root/drivers/net/ethernet/qualcomm/emac/emac-mac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. emac_mac_multicast_addr_set
  2. emac_mac_multicast_addr_clear
  3. emac_mac_mode_config
  4. emac_mac_dma_rings_config
  5. emac_mac_tx_config
  6. emac_mac_rx_config
  7. emac_mac_dma_config
  8. emac_set_mac_address
  9. emac_mac_config
  10. emac_mac_reset
  11. emac_mac_start
  12. emac_mac_stop
  13. emac_tx_q_descs_free
  14. emac_rx_q_free_descs
  15. emac_tx_q_bufs_free
  16. emac_tx_q_desc_alloc
  17. emac_rx_q_bufs_free
  18. emac_rx_descs_alloc
  19. emac_mac_rx_tx_rings_alloc_all
  20. emac_mac_rx_tx_rings_free_all
  21. emac_mac_rx_tx_ring_reset_all
  22. emac_mac_rx_rfd_create
  23. emac_mac_rx_descs_refill
  24. emac_adjust_link
  25. emac_mac_up
  26. emac_mac_down
  27. emac_rx_process_rrd
  28. emac_tx_tpd_create
  29. emac_tx_tpd_mark_last
  30. emac_rx_rfd_clean
  31. emac_receive_skb
  32. emac_mac_rx_process
  33. emac_tpd_num_free_descs
  34. emac_mac_tx_process
  35. emac_mac_rx_tx_ring_init_all
  36. emac_tso_csum
  37. emac_tx_fill_tpd
  38. emac_mac_tx_buf_send

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
   3  */
   4 
   5 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
   6  */
   7 
   8 #include <linux/tcp.h>
   9 #include <linux/ip.h>
  10 #include <linux/ipv6.h>
  11 #include <linux/crc32.h>
  12 #include <linux/if_vlan.h>
  13 #include <linux/jiffies.h>
  14 #include <linux/phy.h>
  15 #include <linux/of.h>
  16 #include <net/ip6_checksum.h>
  17 #include "emac.h"
  18 #include "emac-sgmii.h"
  19 
  20 /* EMAC_MAC_CTRL */
  21 #define SINGLE_PAUSE_MODE               0x10000000
  22 #define DEBUG_MODE                      0x08000000
  23 #define BROAD_EN                        0x04000000
  24 #define MULTI_ALL                       0x02000000
  25 #define RX_CHKSUM_EN                    0x01000000
  26 #define HUGE                            0x00800000
  27 #define SPEED(x)                        (((x) & 0x3) << 20)
  28 #define SPEED_MASK                      SPEED(0x3)
  29 #define SIMR                            0x00080000
  30 #define TPAUSE                          0x00010000
  31 #define PROM_MODE                       0x00008000
  32 #define VLAN_STRIP                      0x00004000
  33 #define PRLEN_BMSK                      0x00003c00
  34 #define PRLEN_SHFT                      10
  35 #define HUGEN                           0x00000200
  36 #define FLCHK                           0x00000100
  37 #define PCRCE                           0x00000080
  38 #define CRCE                            0x00000040
  39 #define FULLD                           0x00000020
  40 #define MAC_LP_EN                       0x00000010
  41 #define RXFC                            0x00000008
  42 #define TXFC                            0x00000004
  43 #define RXEN                            0x00000002
  44 #define TXEN                            0x00000001
  45 
  46 /* EMAC_DESC_CTRL_3 */
  47 #define RFD_RING_SIZE_BMSK                                       0xfff
  48 
  49 /* EMAC_DESC_CTRL_4 */
  50 #define RX_BUFFER_SIZE_BMSK                                     0xffff
  51 
  52 /* EMAC_DESC_CTRL_6 */
  53 #define RRD_RING_SIZE_BMSK                                       0xfff
  54 
  55 /* EMAC_DESC_CTRL_9 */
  56 #define TPD_RING_SIZE_BMSK                                      0xffff
  57 
  58 /* EMAC_TXQ_CTRL_0 */
  59 #define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
  60 #define NUM_TXF_BURST_PREF_SHFT                                     16
  61 #define LS_8023_SP                                                0x80
  62 #define TXQ_MODE                                                  0x40
  63 #define TXQ_EN                                                    0x20
  64 #define IP_OP_SP                                                  0x10
  65 #define NUM_TPD_BURST_PREF_BMSK                                    0xf
  66 #define NUM_TPD_BURST_PREF_SHFT                                      0
  67 
  68 /* EMAC_TXQ_CTRL_1 */
  69 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
  70 
  71 /* EMAC_TXQ_CTRL_2 */
  72 #define TXF_HWM_BMSK                                         0xfff0000
  73 #define TXF_LWM_BMSK                                             0xfff
  74 
  75 /* EMAC_RXQ_CTRL_0 */
  76 #define RXQ_EN                                                 BIT(31)
  77 #define CUT_THRU_EN                                            BIT(30)
  78 #define RSS_HASH_EN                                            BIT(29)
  79 #define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
  80 #define NUM_RFD_BURST_PREF_SHFT                                     20
  81 #define IDT_TABLE_SIZE_BMSK                                    0x1ff00
  82 #define IDT_TABLE_SIZE_SHFT                                          8
  83 #define SP_IPV6                                                   0x80
  84 
  85 /* EMAC_RXQ_CTRL_1 */
  86 #define JUMBO_1KAH_BMSK                                         0xf000
  87 #define JUMBO_1KAH_SHFT                                             12
  88 #define RFD_PREF_LOW_TH                                           0x10
  89 #define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
  90 #define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
  91 #define RFD_PREF_UP_TH                                            0x10
  92 #define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
  93 #define RFD_PREF_UP_THRESHOLD_SHFT                                   0
  94 
  95 /* EMAC_RXQ_CTRL_2 */
  96 #define RXF_DOF_THRESFHOLD                                       0x1a0
  97 #define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
  98 #define RXF_DOF_THRESHOLD_SHFT                                      16
  99 #define RXF_UOF_THRESFHOLD                                        0xbe
 100 #define RXF_UOF_THRESHOLD_BMSK                                   0xfff
 101 #define RXF_UOF_THRESHOLD_SHFT                                       0
 102 
 103 /* EMAC_RXQ_CTRL_3 */
 104 #define RXD_TIMER_BMSK                                      0xffff0000
 105 #define RXD_THRESHOLD_BMSK                                       0xfff
 106 #define RXD_THRESHOLD_SHFT                                           0
 107 
 108 /* EMAC_DMA_CTRL */
 109 #define DMAW_DLY_CNT_BMSK                                      0xf0000
 110 #define DMAW_DLY_CNT_SHFT                                           16
 111 #define DMAR_DLY_CNT_BMSK                                       0xf800
 112 #define DMAR_DLY_CNT_SHFT                                           11
 113 #define DMAR_REQ_PRI                                             0x400
 114 #define REGWRBLEN_BMSK                                           0x380
 115 #define REGWRBLEN_SHFT                                               7
