root/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. hns3_irq_handle
  2. hns3_nic_uninit_irq
  3. hns3_nic_init_irq
  4. hns3_mask_vector_irq
  5. hns3_vector_enable
  6. hns3_vector_disable
  7. hns3_set_vector_coalesce_rl
  8. hns3_set_vector_coalesce_rx_gl
  9. hns3_set_vector_coalesce_tx_gl
  10. hns3_vector_gl_rl_init
  11. hns3_vector_gl_rl_init_hw
  12. hns3_nic_set_real_num_queue
  13. hns3_get_max_available_channels
  14. hns3_tqp_enable
  15. hns3_tqp_disable
  16. hns3_free_rx_cpu_rmap
  17. hns3_set_rx_cpu_rmap
  18. hns3_nic_net_up
  19. hns3_config_xps
  20. hns3_nic_net_open
  21. hns3_reset_tx_queue
  22. hns3_nic_net_down
  23. hns3_nic_net_stop
  24. hns3_nic_uc_sync
  25. hns3_nic_uc_unsync
  26. hns3_nic_mc_sync
  27. hns3_nic_mc_unsync
  28. hns3_get_netdev_flags
  29. hns3_nic_set_rx_mode
  30. hns3_update_promisc_mode
  31. hns3_enable_vlan_filter
  32. hns3_set_tso
  33. hns3_get_l4_protocol
  34. hns3_tunnel_csum_bug
  35. hns3_set_outer_l2l3l4
  36. hns3_set_l2l3l4
  37. hns3_set_txbd_baseinfo
  38. hns3_handle_vtags
  39. hns3_fill_skb_desc
  40. hns3_fill_desc
  41. hns3_nic_bd_num
  42. hns3_gso_hdr_len
  43. hns3_skb_need_linearized
  44. hns3_nic_maybe_stop_tx
  45. hns3_clear_desc
  46. hns3_nic_net_xmit
  47. hns3_nic_net_set_mac_address
  48. hns3_nic_do_ioctl
  49. hns3_nic_set_features
  50. hns3_nic_get_stats64
  51. hns3_setup_tc
  52. hns3_nic_setup_tc
  53. hns3_vlan_rx_add_vid
  54. hns3_vlan_rx_kill_vid
  55. hns3_ndo_set_vf_vlan
  56. hns3_nic_change_mtu
  57. hns3_get_tx_timeo_queue_info
  58. hns3_nic_net_timeout
  59. hns3_rx_flow_steer
  60. hns3_is_phys_func
  61. hns3_disable_sriov
  62. hns3_get_dev_capability
  63. hns3_probe
  64. hns3_remove
  65. hns3_pci_sriov_configure
  66. hns3_shutdown
  67. hns3_error_detected
  68. hns3_slot_reset
  69. hns3_reset_prepare
  70. hns3_reset_done
  71. hns3_set_default_feature
  72. hns3_alloc_buffer
  73. hns3_free_buffer
  74. hns3_map_buffer
  75. hns3_unmap_buffer
  76. hns3_buffer_detach
  77. hns3_free_buffer_detach
  78. hns3_free_buffers
  79. hns3_free_desc
  80. hns3_alloc_desc
  81. hns3_reserve_buffer_map
  82. hns3_alloc_buffer_attach
  83. hns3_alloc_ring_buffers
  84. hns3_replace_buffer
  85. hns3_reuse_buffer
  86. hns3_nic_reclaim_desc
  87. is_valid_clean_head
  88. hns3_clean_tx_ring
  89. hns3_desc_unused
  90. hns3_nic_alloc_rx_buffers
  91. hns3_nic_reuse_page
  92. hns3_gro_complete
  93. hns3_rx_checksum
  94. hns3_rx_skb
  95. hns3_parse_vlan_tag
  96. hns3_alloc_skb
  97. hns3_add_frag
  98. hns3_set_gro_and_checksum
  99. hns3_set_rx_skb_rss_type
  100. hns3_handle_bdinfo
  101. hns3_handle_rx_bd
  102. hns3_clean_rx_ring
  103. hns3_get_new_flow_lvl
  104. hns3_get_new_int_gl
  105. hns3_update_new_int_gl
  106. hns3_nic_common_poll
  107. hns3_get_vector_ring_chain
  108. hns3_free_vector_ring_chain
  109. hns3_add_ring_to_group
  110. hns3_nic_set_cpumask
  111. hns3_nic_init_vector_data
  112. hns3_nic_alloc_vector_data
  113. hns3_clear_ring_group
  114. hns3_nic_uninit_vector_data
  115. hns3_nic_dealloc_vector_data
  116. hns3_ring_get_cfg
  117. hns3_queue_to_ring
  118. hns3_get_ring_config
  119. hns3_put_ring_config
  120. hns3_alloc_ring_memory
  121. hns3_fini_ring
  122. hns3_buf_size2type
  123. hns3_init_ring_hw
  124. hns3_init_tx_ring_tc
  125. hns3_init_all_ring
  126. hns3_uninit_all_ring
  127. hns3_init_mac_addr
  128. hns3_init_phy
  129. hns3_uninit_phy
  130. hns3_restore_fd_rules
  131. hns3_del_all_fd_rules
  132. hns3_client_start
  133. hns3_client_stop
  134. hns3_info_show
  135. hns3_client_init
  136. hns3_client_uninit
  137. hns3_link_status_change
  138. hns3_client_setup_tc
  139. hns3_recover_hw_addr
  140. hns3_remove_hw_addr
  141. hns3_clear_tx_ring
  142. hns3_clear_rx_ring
  143. hns3_force_clear_rx_ring
  144. hns3_clear_all_ring
  145. hns3_nic_reset_all_ring
  146. hns3_store_coal
  147. hns3_restore_coal
  148. hns3_reset_notify_down_enet
  149. hns3_reset_notify_up_enet
  150. hns3_reset_notify_init_enet
  151. hns3_reset_notify_restore_enet
  152. hns3_reset_notify_uninit_enet
  153. hns3_reset_notify
  154. hns3_change_channels
  155. hns3_set_channels
  156. hns3_process_hw_error
  157. hns3_init_module
  158. hns3_exit_module

   1 // SPDX-License-Identifier: GPL-2.0+
   2 // Copyright (c) 2016-2017 Hisilicon Limited.
   3 
   4 #include <linux/dma-mapping.h>
   5 #include <linux/etherdevice.h>
   6 #include <linux/interrupt.h>
   7 #ifdef CONFIG_RFS_ACCEL
   8 #include <linux/cpu_rmap.h>
   9 #endif
  10 #include <linux/if_vlan.h>
  11 #include <linux/ip.h>
  12 #include <linux/ipv6.h>
  13 #include <linux/module.h>
  14 #include <linux/pci.h>
  15 #include <linux/aer.h>
  16 #include <linux/skbuff.h>
  17 #include <linux/sctp.h>
  18 #include <linux/vermagic.h>
  19 #include <net/gre.h>
  20 #include <net/ip6_checksum.h>
  21 #include <net/pkt_cls.h>
  22 #include <net/tcp.h>
  23 #include <net/vxlan.h>
  24 
  25 #include "hnae3.h"
  26 #include "hns3_enet.h"
  27 
  28 #define hns3_set_field(origin, shift, val)      ((origin) |= ((val) << (shift)))
  29 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
  30 
  31 #define hns3_rl_err(fmt, ...)                                           \
  32         do {                                                            \
  33                 if (net_ratelimit())                                    \
  34                         netdev_err(fmt, ##__VA_ARGS__);                 \
  35         } while (0)
  36 
  37 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
  38 static void hns3_remove_hw_addr(struct net_device *netdev);
  39 
  40 static const char hns3_driver_name[] = "hns3";
  41 const char hns3_driver_version[] = VERMAGIC_STRING;
  42 static const char hns3_driver_string[] =
  43                         "Hisilicon Ethernet Network Driver for Hip08 Family";
  44 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
  45 static struct hnae3_client client;
  46 
  47 static int debug = -1;
  48 module_param(debug, int, 0);
  49 MODULE_PARM_DESC(debug, " Network interface message level setting");
  50 
  51 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  52                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
  53 
  54 #define HNS3_INNER_VLAN_TAG     1
  55 #define HNS3_OUTER_VLAN_TAG     2
  56 
  57 #define HNS3_MIN_TX_LEN         33U
  58 
  59 /* hns3_pci_tbl - PCI Device ID Table
  60  *
  61  * Last entry must be all 0s
  62  *
  63  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  64  *   Class, Class Mask, private data (not used) }
  65  */
  66 static const struct pci_device_id hns3_pci_tbl[] = {
  67         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
  68         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
  69         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
  70          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
  71         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
  72          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
  73         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
  74          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
  75         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
  76          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
  77         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
  78          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
  79         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
  80         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
  81          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
  82         /* required last entry */
  83         {0, }
  84 };
  85 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
  86 
  87 static irqreturn_t hns3_irq_handle(int irq, void *vector)
  88 {
  89         struct hns3_enet_tqp_vector *tqp_vector = vector;
  90 
  91         napi_schedule_irqoff(&tqp_vector->napi);
  92 
  93         return IRQ_HANDLED;
  94 }
  95 
  96 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
  97 {
  98         struct hns3_enet_tqp_vector *tqp_vectors;
  99         unsigned int i;
 100 
 101         for (i = 0; i < priv->vector_num; i++) {
 102                 tqp_vectors = &priv->tqp_vector[i];
 103 
 104                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
 105                         continue;
 106 
 107                 /* clear the affinity mask */
 108                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
 109 
 110                 /* release the irq resource */
 111                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
 112                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
 113         }
 114 }
 115 
 116 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
 117 {
 118         struct hns3_enet_tqp_vector *tqp_vectors;
 119         int txrx_int_idx = 0;
 120         int rx_int_idx = 0;
 121         int tx_int_idx = 0;
 122         unsigned int i;
 123         int ret;
 124 
 125         for (i = 0; i < priv->vector_num; i++) {
 126                 tqp_vectors = &priv->tqp_vector[i];
 127 
 128                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
 129                         continue;
 130 
 131                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
 132                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
 133                                  "%s-%s-%d", priv->netdev->name, "TxRx",
 134                                  txrx_int_idx++);
 135                         txrx_int_idx++;
 136                 } else if (tqp_vectors->rx_group.ring) {
 137                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
 138                                  "%s-%s-%d", priv->netdev->name, "Rx",
 139                                  rx_int_idx++);
 140                 } else if (tqp_vectors->tx_group.ring) {
 141                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
 142                                  "%s-%s-%d", priv->netdev->name, "Tx",
 143                                  tx_int_idx++);
 144                 } else {
 145                         /* Skip this unused q_vector */
 146                         continue;
 147                 }
 148 
 149                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
 150 
 151                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
 152                                   tqp_vectors->name, tqp_vectors);
 153                 if (ret) {
 154                         netdev_err(priv->netdev, "request irq(%d) fail\n",
 155                                    tqp_vectors->vector_irq);
 156                         hns3_nic_uninit_irq(priv);
 157                         return ret;
 158                 }
 159 
 160                 irq_set_affinity_hint(tqp_vectors->vector_irq,
 161                                       &tqp_vectors->affinity_mask);
 162 
 163                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
 164         }
 165 
 166         return 0;
 167 }
 168 
 169 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
 170                                  u32 mask_en)
 171 {
 172         writel(mask_en, tqp_vector->mask_addr);
 173 }
 174 
 175 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
 176 {
 177         napi_enable(&tqp_vector->napi);
 178 
 179         /* enable vector */
 180         hns3_mask_vector_irq(tqp_vector, 1);
 181 }
 182 
 183 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
 184 {
 185         /* disable vector */
 186         hns3_mask_vector_irq(tqp_vector, 0);
 187 
 188         disable_irq(tqp_vector->vector_irq);
 189         napi_disable(&tqp_vector->napi);
 190 }
 191 
 192 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
 193                                  u32 rl_value)
 194 {
 195         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
 196 
 197         /* this defines the configuration for RL (Interrupt Rate Limiter).
 198          * Rl defines rate of interrupts i.e. number of interrupts-per-second
 199          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
 200          */
 201 
 202         if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
 203             !tqp_vector->rx_group.coal.gl_adapt_enable)
 204                 /* According to the hardware, the range of rl_reg is
 205                  * 0-59 and the unit is 4.
 206                  */
 207                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
 208 
 209         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
 210 }
 211 
 212 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
 213                                     u32 gl_value)
 214 {
 215         u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
 216 
 217         writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
 218 }
 219 
 220 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
 221                                     u32 gl_value)
 222 {
 223         u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
 224 
 225         writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
 226 }
 227 
 228 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
 229                                    struct hns3_nic_priv *priv)
 230 {
 231         /* initialize the configuration for interrupt coalescing.
