417 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2418 {
2419         struct ice_fltr_list_entry *list;
2420         struct ice_pf *pf = vsi->back;
2421         LIST_HEAD(tmp_add_list);
2422         enum ice_status status;
2423 
2424         list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2425         if (!list)
2426                 return;
2427 
2428         list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2429         list->fltr_info.fltr_act = ICE_DROP_PACKET;
2430         list->fltr_info.flag = ICE_FLTR_TX;
2431         list->fltr_info.src_id = ICE_SRC_ID_VSI;
2432         list->fltr_info.vsi_handle = vsi->idx;
2433         list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
2434 
2435         INIT_LIST_HEAD(&list->list_entry);
2436         list_add(&list->list_entry, &tmp_add_list);
2437 
2438         if (add_rule)
2439                 status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2440         else
2441                 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2442 
2443         if (status)
2444                 dev_err(&pf->pdev->dev,
2445                         "Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2446                         vsi->vsi_num, status);
2447 
2448         ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2449 }
2450 
2451 /**
2452  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2453  * @vsi: the VSI being configured
2454  * @tx: bool to determine Tx or Rx rule
2455  * @create: bool to determine create or remove Rule
2456  */
2457 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2458 {
2459         struct ice_fltr_list_entry *list;
2460         struct ice_pf *pf = vsi->back;
2461         LIST_HEAD(tmp_add_list);
2462         enum ice_status status;
2463 
2464         list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2465         if (!list)
2466                 return;
2467 
2468         list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2469         list->fltr_info.vsi_handle = vsi->idx;
2470         list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
2471 
2472         if (tx) {
2473                 list->fltr_info.fltr_act = ICE_DROP_PACKET;
2474                 list->fltr_info.flag = ICE_FLTR_TX;
2475                 list->fltr_info.src_id = ICE_SRC_ID_VSI;
2476         } else {
2477                 list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2478                 list->fltr_info.flag = ICE_FLTR_RX;
2479                 list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2480         }
2481 
2482         INIT_LIST_HEAD(&list->list_entry);
2483         list_add(&list->list_entry, &tmp_add_list);
2484 
2485         if (create)
2486                 status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2487         else
2488                 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2489 
2490         if (status)
2491                 dev_err(&pf->pdev->dev,
2492                         "Fail %s %s LLDP rule on VSI %i error: %d\n",
2493                         create ? "adding" : "removing", tx ? "TX" : "RX",
2494                         vsi->vsi_num, status);
2495 
2496         ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2497 }
2498 
2499 /**
2500  * ice_vsi_setup - Set up a VSI by a given type
2501  * @pf: board private structure
2502  * @pi: pointer to the port_info instance
2503  * @type: VSI type
2504  * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2505  *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2506  *         fill-in ICE_INVAL_VFID as input.
2507  *
2508  * This allocates the sw VSI structure and its queue resources.
2509  *
2510  * Returns pointer to the successfully allocated and configured VSI sw struct on
2511  * success, NULL on failure.