 116 #define REGRDBLEN_BMSK                                            0x70
 117 #define REGRDBLEN_SHFT                                               4
 118 #define OUT_ORDER_MODE                                             0x4
 119 #define ENH_ORDER_MODE                                             0x2
 120 #define IN_ORDER_MODE                                              0x1
 121 
 122 /* EMAC_MAILBOX_13 */
 123 #define RFD3_PROC_IDX_BMSK                                   0xfff0000
 124 #define RFD3_PROC_IDX_SHFT                                          16
 125 #define RFD3_PROD_IDX_BMSK                                       0xfff
 126 #define RFD3_PROD_IDX_SHFT                                           0
 127 
 128 /* EMAC_MAILBOX_2 */
 129 #define NTPD_CONS_IDX_BMSK                                  0xffff0000
 130 #define NTPD_CONS_IDX_SHFT                                          16
 131 
 132 /* EMAC_MAILBOX_3 */
 133 #define RFD0_CONS_IDX_BMSK                                       0xfff
 134 #define RFD0_CONS_IDX_SHFT                                           0
 135 
 136 /* EMAC_MAILBOX_11 */
 137 #define H3TPD_PROD_IDX_BMSK                                 0xffff0000
 138 #define H3TPD_PROD_IDX_SHFT                                         16
 139 
 140 /* EMAC_AXI_MAST_CTRL */
 141 #define DATA_BYTE_SWAP                                             0x8
 142 #define MAX_BOUND                                                  0x2
 143 #define MAX_BTYPE                                                  0x1
 144 
 145 /* EMAC_MAILBOX_12 */
 146 #define H3TPD_CONS_IDX_BMSK                                 0xffff0000
 147 #define H3TPD_CONS_IDX_SHFT                                         16
 148 
 149 /* EMAC_MAILBOX_9 */
 150 #define H2TPD_PROD_IDX_BMSK                                     0xffff
 151 #define H2TPD_PROD_IDX_SHFT                                          0
 152 
 153 /* EMAC_MAILBOX_10 */
 154 #define H1TPD_CONS_IDX_BMSK                                 0xffff0000
 155 #define H1TPD_CONS_IDX_SHFT                                         16
 156 #define H2TPD_CONS_IDX_BMSK                                     0xffff
 157 #define H2TPD_CONS_IDX_SHFT                                          0
 158 
 159 /* EMAC_ATHR_HEADER_CTRL */
 160 #define HEADER_CNT_EN                                              0x2
 161 #define HEADER_ENABLE                                              0x1
 162 
 163 /* EMAC_MAILBOX_0 */
 164 #define RFD0_PROC_IDX_BMSK                                   0xfff0000
 165 #define RFD0_PROC_IDX_SHFT                                          16
 166 #define RFD0_PROD_IDX_BMSK                                       0xfff
 167 #define RFD0_PROD_IDX_SHFT                                           0
 168 
 169 /* EMAC_MAILBOX_5 */
 170 #define RFD1_PROC_IDX_BMSK                                   0xfff0000
 171 #define RFD1_PROC_IDX_SHFT                                          16
 172 #define RFD1_PROD_IDX_BMSK                                       0xfff
 173 #define RFD1_PROD_IDX_SHFT                                           0
 174 
 175 /* EMAC_MISC_CTRL */
 176 #define RX_UNCPL_INT_EN                                            0x1
 177 
 178 /* EMAC_MAILBOX_7 */
 179 #define RFD2_CONS_IDX_BMSK                                   0xfff0000
 180 #define RFD2_CONS_IDX_SHFT                                          16
 181 #define RFD1_CONS_IDX_BMSK                                       0xfff
 182 #define RFD1_CONS_IDX_SHFT                                           0
 183 
 184 /* EMAC_MAILBOX_8 */
 185 #define RFD3_CONS_IDX_BMSK                                       0xfff
 186 #define RFD3_CONS_IDX_SHFT                                           0
 187 
 188 /* EMAC_MAILBOX_15 */
 189 #define NTPD_PROD_IDX_BMSK                                      0xffff
 190 #define NTPD_PROD_IDX_SHFT                                           0
 191 
 192 /* EMAC_MAILBOX_16 */
 193 #define H1TPD_PROD_IDX_BMSK                                     0xffff
 194 #define H1TPD_PROD_IDX_SHFT                                          0
 195 
 196 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
 197 #define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
 198 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
 199 #define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
 200 
 201 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
 202 #define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
 203 #define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
 204 
 205 struct emac_skb_cb {
 206         u32           tpd_idx;
 207         unsigned long jiffies;
 208 };
 209 
 210 #define EMAC_SKB_CB(skb)        ((struct emac_skb_cb *)(skb)->cb)
 211 #define EMAC_RSS_IDT_SIZE       256
 212 #define JUMBO_1KAH              0x4
 213 #define RXD_TH                  0x100
 214 #define EMAC_TPD_LAST_FRAGMENT  0x80000000
 215 #define EMAC_TPD_TSTAMP_SAVE    0x80000000
 216 
 217 /* EMAC Errors in emac_rrd.word[3] */
 218 #define EMAC_RRD_L4F            BIT(14)
 219 #define EMAC_RRD_IPF            BIT(15)
 220 #define EMAC_RRD_CRC            BIT(21)
 221 #define EMAC_RRD_FAE            BIT(22)
 222 #define EMAC_RRD_TRN            BIT(23)
 223 #define EMAC_RRD_RNT            BIT(24)
 224 #define EMAC_RRD_INC            BIT(25)
 225 #define EMAC_RRD_FOV            BIT(29)
 226 #define EMAC_RRD_LEN            BIT(30)
 227 
 228 /* Error bits that will result in a received frame being discarded */
 229 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
 230                         EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
 231                         EMAC_RRD_FOV | EMAC_RRD_LEN)
 232 #define EMAC_RRD_STATS_DW_IDX 3
 233 
 234 #define EMAC_RRD(RXQ, SIZE, IDX)        ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
 235 #define EMAC_RFD(RXQ, SIZE, IDX)        ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
 236 #define EMAC_TPD(TXQ, SIZE, IDX)        ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
 237 
 238 #define GET_RFD_BUFFER(RXQ, IDX)        (&((RXQ)->rfd.rfbuff[(IDX)]))
 239 #define GET_TPD_BUFFER(RTQ, IDX)        (&((RTQ)->tpd.tpbuff[(IDX)]))
 240 
 241 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD       8
 242 
 243 #define ISR_RX_PKT      (\
 244         RX_PKT_INT0     |\
 245         RX_PKT_INT1     |\
 246         RX_PKT_INT2     |\
 247         RX_PKT_INT3)
 248 
 249 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
 250 {
 251         u32 crc32, bit, reg, mta;
 252 
 253         /* Calculate the CRC of the MAC address */
 254         crc32 = ether_crc(ETH_ALEN, addr);
 255 
 256         /* The HASH Table is an array of 2 32-bit registers. It is
 257          * treated like an array of 64 bits (BitArray[hash_value]).