 232          * 1. GL (Interrupt Gap Limiter)
 233          * 2. RL (Interrupt Rate Limiter)
 234          *
 235          * Default: enable interrupt coalescing self-adaptive and GL
 236          */
 237         tqp_vector->tx_group.coal.gl_adapt_enable = 1;
 238         tqp_vector->rx_group.coal.gl_adapt_enable = 1;
 239 
 240         tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
 241         tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
 242 
 243         tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
 244         tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
 245 }
 246 
 247 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
 248                                       struct hns3_nic_priv *priv)
 249 {
 250         struct hnae3_handle *h = priv->ae_handle;
 251 
 252         hns3_set_vector_coalesce_tx_gl(tqp_vector,
 253                                        tqp_vector->tx_group.coal.int_gl);
 254         hns3_set_vector_coalesce_rx_gl(tqp_vector,
 255                                        tqp_vector->rx_group.coal.int_gl);
 256         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
 257 }
 258 
 259 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
 260 {
 261         struct hnae3_handle *h = hns3_get_handle(netdev);
 262         struct hnae3_knic_private_info *kinfo = &h->kinfo;
 263         unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
 264         int i, ret;
 265 
 266         if (kinfo->num_tc <= 1) {
 267                 netdev_reset_tc(netdev);
 268         } else {
 269                 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
 270                 if (ret) {
 271                         netdev_err(netdev,
 272                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
 273                         return ret;
 274                 }
 275 
 276                 for (i = 0; i < HNAE3_MAX_TC; i++) {
 277                         if (!kinfo->tc_info[i].enable)
 278                                 continue;
 279 
 280                         netdev_set_tc_queue(netdev,
 281                                             kinfo->tc_info[i].tc,
 282                                             kinfo->tc_info[i].tqp_count,
 283                                             kinfo->tc_info[i].tqp_offset);
 284                 }
 285         }
 286 
 287         ret = netif_set_real_num_tx_queues(netdev, queue_size);
 288         if (ret) {
 289                 netdev_err(netdev,
 290                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
 291                 return ret;
 292         }
 293 
 294         ret = netif_set_real_num_rx_queues(netdev, queue_size);
 295         if (ret) {
 296                 netdev_err(netdev,
 297                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
 298                 return ret;
 299         }
 300 
 301         return 0;
 302 }
 303 
 304 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
 305 {
 306         u16 alloc_tqps, max_rss_size, rss_size;
 307 
 308         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
 309         rss_size = alloc_tqps / h->kinfo.num_tc;
 310 
 311         return min_t(u16, rss_size, max_rss_size);
 312 }
 313 
 314 static void hns3_tqp_enable(struct hnae3_queue *tqp)
 315 {
 316         u32 rcb_reg;
 317 
 318         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
 319         rcb_reg |= BIT(HNS3_RING_EN_B);
 320         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
 321 }
 322 
 323 static void hns3_tqp_disable(struct hnae3_queue *tqp)
 324 {
 325         u32 rcb_reg;
 326 
 327         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
 328         rcb_reg &= ~BIT(HNS3_RING_EN_B);
 329         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
 330 }
 331 
 332 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
 333 {
 334 #ifdef CONFIG_RFS_ACCEL
 335         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
 336         netdev->rx_cpu_rmap = NULL;
 337 #endif
 338 }
 339 
 340 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
 341 {
 342 #ifdef CONFIG_RFS_ACCEL
 343         struct hns3_nic_priv *priv = netdev_priv(netdev);
 344         struct hns3_enet_tqp_vector *tqp_vector;
 345         int i, ret;
 346 
 347         if (!netdev->rx_cpu_rmap) {
 348                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
 349                 if (!netdev->rx_cpu_rmap)
 350                         return -ENOMEM;
 351         }
 352 
 353         for (i = 0; i < priv->vector_num; i++) {
 354                 tqp_vector = &priv->tqp_vector[i];
 355                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
 356                                        tqp_vector->vector_irq);
 357                 if (ret) {
 358                         hns3_free_rx_cpu_rmap(netdev);
 359                         return ret;
 360                 }
 361         }
 362 #endif
 363         return 0;
 364 }
 365 
 366 static int hns3_nic_net_up(struct net_device *netdev)
 367 {
 368         struct hns3_nic_priv *priv = netdev_priv(netdev);
 369         struct hnae3_handle *h = priv->ae_handle;
 370         int i, j;
 371         int ret;
 372 
 373         ret = hns3_nic_reset_all_ring(h);
 374         if (ret)
 375                 return ret;
 376 
 377         /* the device can work without cpu rmap, only aRFS needs it */
 378         ret = hns3_set_rx_cpu_rmap(netdev);
 379         if (ret)
 380                 netdev_warn(netdev, "set rx cpu rmap fail, ret=%d!\n", ret);
 381 
 382         /* get irq resource for all vectors */
 383         ret = hns3_nic_init_irq(priv);
 384         if (ret) {
 385                 netdev_err(netdev, "init irq failed! ret=%d\n", ret);
 386                 goto free_rmap;
 387         }
 388 
 389         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
 390 
 391         /* enable the vectors */
 392         for (i = 0; i < priv->vector_num; i++)
 393                 hns3_vector_enable(&priv->tqp_vector[i]);
 394 
 395         /* enable rcb */
 396         for (j = 0; j < h->kinfo.num_tqps; j++)
 397                 hns3_tqp_enable(h->kinfo.tqp[j]);
 398 
 399         /* start the ae_dev */
 400         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
 401         if (ret)
 402                 goto out_start_err;
 403 
 404         return 0;
 405 
 406 out_start_err:
 407         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
 408         while (j--)
 409                 hns3_tqp_disable(h->kinfo.tqp[j]);
 410 
 411         for (j = i - 1; j >= 0; j--)
 412                 hns3_vector_disable(&priv->tqp_vector[j]);
 413 
 414         hns3_nic_uninit_irq(priv);
 415 free_rmap:
 416         hns3_free_rx_cpu_rmap(netdev);
 417         return ret;
 418 }
 419 
 420 static void hns3_config_xps(struct hns3_nic_priv *priv)
 421 {
 422         int i;
 423 
 424         for (i = 0; i < priv->vector_num; i++) {
 425                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
 426                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
 427 
 428                 while (ring) {
 429                         int ret;
 430 
 431                         ret = netif_set_xps_queue(priv->netdev,
 432                                                   &tqp_vector->affinity_mask,
 433                                                   ring->tqp->tqp_index);
 434                         if (ret)
 435                                 netdev_warn(priv->netdev,
 436                                             "set xps queue failed: %d", ret);
 437 
 438                         ring = ring->next;
 439                 }
 440         }
 441 }
 442 
 443 static int hns3_nic_net_open(struct net_device *netdev)
 444 {
 445         struct hns3_nic_priv *priv = netdev_priv(netdev);
 446         struct hnae3_handle *h = hns3_get_handle(netdev);
 447         struct hnae3_knic_private_info *kinfo;
 448         int i, ret;
 449 
 450         if (hns3_nic_resetting(netdev))
 451                 return -EBUSY;
 452 
 453         netif_carrier_off(netdev);
 454 
 455         ret = hns3_nic_set_real_num_queue(netdev);
 456         if (ret)
 457                 return ret;
 458 
 459         ret = hns3_nic_net_up(netdev);
 460         if (ret) {
 461                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
 462                 return ret;
 463         }
 464 
 465         kinfo = &h->kinfo;
 466         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
 467                 netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
 468 
 469         if (h->ae_algo->ops->set_timer_task)
 470                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
 471 
 472         hns3_config_xps(priv);
 473 
 474         netif_dbg(h, drv, netdev, "net open\n");
 475 
 476         return 0;
 477 }
 478 
 479 static void hns3_reset_tx_queue(struct hnae3_handle *h)
 480 {
 481         struct net_device *ndev = h->kinfo.netdev;
 482         struct hns3_nic_priv *priv = netdev_priv(ndev);
 483         struct netdev_queue *dev_queue;
 484         u32 i;
 485 
 486         for (i = 0; i < h->kinfo.num_tqps; i++) {
 487                 dev_queue = netdev_get_tx_queue(ndev,
 488                                                 priv->ring_data[i].queue_index);
 489                 netdev_tx_reset_queue(dev_queue);
 490         }
 491 }
 492 
 493 static void hns3_nic_net_down(struct net_device *netdev)
 494 {
 495         struct hns3_nic_priv *priv = netdev_priv(netdev);
 496         struct hnae3_handle *h = hns3_get_handle(netdev);
 497         const struct hnae3_ae_ops *ops;
 498         int i;
 499 
 500         /* disable vectors */
 501         for (i = 0; i < priv->vector_num; i++)
 502                 hns3_vector_disable(&priv->tqp_vector[i]);
 503 
 504         /* disable rcb */
 505         for (i = 0; i < h->kinfo.num_tqps; i++)
 506                 hns3_tqp_disable(h->kinfo.tqp[i]);
 507 
 508         /* stop ae_dev */
 509         ops = priv->ae_handle->ae_algo->ops;
 510         if (ops->stop)
 511                 ops->stop(priv->ae_handle);
 512 
 513         hns3_free_rx_cpu_rmap(netdev);
 514 
 515         /* free irq resources */
 516         hns3_nic_uninit_irq(priv);
 517 
 518         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
 519          * during reset process, because driver may not be able
 520          * to disable the ring through firmware when downing the netdev.
 521          */
 522         if (!hns3_nic_resetting(netdev))
 523                 hns3_clear_all_ring(priv->ae_handle, false);
 524 
 525         hns3_reset_tx_queue(priv->ae_handle);
 526 }
 527 
 528 static int hns3_nic_net_stop(struct net_device *netdev)
 529 {
 530         struct hns3_nic_priv *priv = netdev_priv(netdev);
 531         struct hnae3_handle *h = hns3_get_handle(netdev);
 532 
 533         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
 534                 return 0;
 535 
 536         netif_dbg(h, drv, netdev, "net stop\n");
 537 
 538         if (h->ae_algo->ops->set_timer_task)
 539                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
 540 
 541         netif_tx_stop_all_queues(netdev);
 542         netif_carrier_off(netdev);
 543 
 544         hns3_nic_net_down(netdev);
 545 
 546         return 0;
 547 }
 548 
 549 static int hns3_nic_uc_sync(struct net_device *netdev,
 550                             const unsigned char *addr)
 551 {
 552         struct hnae3_handle *h = hns3_get_handle(netdev);
 553 
 554         if (h->ae_algo->ops->add_uc_addr)
 555                 return h->ae_algo->ops->add_uc_addr(h, addr);
 556 
 557         return 0;
 558 }
 559 
 560 static int hns3_nic_uc_unsync(struct net_device *netdev,
 561                               const unsigned char *addr)
 562 {
 563         struct hnae3_handle *h = hns3_get_handle(netdev);
 564 
 565         if (h->ae_algo->ops->rm_uc_addr)
 566                 return h->ae_algo->ops->rm_uc_addr(h, addr);
 567 
 568         return 0;
 569 }
 570 
 571 static int hns3_nic_mc_sync(struct net_device *netdev,
 572                             const unsigned char *addr)
 573 {
 574         struct hnae3_handle *h = hns3_get_handle(netdev);
 575 
 576         if (h->ae_algo->ops->add_mc_addr)
 577                 return h->ae_algo->ops->add_mc_addr(h, addr);
 578 
 579         return 0;
 580 }
 581 
 582 static int hns3_nic_mc_unsync(struct net_device *netdev,
 583                               const unsigned char *addr)
 584 {
 585         struct hnae3_handle *h = hns3_get_handle(netdev);
 586 
 587         if (h->ae_algo->ops->rm_mc_addr)
 588                 return h->ae_algo->ops->rm_mc_addr(h, addr);
 589 
 590         return 0;
 591 }
 592 
 593 static u8 hns3_get_netdev_flags(struct net_device *netdev)
 594 {
 595         u8 flags = 0;
 596 
 597         if (netdev->flags & IFF_PROMISC) {
 598                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
 599         } else {
 600                 flags |= HNAE3_VLAN_FLTR;
 601                 if (netdev->flags & IFF_ALLMULTI)
 602                         flags |= HNAE3_USER_MPE;
 603         }
 604 
 605         return flags;
 606 }
 607 
 608 static void hns3_nic_set_rx_mode(struct net_device *netdev)
 609 {
 610         struct hnae3_handle *h = hns3_get_handle(netdev);
 611         u8 new_flags;
 612         int ret;
 613 
 614         new_flags = hns3_get_netdev_flags(netdev);
 615 
 616         ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
 617         if (ret) {
 618                 netdev_err(netdev, "sync uc address fail\n");
 619                 if (ret == -ENOSPC)
 620                         new_flags |= HNAE3_OVERFLOW_UPE;
 621         }
 622 
 623         if (netdev->flags & IFF_MULTICAST) {
 624                 ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
 625                                     hns3_nic_mc_unsync);
 626                 if (ret) {
 627                         netdev_err(netdev, "sync mc address fail\n");
 628                         if (ret == -ENOSPC)
 629                                 new_flags |= HNAE3_OVERFLOW_MPE;
 630                 }
 631         }
 632 
 633         /* User mode Promisc mode enable and vlan filtering is disabled to
 634          * let all packets in. MAC-VLAN Table overflow Promisc enabled and
 635          * vlan fitering is enabled
 636          */
 637         hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
 638         h->netdev_flags = new_flags;
 639         hns3_update_promisc_mode(netdev, new_flags);
 640 }
 641 
 642 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
 643 {
 644         struct hns3_nic_priv *priv = netdev_priv(netdev);
 645         struct hnae3_handle *h = priv->ae_handle;
 646 
 647         if (h->ae_algo->ops->set_promisc_mode) {
 648                 return h->ae_algo->ops->set_promisc_mode(h,
 649                                                 promisc_flags & HNAE3_UPE,
 650                                                 promisc_flags & HNAE3_MPE);
 651         }
 652 
 653         return 0;
 654 }
 655 
 656 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
 657 {
 658         struct hns3_nic_priv *priv = netdev_priv(netdev);
 659         struct hnae3_handle *h = priv->ae_handle;
 660         bool last_state;
 661 
 662         if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
 663                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
 664                 if (enable != last_state) {
 665                         netdev_info(netdev,
 666                                     "%s vlan filter\n",
 667                                     enable ? "enable" : "disable");
 668                         h->ae_algo->ops->enable_vlan_filter(h, enable);
 669                 }
 670         }
 671 }
 672 
 673 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
 674                         u16 *mss, u32 *type_cs_vlan_tso)
 675 {
 676         u32 l4_offset, hdr_len;
 677         union l3_hdr_info l3;
 678         union l4_hdr_info l4;
 679         u32 l4_paylen;
 680         int ret;
 681 
 682         if (!skb_is_gso(skb))
 683                 return 0;
 684 
 685         ret = skb_cow_head(skb, 0);
 686         if (unlikely(ret))
 687                 return ret;
 688 
 689         l3.hdr = skb_network_header(skb);
 690         l4.hdr = skb_transport_header(skb);
 691 
 692         /* Software should clear the IPv4's checksum field when tso is
 693          * needed.