2512  */
2513 struct ice_vsi *
2514 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2515               enum ice_vsi_type type, u16 vf_id)
2516 {
2517         u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2518         struct device *dev = &pf->pdev->dev;
2519         enum ice_status status;
2520         struct ice_vsi *vsi;
2521         int ret, i;
2522 
2523         if (type == ICE_VSI_VF)
2524                 vsi = ice_vsi_alloc(pf, type, vf_id);
2525         else
2526                 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2527 
2528         if (!vsi) {
2529                 dev_err(dev, "could not allocate VSI\n");
2530                 return NULL;
2531         }
2532 
2533         vsi->port_info = pi;
2534         vsi->vsw = pf->first_sw;
2535         if (vsi->type == ICE_VSI_PF)
2536                 vsi->ethtype = ETH_P_PAUSE;
2537 
2538         if (vsi->type == ICE_VSI_VF)
2539                 vsi->vf_id = vf_id;
2540 
2541         if (ice_vsi_get_qs(vsi)) {
2542                 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2543                         vsi->idx);
2544                 goto unroll_get_qs;
2545         }
2546 
2547         /* set RSS capabilities */
2548         ice_vsi_set_rss_params(vsi);
2549 
2550         /* set TC configuration */
2551         ice_vsi_set_tc_cfg(vsi);
2552 
2553         /* create the VSI */
2554         ret = ice_vsi_init(vsi);
2555         if (ret)
2556                 goto unroll_get_qs;
2557 
2558         switch (vsi->type) {
2559         case ICE_VSI_PF:
2560                 ret = ice_vsi_alloc_q_vectors(vsi);
2561                 if (ret)
2562                         goto unroll_vsi_init;
2563 
2564                 ret = ice_vsi_setup_vector_base(vsi);
2565                 if (ret)
2566                         goto unroll_alloc_q_vector;
2567 
2568                 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2569                 if (ret)
2570                         goto unroll_vector_base;
2571 
2572                 ret = ice_vsi_alloc_rings(vsi);
2573                 if (ret)
2574                         goto unroll_vector_base;
2575 
2576                 ice_vsi_map_rings_to_vectors(vsi);
2577 
2578                 /* Do not exit if configuring RSS had an issue, at least
2579                  * receive traffic on first queue. Hence no need to capture
2580                  * return value
2581                  */
2582                 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2583                         ice_vsi_cfg_rss_lut_key(vsi);
2584                 break;
2585         case ICE_VSI_VF:
2586                 /* VF driver will take care of creating netdev for this type and
2587                  * map queues to vectors through Virtchnl, PF driver only
2588                  * creates a VSI and corresponding structures for bookkeeping
2589                  * purpose
2590                  */
2591                 ret = ice_vsi_alloc_q_vectors(vsi);
2592                 if (ret)
2593                         goto unroll_vsi_init;
2594 
2595                 ret = ice_vsi_alloc_rings(vsi);
2596                 if (ret)
2597                         goto unroll_alloc_q_vector;
2598 
2599                 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2600                 if (ret)
2601                         goto unroll_vector_base;
2602 
2603                 /* Do not exit if configuring RSS had an issue, at least
2604                  * receive traffic on first queue. Hence no need to capture
2605                  * return value
2606                  */
2607                 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2608                         ice_vsi_cfg_rss_lut_key(vsi);
2609                 break;
2610         case ICE_VSI_LB:
2611                 ret = ice_vsi_alloc_rings(vsi);
2612                 if (ret)
2613                         goto unroll_vsi_init;
2614                 break;
2615         default:
2616                 /* clean up the resources and exit */
2617                 goto unroll_vsi_init;
2618         }
2619 
2620         /* configure VSI nodes based on number of queues and TC's */
2621         for (i = 0; i < vsi->tc_cfg.numtc; i++)
2622                 max_txqs[i] = vsi->alloc_txq;
2623 
2624         status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2625                                  max_txqs);
2626         if (status) {
2627                 dev_err(&pf->pdev->dev,
2628                         "VSI %d failed lan queue config, error %d\n",
2629                         vsi->vsi_num, status);
2630                 goto unroll_vector_base;
2631         }
2632 
2633         /* Add switch rule to drop all Tx Flow Control Frames, of look up
2634          * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2635          * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2636          * The rule is added once for PF VSI in order to create appropriate
2637          * recipe, since VSI/VSI list is ignored with drop action...
2638          * Also add rules to handle LLDP Tx and Rx packets.  Tx LLDP packets
2639          * need to be dropped so that VFs cannot send LLDP packets to reconfig
2640          * DCB settings in the HW.  Also, if the FW DCBX engine is not running
2641          * then Rx LLDP packets need to be redirected up the stack.