 258          * Use the upper 6 bits of the above CRC as the hash value.
 259          */
 260         reg = (crc32 >> 31) & 0x1;
 261         bit = (crc32 >> 26) & 0x1F;
 262 
 263         mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 264         mta |= BIT(bit);
 265         writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 266 }
 267 
 268 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
 269 {
 270         writel(0, adpt->base + EMAC_HASH_TAB_REG0);
 271         writel(0, adpt->base + EMAC_HASH_TAB_REG1);
 272 }
 273 
 274 /* definitions for RSS */
 275 #define EMAC_RSS_KEY(_i, _type) \
 276                 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
 277 #define EMAC_RSS_TBL(_i, _type) \
 278                 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
 279 
 280 /* Config MAC modes */
 281 void emac_mac_mode_config(struct emac_adapter *adpt)
 282 {
 283         struct net_device *netdev = adpt->netdev;
 284         u32 mac;
 285 
 286         mac = readl(adpt->base + EMAC_MAC_CTRL);
 287         mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
 288 
 289         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 290                 mac |= VLAN_STRIP;
 291 
 292         if (netdev->flags & IFF_PROMISC)
 293                 mac |= PROM_MODE;
 294 
 295         if (netdev->flags & IFF_ALLMULTI)
 296                 mac |= MULTI_ALL;
 297 
 298         writel(mac, adpt->base + EMAC_MAC_CTRL);
 299 }
 300 
 301 /* Config descriptor rings */
 302 static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
 303 {
 304         /* TPD (Transmit Packet Descriptor) */
 305         writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
 306                adpt->base + EMAC_DESC_CTRL_1);
 307 
 308         writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
 309                adpt->base + EMAC_DESC_CTRL_8);
 310 
 311         writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
 312                adpt->base + EMAC_DESC_CTRL_9);
 313 
 314         /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
 315         writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
 316                adpt->base + EMAC_DESC_CTRL_0);
 317 
 318         writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
 319                adpt->base + EMAC_DESC_CTRL_2);
 320         writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
 321                adpt->base + EMAC_DESC_CTRL_5);
 322 
 323         writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
 324                adpt->base + EMAC_DESC_CTRL_3);
 325         writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
 326                adpt->base + EMAC_DESC_CTRL_6);
 327 
 328         writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
 329                adpt->base + EMAC_DESC_CTRL_4);
 330 
 331         writel(0, adpt->base + EMAC_DESC_CTRL_11);
 332 
 333         /* Load all of the base addresses above and ensure that triggering HW to
 334          * read ring pointers is flushed
 335          */
 336         writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
 337 }
 338 
 339 /* Config transmit parameters */
 340 static void emac_mac_tx_config(struct emac_adapter *adpt)
 341 {
 342         u32 val;
 343 
 344         writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
 345                JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
 346 
 347         val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
 348                NUM_TPD_BURST_PREF_BMSK;
 349 
 350         val |= TXQ_MODE | LS_8023_SP;
 351         val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
 352                 NUM_TXF_BURST_PREF_BMSK;
 353 
 354         writel(val, adpt->base + EMAC_TXQ_CTRL_0);
 355         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
 356                           (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
 357 }
 358 
 359 /* Config receive parameters */
 360 static void emac_mac_rx_config(struct emac_adapter *adpt)
 361 {
 362         u32 val;
 363 
 364         val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
 365                NUM_RFD_BURST_PREF_BMSK;
 366         val |= (SP_IPV6 | CUT_THRU_EN);
 367 
 368         writel(val, adpt->base + EMAC_RXQ_CTRL_0);
 369 
 370         val = readl(adpt->base + EMAC_RXQ_CTRL_1);
 371         val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
 372                  RFD_PREF_UP_THRESHOLD_BMSK);
 373         val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
 374                 (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
 375                 (RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
 376         writel(val, adpt->base + EMAC_RXQ_CTRL_1);
 377 
 378         val = readl(adpt->base + EMAC_RXQ_CTRL_2);
 379         val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
 380         val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
 381                 (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
 382         writel(val, adpt->base + EMAC_RXQ_CTRL_2);
 383 
 384         val = readl(adpt->base + EMAC_RXQ_CTRL_3);
 385         val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
 386         val |= RXD_TH << RXD_THRESHOLD_SHFT;
 387         writel(val, adpt->base + EMAC_RXQ_CTRL_3);
 388 }
 389 
 390 /* Config dma */
 391 static void emac_mac_dma_config(struct emac_adapter *adpt)
 392 {
 393         u32 dma_ctrl = DMAR_REQ_PRI;
 394 
 395         switch (adpt->dma_order) {
 396         case emac_dma_ord_in:
 397                 dma_ctrl |= IN_ORDER_MODE;
 398                 break;
 399         case emac_dma_ord_enh:
 400                 dma_ctrl |= ENH_ORDER_MODE;
 401                 break;
 402         case emac_dma_ord_out:
 403                 dma_ctrl |= OUT_ORDER_MODE;
 404                 break;
 405         default:
 406                 break;
 407         }
 408 
 409         dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
 410                                                 REGRDBLEN_BMSK;
 411         dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
 412                                                 REGWRBLEN_BMSK;
 413         dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
 414                                                 DMAR_DLY_CNT_BMSK;
 415         dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
 416                                                 DMAW_DLY_CNT_BMSK;
 417 
 418         /* config DMA and ensure that configuration is flushed to HW */
 419         writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
 420 }
 421 
 422 /* set MAC address */
 423 static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
 424 {
 425         u32 sta;
 426 
 427         /* for example: 00-A0-C6-11-22-33
 428          * 0<-->C6112233, 1<-->00A0.