 694          */
 695         if (l3.v4->version == 4)
 696                 l3.v4->check = 0;
 697 
 698         /* tunnel packet */
 699         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
 700                                          SKB_GSO_GRE_CSUM |
 701                                          SKB_GSO_UDP_TUNNEL |
 702                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
 703                 if ((!(skb_shinfo(skb)->gso_type &
 704                     SKB_GSO_PARTIAL)) &&
 705                     (skb_shinfo(skb)->gso_type &
 706                     SKB_GSO_UDP_TUNNEL_CSUM)) {
 707                         /* Software should clear the udp's checksum
 708                          * field when tso is needed.
 709                          */
 710                         l4.udp->check = 0;
 711                 }
 712                 /* reset l3&l4 pointers from outer to inner headers */
 713                 l3.hdr = skb_inner_network_header(skb);
 714                 l4.hdr = skb_inner_transport_header(skb);
 715 
 716                 /* Software should clear the IPv4's checksum field when
 717                  * tso is needed.
 718                  */
 719                 if (l3.v4->version == 4)
 720                         l3.v4->check = 0;
 721         }
 722 
 723         /* normal or tunnel packet */
 724         l4_offset = l4.hdr - skb->data;
 725         hdr_len = (l4.tcp->doff << 2) + l4_offset;
 726 
 727         /* remove payload length from inner pseudo checksum when tso */
 728         l4_paylen = skb->len - l4_offset;
 729         csum_replace_by_diff(&l4.tcp->check,
 730                              (__force __wsum)htonl(l4_paylen));
 731 
 732         /* find the txbd field values */
 733         *paylen = skb->len - hdr_len;
 734         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
 735 
 736         /* get MSS for TSO */
 737         *mss = skb_shinfo(skb)->gso_size;
 738 
 739         return 0;
 740 }
 741 
 742 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
 743                                 u8 *il4_proto)
 744 {
 745         union l3_hdr_info l3;
 746         unsigned char *l4_hdr;
 747         unsigned char *exthdr;
 748         u8 l4_proto_tmp;
 749         __be16 frag_off;
 750 
 751         /* find outer header point */
 752         l3.hdr = skb_network_header(skb);
 753         l4_hdr = skb_transport_header(skb);
 754 
 755         if (skb->protocol == htons(ETH_P_IPV6)) {
 756                 exthdr = l3.hdr + sizeof(*l3.v6);
 757                 l4_proto_tmp = l3.v6->nexthdr;
 758                 if (l4_hdr != exthdr)
 759                         ipv6_skip_exthdr(skb, exthdr - skb->data,
 760                                          &l4_proto_tmp, &frag_off);
 761         } else if (skb->protocol == htons(ETH_P_IP)) {
 762                 l4_proto_tmp = l3.v4->protocol;
 763         } else {
 764                 return -EINVAL;
 765         }
 766 
 767         *ol4_proto = l4_proto_tmp;
 768 
 769         /* tunnel packet */
 770         if (!skb->encapsulation) {
 771                 *il4_proto = 0;
 772                 return 0;
 773         }
 774 
 775         /* find inner header point */
 776         l3.hdr = skb_inner_network_header(skb);
 777         l4_hdr = skb_inner_transport_header(skb);
 778 
 779         if (l3.v6->version == 6) {
 780                 exthdr = l3.hdr + sizeof(*l3.v6);
 781                 l4_proto_tmp = l3.v6->nexthdr;
 782                 if (l4_hdr != exthdr)
 783                         ipv6_skip_exthdr(skb, exthdr - skb->data,
 784                                          &l4_proto_tmp, &frag_off);
 785         } else if (l3.v4->version == 4) {
 786                 l4_proto_tmp = l3.v4->protocol;
 787         }
 788 
 789         *il4_proto = l4_proto_tmp;
 790 
 791         return 0;
 792 }
 793 
 794 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
 795  * and it is udp packet, which has a dest port as the IANA assigned.
 796  * the hardware is expected to do the checksum offload, but the
 797  * hardware will not do the checksum offload when udp dest port is
 798  * 4789.
 799  */
 800 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
 801 {
 802         union l4_hdr_info l4;
 803 
 804         l4.hdr = skb_transport_header(skb);
 805 
 806         if (!(!skb->encapsulation &&
 807               l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
 808                 return false;
 809 
 810         skb_checksum_help(skb);
 811 
 812         return true;
 813 }
 814 
 815 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
 816                                   u32 *ol_type_vlan_len_msec)
 817 {
 818         u32 l2_len, l3_len, l4_len;
 819         unsigned char *il2_hdr;
 820         union l3_hdr_info l3;
 821         union l4_hdr_info l4;
 822 
 823         l3.hdr = skb_network_header(skb);
 824         l4.hdr = skb_transport_header(skb);
 825 
 826         /* compute OL2 header size, defined in 2 Bytes */
 827         l2_len = l3.hdr - skb->data;
 828         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
 829 
 830         /* compute OL3 header size, defined in 4 Bytes */
 831         l3_len = l4.hdr - l3.hdr;
 832         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
 833 
 834         il2_hdr = skb_inner_mac_header(skb);
 835         /* compute OL4 header size, defined in 4 Bytes */
 836         l4_len = il2_hdr - l4.hdr;
 837         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
 838 
 839         /* define outer network header type */
 840         if (skb->protocol == htons(ETH_P_IP)) {
 841                 if (skb_is_gso(skb))
 842                         hns3_set_field(*ol_type_vlan_len_msec,
 843                                        HNS3_TXD_OL3T_S,
 844                                        HNS3_OL3T_IPV4_CSUM);
 845                 else
 846                         hns3_set_field(*ol_type_vlan_len_msec,
 847                                        HNS3_TXD_OL3T_S,
 848                                        HNS3_OL3T_IPV4_NO_CSUM);
 849 
 850         } else if (skb->protocol == htons(ETH_P_IPV6)) {
 851                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
 852                                HNS3_OL3T_IPV6);
 853         }
 854 
 855         if (ol4_proto == IPPROTO_UDP)
 856                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
 857                                HNS3_TUN_MAC_IN_UDP);
 858         else if (ol4_proto == IPPROTO_GRE)
 859                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
 860                                HNS3_TUN_NVGRE);
 861 }
 862 
 863 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
 864                            u8 il4_proto, u32 *type_cs_vlan_tso,
 865                            u32 *ol_type_vlan_len_msec)
 866 {
 867         unsigned char *l2_hdr = skb->data;
 868         u32 l4_proto = ol4_proto;
 869         union l4_hdr_info l4;
 870         union l3_hdr_info l3;
 871         u32 l2_len, l3_len;
 872 
 873         l4.hdr = skb_transport_header(skb);
 874         l3.hdr = skb_network_header(skb);
 875 
 876         /* handle encapsulation skb */
 877         if (skb->encapsulation) {
 878                 /* If this is a not UDP/GRE encapsulation skb */
 879                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
 880                         /* drop the skb tunnel packet if hardware don't support,
 881                          * because hardware can't calculate csum when TSO.
 882                          */
 883                         if (skb_is_gso(skb))
 884                                 return -EDOM;
 885 
 886                         /* the stack computes the IP header already,
 887                          * driver calculate l4 checksum when not TSO.
 888                          */
 889                         skb_checksum_help(skb);
 890                         return 0;
 891                 }
 892 
 893                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
 894 
 895                 /* switch to inner header */
 896                 l2_hdr = skb_inner_mac_header(skb);
 897                 l3.hdr = skb_inner_network_header(skb);
 898                 l4.hdr = skb_inner_transport_header(skb);
 899                 l4_proto = il4_proto;
 900         }
 901 
 902         if (l3.v4->version == 4) {
 903                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
 904                                HNS3_L3T_IPV4);
 905 
 906                 /* the stack computes the IP header already, the only time we
 907                  * need the hardware to recompute it is in the case of TSO.
 908                  */
 909                 if (skb_is_gso(skb))
 910                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
 911         } else if (l3.v6->version == 6) {
 912                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
 913                                HNS3_L3T_IPV6);
 914         }
 915 
 916         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
 917         l2_len = l3.hdr - l2_hdr;
 918         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
 919 
 920         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
 921         l3_len = l4.hdr - l3.hdr;
 922         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
 923 
 924         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
 925         switch (l4_proto) {
 926         case IPPROTO_TCP:
 927                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
 928                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
 929                                HNS3_L4T_TCP);
 930                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
 931                                l4.tcp->doff);
 932                 break;
 933         case IPPROTO_UDP:
 934                 if (hns3_tunnel_csum_bug(skb))
 935                         break;
 936 
 937                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
 938                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
 939                                HNS3_L4T_UDP);
 940                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
 941                                (sizeof(struct udphdr) >> 2));
 942                 break;
 943         case IPPROTO_SCTP:
 944                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
 945                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
 946                                HNS3_L4T_SCTP);
 947                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
 948                                (sizeof(struct sctphdr) >> 2));
 949                 break;
 950         default:
 951                 /* drop the skb tunnel packet if hardware don't support,
 952                  * because hardware can't calculate csum when TSO.
 953                  */
 954                 if (skb_is_gso(skb))
 955                         return -EDOM;
 956 
 957                 /* the stack computes the IP header already,
 958                  * driver calculate l4 checksum when not TSO.
 959                  */
 960                 skb_checksum_help(skb);
 961                 return 0;
 962         }
 963 
 964         return 0;
 965 }
 966 
 967 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
 968 {
 969         /* Config bd buffer end */
 970         if (!!frag_end)
 971                 hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, 1U);
 972         hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1U);
 973 }
 974 
 975 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
 976                              struct sk_buff *skb)
 977 {
 978         struct hnae3_handle *handle = tx_ring->tqp->handle;
 979         struct vlan_ethhdr *vhdr;
 980         int rc;
 981 
 982         if (!(skb->protocol == htons(ETH_P_8021Q) ||
 983               skb_vlan_tag_present(skb)))
 984                 return 0;
 985 
 986         /* Since HW limitation, if port based insert VLAN enabled, only one VLAN
 987          * header is allowed in skb, otherwise it will cause RAS error.
 988          */
 989         if (unlikely(skb_vlan_tagged_multi(skb) &&
 990                      handle->port_base_vlan_state ==
 991                      HNAE3_PORT_BASE_VLAN_ENABLE))
 992                 return -EINVAL;
 993 
 994         if (skb->protocol == htons(ETH_P_8021Q) &&
 995             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
 996                 /* When HW VLAN acceleration is turned off, and the stack
 997                  * sets the protocol to 802.1q, the driver just need to
 998                  * set the protocol to the encapsulated ethertype.
 999                  */
1000                 skb->protocol = vlan_get_protocol(skb);
1001                 return 0;
1002         }
1003 
1004         if (skb_vlan_tag_present(skb)) {
1005                 /* Based on hw strategy, use out_vtag in two layer tag case,
1006                  * and use inner_vtag in one tag case.