2642          */
2643         if (!ice_is_safe_mode(pf)) {
2644                 if (vsi->type == ICE_VSI_PF) {
2645                         ice_vsi_add_rem_eth_mac(vsi, true);
2646 
2647                         /* Tx LLDP packets */
2648                         ice_cfg_sw_lldp(vsi, true, true);
2649 
2650                         /* Rx LLDP packets */
2651                         if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2652                                 ice_cfg_sw_lldp(vsi, false, true);
2653                 }
2654         }
2655 
2656         return vsi;
2657 
2658 unroll_vector_base:
2659         /* reclaim SW interrupts back to the common pool */
2660         ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2661         pf->num_avail_sw_msix += vsi->num_q_vectors;
2662 unroll_alloc_q_vector:
2663         ice_vsi_free_q_vectors(vsi);
2664 unroll_vsi_init:
2665         ice_vsi_delete(vsi);
2666 unroll_get_qs:
2667         ice_vsi_put_qs(vsi);
2668         ice_vsi_clear(vsi);
2669 
2670         return NULL;
2671 }
2672 
2673 /**
2674  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2675  * @vsi: the VSI being cleaned up
2676  */
2677 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2678 {
2679         struct ice_pf *pf = vsi->back;
2680         struct ice_hw *hw = &pf->hw;
2681         u32 txq = 0;
2682         u32 rxq = 0;
2683         int i, q;
2684 
2685         for (i = 0; i < vsi->num_q_vectors; i++) {
2686                 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2687                 u16 reg_idx = q_vector->reg_idx;
2688 
2689                 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2690                 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2691                 for (q = 0; q < q_vector->num_ring_tx; q++) {
2692                         wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2693                         txq++;
2694                 }
2695 
2696                 for (q = 0; q < q_vector->num_ring_rx; q++) {
2697                         wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2698                         rxq++;
2699                 }
2700         }
2701 
2702         ice_flush(hw);
2703 }
2704 
2705 /**
2706  * ice_vsi_free_irq - Free the IRQ association with the OS
2707  * @vsi: the VSI being configured
2708  */
2709 void ice_vsi_free_irq(struct ice_vsi *vsi)
2710 {
2711         struct ice_pf *pf = vsi->back;
2712         int base = vsi->base_vector;
2713         int i;
2714 
2715         if (!vsi->q_vectors || !vsi->irqs_ready)
2716                 return;
2717 
2718         ice_vsi_release_msix(vsi);
2719         if (vsi->type == ICE_VSI_VF)
2720                 return;
2721 
2722         vsi->irqs_ready = false;
2723         ice_for_each_q_vector(vsi, i) {
2724                 u16 vector = i + base;
2725                 int irq_num;
2726 
2727                 irq_num = pf->msix_entries[vector].vector;
2728 
2729                 /* free only the irqs that were actually requested */
2730                 if (!vsi->q_vectors[i] ||
2731                     !(vsi->q_vectors[i]->num_ring_tx ||
2732                       vsi->q_vectors[i]->num_ring_rx))
2733                         continue;
2734 
2735                 /* clear the affinity notifier in the IRQ descriptor */
2736                 irq_set_affinity_notifier(irq_num, NULL);
2737 
2738                 /* clear the affinity_mask in the IRQ descriptor */
2739                 irq_set_affinity_hint(irq_num, NULL);
2740                 synchronize_irq(irq_num);
2741                 devm_free_irq(&pf->pdev->dev, irq_num,
2742                               vsi->q_vectors[i]);
2743         }
2744 }
2745 
2746 /**
2747  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2748  * @vsi: the VSI having resources freed
2749  */
2750 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2751 {
2752         int i;
2753 
2754         if (!vsi->tx_rings)
2755                 return;
2756 
2757         ice_for_each_txq(vsi, i)
2758                 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2759                         ice_free_tx_ring(vsi->tx_rings[i]);
2760 }
2761 
2762 /**
2763  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2764  * @vsi: the VSI having resources freed
2765  */
2766 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2767 {
2768         int i;
2769 
2770         if (!vsi->rx_rings)
2771                 return;
2772 
2773         ice_for_each_rxq(vsi, i)
2774                 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2775                         ice_free_rx_ring(vsi->rx_rings[i]);
2776 }
2777 
2778 /**
2779  * ice_vsi_close - Shut down a VSI
2780  * @vsi: the VSI being shut down
2781  */
2782 void ice_vsi_close(struct ice_vsi *vsi)
2783 {
2784         if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2785                 ice_down(vsi);