 429          */
 430 
 431         /* low 32bit word */
 432         sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
 433               (((u32)addr[4]) << 8)  | (((u32)addr[5]));
 434         writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
 435 
 436         /* hight 32bit word */
 437         sta = (((u32)addr[0]) << 8) | (u32)addr[1];
 438         writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
 439 }
 440 
 441 static void emac_mac_config(struct emac_adapter *adpt)
 442 {
 443         struct net_device *netdev = adpt->netdev;
 444         unsigned int max_frame;
 445         u32 val;
 446 
 447         emac_set_mac_address(adpt, netdev->dev_addr);
 448 
 449         max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 450         adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
 451                 ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
 452 
 453         emac_mac_dma_rings_config(adpt);
 454 
 455         writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
 456                adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
 457 
 458         emac_mac_tx_config(adpt);
 459         emac_mac_rx_config(adpt);
 460         emac_mac_dma_config(adpt);
 461 
 462         val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
 463         val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
 464         val |= MAX_BTYPE;
 465         writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
 466         writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
 467         writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
 468 }
 469 
 470 void emac_mac_reset(struct emac_adapter *adpt)
 471 {
 472         emac_mac_stop(adpt);
 473 
 474         emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
 475         usleep_range(100, 150); /* reset may take up to 100usec */
 476 
 477         /* interrupt clear-on-read */
 478         emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
 479 }
 480 
 481 static void emac_mac_start(struct emac_adapter *adpt)
 482 {
 483         struct phy_device *phydev = adpt->phydev;
 484         u32 mac, csr1;
 485 
 486         /* enable tx queue */
 487         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
 488 
 489         /* enable rx queue */
 490         emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
 491 
 492         /* enable mac control */
 493         mac = readl(adpt->base + EMAC_MAC_CTRL);
 494         csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 495 
 496         mac |= TXEN | RXEN;     /* enable RX/TX */
 497 
 498         /* Configure MAC flow control. If set to automatic, then match
 499          * whatever the PHY does. Otherwise, enable or disable it, depending
 500          * on what the user configured via ethtool.
 501          */
 502         mac &= ~(RXFC | TXFC);
 503 
 504         if (adpt->automatic) {
 505                 /* If it's set to automatic, then update our local values */
 506                 adpt->rx_flow_control = phydev->pause;
 507                 adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
 508         }
 509         mac |= adpt->rx_flow_control ? RXFC : 0;
 510         mac |= adpt->tx_flow_control ? TXFC : 0;
 511 
 512         /* setup link speed */
 513         mac &= ~SPEED_MASK;
 514         if (phydev->speed == SPEED_1000) {
 515                 mac |= SPEED(2);
 516                 csr1 |= FREQ_MODE;
 517         } else {
 518                 mac |= SPEED(1);
 519                 csr1 &= ~FREQ_MODE;
 520         }
 521 
 522         if (phydev->duplex == DUPLEX_FULL)
 523                 mac |= FULLD;
 524         else
 525                 mac &= ~FULLD;
 526 
 527         /* other parameters */
 528         mac |= (CRCE | PCRCE);
 529         mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
 530         mac |= BROAD_EN;
 531         mac |= FLCHK;
 532         mac &= ~RX_CHKSUM_EN;
 533         mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
 534                  DEBUG_MODE | SINGLE_PAUSE_MODE);
 535 
 536         /* Enable single-pause-frame mode if requested.
 537          *
 538          * If enabled, the EMAC will send a single pause frame when the RX
 539          * queue is full.  This normally leads to packet loss because
 540          * the pause frame disables the remote MAC only for 33ms (the quanta),
 541          * and then the remote MAC continues sending packets even though
 542          * the RX queue is still full.
 543          *
 544          * If disabled, the EMAC sends a pause frame every 31ms until the RX
 545          * queue is no longer full.  Normally, this is the preferred
 546          * method of operation.  However, when the system is hung (e.g.
 547          * cores are halted), the EMAC interrupt handler is never called
 548          * and so the RX queue fills up quickly and stays full.  The resuling
 549          * non-stop "flood" of pause frames sometimes has the effect of
 550          * disabling nearby switches.  In some cases, other nearby switches
 551          * are also affected, shutting down the entire network.
 552          *
 553          * The user can enable or disable single-pause-frame mode
 554          * via ethtool.
 555          */
 556         mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
 557 
 558         writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 559 
 560         writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
 561 
 562         /* enable interrupt read clear, low power sleep mode and
 563          * the irq moderators
 564          */
 565 
 566         writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
 567         writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
 568                         IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
 569 
 570         emac_mac_mode_config(adpt);
 571 
 572         emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
 573                           (HEADER_ENABLE | HEADER_CNT_EN), 0);
 574 }
 575 
 576 void emac_mac_stop(struct emac_adapter *adpt)
 577 {
 578         emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
 579         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
 580         emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
 581         usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
 582 }
 583 
 584 /* Free all descriptors of given transmit queue */
 585 static void emac_tx_q_descs_free(struct emac_adapter *adpt)
 586 {
 587         struct emac_tx_queue *tx_q = &adpt->tx_q;
 588         unsigned int i;
 589         size_t size;
 590 
 591         /* ring already cleared, nothing to do */
 592         if (!tx_q->tpd.tpbuff)
 593                 return;
 594 
 595         for (i = 0; i < tx_q->tpd.count; i++) {
 596                 struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
 597 
 598                 if (tpbuf->dma_addr) {
 599                         dma_unmap_single(adpt->netdev->dev.parent,
 600                                          tpbuf->dma_addr, tpbuf->length,
 601                                          DMA_TO_DEVICE);
 602                         tpbuf->dma_addr = 0;
 603                 }
 604                 if (tpbuf->skb) {
 605                         dev_kfree_skb_any(tpbuf->skb);
 606                         tpbuf->skb = NULL;
 607                 }
 608         }
 609 
 610         size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 611         memset(tx_q->tpd.tpbuff, 0, size);
 612 
 613         /* clear the descriptor ring */
 614         memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
 615 
 616         tx_q->tpd.consume_idx = 0;
 617         tx_q->tpd.produce_idx = 0;
 618 }
 619 
 620 /* Free all descriptors of given receive queue */
 621 static void emac_rx_q_free_descs(struct emac_adapter *adpt)
 622 {
 623         struct device *dev = adpt->netdev->dev.parent;
 624         struct emac_rx_queue *rx_q = &adpt->rx_q;
 625         unsigned int i;
 626         size_t size;
 627 
 628         /* ring already cleared, nothing to do */
 629         if (!rx_q->rfd.rfbuff)
 630                 return;
 631 
 632         for (i = 0; i < rx_q->rfd.count; i++) {
 633                 struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
 634 
 635                 if (rfbuf->dma_addr) {
 636                         dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
 637                                          DMA_FROM_DEVICE);
 638                         rfbuf->dma_addr = 0;