1007                  */
1008                 if (skb->protocol == htons(ETH_P_8021Q) &&
1009                     handle->port_base_vlan_state ==
1010                     HNAE3_PORT_BASE_VLAN_DISABLE)
1011                         rc = HNS3_OUTER_VLAN_TAG;
1012                 else
1013                         rc = HNS3_INNER_VLAN_TAG;
1014 
1015                 skb->protocol = vlan_get_protocol(skb);
1016                 return rc;
1017         }
1018 
1019         rc = skb_cow_head(skb, 0);
1020         if (unlikely(rc < 0))
1021                 return rc;
1022 
1023         vhdr = (struct vlan_ethhdr *)skb->data;
1024         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1025                                          & VLAN_PRIO_MASK);
1026 
1027         skb->protocol = vlan_get_protocol(skb);
1028         return 0;
1029 }
1030 
1031 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1032                               struct sk_buff *skb, struct hns3_desc *desc)
1033 {
1034         u32 ol_type_vlan_len_msec = 0;
1035         u32 type_cs_vlan_tso = 0;
1036         u32 paylen = skb->len;
1037         u16 inner_vtag = 0;
1038         u16 out_vtag = 0;
1039         u16 mss = 0;
1040         int ret;
1041 
1042         ret = hns3_handle_vtags(ring, skb);
1043         if (unlikely(ret < 0)) {
1044                 u64_stats_update_begin(&ring->syncp);
1045                 ring->stats.tx_vlan_err++;
1046                 u64_stats_update_end(&ring->syncp);
1047                 return ret;
1048         } else if (ret == HNS3_INNER_VLAN_TAG) {
1049                 inner_vtag = skb_vlan_tag_get(skb);
1050                 inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1051                                 VLAN_PRIO_MASK;
1052                 hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1053         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1054                 out_vtag = skb_vlan_tag_get(skb);
1055                 out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1056                                 VLAN_PRIO_MASK;
1057                 hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1058                                1);
1059         }
1060 
1061         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1062                 u8 ol4_proto, il4_proto;
1063 
1064                 skb_reset_mac_len(skb);
1065 
1066                 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1067                 if (unlikely(ret)) {
1068                         u64_stats_update_begin(&ring->syncp);
1069                         ring->stats.tx_l4_proto_err++;
1070                         u64_stats_update_end(&ring->syncp);
1071                         return ret;
1072                 }
1073 
1074                 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1075                                       &type_cs_vlan_tso,
1076                                       &ol_type_vlan_len_msec);
1077                 if (unlikely(ret)) {
1078                         u64_stats_update_begin(&ring->syncp);
1079                         ring->stats.tx_l2l3l4_err++;
1080                         u64_stats_update_end(&ring->syncp);
1081                         return ret;
1082                 }
1083 
1084                 ret = hns3_set_tso(skb, &paylen, &mss,
1085                                    &type_cs_vlan_tso);
1086                 if (unlikely(ret)) {
1087                         u64_stats_update_begin(&ring->syncp);
1088                         ring->stats.tx_tso_err++;
1089                         u64_stats_update_end(&ring->syncp);
1090                         return ret;
1091                 }
1092         }
1093 
1094         /* Set txbd */
1095         desc->tx.ol_type_vlan_len_msec =
1096                 cpu_to_le32(ol_type_vlan_len_msec);
1097         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1098         desc->tx.paylen = cpu_to_le32(paylen);
1099         desc->tx.mss = cpu_to_le16(mss);
1100         desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1101         desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1102 
1103         return 0;
1104 }
1105 
1106 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1107                           unsigned int size, int frag_end,
1108                           enum hns_desc_type type)
1109 {
1110         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1111         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1112         struct device *dev = ring_to_dev(ring);
1113         skb_frag_t *frag;
1114         unsigned int frag_buf_num;
1115         int k, sizeoflast;
1116         dma_addr_t dma;
1117 
1118         if (type == DESC_TYPE_SKB) {
1119                 struct sk_buff *skb = (struct sk_buff *)priv;
1120                 int ret;
1121 
1122                 ret = hns3_fill_skb_desc(ring, skb, desc);
1123                 if (unlikely(ret))
1124                         return ret;
1125 
1126                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1127         } else {
1128                 frag = (skb_frag_t *)priv;
1129                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1130         }
1131 
1132         if (unlikely(dma_mapping_error(dev, dma))) {
1133                 u64_stats_update_begin(&ring->syncp);
1134                 ring->stats.sw_err_cnt++;
1135                 u64_stats_update_end(&ring->syncp);
1136                 return -ENOMEM;
1137         }
1138 
1139         desc_cb->length = size;
1140 
1141         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1142                 u16 bdtp_fe_sc_vld_ra_ri = 0;
1143 
1144                 desc_cb->priv = priv;
1145                 desc_cb->dma = dma;
1146                 desc_cb->type = type;
1147                 desc->addr = cpu_to_le64(dma);
1148                 desc->tx.send_size = cpu_to_le16(size);
1149                 hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
1150                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1151                         cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1152 
1153                 ring_ptr_move_fw(ring, next_to_use);
1154                 return 0;
1155         }
1156 
1157         frag_buf_num = hns3_tx_bd_count(size);
1158         sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1159         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1160 
1161         /* When frag size is bigger than hardware limit, split this frag */
1162         for (k = 0; k < frag_buf_num; k++) {
1163                 u16 bdtp_fe_sc_vld_ra_ri = 0;
1164 
1165                 /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1166                 desc_cb->priv = priv;
1167                 desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1168                 desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1169                                 DESC_TYPE_SKB : DESC_TYPE_PAGE;
1170 
1171                 /* now, fill the descriptor */
1172                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1173                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1174                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1175                 hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1176                                        frag_end && (k == frag_buf_num - 1) ?
1177                                                 1 : 0);
1178                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1179                                 cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1180 
1181                 /* move ring pointer to next */
1182                 ring_ptr_move_fw(ring, next_to_use);
1183 
1184                 desc_cb = &ring->desc_cb[ring->next_to_use];
1185                 desc = &ring->desc[ring->next_to_use];
1186         }
1187 
1188         return 0;
1189 }
1190 
1191 static unsigned int hns3_nic_bd_num(struct sk_buff *skb)
1192 {
1193         unsigned int bd_num;
1194         int i;
1195 
1196         /* if the total len is within the max bd limit */
1197         if (likely(skb->len <= HNS3_MAX_BD_SIZE))
1198                 return skb_shinfo(skb)->nr_frags + 1;
1199 
1200         bd_num = hns3_tx_bd_count(skb_headlen(skb));
1201 
1202         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1203                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1204                 bd_num += hns3_tx_bd_count(skb_frag_size(frag));
1205         }
1206 
1207         return bd_num;
1208 }
1209 
1210 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1211 {
1212         if (!skb->encapsulation)
1213                 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1214 
1215         return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1216 }
1217 
1218 /* HW need every continuous 8 buffer data to be larger than MSS,
1219  * we simplify it by ensuring skb_headlen + the first continuous
1220  * 7 frags to to be larger than gso header len + mss, and the remaining
1221  * continuous 7 frags to be larger than MSS except the last 7 frags.
1222  */
1223 static bool hns3_skb_need_linearized(struct sk_buff *skb)
1224 {
1225         int bd_limit = HNS3_MAX_BD_NUM_NORMAL - 1;
1226         unsigned int tot_len = 0;
1227         int i;
1228 
1229         for (i = 0; i < bd_limit; i++)
1230                 tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1231 
1232         /* ensure headlen + the first 7 frags is greater than mss + header
1233          * and the first 7 frags is greater than mss.
1234          */
1235         if (((tot_len + skb_headlen(skb)) < (skb_shinfo(skb)->gso_size +
1236             hns3_gso_hdr_len(skb))) || (tot_len < skb_shinfo(skb)->gso_size))
1237                 return true;
1238 
1239         /* ensure the remaining continuous 7 buffer is greater than mss */
1240         for (i = 0; i < (skb_shinfo(skb)->nr_frags - bd_limit - 1); i++) {
1241                 tot_len -= skb_frag_size(&skb_shinfo(skb)->frags[i]);
1242                 tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i + bd_limit]);
1243 
1244                 if (tot_len < skb_shinfo(skb)->gso_size)
1245                         return true;
1246         }
1247 
1248         return false;
1249 }
1250 
1251 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1252                                   struct sk_buff **out_skb)
1253 {
1254         struct sk_buff *skb = *out_skb;
1255         unsigned int bd_num;
1256 
1257         bd_num = hns3_nic_bd_num(skb);
1258         if (unlikely(bd_num > HNS3_MAX_BD_NUM_NORMAL)) {
1259                 struct sk_buff *new_skb;
1260 
1261                 if (skb_is_gso(skb) && bd_num <= HNS3_MAX_BD_NUM_TSO &&
1262                     !hns3_skb_need_linearized(skb))
1263                         goto out;
1264 
1265                 /* manual split the send packet */
1266                 new_skb = skb_copy(skb, GFP_ATOMIC);
1267                 if (!new_skb)
1268                         return -ENOMEM;
1269                 dev_kfree_skb_any(skb);
1270                 *out_skb = new_skb;
1271 
1272                 bd_num = hns3_nic_bd_num(new_skb);
1273                 if ((skb_is_gso(new_skb) && bd_num > HNS3_MAX_BD_NUM_TSO) ||
1274                     (!skb_is_gso(new_skb) && bd_num > HNS3_MAX_BD_NUM_NORMAL))
1275                         return -ENOMEM;
1276 
1277                 u64_stats_update_begin(&ring->syncp);
1278                 ring->stats.tx_copy++;
1279                 u64_stats_update_end(&ring->syncp);
1280         }
1281 
1282 out:
1283         if (unlikely(ring_space(ring) < bd_num))
1284                 return -EBUSY;
1285 
1286         return bd_num;
1287 }
1288 
1289 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1290 {
1291         struct device *dev = ring_to_dev(ring);
1292         unsigned int i;
1293 
1294         for (i = 0; i < ring->desc_num; i++) {
1295                 /* check if this is where we started */
1296                 if (ring->next_to_use == next_to_use_orig)
1297                         break;
1298 
1299                 /* rollback one */
1300                 ring_ptr_move_bw(ring, next_to_use);
1301 
1302                 /* unmap the descriptor dma address */
1303                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1304                         dma_unmap_single(dev,
1305                                          ring->desc_cb[ring->next_to_use].dma,
1306                                         ring->desc_cb[ring->next_to_use].length,
1307                                         DMA_TO_DEVICE);
1308                 else if (ring->desc_cb[ring->next_to_use].length)
1309                         dma_unmap_page(dev,
1310                                        ring->desc_cb[ring->next_to_use].dma,
1311                                        ring->desc_cb[ring->next_to_use].length,
1312                                        DMA_TO_DEVICE);
1313 
1314                 ring->desc_cb[ring->next_to_use].length = 0;
1315                 ring->desc_cb[ring->next_to_use].dma = 0;
1316         }
1317 }
1318 
1319 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1320 {
1321         struct hns3_nic_priv *priv = netdev_priv(netdev);
1322         struct hns3_nic_ring_data *ring_data =
1323                 &tx_ring_data(priv, skb->queue_mapping);
1324         struct hns3_enet_ring *ring = ring_data->ring;
1325         struct netdev_queue *dev_queue;
1326         skb_frag_t *frag;
1327         int next_to_use_head;
1328         int buf_num;
1329         int seg_num;
1330         int size;
1331         int ret;
1332         int i;
1333 
1334         /* Hardware can only handle short frames above 32 bytes */
1335         if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
1336                 return NETDEV_TX_OK;
1337 
1338         /* Prefetch the data used later */
1339         prefetch(skb->data);
1340 
1341         buf_num = hns3_nic_maybe_stop_tx(ring, &skb);
1342         if (unlikely(buf_num <= 0)) {
1343                 if (buf_num == -EBUSY) {
1344                         u64_stats_update_begin(&ring->syncp);
1345                         ring->stats.tx_busy++;
1346                         u64_stats_update_end(&ring->syncp);
1347                         goto out_net_tx_busy;
1348                 } else if (buf_num == -ENOMEM) {
1349                         u64_stats_update_begin(&ring->syncp);
1350                         ring->stats.sw_err_cnt++;
1351                         u64_stats_update_end(&ring->syncp);
1352                 }
1353 
1354                 hns3_rl_err(netdev, "xmit error: %d!\n", buf_num);
1355                 goto out_err_tx_ok;
1356         }
1357 
1358         /* No. of segments (plus a header) */
1359         seg_num = skb_shinfo(skb)->nr_frags + 1;
1360         /* Fill the first part */
1361         size = skb_headlen(skb);
1362 
1363         next_to_use_head = ring->next_to_use;
1364 
1365         ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1366                              DESC_TYPE_SKB);
1367         if (unlikely(ret))
1368                 goto fill_err;
1369 
1370         /* Fill the fragments */
1371         for (i = 1; i < seg_num; i++) {
1372                 frag = &skb_shinfo(skb)->frags[i - 1];
1373                 size = skb_frag_size(frag);
1374 
1375                 ret = hns3_fill_desc(ring, frag, size,
1376                                      seg_num - 1 == i ? 1 : 0,
1377                                      DESC_TYPE_PAGE);
1378 
1379                 if (unlikely(ret))
1380                         goto fill_err;
1381         }
1382 
1383         /* Complete translate all packets */
1384         dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1385         netdev_tx_sent_queue(dev_queue, skb->len);
1386 
1387         wmb(); /* Commit all data before submit */
1388 
1389         hnae3_queue_xmit(ring->tqp, buf_num);
1390 
1391         return NETDEV_TX_OK;
1392 
1393 fill_err:
1394         hns3_clear_desc(ring, next_to_use_head);
1395 
1396 out_err_tx_ok:
1397         dev_kfree_skb_any(skb);
1398         return NETDEV_TX_OK;
1399 
1400 out_net_tx_busy:
1401         netif_stop_subqueue(netdev, ring_data->queue_index);
1402         smp_mb(); /* Commit all data before submit */
1403 
1404         return NETDEV_TX_BUSY;
1405 }
1406 
1407 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1408 {
1409         struct hnae3_handle *h = hns3_get_handle(netdev);
1410         struct sockaddr *mac_addr = p;
1411         int ret;
1412 
1413         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1414                 return -EADDRNOTAVAIL;
1415 
1416         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1417                 netdev_info(netdev, "already using mac address %pM\n",
1418                             mac_addr->sa_data);
1419                 return 0;
1420         }
1421 
1422         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1423         if (ret) {
1424                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1425                 return ret;
1426         }
1427 