2786 
2787         ice_vsi_free_irq(vsi);
2788         ice_vsi_free_tx_rings(vsi);
2789         ice_vsi_free_rx_rings(vsi);
2790 }
2791 
2792 /**
2793  * ice_free_res - free a block of resources
2794  * @res: pointer to the resource
2795  * @index: starting index previously returned by ice_get_res
2796  * @id: identifier to track owner
2797  *
2798  * Returns number of resources freed
2799  */
2800 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2801 {
2802         int count = 0;
2803         int i;
2804 
2805         if (!res || index >= res->end)
2806                 return -EINVAL;
2807 
2808         id |= ICE_RES_VALID_BIT;
2809         for (i = index; i < res->end && res->list[i] == id; i++) {
2810                 res->list[i] = 0;
2811                 count++;
2812         }
2813 
2814         return count;
2815 }
2816 
2817 /**
2818  * ice_search_res - Search the tracker for a block of resources
2819  * @res: pointer to the resource
2820  * @needed: size of the block needed
2821  * @id: identifier to track owner
2822  *
2823  * Returns the base item index of the block, or -ENOMEM for error
2824  */
2825 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2826 {
2827         int start = 0, end = 0;
2828 
2829         if (needed > res->end)
2830                 return -ENOMEM;
2831 
2832         id |= ICE_RES_VALID_BIT;
2833 
2834         do {
2835                 /* skip already allocated entries */
2836                 if (res->list[end++] & ICE_RES_VALID_BIT) {
2837                         start = end;
2838                         if ((start + needed) > res->end)
2839                                 break;
2840                 }
2841 
2842                 if (end == (start + needed)) {
2843                         int i = start;
2844 
2845                         /* there was enough, so assign it to the requestor */
2846                         while (i != end)
2847                                 res->list[i++] = id;
2848 
2849                         return start;
2850                 }
2851         } while (end < res->end);
2852 
2853         return -ENOMEM;
2854 }
2855 
2856 /**
2857  * ice_get_res - get a block of resources
2858  * @pf: board private structure
2859  * @res: pointer to the resource
2860  * @needed: size of the block needed
2861  * @id: identifier to track owner
2862  *
2863  * Returns the base item index of the block, or negative for error
2864  */
2865 int
2866 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2867 {
2868         if (!res || !pf)
2869                 return -EINVAL;
2870 
2871         if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2872                 dev_err(&pf->pdev->dev,
2873                         "param err: needed=%d, num_entries = %d id=0x%04x\n",
2874                         needed, res->num_entries, id);
2875                 return -EINVAL;
2876         }
2877 
2878         return ice_search_res(res, needed, id);
2879 }
2880 
2881 /**
2882  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2883  * @vsi: the VSI being un-configured
2884  */
2885 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2886 {
2887         int base = vsi->base_vector;
2888         struct ice_pf *pf = vsi->back;
2889         struct ice_hw *hw = &pf->hw;
2890         u32 val;
2891         int i;
2892 
2893         /* disable interrupt causation from each queue */
2894         if (vsi->tx_rings) {
2895                 ice_for_each_txq(vsi, i) {
2896                         if (vsi->tx_rings[i]) {
2897                                 u16 reg;
2898 
2899                                 reg = vsi->tx_rings[i]->reg_idx;
2900                                 val = rd32(hw, QINT_TQCTL(reg));
2901                                 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2902                                 wr32(hw, QINT_TQCTL(reg), val);
2903                         }
2904                 }
2905         }
2906 
2907         if (vsi->rx_rings) {
2908                 ice_for_each_rxq(vsi, i) {
2909                         if (vsi->rx_rings[i]) {
2910                                 u16 reg;
2911 
2912                                 reg = vsi->rx_rings[i]->reg_idx;
2913                                 val = rd32(hw, QINT_RQCTL(reg));
2914                                 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2915                                 wr32(hw, QINT_RQCTL(reg), val);
2916                         }
2917                 }
2918         }
2919 
2920         /* disable each interrupt */
2921         ice_for_each_q_vector(vsi, i) {
2922                 if (!vsi->q_vectors[i])
2923                         continue;
2924                 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2925         }
2926 
2927         ice_flush(hw);
2928 
2929         /* don't call synchronize_irq() for VF's from the host */
2930         if (vsi->type == ICE_VSI_VF)