 639                 }
 640                 if (rfbuf->skb) {
 641                         dev_kfree_skb(rfbuf->skb);
 642                         rfbuf->skb = NULL;
 643                 }
 644         }
 645 
 646         size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
 647         memset(rx_q->rfd.rfbuff, 0, size);
 648 
 649         /* clear the descriptor rings */
 650         memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
 651         rx_q->rrd.produce_idx = 0;
 652         rx_q->rrd.consume_idx = 0;
 653 
 654         memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
 655         rx_q->rfd.produce_idx = 0;
 656         rx_q->rfd.consume_idx = 0;
 657 }
 658 
 659 /* Free all buffers associated with given transmit queue */
 660 static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
 661 {
 662         struct emac_tx_queue *tx_q = &adpt->tx_q;
 663 
 664         emac_tx_q_descs_free(adpt);
 665 
 666         kfree(tx_q->tpd.tpbuff);
 667         tx_q->tpd.tpbuff = NULL;
 668         tx_q->tpd.v_addr = NULL;
 669         tx_q->tpd.dma_addr = 0;
 670         tx_q->tpd.size = 0;
 671 }
 672 
 673 /* Allocate TX descriptor ring for the given transmit queue */
 674 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
 675                                 struct emac_tx_queue *tx_q)
 676 {
 677         struct emac_ring_header *ring_header = &adpt->ring_header;
 678         int node = dev_to_node(adpt->netdev->dev.parent);
 679         size_t size;
 680 
 681         size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 682         tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
 683         if (!tx_q->tpd.tpbuff)
 684                 return -ENOMEM;
 685 
 686         tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
 687         tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
 688         tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
 689         ring_header->used += ALIGN(tx_q->tpd.size, 8);
 690         tx_q->tpd.produce_idx = 0;
 691         tx_q->tpd.consume_idx = 0;
 692 
 693         return 0;
 694 }
 695 
 696 /* Free all buffers associated with given transmit queue */
 697 static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
 698 {
 699         struct emac_rx_queue *rx_q = &adpt->rx_q;
 700 
 701         emac_rx_q_free_descs(adpt);
 702 
 703         kfree(rx_q->rfd.rfbuff);
 704         rx_q->rfd.rfbuff   = NULL;
 705 
 706         rx_q->rfd.v_addr   = NULL;
 707         rx_q->rfd.dma_addr = 0;
 708         rx_q->rfd.size     = 0;
 709 
 710         rx_q->rrd.v_addr   = NULL;
 711         rx_q->rrd.dma_addr = 0;
 712         rx_q->rrd.size     = 0;
 713 }
 714 
 715 /* Allocate RX descriptor rings for the given receive queue */
 716 static int emac_rx_descs_alloc(struct emac_adapter *adpt)
 717 {
 718         struct emac_ring_header *ring_header = &adpt->ring_header;
 719         int node = dev_to_node(adpt->netdev->dev.parent);
 720         struct emac_rx_queue *rx_q = &adpt->rx_q;
 721         size_t size;
 722 
 723         size = sizeof(struct emac_buffer) * rx_q->rfd.count;
 724         rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
 725         if (!rx_q->rfd.rfbuff)
 726                 return -ENOMEM;
 727 
 728         rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
 729         rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
 730 
 731         rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
 732         rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
 733         ring_header->used += ALIGN(rx_q->rrd.size, 8);
 734 
 735         rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
 736         rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
 737         ring_header->used += ALIGN(rx_q->rfd.size, 8);
 738 
 739         rx_q->rrd.produce_idx = 0;
 740         rx_q->rrd.consume_idx = 0;
 741 
 742         rx_q->rfd.produce_idx = 0;
 743         rx_q->rfd.consume_idx = 0;
 744 
 745         return 0;
 746 }
 747 
 748 /* Allocate all TX and RX descriptor rings */
 749 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
 750 {
 751         struct emac_ring_header *ring_header = &adpt->ring_header;
 752         struct device *dev = adpt->netdev->dev.parent;
 753         unsigned int num_tx_descs = adpt->tx_desc_cnt;
 754         unsigned int num_rx_descs = adpt->rx_desc_cnt;
 755         int ret;
 756 
 757         adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
 758 
 759         adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
 760         adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
 761 
 762         /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
 763          * hence the additional padding bytes are allocated.
 764          */
 765         ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
 766                             num_rx_descs * (adpt->rfd_size * 4) +
 767                             num_rx_descs * (adpt->rrd_size * 4) +
 768                             8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
 769 
 770         ring_header->used = 0;
 771         ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
 772                                                  &ring_header->dma_addr,
 773                                                  GFP_KERNEL);
 774         if (!ring_header->v_addr)
 775                 return -ENOMEM;
 776 
 777         ring_header->used = ALIGN(ring_header->dma_addr, 8) -
 778                                                         ring_header->dma_addr;
 779 
 780         ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
 781         if (ret) {
 782                 netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
 783                 goto err_alloc_tx;
 784         }
 785 
 786         ret = emac_rx_descs_alloc(adpt);
 787         if (ret) {
 788                 netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
 789                 goto err_alloc_rx;
 790         }
 791 
 792         return 0;
 793 
 794 err_alloc_rx:
 795         emac_tx_q_bufs_free(adpt);
 796 err_alloc_tx:
 797         dma_free_coherent(dev, ring_header->size,
 798                           ring_header->v_addr, ring_header->dma_addr);
 799 
 800         ring_header->v_addr   = NULL;
 801         ring_header->dma_addr = 0;
 802         ring_header->size     = 0;
 803         ring_header->used     = 0;
 804 
 805         return ret;
 806 }
 807 
 808 /* Free all TX and RX descriptor rings */
 809 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
 810 {
 811         struct emac_ring_header *ring_header = &adpt->ring_header;
 812         struct device *dev = adpt->netdev->dev.parent;
 813 
 814         emac_tx_q_bufs_free(adpt);
 815         emac_rx_q_bufs_free(adpt);
 816 
 817         dma_free_coherent(dev, ring_header->size,
 818                           ring_header->v_addr, ring_header->dma_addr);
 819 
 820         ring_header->v_addr   = NULL;
 821         ring_header->dma_addr = 0;
 822         ring_header->size     = 0;
 823         ring_header->used     = 0;
 824 }
 825 
 826 /* Initialize descriptor rings */
 827 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
 828 {
 829         unsigned int i;
 830 
 831         adpt->tx_q.tpd.produce_idx = 0;
 832         adpt->tx_q.tpd.consume_idx = 0;
 833         for (i = 0; i < adpt->tx_q.tpd.count; i++)
 834                 adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
 835 
 836         adpt->rx_q.rrd.produce_idx = 0;
 837         adpt->rx_q.rrd.consume_idx = 0;
 838         adpt->rx_q.rfd.produce_idx = 0;
 839         adpt->rx_q.rfd.consume_idx = 0;
 840         for (i = 0; i < adpt->rx_q.rfd.count; i++)
 841                 adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
 842 }
 843 
 844 /* Produce new receive free descriptor */
 845 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
 846                                    struct emac_rx_queue *rx_q,
 847                                    dma_addr_t addr)
 848 {
 849         u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
 850 
 851         *(hw_rfd++) = lower_32_bits(addr);
 852         *hw_rfd = upper_32_bits(addr);
 853 
 854         if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
 855                 rx_q->rfd.produce_idx = 0;
 856 }
 857 
 858 /* Fill up receive queue's RFD with preallocated receive buffers */
 859 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
 860                                     struct emac_rx_queue *rx_q)
 861 {
 862         struct emac_buffer *curr_rxbuf;