1428         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1429 
1430         return 0;
1431 }
1432 
1433 static int hns3_nic_do_ioctl(struct net_device *netdev,
1434                              struct ifreq *ifr, int cmd)
1435 {
1436         struct hnae3_handle *h = hns3_get_handle(netdev);
1437 
1438         if (!netif_running(netdev))
1439                 return -EINVAL;
1440 
1441         if (!h->ae_algo->ops->do_ioctl)
1442                 return -EOPNOTSUPP;
1443 
1444         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1445 }
1446 
1447 static int hns3_nic_set_features(struct net_device *netdev,
1448                                  netdev_features_t features)
1449 {
1450         netdev_features_t changed = netdev->features ^ features;
1451         struct hns3_nic_priv *priv = netdev_priv(netdev);
1452         struct hnae3_handle *h = priv->ae_handle;
1453         bool enable;
1454         int ret;
1455 
1456         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1457                 enable = !!(features & NETIF_F_GRO_HW);
1458                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1459                 if (ret)
1460                         return ret;
1461         }
1462 
1463         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1464             h->ae_algo->ops->enable_vlan_filter) {
1465                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1466                 h->ae_algo->ops->enable_vlan_filter(h, enable);
1467         }
1468 
1469         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1470             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1471                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1472                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1473                 if (ret)
1474                         return ret;
1475         }
1476 
1477         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1478                 enable = !!(features & NETIF_F_NTUPLE);
1479                 h->ae_algo->ops->enable_fd(h, enable);
1480         }
1481 
1482         netdev->features = features;
1483         return 0;
1484 }
1485 
1486 static void hns3_nic_get_stats64(struct net_device *netdev,
1487                                  struct rtnl_link_stats64 *stats)
1488 {
1489         struct hns3_nic_priv *priv = netdev_priv(netdev);
1490         int queue_num = priv->ae_handle->kinfo.num_tqps;
1491         struct hnae3_handle *handle = priv->ae_handle;
1492         struct hns3_enet_ring *ring;
1493         u64 rx_length_errors = 0;
1494         u64 rx_crc_errors = 0;
1495         u64 rx_multicast = 0;
1496         unsigned int start;
1497         u64 tx_errors = 0;
1498         u64 rx_errors = 0;
1499         unsigned int idx;
1500         u64 tx_bytes = 0;
1501         u64 rx_bytes = 0;
1502         u64 tx_pkts = 0;
1503         u64 rx_pkts = 0;
1504         u64 tx_drop = 0;
1505         u64 rx_drop = 0;
1506 
1507         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1508                 return;
1509 
1510         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1511 
1512         for (idx = 0; idx < queue_num; idx++) {
1513                 /* fetch the tx stats */
1514                 ring = priv->ring_data[idx].ring;
1515                 do {
1516                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1517                         tx_bytes += ring->stats.tx_bytes;
1518                         tx_pkts += ring->stats.tx_pkts;
1519                         tx_drop += ring->stats.sw_err_cnt;
1520                         tx_drop += ring->stats.tx_vlan_err;
1521                         tx_drop += ring->stats.tx_l4_proto_err;
1522                         tx_drop += ring->stats.tx_l2l3l4_err;
1523                         tx_drop += ring->stats.tx_tso_err;
1524                         tx_errors += ring->stats.sw_err_cnt;
1525                         tx_errors += ring->stats.tx_vlan_err;
1526                         tx_errors += ring->stats.tx_l4_proto_err;
1527                         tx_errors += ring->stats.tx_l2l3l4_err;
1528                         tx_errors += ring->stats.tx_tso_err;
1529                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1530 
1531                 /* fetch the rx stats */
1532                 ring = priv->ring_data[idx + queue_num].ring;
1533                 do {
1534                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1535                         rx_bytes += ring->stats.rx_bytes;
1536                         rx_pkts += ring->stats.rx_pkts;
1537                         rx_drop += ring->stats.l2_err;
1538                         rx_errors += ring->stats.l2_err;
1539                         rx_errors += ring->stats.l3l4_csum_err;
1540                         rx_crc_errors += ring->stats.l2_err;
1541                         rx_multicast += ring->stats.rx_multicast;
1542                         rx_length_errors += ring->stats.err_pkt_len;
1543                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1544         }
1545 
1546         stats->tx_bytes = tx_bytes;
1547         stats->tx_packets = tx_pkts;
1548         stats->rx_bytes = rx_bytes;
1549         stats->rx_packets = rx_pkts;
1550 
1551         stats->rx_errors = rx_errors;
1552         stats->multicast = rx_multicast;
1553         stats->rx_length_errors = rx_length_errors;
1554         stats->rx_crc_errors = rx_crc_errors;
1555         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1556 
1557         stats->tx_errors = tx_errors;
1558         stats->rx_dropped = rx_drop;
1559         stats->tx_dropped = tx_drop;
1560         stats->collisions = netdev->stats.collisions;
1561         stats->rx_over_errors = netdev->stats.rx_over_errors;
1562         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1563         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1564         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1565         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1566         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1567         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1568         stats->tx_window_errors = netdev->stats.tx_window_errors;
1569         stats->rx_compressed = netdev->stats.rx_compressed;
1570         stats->tx_compressed = netdev->stats.tx_compressed;
1571 }
1572 
1573 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1574 {
1575         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1576         u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1577         struct hnae3_knic_private_info *kinfo;
1578         u8 tc = mqprio_qopt->qopt.num_tc;
1579         u16 mode = mqprio_qopt->mode;
1580         u8 hw = mqprio_qopt->qopt.hw;
1581         struct hnae3_handle *h;
1582 
1583         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1584                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1585                 return -EOPNOTSUPP;
1586 
1587         if (tc > HNAE3_MAX_TC)
1588                 return -EINVAL;
1589 
1590         if (!netdev)
1591                 return -EINVAL;
1592 
1593         h = hns3_get_handle(netdev);
1594         kinfo = &h->kinfo;
1595 
1596         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1597 
1598         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1599                 kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1600 }
1601 
1602 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1603                              void *type_data)
1604 {
1605         if (type != TC_SETUP_QDISC_MQPRIO)
1606                 return -EOPNOTSUPP;
1607 
1608         return hns3_setup_tc(dev, type_data);
1609 }
1610 
1611 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1612                                 __be16 proto, u16 vid)
1613 {
1614         struct hnae3_handle *h = hns3_get_handle(netdev);
1615         int ret = -EIO;
1616 
1617         if (h->ae_algo->ops->set_vlan_filter)
1618                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1619 
1620         return ret;
1621 }
1622 
1623 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1624                                  __be16 proto, u16 vid)
1625 {
1626         struct hnae3_handle *h = hns3_get_handle(netdev);
1627         int ret = -EIO;
1628 
1629         if (h->ae_algo->ops->set_vlan_filter)
1630                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1631 
1632         return ret;
1633 }
1634 
1635 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1636                                 u8 qos, __be16 vlan_proto)
1637 {
1638         struct hnae3_handle *h = hns3_get_handle(netdev);
1639         int ret = -EIO;
1640 
1641         netif_dbg(h, drv, netdev,
1642                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=%u\n",
1643                   vf, vlan, qos, vlan_proto);
1644 
1645         if (h->ae_algo->ops->set_vf_vlan_filter)
1646                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1647                                                           qos, vlan_proto);
1648 
1649         return ret;
1650 }
1651 
1652 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1653 {
1654         struct hnae3_handle *h = hns3_get_handle(netdev);
1655         int ret;
1656 
1657         if (hns3_nic_resetting(netdev))
1658                 return -EBUSY;
1659 
1660         if (!h->ae_algo->ops->set_mtu)
1661                 return -EOPNOTSUPP;
1662 
1663         netif_dbg(h, drv, netdev,
1664                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1665 
1666         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1667         if (ret)
1668                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1669                            ret);
1670         else
1671                 netdev->mtu = new_mtu;
1672 
1673         return ret;
1674 }
1675 
1676 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1677 {
1678         struct hns3_nic_priv *priv = netdev_priv(ndev);
1679         struct hnae3_handle *h = hns3_get_handle(ndev);
1680         struct hns3_enet_ring *tx_ring = NULL;
1681         struct napi_struct *napi;
1682         int timeout_queue = 0;
1683         int hw_head, hw_tail;
1684         int fbd_num, fbd_oft;
1685         int ebd_num, ebd_oft;
1686         int bd_num, bd_err;
1687         int ring_en, tc;
1688         int i;
1689 
1690         /* Find the stopped queue the same way the stack does */
1691         for (i = 0; i < ndev->num_tx_queues; i++) {
1692                 struct netdev_queue *q;
1693                 unsigned long trans_start;
1694 
1695                 q = netdev_get_tx_queue(ndev, i);
1696                 trans_start = q->trans_start;
1697                 if (netif_xmit_stopped(q) &&
1698                     time_after(jiffies,
1699                                (trans_start + ndev->watchdog_timeo))) {
1700                         timeout_queue = i;
1701                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1702                                     q->state,
1703                                     jiffies_to_msecs(jiffies - trans_start));
1704                         break;
1705                 }
1706         }
1707 
1708         if (i == ndev->num_tx_queues) {
1709                 netdev_info(ndev,
1710                             "no netdev TX timeout queue found, timeout count: %llu\n",
1711                             priv->tx_timeout_count);
1712                 return false;
1713         }
1714 
1715         priv->tx_timeout_count++;
1716 
1717         tx_ring = priv->ring_data[timeout_queue].ring;
1718         napi = &tx_ring->tqp_vector->napi;
1719 
1720         netdev_info(ndev,
1721                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1722                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1723                     tx_ring->next_to_clean, napi->state);
1724 
1725         netdev_info(ndev,
1726                     "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1727                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1728                     tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1729 
1730         netdev_info(ndev,
1731                     "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1732                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1733                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1734 
1735         /* When mac received many pause frames continuous, it's unable to send
1736          * packets, which may cause tx timeout
1737          */
1738         if (h->ae_algo->ops->get_mac_stats) {
1739                 struct hns3_mac_stats mac_stats;
1740 
1741                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1742                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1743                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1744         }
1745 
1746         hw_head = readl_relaxed(tx_ring->tqp->io_base +
1747                                 HNS3_RING_TX_RING_HEAD_REG);
1748         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1749                                 HNS3_RING_TX_RING_TAIL_REG);
1750         fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1751                                 HNS3_RING_TX_RING_FBDNUM_REG);
1752         fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1753                                 HNS3_RING_TX_RING_OFFSET_REG);
1754         ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1755                                 HNS3_RING_TX_RING_EBDNUM_REG);
1756         ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1757                                 HNS3_RING_TX_RING_EBD_OFFSET_REG);
1758         bd_num = readl_relaxed(tx_ring->tqp->io_base +
1759                                HNS3_RING_TX_RING_BD_NUM_REG);
1760         bd_err = readl_relaxed(tx_ring->tqp->io_base +
1761                                HNS3_RING_TX_RING_BD_ERR_REG);
1762         ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1763         tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1764 
1765         netdev_info(ndev,
1766                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1767                     bd_num, hw_head, hw_tail, bd_err,
1768                     readl(tx_ring->tqp_vector->mask_addr));
1769         netdev_info(ndev,
1770                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1771                     ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1772 
1773         return true;
1774 }
1775 
1776 static void hns3_nic_net_timeout(struct net_device *ndev)
1777 {
1778         struct hns3_nic_priv *priv = netdev_priv(ndev);
1779         struct hnae3_handle *h = priv->ae_handle;
1780 
1781         if (!hns3_get_tx_timeo_queue_info(ndev))
1782                 return;
1783 
1784         /* request the reset, and let the hclge to determine
1785          * which reset level should be done
1786          */
1787         if (h->ae_algo->ops->reset_event)
1788                 h->ae_algo->ops->reset_event(h->pdev, h);
1789 }
1790 
1791 #ifdef CONFIG_RFS_ACCEL
1792 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1793                               u16 rxq_index, u32 flow_id)
1794 {
1795         struct hnae3_handle *h = hns3_get_handle(dev);
1796         struct flow_keys fkeys;
1797 
1798         if (!h->ae_algo->ops->add_arfs_entry)
1799                 return -EOPNOTSUPP;
1800 
1801         if (skb->encapsulation)
1802                 return -EPROTONOSUPPORT;
1803 
1804         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1805                 return -EPROTONOSUPPORT;
1806 
1807         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1808              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1809             (fkeys.basic.ip_proto != IPPROTO_TCP &&
1810              fkeys.basic.ip_proto != IPPROTO_UDP))
1811                 return -EPROTONOSUPPORT;
1812 
1813         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1814 }
1815 #endif
1816 
1817 static const struct net_device_ops hns3_nic_netdev_ops = {
1818         .ndo_open               = hns3_nic_net_open,
1819         .ndo_stop               = hns3_nic_net_stop,
1820         .ndo_start_xmit         = hns3_nic_net_xmit,
1821         .ndo_tx_timeout         = hns3_nic_net_timeout,
1822         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
1823         .ndo_do_ioctl           = hns3_nic_do_ioctl,
1824         .ndo_change_mtu         = hns3_nic_change_mtu,
1825         .ndo_set_features       = hns3_nic_set_features,
1826         .ndo_get_stats64        = hns3_nic_get_stats64,
1827         .ndo_setup_tc           = hns3_nic_setup_tc,
1828         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
1829         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
1830         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
1831         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
1832 #ifdef CONFIG_RFS_ACCEL
1833         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
1834 #endif
1835 
1836 };
1837 