2931                 return;
2932 
2933         ice_for_each_q_vector(vsi, i)
2934                 synchronize_irq(pf->msix_entries[i + base].vector);
2935 }
2936 
2937 /**
2938  * ice_napi_del - Remove NAPI handler for the VSI
2939  * @vsi: VSI for which NAPI handler is to be removed
2940  */
2941 void ice_napi_del(struct ice_vsi *vsi)
2942 {
2943         int v_idx;
2944 
2945         if (!vsi->netdev)
2946                 return;
2947 
2948         ice_for_each_q_vector(vsi, v_idx)
2949                 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2950 }
2951 
2952 /**
2953  * ice_vsi_release - Delete a VSI and free its resources
2954  * @vsi: the VSI being removed
2955  *
2956  * Returns 0 on success or < 0 on error
2957  */
2958 int ice_vsi_release(struct ice_vsi *vsi)
2959 {
2960         struct ice_pf *pf;
2961 
2962         if (!vsi->back)
2963                 return -ENODEV;
2964         pf = vsi->back;
2965 
2966         /* do not unregister while driver is in the reset recovery pending
2967          * state. Since reset/rebuild happens through PF service task workqueue,
2968          * it's not a good idea to unregister netdev that is associated to the
2969          * PF that is running the work queue items currently. This is done to
2970          * avoid check_flush_dependency() warning on this wq
2971          */
2972         if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2973                 unregister_netdev(vsi->netdev);
2974 
2975         if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2976                 ice_rss_clean(vsi);
2977 
2978         /* Disable VSI and free resources */
2979         if (vsi->type != ICE_VSI_LB)
2980                 ice_vsi_dis_irq(vsi);
2981         ice_vsi_close(vsi);
2982 
2983         /* SR-IOV determines needed MSIX resources all at once instead of per
2984          * VSI since when VFs are spawned we know how many VFs there are and how
2985          * many interrupts each VF needs. SR-IOV MSIX resources are also
2986          * cleared in the same manner.
2987          */
2988         if (vsi->type != ICE_VSI_VF) {
2989                 /* reclaim SW interrupts back to the common pool */
2990                 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2991                 pf->num_avail_sw_msix += vsi->num_q_vectors;
2992         }
2993 
2994         if (!ice_is_safe_mode(pf)) {
2995                 if (vsi->type == ICE_VSI_PF) {
2996                         ice_vsi_add_rem_eth_mac(vsi, false);
2997                         ice_cfg_sw_lldp(vsi, true, false);
2998                         /* The Rx rule will only exist to remove if the LLDP FW
2999                          * engine is currently stopped
3000                          */
3001                         if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3002                                 ice_cfg_sw_lldp(vsi, false, false);
3003                 }
3004         }
3005 
3006         ice_remove_vsi_fltr(&pf->hw, vsi->idx);
3007         ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3008         ice_vsi_delete(vsi);
3009         ice_vsi_free_q_vectors(vsi);
3010 
3011         /* make sure unregister_netdev() was called by checking __ICE_DOWN */
3012         if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
3013                 free_netdev(vsi->netdev);
3014                 vsi->netdev = NULL;
3015         }
3016 
3017         ice_vsi_clear_rings(vsi);
3018 
3019         ice_vsi_put_qs(vsi);
3020 
3021         /* retain SW VSI data structure since it is needed to unregister and
3022          * free VSI netdev when PF is not in reset recovery pending state,\
3023          * for ex: during rmmod.
3024          */
3025         if (!ice_is_reset_in_progress(pf->state))
3026                 ice_vsi_clear(vsi);
3027 
3028         return 0;
3029 }
3030 
3031 /**
3032  * ice_vsi_rebuild - Rebuild VSI after reset
3033  * @vsi: VSI to be rebuild
3034  *
3035  * Returns 0 on success and negative value on failure
3036  */
3037 int ice_vsi_rebuild(struct ice_vsi *vsi)
3038 {
3039         u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3040         struct ice_vf *vf = NULL;
3041         enum ice_status status;
3042         struct ice_pf *pf;
3043         int ret, i;
3044 
3045         if (!vsi)
3046                 return -EINVAL;
3047 
3048         pf = vsi->back;
3049         if (vsi->type == ICE_VSI_VF)
3050                 vf = &pf->vf[vsi->vf_id];
3051 
3052         ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3053         ice_vsi_free_q_vectors(vsi);
3054 
3055         /* SR-IOV determines needed MSIX resources all at once instead of per
3056          * VSI since when VFs are spawned we know how many VFs there are and how
3057          * many interrupts each VF needs. SR-IOV MSIX resources are also
3058          * cleared in the same manner.