 863         struct emac_buffer *next_rxbuf;
 864         unsigned int count = 0;
 865         u32 next_produce_idx;
 866 
 867         next_produce_idx = rx_q->rfd.produce_idx + 1;
 868         if (next_produce_idx == rx_q->rfd.count)
 869                 next_produce_idx = 0;
 870 
 871         curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 872         next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 873 
 874         /* this always has a blank rx_buffer*/
 875         while (!next_rxbuf->dma_addr) {
 876                 struct sk_buff *skb;
 877                 int ret;
 878 
 879                 skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
 880                 if (!skb)
 881                         break;
 882 
 883                 curr_rxbuf->dma_addr =
 884                         dma_map_single(adpt->netdev->dev.parent, skb->data,
 885                                        adpt->rxbuf_size, DMA_FROM_DEVICE);
 886 
 887                 ret = dma_mapping_error(adpt->netdev->dev.parent,
 888                                         curr_rxbuf->dma_addr);
 889                 if (ret) {
 890                         dev_kfree_skb(skb);
 891                         break;
 892                 }
 893                 curr_rxbuf->skb = skb;
 894                 curr_rxbuf->length = adpt->rxbuf_size;
 895 
 896                 emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
 897                 next_produce_idx = rx_q->rfd.produce_idx + 1;
 898                 if (next_produce_idx == rx_q->rfd.count)
 899                         next_produce_idx = 0;
 900 
 901                 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 902                 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 903                 count++;
 904         }
 905 
 906         if (count) {
 907                 u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
 908                                 rx_q->produce_mask;
 909                 emac_reg_update32(adpt->base + rx_q->produce_reg,
 910                                   rx_q->produce_mask, prod_idx);
 911         }
 912 }
 913 
 914 static void emac_adjust_link(struct net_device *netdev)
 915 {
 916         struct emac_adapter *adpt = netdev_priv(netdev);
 917         struct phy_device *phydev = netdev->phydev;
 918 
 919         if (phydev->link) {
 920                 emac_mac_start(adpt);
 921                 emac_sgmii_link_change(adpt, true);
 922         } else {
 923                 emac_sgmii_link_change(adpt, false);
 924                 emac_mac_stop(adpt);
 925         }
 926 
 927         phy_print_status(phydev);
 928 }
 929 
 930 /* Bringup the interface/HW */
 931 int emac_mac_up(struct emac_adapter *adpt)
 932 {
 933         struct net_device *netdev = adpt->netdev;
 934         int ret;
 935 
 936         emac_mac_rx_tx_ring_reset_all(adpt);
 937         emac_mac_config(adpt);
 938         emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
 939 
 940         adpt->phydev->irq = PHY_POLL;
 941         ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
 942                                  PHY_INTERFACE_MODE_SGMII);
 943         if (ret) {
 944                 netdev_err(adpt->netdev, "could not connect phy\n");
 945                 return ret;
 946         }
 947 
 948         phy_attached_print(adpt->phydev, NULL);
 949 
 950         /* enable mac irq */
 951         writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
 952         writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
 953 
 954         phy_start(adpt->phydev);
 955 
 956         napi_enable(&adpt->rx_q.napi);
 957         netif_start_queue(netdev);
 958 
 959         return 0;
 960 }
 961 
 962 /* Bring down the interface/HW */
 963 void emac_mac_down(struct emac_adapter *adpt)
 964 {
 965         struct net_device *netdev = adpt->netdev;
 966 
 967         netif_stop_queue(netdev);
 968         napi_disable(&adpt->rx_q.napi);
 969 
 970         phy_stop(adpt->phydev);
 971 
 972         /* Interrupts must be disabled before the PHY is disconnected, to
 973          * avoid a race condition where adjust_link is null when we get
 974          * an interrupt.
 975          */
 976         writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
 977         writel(0, adpt->base + EMAC_INT_MASK);
 978         synchronize_irq(adpt->irq.irq);
 979 
 980         phy_disconnect(adpt->phydev);
 981 
 982         emac_mac_reset(adpt);
 983 
 984         emac_tx_q_descs_free(adpt);
 985         netdev_reset_queue(adpt->netdev);
 986         emac_rx_q_free_descs(adpt);
 987 }
 988 
 989 /* Consume next received packet descriptor */
 990 static bool emac_rx_process_rrd(struct emac_adapter *adpt,
 991                                 struct emac_rx_queue *rx_q,
 992                                 struct emac_rrd *rrd)
 993 {
 994         u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
 995 
 996         rrd->word[3] = *(hw_rrd + 3);
 997 
 998         if (!RRD_UPDT(rrd))
 999                 return false;
1000 
1001         rrd->word[4] = 0;
1002         rrd->word[5] = 0;
1003 
1004         rrd->word[0] = *(hw_rrd++);
1005         rrd->word[1] = *(hw_rrd++);
1006         rrd->word[2] = *(hw_rrd++);
1007 
1008         if (unlikely(RRD_NOR(rrd) != 1)) {
1009                 netdev_err(adpt->netdev,
1010                            "error: multi-RFD not support yet! nor:%lu\n",
1011                            RRD_NOR(rrd));
1012         }
1013 
1014         /* mark rrd as processed */
1015         RRD_UPDT_SET(rrd, 0);
1016         *hw_rrd = rrd->word[3];
1017 
1018         if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1019                 rx_q->rrd.consume_idx = 0;
1020 
1021         return true;
1022 }
1023 
1024 /* Produce new transmit descriptor */
1025 static void emac_tx_tpd_create(struct emac_adapter *adpt,
1026                                struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1027 {
1028         u32 *hw_tpd;
1029 
1030         tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1031         hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1032 
1033         if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1034                 tx_q->tpd.produce_idx = 0;
1035 
1036         *(hw_tpd++) = tpd->word[0];
1037         *(hw_tpd++) = tpd->word[1];
1038         *(hw_tpd++) = tpd->word[2];
1039         *hw_tpd = tpd->word[3];
1040 }
1041 
1042 /* Mark the last transmit descriptor as such (for the transmit packet) */
1043 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1044                                   struct emac_tx_queue *tx_q)
1045 {
1046         u32 *hw_tpd =
1047                 EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1048         u32 tmp_tpd;
1049 
1050         tmp_tpd = *(hw_tpd + 1);
1051         tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1052         *(hw_tpd + 1) = tmp_tpd;
1053 }
1054 
1055 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1056 {
1057         struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1058         u32 consume_idx = RRD_SI(rrd);
1059         unsigned int i;
1060 
1061         for (i = 0; i < RRD_NOR(rrd); i++) {
1062                 rfbuf[consume_idx].skb = NULL;
1063                 if (++consume_idx == rx_q->rfd.count)
1064                         consume_idx = 0;
1065         }
1066 
1067         rx_q->rfd.consume_idx = consume_idx;
1068         rx_q->rfd.process_idx = consume_idx;
1069 }
1070 
1071 /* Push the received skb to upper layers */
1072 static void emac_receive_skb(struct emac_rx_queue *rx_q,
1073                              struct sk_buff *skb,
1074                              u16 vlan_tag, bool vlan_flag)
1075 {
1076         if (vlan_flag) {
1077                 u16 vlan;
1078 
1079                 EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1080                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1081         }
1082 
1083         napi_gro_receive(&rx_q->napi, skb);
1084 }
1085 
1086 /* Process receive event */
1087 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1088                          int *num_pkts, int max_pkts)
1089 {
1090         u32 proc_idx, hw_consume_idx, num_consume_pkts;
1091         struct net_device *netdev  = adpt->netdev;
1092         struct emac_buffer *rfbuf;
1093         unsigned int count = 0;
1094         struct emac_rrd rrd;
1095         struct sk_buff *skb;
1096         u32 reg;
1097 
1098         reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1099 