1838 bool hns3_is_phys_func(struct pci_dev *pdev)
1839 {
1840         u32 dev_id = pdev->device;
1841 
1842         switch (dev_id) {
1843         case HNAE3_DEV_ID_GE:
1844         case HNAE3_DEV_ID_25GE:
1845         case HNAE3_DEV_ID_25GE_RDMA:
1846         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1847         case HNAE3_DEV_ID_50GE_RDMA:
1848         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1849         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1850                 return true;
1851         case HNAE3_DEV_ID_100G_VF:
1852         case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1853                 return false;
1854         default:
1855                 dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1856                          dev_id);
1857         }
1858 
1859         return false;
1860 }
1861 
1862 static void hns3_disable_sriov(struct pci_dev *pdev)
1863 {
1864         /* If our VFs are assigned we cannot shut down SR-IOV
1865          * without causing issues, so just leave the hardware
1866          * available but disabled
1867          */
1868         if (pci_vfs_assigned(pdev)) {
1869                 dev_warn(&pdev->dev,
1870                          "disabling driver while VFs are assigned\n");
1871                 return;
1872         }
1873 
1874         pci_disable_sriov(pdev);
1875 }
1876 
1877 static void hns3_get_dev_capability(struct pci_dev *pdev,
1878                                     struct hnae3_ae_dev *ae_dev)
1879 {
1880         if (pdev->revision >= 0x21) {
1881                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1882                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1883         }
1884 }
1885 
1886 /* hns3_probe - Device initialization routine
1887  * @pdev: PCI device information struct
1888  * @ent: entry in hns3_pci_tbl
1889  *
1890  * hns3_probe initializes a PF identified by a pci_dev structure.
1891  * The OS initialization, configuring of the PF private structure,
1892  * and a hardware reset occur.
1893  *
1894  * Returns 0 on success, negative on failure
1895  */
1896 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1897 {
1898         struct hnae3_ae_dev *ae_dev;
1899         int ret;
1900 
1901         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
1902         if (!ae_dev) {
1903                 ret = -ENOMEM;
1904                 return ret;
1905         }
1906 
1907         ae_dev->pdev = pdev;
1908         ae_dev->flag = ent->driver_data;
1909         ae_dev->reset_type = HNAE3_NONE_RESET;
1910         hns3_get_dev_capability(pdev, ae_dev);
1911         pci_set_drvdata(pdev, ae_dev);
1912 
1913         ret = hnae3_register_ae_dev(ae_dev);
1914         if (ret) {
1915                 devm_kfree(&pdev->dev, ae_dev);
1916                 pci_set_drvdata(pdev, NULL);
1917         }
1918 
1919         return ret;
1920 }
1921 
1922 /* hns3_remove - Device removal routine
1923  * @pdev: PCI device information struct
1924  */
1925 static void hns3_remove(struct pci_dev *pdev)
1926 {
1927         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1928 
1929         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1930                 hns3_disable_sriov(pdev);
1931 
1932         hnae3_unregister_ae_dev(ae_dev);
1933         pci_set_drvdata(pdev, NULL);
1934 }
1935 
1936 /**
1937  * hns3_pci_sriov_configure
1938  * @pdev: pointer to a pci_dev structure
1939  * @num_vfs: number of VFs to allocate
1940  *
1941  * Enable or change the number of VFs. Called when the user updates the number
1942  * of VFs in sysfs.
1943  **/
1944 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1945 {
1946         int ret;
1947 
1948         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1949                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
1950                 return -EINVAL;
1951         }
1952 
1953         if (num_vfs) {
1954                 ret = pci_enable_sriov(pdev, num_vfs);
1955                 if (ret)
1956                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1957                 else
1958                         return num_vfs;
1959         } else if (!pci_vfs_assigned(pdev)) {
1960                 pci_disable_sriov(pdev);
1961         } else {
1962                 dev_warn(&pdev->dev,
1963                          "Unable to free VFs because some are assigned to VMs.\n");
1964         }
1965 
1966         return 0;
1967 }
1968 
1969 static void hns3_shutdown(struct pci_dev *pdev)
1970 {
1971         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1972 
1973         hnae3_unregister_ae_dev(ae_dev);
1974         devm_kfree(&pdev->dev, ae_dev);
1975         pci_set_drvdata(pdev, NULL);
1976 
1977         if (system_state == SYSTEM_POWER_OFF)
1978                 pci_set_power_state(pdev, PCI_D3hot);
1979 }
1980 
1981 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1982                                             pci_channel_state_t state)
1983 {
1984         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1985         pci_ers_result_t ret;
1986 
1987         dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1988 
1989         if (state == pci_channel_io_perm_failure)
1990                 return PCI_ERS_RESULT_DISCONNECT;
1991 
1992         if (!ae_dev || !ae_dev->ops) {
1993                 dev_err(&pdev->dev,
1994                         "Can't recover - error happened before device initialized\n");
1995                 return PCI_ERS_RESULT_NONE;
1996         }
1997 
1998         if (ae_dev->ops->handle_hw_ras_error)
1999                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2000         else
2001                 return PCI_ERS_RESULT_NONE;
2002 
2003         return ret;
2004 }
2005 
2006 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2007 {
2008         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2009         const struct hnae3_ae_ops *ops;
2010         enum hnae3_reset_type reset_type;
2011         struct device *dev = &pdev->dev;
2012 
2013         if (!ae_dev || !ae_dev->ops)
2014                 return PCI_ERS_RESULT_NONE;
2015 
2016         ops = ae_dev->ops;
2017         /* request the reset */
2018         if (ops->reset_event && ops->get_reset_level &&
2019             ops->set_default_reset_request) {
2020                 if (ae_dev->hw_err_reset_req) {
2021                         reset_type = ops->get_reset_level(ae_dev,
2022                                                 &ae_dev->hw_err_reset_req);
2023                         ops->set_default_reset_request(ae_dev, reset_type);
2024                         dev_info(dev, "requesting reset due to PCI error\n");
2025                         ops->reset_event(pdev, NULL);
2026                 }
2027 
2028                 return PCI_ERS_RESULT_RECOVERED;
2029         }
2030 
2031         return PCI_ERS_RESULT_DISCONNECT;
2032 }
2033 
2034 static void hns3_reset_prepare(struct pci_dev *pdev)
2035 {
2036         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2037 
2038         dev_info(&pdev->dev, "hns3 flr prepare\n");
2039         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2040                 ae_dev->ops->flr_prepare(ae_dev);
2041 }
2042 
2043 static void hns3_reset_done(struct pci_dev *pdev)
2044 {
2045         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2046 
2047         dev_info(&pdev->dev, "hns3 flr done\n");
2048         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2049                 ae_dev->ops->flr_done(ae_dev);
2050 }
2051 
2052 static const struct pci_error_handlers hns3_err_handler = {
2053         .error_detected = hns3_error_detected,
2054         .slot_reset     = hns3_slot_reset,
2055         .reset_prepare  = hns3_reset_prepare,
2056         .reset_done     = hns3_reset_done,
2057 };
2058 
2059 static struct pci_driver hns3_driver = {
2060         .name     = hns3_driver_name,
2061         .id_table = hns3_pci_tbl,
2062         .probe    = hns3_probe,
2063         .remove   = hns3_remove,
2064         .shutdown = hns3_shutdown,
2065         .sriov_configure = hns3_pci_sriov_configure,
2066         .err_handler    = &hns3_err_handler,
2067 };
2068 
2069 /* set default feature to hns3 */
2070 static void hns3_set_default_feature(struct net_device *netdev)
2071 {
2072         struct hnae3_handle *h = hns3_get_handle(netdev);
2073         struct pci_dev *pdev = h->pdev;
2074 
2075         netdev->priv_flags |= IFF_UNICAST_FLT;
2076 
2077         netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2078                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2079                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2080                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2081                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2082 
2083         netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
2084 
2085         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2086 
2087         netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2088                 NETIF_F_HW_VLAN_CTAG_FILTER |
2089                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2090                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2091                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2092                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2093                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2094 
2095         netdev->vlan_features |=
2096                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2097                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2098                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2099                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2100                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2101 
2102         netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2103                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2104                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2105                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2106                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2107                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2108 
2109         if (pdev->revision >= 0x21) {
2110                 netdev->hw_features |= NETIF_F_GRO_HW;
2111                 netdev->features |= NETIF_F_GRO_HW;
2112 
2113                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
2114                         netdev->hw_features |= NETIF_F_NTUPLE;
2115                         netdev->features |= NETIF_F_NTUPLE;
2116                 }
2117         }
2118 }
2119 
2120 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2121                              struct hns3_desc_cb *cb)
2122 {
2123         unsigned int order = hns3_page_order(ring);
2124         struct page *p;
2125 
2126         p = dev_alloc_pages(order);
2127         if (!p)
2128                 return -ENOMEM;
2129 
2130         cb->priv = p;
2131         cb->page_offset = 0;
2132         cb->reuse_flag = 0;
2133         cb->buf  = page_address(p);
2134         cb->length = hns3_page_size(ring);
2135         cb->type = DESC_TYPE_PAGE;
2136 
2137         return 0;
2138 }
2139 
2140 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2141                              struct hns3_desc_cb *cb)
2142 {
2143         if (cb->type == DESC_TYPE_SKB)
2144                 dev_kfree_skb_any((struct sk_buff *)cb->priv);
2145         else if (!HNAE3_IS_TX_RING(ring))
2146                 put_page((struct page *)cb->priv);
2147         memset(cb, 0, sizeof(*cb));
2148 }
2149 
2150 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2151 {
2152         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2153                                cb->length, ring_to_dma_dir(ring));
2154 
2155         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2156                 return -EIO;
2157 
2158         return 0;
2159 }
2160 
2161 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2162                               struct hns3_desc_cb *cb)
2163 {
2164         if (cb->type == DESC_TYPE_SKB)
2165                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2166                                  ring_to_dma_dir(ring));
2167         else if (cb->length)
2168                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2169                                ring_to_dma_dir(ring));
2170 }
2171 
2172 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2173 {
2174         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2175         ring->desc[i].addr = 0;
2176 }
2177 
2178 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2179 {
2180         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2181 
2182         if (!ring->desc_cb[i].dma)
2183                 return;
2184 
2185         hns3_buffer_detach(ring, i);
2186         hns3_free_buffer(ring, cb);
2187 }
2188 
2189 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2190 {
2191         int i;
2192 
2193         for (i = 0; i < ring->desc_num; i++)
2194                 hns3_free_buffer_detach(ring, i);
2195 }
2196 
2197 /* free desc along with its attached buffer */
2198 static void hns3_free_desc(struct hns3_enet_ring *ring)
2199 {
2200         int size = ring->desc_num * sizeof(ring->desc[0]);
2201 
2202         hns3_free_buffers(ring);
2203 
2204         if (ring->desc) {
2205                 dma_free_coherent(ring_to_dev(ring), size,
2206                                   ring->desc, ring->desc_dma_addr);
2207                 ring->desc = NULL;
2208         }
2209 }
2210 
2211 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2212 {
2213         int size = ring->desc_num * sizeof(ring->desc[0]);
2214 
2215         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2216                                         &ring->desc_dma_addr, GFP_KERNEL);
2217         if (!ring->desc)
2218                 return -ENOMEM;
2219 
2220         return 0;
2221 }
2222 
2223 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2224                                    struct hns3_desc_cb *cb)
2225 {
2226         int ret;
2227 
2228         ret = hns3_alloc_buffer(ring, cb);
2229         if (ret)
2230                 goto out;
2231 
2232         ret = hns3_map_buffer(ring, cb);
2233         if (ret)
2234                 goto out_with_buf;
2235 
2236         return 0;
2237 
2238 out_with_buf:
2239         hns3_free_buffer(ring, cb);
2240 out:
2241         return ret;
2242 }
2243 
2244 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2245 {
2246         int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2247 
2248         if (ret)
2249                 return ret;
2250 
2251         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2252 
2253         return 0;
2254 }
2255 
2256 /* Allocate memory for raw pkg, and map with dma */
2257 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2258 {
2259         int i, j, ret;
2260 
2261         for (i = 0; i < ring->desc_num; i++) {
2262                 ret = hns3_alloc_buffer_attach(ring, i);
2263                 if (ret)
2264                         goto out_buffer_fail;
2265         }
2266 
2267         return 0;
2268 
2269 out_buffer_fail:
2270         for (j = i - 1; j >= 0; j--)
2271                 hns3_free_buffer_detach(ring, j);
2272         return ret;
2273 }
2274 
2275 /* detach a in-used buffer and replace with a reserved one */
2276 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2277                                 struct hns3_desc_cb *res_cb)
2278 {
2279         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2280         ring->desc_cb[i] = *res_cb;
2281         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2282         ring->desc[i].rx.bd_base_info = 0;
2283 }
2284 
2285 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2286 {
2287         ring->desc_cb[i].reuse_flag = 0;
2288         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2289                                          ring->desc_cb[i].page_offset);
2290         ring->desc[i].rx.bd_base_info = 0;
2291 }
2292 
2293 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2294                                   int *bytes, int *pkts)
2295 {
2296         int ntc = ring->next_to_clean;
2297         struct hns3_desc_cb *desc_cb;
2298 
2299         while (head != ntc) {
2300                 desc_cb = &ring->desc_cb[ntc];
2301                 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2302                 (*bytes) += desc_cb->length;
2303                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2304                 hns3_free_buffer_detach(ring, ntc);
2305 
2306                 if (++ntc == ring->desc_num)
2307                         ntc = 0;
2308 
2309                 /* Issue prefetch for next Tx descriptor */
2310                 prefetch(&ring->desc_cb[ntc]);
2311         }
2312 
2313         /* This smp_store_release() pairs with smp_load_acquire() in
2314          * ring_space called by hns3_nic_net_xmit.