3059          */
3060         if (vsi->type != ICE_VSI_VF) {
3061                 /* reclaim SW interrupts back to the common pool */
3062                 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3063                 pf->num_avail_sw_msix += vsi->num_q_vectors;
3064                 vsi->base_vector = 0;
3065         }
3066 
3067         ice_vsi_put_qs(vsi);
3068         ice_vsi_clear_rings(vsi);
3069         ice_vsi_free_arrays(vsi);
3070         ice_dev_onetime_setup(&pf->hw);
3071         if (vsi->type == ICE_VSI_VF)
3072                 ice_vsi_set_num_qs(vsi, vf->vf_id);
3073         else
3074                 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3075 
3076         ret = ice_vsi_alloc_arrays(vsi);
3077         if (ret < 0)
3078                 goto err_vsi;
3079 
3080         ice_vsi_get_qs(vsi);
3081         ice_vsi_set_tc_cfg(vsi);
3082 
3083         /* Initialize VSI struct elements and create VSI in FW */
3084         ret = ice_vsi_init(vsi);
3085         if (ret < 0)
3086                 goto err_vsi;
3087 
3088 
3089         switch (vsi->type) {
3090         case ICE_VSI_PF:
3091                 ret = ice_vsi_alloc_q_vectors(vsi);
3092                 if (ret)
3093                         goto err_rings;
3094 
3095                 ret = ice_vsi_setup_vector_base(vsi);
3096                 if (ret)
3097                         goto err_vectors;
3098 
3099                 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3100                 if (ret)
3101                         goto err_vectors;
3102 
3103                 ret = ice_vsi_alloc_rings(vsi);
3104                 if (ret)
3105                         goto err_vectors;
3106 
3107                 ice_vsi_map_rings_to_vectors(vsi);
3108                 /* Do not exit if configuring RSS had an issue, at least
3109                  * receive traffic on first queue. Hence no need to capture
3110                  * return value
3111                  */
3112                 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3113                         ice_vsi_cfg_rss_lut_key(vsi);
3114                 break;
3115         case ICE_VSI_VF:
3116                 ret = ice_vsi_alloc_q_vectors(vsi);
3117                 if (ret)
3118                         goto err_rings;
3119 
3120                 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3121                 if (ret)
3122                         goto err_vectors;
3123 
3124                 ret = ice_vsi_alloc_rings(vsi);
3125                 if (ret)
3126                         goto err_vectors;
3127 
3128                 break;
3129         default:
3130                 break;
3131         }
3132 
3133         /* configure VSI nodes based on number of queues and TC's */
3134         for (i = 0; i < vsi->tc_cfg.numtc; i++)
3135                 max_txqs[i] = vsi->alloc_txq;
3136 
3137         status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3138                                  max_txqs);
3139         if (status) {
3140                 dev_err(&pf->pdev->dev,
3141                         "VSI %d failed lan queue config, error %d\n",
3142                         vsi->vsi_num, status);
3143                 goto err_vectors;
3144         }
3145         return 0;
3146 
3147 err_vectors:
3148         ice_vsi_free_q_vectors(vsi);
3149 err_rings:
3150         if (vsi->netdev) {
3151                 vsi->current_netdev_flags = 0;
3152                 unregister_netdev(vsi->netdev);
3153                 free_netdev(vsi->netdev);
3154                 vsi->netdev = NULL;
3155         }
3156 err_vsi:
3157         ice_vsi_clear(vsi);
3158         set_bit(__ICE_RESET_FAILED, pf->state);
3159         return ret;
3160 }
3161 
3162 /**
3163  * ice_is_reset_in_progress - check for a reset in progress
3164  * @state: PF state field
3165  */
3166 bool ice_is_reset_in_progress(unsigned long *state)
3167 {
3168         return test_bit(__ICE_RESET_OICR_RECV, state) ||
3169                test_bit(__ICE_PFR_REQ, state) ||
3170                test_bit(__ICE_CORER_REQ, state) ||
3171                test_bit(__ICE_GLOBR_REQ, state);
3172 }
3173 
3174 #ifdef CONFIG_DCB
3175 /**
3176  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3177  * @vsi: VSI being configured
3178  * @ctx: the context buffer returned from AQ VSI update command
3179  */