1100         hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1101         num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1102                 (hw_consume_idx -  rx_q->rrd.consume_idx) :
1103                 (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1104 
1105         do {
1106                 if (!num_consume_pkts)
1107                         break;
1108 
1109                 if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1110                         break;
1111 
1112                 if (likely(RRD_NOR(&rrd) == 1)) {
1113                         /* good receive */
1114                         rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1115                         dma_unmap_single(adpt->netdev->dev.parent,
1116                                          rfbuf->dma_addr, rfbuf->length,
1117                                          DMA_FROM_DEVICE);
1118                         rfbuf->dma_addr = 0;
1119                         skb = rfbuf->skb;
1120                 } else {
1121                         netdev_err(adpt->netdev,
1122                                    "error: multi-RFD not support yet!\n");
1123                         break;
1124                 }
1125                 emac_rx_rfd_clean(rx_q, &rrd);
1126                 num_consume_pkts--;
1127                 count++;
1128 
1129                 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1130                  * with DF set are marked as error), drop packets based on the
1131                  * error mask rather than the summary bit (ignoring L4F errors)
1132                  */
1133                 if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1134                         netif_dbg(adpt, rx_status, adpt->netdev,
1135                                   "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1136                                   rrd.word[0], rrd.word[1],
1137                                   rrd.word[2], rrd.word[3]);
1138 
1139                         dev_kfree_skb(skb);
1140                         continue;
1141                 }
1142 
1143                 skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1144                 skb->dev = netdev;
1145                 skb->protocol = eth_type_trans(skb, skb->dev);
1146                 if (netdev->features & NETIF_F_RXCSUM)
1147                         skb->ip_summed = RRD_L4F(&rrd) ?
1148                                           CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1149                 else
1150                         skb_checksum_none_assert(skb);
1151 
1152                 emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1153                                  (bool)RRD_CVTAG(&rrd));
1154 
1155                 (*num_pkts)++;
1156         } while (*num_pkts < max_pkts);
1157 
1158         if (count) {
1159                 proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1160                                 rx_q->process_mask;
1161                 emac_reg_update32(adpt->base + rx_q->process_reg,
1162                                   rx_q->process_mask, proc_idx);
1163                 emac_mac_rx_descs_refill(adpt, rx_q);
1164         }
1165 }
1166 
1167 /* get the number of free transmit descriptors */
1168 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1169 {
1170         u32 produce_idx = tx_q->tpd.produce_idx;
1171         u32 consume_idx = tx_q->tpd.consume_idx;
1172 
1173         return (consume_idx > produce_idx) ?
1174                 (consume_idx - produce_idx - 1) :
1175                 (tx_q->tpd.count + consume_idx - produce_idx - 1);
1176 }
1177 
1178 /* Process transmit event */
1179 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1180 {
1181         u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1182         u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1183         struct emac_buffer *tpbuf;
1184 
1185         hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1186 
1187         while (tx_q->tpd.consume_idx != hw_consume_idx) {
1188                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1189                 if (tpbuf->dma_addr) {
1190                         dma_unmap_page(adpt->netdev->dev.parent,
1191                                        tpbuf->dma_addr, tpbuf->length,
1192                                        DMA_TO_DEVICE);
1193                         tpbuf->dma_addr = 0;
1194                 }
1195 
1196                 if (tpbuf->skb) {
1197                         pkts_compl++;
1198                         bytes_compl += tpbuf->skb->len;
1199                         dev_consume_skb_irq(tpbuf->skb);
1200                         tpbuf->skb = NULL;
1201                 }
1202 
1203                 if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1204                         tx_q->tpd.consume_idx = 0;
1205         }
1206 
1207         netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1208 
1209         if (netif_queue_stopped(adpt->netdev))
1210                 if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1211                         netif_wake_queue(adpt->netdev);
1212 }
1213 
1214 /* Initialize all queue data structures */
1215 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1216                                   struct emac_adapter *adpt)
1217 {
1218         adpt->rx_q.netdev = adpt->netdev;
1219 
1220         adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1221         adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1222         adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1223 
1224         adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1225         adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1226         adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1227 
1228         adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1229         adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1230         adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1231 
1232         adpt->rx_q.irq          = &adpt->irq;
1233         adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1234 
1235         adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1236         adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1237         adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1238 
1239         adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1240         adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1241         adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1242 }
1243 
1244 /* Fill up transmit descriptors with TSO and Checksum offload information */
1245 static int emac_tso_csum(struct emac_adapter *adpt,
1246                          struct emac_tx_queue *tx_q,
1247                          struct sk_buff *skb,
1248                          struct emac_tpd *tpd)
1249 {
1250         unsigned int hdr_len;
1251         int ret;
1252 
1253         if (skb_is_gso(skb)) {
1254                 if (skb_header_cloned(skb)) {
1255                         ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1256                         if (unlikely(ret))
1257                                 return ret;
1258                 }
1259 
1260                 if (skb->protocol == htons(ETH_P_IP)) {
1261                         u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1262                                        + ntohs(ip_hdr(skb)->tot_len);
1263                         if (skb->len > pkt_len)
1264                                 pskb_trim(skb, pkt_len);
1265                 }
1266 
1267                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1268                 if (unlikely(skb->len == hdr_len)) {
1269                         /* we only need to do csum */
1270                         netif_warn(adpt, tx_err, adpt->netdev,
1271                                    "tso not needed for packet with 0 data\n");
1272                         goto do_csum;
1273                 }
1274 
1275                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1276                         ip_hdr(skb)->check = 0;
1277                         tcp_hdr(skb)->check =
1278                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1279                                                    ip_hdr(skb)->daddr,
1280                                                    0, IPPROTO_TCP, 0);
1281                         TPD_IPV4_SET(tpd, 1);
1282                 }
1283 
1284                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1285                         /* ipv6 tso need an extra tpd */