2315          */
2316         smp_store_release(&ring->next_to_clean, ntc);
2317 }
2318 
2319 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2320 {
2321         int u = ring->next_to_use;
2322         int c = ring->next_to_clean;
2323 
2324         if (unlikely(h > ring->desc_num))
2325                 return 0;
2326 
2327         return u > c ? (h > c && h <= u) : (h > c || h <= u);
2328 }
2329 
2330 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2331 {
2332         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2333         struct hns3_nic_priv *priv = netdev_priv(netdev);
2334         struct netdev_queue *dev_queue;
2335         int bytes, pkts;
2336         int head;
2337 
2338         head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2339         rmb(); /* Make sure head is ready before touch any data */
2340 
2341         if (is_ring_empty(ring) || head == ring->next_to_clean)
2342                 return; /* no data to poll */
2343 
2344         if (unlikely(!is_valid_clean_head(ring, head))) {
2345                 netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2346                            ring->next_to_use, ring->next_to_clean);
2347 
2348                 u64_stats_update_begin(&ring->syncp);
2349                 ring->stats.io_err_cnt++;
2350                 u64_stats_update_end(&ring->syncp);
2351                 return;
2352         }
2353 
2354         bytes = 0;
2355         pkts = 0;
2356         hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2357 
2358         ring->tqp_vector->tx_group.total_bytes += bytes;
2359         ring->tqp_vector->tx_group.total_packets += pkts;
2360 
2361         u64_stats_update_begin(&ring->syncp);
2362         ring->stats.tx_bytes += bytes;
2363         ring->stats.tx_pkts += pkts;
2364         u64_stats_update_end(&ring->syncp);
2365 
2366         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2367         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2368 
2369         if (unlikely(pkts && netif_carrier_ok(netdev) &&
2370                      (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2371                 /* Make sure that anybody stopping the queue after this
2372                  * sees the new next_to_clean.
2373                  */
2374                 smp_mb();
2375                 if (netif_tx_queue_stopped(dev_queue) &&
2376                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2377                         netif_tx_wake_queue(dev_queue);
2378                         ring->stats.restart_queue++;
2379                 }
2380         }
2381 }
2382 
2383 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2384 {
2385         int ntc = ring->next_to_clean;
2386         int ntu = ring->next_to_use;
2387 
2388         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2389 }
2390 
2391 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2392                                       int cleand_count)
2393 {
2394         struct hns3_desc_cb *desc_cb;
2395         struct hns3_desc_cb res_cbs;
2396         int i, ret;
2397 
2398         for (i = 0; i < cleand_count; i++) {
2399                 desc_cb = &ring->desc_cb[ring->next_to_use];
2400                 if (desc_cb->reuse_flag) {
2401                         u64_stats_update_begin(&ring->syncp);
2402                         ring->stats.reuse_pg_cnt++;
2403                         u64_stats_update_end(&ring->syncp);
2404 
2405                         hns3_reuse_buffer(ring, ring->next_to_use);
2406                 } else {
2407                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
2408                         if (ret) {
2409                                 u64_stats_update_begin(&ring->syncp);
2410                                 ring->stats.sw_err_cnt++;
2411                                 u64_stats_update_end(&ring->syncp);
2412 
2413                                 hns3_rl_err(ring->tqp_vector->napi.dev,
2414                                             "alloc rx buffer failed: %d\n",
2415                                             ret);
2416                                 break;
2417                         }
2418                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2419 
2420                         u64_stats_update_begin(&ring->syncp);
2421                         ring->stats.non_reuse_pg++;
2422                         u64_stats_update_end(&ring->syncp);
2423                 }
2424 
2425                 ring_ptr_move_fw(ring, next_to_use);
2426         }
2427 
2428         wmb(); /* Make all data has been write before submit */
2429         writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2430 }
2431 
2432 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2433                                 struct hns3_enet_ring *ring, int pull_len,
2434                                 struct hns3_desc_cb *desc_cb)
2435 {
2436         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2437         int size = le16_to_cpu(desc->rx.size);
2438         u32 truesize = hns3_buf_size(ring);
2439 
2440         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2441                         size - pull_len, truesize);
2442 
2443         /* Avoid re-using remote pages, or the stack is still using the page
2444          * when page_offset rollback to zero, flag default unreuse
2445          */
2446         if (unlikely(page_to_nid(desc_cb->priv) != numa_mem_id()) ||
2447             (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2448                 return;
2449 
2450         /* Move offset up to the next cache line */
2451         desc_cb->page_offset += truesize;
2452 
2453         if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2454                 desc_cb->reuse_flag = 1;
2455                 /* Bump ref count on page before it is given */
2456                 get_page(desc_cb->priv);
2457         } else if (page_count(desc_cb->priv) == 1) {
2458                 desc_cb->reuse_flag = 1;
2459                 desc_cb->page_offset = 0;
2460                 get_page(desc_cb->priv);
2461         }
2462 }
2463 
2464 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2465 {
2466         __be16 type = skb->protocol;
2467         struct tcphdr *th;
2468         int depth = 0;
2469 
2470         while (eth_type_vlan(type)) {
2471                 struct vlan_hdr *vh;
2472 
2473                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
2474                         return -EFAULT;
2475 
2476                 vh = (struct vlan_hdr *)(skb->data + depth);
2477                 type = vh->h_vlan_encapsulated_proto;
2478                 depth += VLAN_HLEN;
2479         }
2480 
2481         skb_set_network_header(skb, depth);
2482 
2483         if (type == htons(ETH_P_IP)) {
2484                 const struct iphdr *iph = ip_hdr(skb);
2485 
2486                 depth += sizeof(struct iphdr);
2487                 skb_set_transport_header(skb, depth);
2488                 th = tcp_hdr(skb);
2489                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2490                                           iph->daddr, 0);
2491         } else if (type == htons(ETH_P_IPV6)) {
2492                 const struct ipv6hdr *iph = ipv6_hdr(skb);
2493 
2494                 depth += sizeof(struct ipv6hdr);
2495                 skb_set_transport_header(skb, depth);
2496                 th = tcp_hdr(skb);
2497                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2498                                           &iph->daddr, 0);
2499         } else {
2500                 hns3_rl_err(skb->dev,
2501                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2502                             be16_to_cpu(type), depth);
2503                 return -EFAULT;
2504         }
2505 
2506         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2507         if (th->cwr)
2508                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2509 
2510         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2511                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2512 
2513         skb->csum_start = (unsigned char *)th - skb->head;
2514         skb->csum_offset = offsetof(struct tcphdr, check);
2515         skb->ip_summed = CHECKSUM_PARTIAL;
2516         return 0;
2517 }
2518 
2519 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2520                              u32 l234info, u32 bd_base_info, u32 ol_info)
2521 {
2522         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2523         int l3_type, l4_type;
2524         int ol4_type;
2525 
2526         skb->ip_summed = CHECKSUM_NONE;
2527 
2528         skb_checksum_none_assert(skb);
2529 
2530         if (!(netdev->features & NETIF_F_RXCSUM))
2531                 return;
2532 
2533         /* check if hardware has done checksum */
2534         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2535                 return;
2536 
2537         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2538                                  BIT(HNS3_RXD_OL3E_B) |
2539                                  BIT(HNS3_RXD_OL4E_B)))) {
2540                 u64_stats_update_begin(&ring->syncp);
2541                 ring->stats.l3l4_csum_err++;
2542                 u64_stats_update_end(&ring->syncp);
2543 
2544                 return;
2545         }
2546 
2547         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2548                                    HNS3_RXD_OL4ID_S);
2549         switch (ol4_type) {
2550         case HNS3_OL4_TYPE_MAC_IN_UDP:
2551         case HNS3_OL4_TYPE_NVGRE:
2552                 skb->csum_level = 1;
2553                 /* fall through */
2554         case HNS3_OL4_TYPE_NO_TUN:
2555                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2556                                           HNS3_RXD_L3ID_S);
2557                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2558                                           HNS3_RXD_L4ID_S);
2559 
2560                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2561                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2562                      l3_type == HNS3_L3_TYPE_IPV6) &&
2563                     (l4_type == HNS3_L4_TYPE_UDP ||
2564                      l4_type == HNS3_L4_TYPE_TCP ||
2565                      l4_type == HNS3_L4_TYPE_SCTP))
2566                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2567                 break;
2568         default:
2569                 break;
2570         }
2571 }
2572 
2573 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2574 {
2575         if (skb_has_frag_list(skb))
2576                 napi_gro_flush(&ring->tqp_vector->napi, false);
2577 
2578         napi_gro_receive(&ring->tqp_vector->napi, skb);
2579 }
2580 
2581 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2582                                 struct hns3_desc *desc, u32 l234info,
2583                                 u16 *vlan_tag)
2584 {
2585         struct hnae3_handle *handle = ring->tqp->handle;
2586         struct pci_dev *pdev = ring->tqp->handle->pdev;
2587 
2588         if (pdev->revision == 0x20) {
2589                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2590                 if (!(*vlan_tag & VLAN_VID_MASK))
2591                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2592 
2593                 return (*vlan_tag != 0);
2594         }
2595 
2596 #define HNS3_STRP_OUTER_VLAN    0x1
2597 #define HNS3_STRP_INNER_VLAN    0x2
2598 #define HNS3_STRP_BOTH          0x3
2599 
2600         /* Hardware always insert VLAN tag into RX descriptor when
2601          * remove the tag from packet, driver needs to determine
2602          * reporting which tag to stack.