3180 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3181 {
3182         vsi->info.mapping_flags = ctx->info.mapping_flags;
3183         memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3184                sizeof(vsi->info.q_mapping));
3185         memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3186                sizeof(vsi->info.tc_mapping));
3187 }
3188 
3189 /**
3190  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3191  * @vsi: VSI to be configured
3192  * @ena_tc: TC bitmap
3193  *
3194  * VSI queues expected to be quiesced before calling this function
3195  */
3196 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3197 {
3198         u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3199         struct ice_vsi_ctx *ctx;
3200         struct ice_pf *pf = vsi->back;
3201         enum ice_status status;
3202         int i, ret = 0;
3203         u8 num_tc = 0;
3204 
3205         ice_for_each_traffic_class(i) {
3206                 /* build bitmap of enabled TCs */
3207                 if (ena_tc & BIT(i))
3208                         num_tc++;
3209                 /* populate max_txqs per TC */
3210                 max_txqs[i] = vsi->alloc_txq;
3211         }
3212 
3213         vsi->tc_cfg.ena_tc = ena_tc;
3214         vsi->tc_cfg.numtc = num_tc;
3215 
3216         ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3217         if (!ctx)
3218                 return -ENOMEM;
3219 
3220         ctx->vf_num = 0;
3221         ctx->info = vsi->info;
3222 
3223         ice_vsi_setup_q_map(vsi, ctx);
3224 
3225         /* must to indicate which section of VSI context are being modified */
3226         ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3227         status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3228         if (status) {
3229                 dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3230                 ret = -EIO;
3231                 goto out;
3232         }
3233 
3234         status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3235                                  max_txqs);
3236 
3237         if (status) {
3238                 dev_err(&pf->pdev->dev,
3239                         "VSI %d failed TC config, error %d\n",
3240                         vsi->vsi_num, status);
3241                 ret = -EIO;
3242                 goto out;
3243         }
3244         ice_vsi_update_q_map(vsi, ctx);
3245         vsi->info.valid_sections = 0;
3246 
3247         ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3248 out:
3249         devm_kfree(&pf->pdev->dev, ctx);
3250         return ret;
3251 }
3252 #endif /* CONFIG_DCB */
3253 
3254 /**
3255  * ice_nvm_version_str - format the NVM version strings
3256  * @hw: ptr to the hardware info
3257  */
3258 char *ice_nvm_version_str(struct ice_hw *hw)
3259 {
3260         u8 oem_ver, oem_patch, ver_hi, ver_lo;
3261         static char buf[ICE_NVM_VER_LEN];
3262         u16 oem_build;
3263 
3264         ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi,
3265                             &ver_lo);
3266 
3267         snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo,
3268                  hw->nvm.eetrack, oem_ver, oem_build, oem_patch);
3269 
3270         return buf;
3271 }
3272 
3273 /**
3274  * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI
3275  * @vsi: the VSI being configured MAC filter
3276  * @macaddr: the MAC address to be added.
3277  * @set: Add or delete a MAC filter
3278  *
3279  * Adds or removes MAC address filter entry for VF VSI
3280  */
3281 enum ice_status
3282 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set)
3283 {
3284         LIST_HEAD(tmp_add_list);
3285         enum ice_status status;
3286 
3287          /* Update MAC filter list to be added or removed for a VSI */
3288         if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) {
3289                 status = ICE_ERR_NO_MEMORY;
3290                 goto cfg_mac_fltr_exit;
3291         }
3292 
3293         if (set)
3294                 status = ice_add_mac(&vsi->back->hw, &tmp_add_list);
3295         else
3296                 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list);
3297 
3298 cfg_mac_fltr_exit:
3299         ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list);
3300         return status;
3301 }

/* [<][>][^][v][top][bottom][index][help] */