1286                         struct emac_tpd extra_tpd;
1287 
1288                         memset(tpd, 0, sizeof(*tpd));
1289                         memset(&extra_tpd, 0, sizeof(extra_tpd));
1290 
1291                         ipv6_hdr(skb)->payload_len = 0;
1292                         tcp_hdr(skb)->check =
1293                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1294                                                  &ipv6_hdr(skb)->daddr,
1295                                                  0, IPPROTO_TCP, 0);
1296                         TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1297                         TPD_LSO_SET(&extra_tpd, 1);
1298                         TPD_LSOV_SET(&extra_tpd, 1);
1299                         emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1300                         TPD_LSOV_SET(tpd, 1);
1301                 }
1302 
1303                 TPD_LSO_SET(tpd, 1);
1304                 TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1305                 TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1306                 return 0;
1307         }
1308 
1309 do_csum:
1310         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1311                 unsigned int css, cso;
1312 
1313                 cso = skb_transport_offset(skb);
1314                 if (unlikely(cso & 0x1)) {
1315                         netdev_err(adpt->netdev,
1316                                    "error: payload offset should be even\n");
1317                         return -EINVAL;
1318                 }
1319                 css = cso + skb->csum_offset;
1320 
1321                 TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1322                 TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1323                 TPD_CSX_SET(tpd, 1);
1324         }
1325 
1326         return 0;
1327 }
1328 
1329 /* Fill up transmit descriptors */
1330 static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1331                              struct emac_tx_queue *tx_q, struct sk_buff *skb,
1332                              struct emac_tpd *tpd)
1333 {
1334         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1335         unsigned int first = tx_q->tpd.produce_idx;
1336         unsigned int len = skb_headlen(skb);
1337         struct emac_buffer *tpbuf = NULL;
1338         unsigned int mapped_len = 0;
1339         unsigned int i;
1340         int count = 0;
1341         int ret;
1342 
1343         /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1344         if (TPD_LSO(tpd)) {
1345                 mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1346 
1347                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1348                 tpbuf->length = mapped_len;
1349                 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1350                                                virt_to_page(skb->data),
1351                                                offset_in_page(skb->data),
1352                                                tpbuf->length,
1353                                                DMA_TO_DEVICE);
1354                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1355                                         tpbuf->dma_addr);
1356                 if (ret)
1357                         goto error;
1358 
1359                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1360                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1361                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1362                 emac_tx_tpd_create(adpt, tx_q, tpd);
1363                 count++;
1364         }
1365 
1366         if (mapped_len < len) {
1367                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1368                 tpbuf->length = len - mapped_len;
1369                 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1370                                                virt_to_page(skb->data +
1371                                                             mapped_len),
1372                                                offset_in_page(skb->data +
1373                                                               mapped_len),
1374                                                tpbuf->length, DMA_TO_DEVICE);
1375                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1376                                         tpbuf->dma_addr);
1377                 if (ret)
1378                         goto error;
1379 
1380                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1381                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1382                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1383                 emac_tx_tpd_create(adpt, tx_q, tpd);
1384                 count++;
1385         }
1386 
1387         for (i = 0; i < nr_frags; i++) {
1388                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1389 
1390                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1391                 tpbuf->length = skb_frag_size(frag);
1392                 tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
1393                                                    frag, 0, tpbuf->length,
1394                                                    DMA_TO_DEVICE);
1395                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1396                                         tpbuf->dma_addr);
1397                 if (ret)
1398                         goto error;
1399 
1400                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1401                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1402                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1403                 emac_tx_tpd_create(adpt, tx_q, tpd);
1404                 count++;
1405         }
1406 
1407         /* The last tpd */
1408         wmb();
1409         emac_tx_tpd_mark_last(adpt, tx_q);
1410 
1411         /* The last buffer info contain the skb address,
1412          * so it will be freed after unmap
1413          */
1414         tpbuf->skb = skb;
1415 
1416         return;
1417 
1418 error:
1419         /* One of the memory mappings failed, so undo everything */
1420         tx_q->tpd.produce_idx = first;
1421 
1422         while (count--) {
1423                 tpbuf = GET_TPD_BUFFER(tx_q, first);
1424                 dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1425                                tpbuf->length, DMA_TO_DEVICE);
1426                 tpbuf->dma_addr = 0;
1427                 tpbuf->length = 0;
1428 
1429                 if (++first == tx_q->tpd.count)
1430                         first = 0;
1431         }
1432 
1433         dev_kfree_skb(skb);
1434 }
1435 
1436 /* Transmit the packet using specified transmit queue */
1437 int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1438                          struct sk_buff *skb)
1439 {
1440         struct emac_tpd tpd;
1441         u32 prod_idx;
1442 
1443         memset(&tpd, 0, sizeof(tpd));
1444 
1445         if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1446                 dev_kfree_skb_any(skb);
1447                 return NETDEV_TX_OK;
1448         }
1449 
1450         if (skb_vlan_tag_present(skb)) {
1451                 u16 tag;
1452 
1453                 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1454                 TPD_CVLAN_TAG_SET(&tpd, tag);
1455                 TPD_INSTC_SET(&tpd, 1);
1456         }
1457 
1458         if (skb_network_offset(skb) != ETH_HLEN)
1459                 TPD_TYP_SET(&tpd, 1);
1460 
1461         emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1462 
1463         netdev_sent_queue(adpt->netdev, skb->len);
1464 
1465         /* Make sure the are enough free descriptors to hold one
1466          * maximum-sized SKB.  We need one desc for each fragment,
1467          * one for the checksum (emac_tso_csum), one for TSO, and
1468          * and one for the SKB header.
1469          */
1470         if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1471                 netif_stop_queue(adpt->netdev);
1472 
1473         /* update produce idx */
1474         prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1475                     tx_q->produce_mask;
1476         emac_reg_update32(adpt->base + tx_q->produce_reg,
1477                           tx_q->produce_mask, prod_idx);
1478 
1479         return NETDEV_TX_OK;
1480 }

/* [<][>][^][v][top][bottom][index][help] */