2603          */
2604         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2605                                 HNS3_RXD_STRP_TAGP_S)) {
2606         case HNS3_STRP_OUTER_VLAN:
2607                 if (handle->port_base_vlan_state !=
2608                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2609                         return false;
2610 
2611                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2612                 return true;
2613         case HNS3_STRP_INNER_VLAN:
2614                 if (handle->port_base_vlan_state !=
2615                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2616                         return false;
2617 
2618                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2619                 return true;
2620         case HNS3_STRP_BOTH:
2621                 if (handle->port_base_vlan_state ==
2622                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2623                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2624                 else
2625                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2626 
2627                 return true;
2628         default:
2629                 return false;
2630         }
2631 }
2632 
2633 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2634                           unsigned char *va)
2635 {
2636 #define HNS3_NEED_ADD_FRAG      1
2637         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2638         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2639         struct sk_buff *skb;
2640 
2641         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2642         skb = ring->skb;
2643         if (unlikely(!skb)) {
2644                 hns3_rl_err(netdev, "alloc rx skb fail\n");
2645 
2646                 u64_stats_update_begin(&ring->syncp);
2647                 ring->stats.sw_err_cnt++;
2648                 u64_stats_update_end(&ring->syncp);
2649 
2650                 return -ENOMEM;
2651         }
2652 
2653         prefetchw(skb->data);
2654 
2655         ring->pending_buf = 1;
2656         ring->frag_num = 0;
2657         ring->tail_skb = NULL;
2658         if (length <= HNS3_RX_HEAD_SIZE) {
2659                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2660 
2661                 /* We can reuse buffer as-is, just make sure it is local */
2662                 if (likely(page_to_nid(desc_cb->priv) == numa_mem_id()))
2663                         desc_cb->reuse_flag = 1;
2664                 else /* This page cannot be reused so discard it */
2665                         put_page(desc_cb->priv);
2666 
2667                 ring_ptr_move_fw(ring, next_to_clean);
2668                 return 0;
2669         }
2670         u64_stats_update_begin(&ring->syncp);
2671         ring->stats.seg_pkt_cnt++;
2672         u64_stats_update_end(&ring->syncp);
2673 
2674         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2675         __skb_put(skb, ring->pull_len);
2676         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2677                             desc_cb);
2678         ring_ptr_move_fw(ring, next_to_clean);
2679 
2680         return HNS3_NEED_ADD_FRAG;
2681 }
2682 
2683 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2684                          struct sk_buff **out_skb, bool pending)
2685 {
2686         struct sk_buff *skb = *out_skb;
2687         struct sk_buff *head_skb = *out_skb;
2688         struct sk_buff *new_skb;
2689         struct hns3_desc_cb *desc_cb;
2690         struct hns3_desc *pre_desc;
2691         u32 bd_base_info;
2692         int pre_bd;
2693 
2694         /* if there is pending bd, the SW param next_to_clean has moved
2695          * to next and the next is NULL
2696          */
2697         if (pending) {
2698                 pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2699                          ring->desc_num;
2700                 pre_desc = &ring->desc[pre_bd];
2701                 bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2702         } else {
2703                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2704         }
2705 
2706         while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2707                 desc = &ring->desc[ring->next_to_clean];
2708                 desc_cb = &ring->desc_cb[ring->next_to_clean];
2709                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2710                 /* make sure HW write desc complete */
2711                 dma_rmb();
2712                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2713                         return -ENXIO;
2714 
2715                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2716                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2717                                                  HNS3_RX_HEAD_SIZE);
2718                         if (unlikely(!new_skb)) {
2719                                 hns3_rl_err(ring->tqp_vector->napi.dev,
2720                                             "alloc rx fraglist skb fail\n");
2721                                 return -ENXIO;
2722                         }
2723                         ring->frag_num = 0;
2724 
2725                         if (ring->tail_skb) {
2726                                 ring->tail_skb->next = new_skb;
2727                                 ring->tail_skb = new_skb;
2728                         } else {
2729                                 skb_shinfo(skb)->frag_list = new_skb;
2730                                 ring->tail_skb = new_skb;
2731                         }
2732                 }
2733 
2734                 if (ring->tail_skb) {
2735                         head_skb->truesize += hns3_buf_size(ring);
2736                         head_skb->data_len += le16_to_cpu(desc->rx.size);
2737                         head_skb->len += le16_to_cpu(desc->rx.size);
2738                         skb = ring->tail_skb;
2739                 }
2740 
2741                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2742                 ring_ptr_move_fw(ring, next_to_clean);
2743                 ring->pending_buf++;
2744         }
2745 
2746         return 0;
2747 }
2748 
2749 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2750                                      struct sk_buff *skb, u32 l234info,
2751                                      u32 bd_base_info, u32 ol_info)
2752 {
2753         u32 l3_type;
2754 
2755         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2756                                                     HNS3_RXD_GRO_SIZE_M,
2757                                                     HNS3_RXD_GRO_SIZE_S);
2758         /* if there is no HW GRO, do not set gro params */
2759         if (!skb_shinfo(skb)->gso_size) {
2760                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2761                 return 0;
2762         }
2763 
2764         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2765                                                   HNS3_RXD_GRO_COUNT_M,
2766                                                   HNS3_RXD_GRO_COUNT_S);
2767 
2768         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2769         if (l3_type == HNS3_L3_TYPE_IPV4)
2770                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2771         else if (l3_type == HNS3_L3_TYPE_IPV6)
2772                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2773         else
2774                 return -EFAULT;
2775 
2776         return  hns3_gro_complete(skb, l234info);
2777 }
2778 
2779 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2780                                      struct sk_buff *skb, u32 rss_hash)
2781 {
2782         struct hnae3_handle *handle = ring->tqp->handle;
2783         enum pkt_hash_types rss_type;
2784 
2785         if (rss_hash)
2786                 rss_type = handle->kinfo.rss_type;
2787         else
2788                 rss_type = PKT_HASH_TYPE_NONE;
2789 
2790         skb_set_hash(skb, rss_hash, rss_type);
2791 }
2792 
2793 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2794 {
2795         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2796         enum hns3_pkt_l2t_type l2_frame_type;
2797         u32 bd_base_info, l234info, ol_info;
2798         struct hns3_desc *desc;
2799         unsigned int len;
2800         int pre_ntc, ret;
2801 
2802         /* bdinfo handled below is only valid on the last BD of the
2803          * current packet, and ring->next_to_clean indicates the first
2804          * descriptor of next packet, so need - 1 below.
2805          */
2806         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2807                                         (ring->desc_num - 1);
2808         desc = &ring->desc[pre_ntc];
2809         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2810         l234info = le32_to_cpu(desc->rx.l234_info);
2811         ol_info = le32_to_cpu(desc->rx.ol_info);
2812 
2813         /* Based on hw strategy, the tag offloaded will be stored at
2814          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2815          * in one layer tag case.
2816          */
2817         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2818                 u16 vlan_tag;
2819 
2820                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2821                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2822                                                vlan_tag);
2823         }
2824 
2825         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2826                                   BIT(HNS3_RXD_L2E_B))))) {
2827                 u64_stats_update_begin(&ring->syncp);
2828                 if (l234info & BIT(HNS3_RXD_L2E_B))
2829                         ring->stats.l2_err++;
2830                 else
2831                         ring->stats.err_pkt_len++;
2832                 u64_stats_update_end(&ring->syncp);
2833 
2834                 return -EFAULT;
2835         }
2836 
2837         len = skb->len;
2838 
2839         /* Do update ip stack process */
2840         skb->protocol = eth_type_trans(skb, netdev);
2841 
2842         /* This is needed in order to enable forwarding support */
2843         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
2844                                         bd_base_info, ol_info);
2845         if (unlikely(ret)) {
2846                 u64_stats_update_begin(&ring->syncp);
2847                 ring->stats.rx_err_cnt++;
2848                 u64_stats_update_end(&ring->syncp);
2849                 return ret;
2850         }
2851 
2852         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2853                                         HNS3_RXD_DMAC_S);
2854 
2855         u64_stats_update_begin(&ring->syncp);
2856         ring->stats.rx_pkts++;
2857         ring->stats.rx_bytes += len;
2858 
2859         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2860                 ring->stats.rx_multicast++;
2861 
2862         u64_stats_update_end(&ring->syncp);
2863 
2864         ring->tqp_vector->rx_group.total_bytes += len;
2865 
2866         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
2867         return 0;
2868 }
2869 
2870 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2871                              struct sk_buff **out_skb)
2872 {
2873         struct sk_buff *skb = ring->skb;
2874         struct hns3_desc_cb *desc_cb;
2875         struct hns3_desc *desc;
2876         unsigned int length;
2877         u32 bd_base_info;
2878         int ret;
2879 
2880         desc = &ring->desc[ring->next_to_clean];
2881         desc_cb = &ring->desc_cb[ring->next_to_clean];
2882 
2883         prefetch(desc);
2884 
2885         length = le16_to_cpu(desc->rx.size);
2886         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2887 
2888         /* Check valid BD */
2889         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2890                 return -ENXIO;
2891 
2892         if (!skb)
2893                 ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2894 
2895         /* Prefetch first cache line of first page
2896          * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2897          * line size is 64B so need to prefetch twice to make it 128B. But in
2898          * actual we can have greater size of caches with 128B Level 1 cache
2899          * lines. In such a case, single fetch would suffice to cache in the
2900          * relevant part of the header.
2901          */
2902         prefetch(ring->va);
2903 #if L1_CACHE_BYTES < 128
2904         prefetch(ring->va + L1_CACHE_BYTES);
2905 #endif
2906 
2907         if (!skb) {
2908                 ret = hns3_alloc_skb(ring, length, ring->va);
2909                 *out_skb = skb = ring->skb;
2910 
2911                 if (ret < 0) /* alloc buffer fail */
2912                         return ret;
2913                 if (ret > 0) { /* need add frag */
2914                         ret = hns3_add_frag(ring, desc, &skb, false);
2915                         if (ret)
2916                                 return ret;
2917 
2918                         /* As the head data may be changed when GRO enable, copy
2919                          * the head data in after other data rx completed
2920                          */
2921                         memcpy(skb->data, ring->va,
2922                                ALIGN(ring->pull_len, sizeof(long)));
2923                 }
2924         } else {
2925                 ret = hns3_add_frag(ring, desc, &skb, true);
2926                 if (ret)
2927                         return ret;
2928 
2929                 /* As the head data may be changed when GRO enable, copy
2930                  * the head data in after other data rx completed
2931                  */
2932                 memcpy(skb->data, ring->va,
2933                        ALIGN(ring->pull_len, sizeof(long)));
2934         }
2935 
2936         ret = hns3_handle_bdinfo(ring, skb);
2937         if (unlikely(ret)) {
2938                 dev_kfree_skb_any(skb);
2939                 return ret;
2940         }
2941 
2942         skb_record_rx_queue(skb, ring->tqp->tqp_index);
2943         *out_skb = skb;
2944 
2945         return 0;
2946 }
2947 
2948 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
2949                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2950 {
2951 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2952         int unused_count = hns3_desc_unused(ring);
2953         struct sk_buff *skb = ring->skb;
2954         int recv_pkts = 0;
2955         int recv_bds = 0;
2956         int err, num;
2957 
2958         num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2959         rmb(); /* Make sure num taken effect before the other data is touched */
2960 
2961         num -= unused_count;
2962         unused_count -= ring->pending_buf;
2963 
2964         while (recv_pkts < budget && recv_bds < num) {
2965                 /* Reuse or realloc buffers */
2966                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2967                         hns3_nic_alloc_rx_buffers(ring, unused_count);
2968                         unused_count = hns3_desc_unused(ring) -
2969                                         ring->pending_buf;
2970                 }
2971 
2972                 /* Poll one pkt */
2973                 err = hns3_handle_rx_bd(ring, &skb);
2974                 if (unlikely(!skb)) /* This fault cannot be repaired */
2975                         goto out;
2976 
2977                 if (err == -ENXIO) { /* Do not get FE for the packet */
2978                         goto out;
2979                 } else if (unlikely(err)) {  /* Do jump the err */
2980                         recv_bds += ring->pending_buf;
2981                         unused_count += ring->pending_buf;
2982                         ring->skb = NULL;
2983                         ring->pending_buf = 0;
2984                         continue;
2985                 }
2986 
2987                 rx_fn(ring, skb);
2988                 recv_bds += ring->pending_buf;
2989                 unused_count += ring->pending_buf;
2990                 ring->skb = NULL;
2991                 ring->pending_buf = 0;
2992 
2993                 recv_pkts++;
2994         }
2995 
2996 out:
2997         /* Make all data has been write before submit */
2998         if (unused_count > 0)
2999                 hns3_nic_alloc_rx_buffers(ring, unused_count);
3000 
3001         return recv_pkts;
3002 }
3003 
3004 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3005 {
3006 #define HNS3_RX_LOW_BYTE_RATE 10000
3007 #define HNS3_RX_MID_BYTE_RATE 20000
3008 #define HNS3_RX_ULTRA_PACKET_RATE 40
3009 
3010         enum hns3_flow_level_range new_flow_level;
3011         struct hns3_enet_tqp_vector *tqp_vector;
3012         int packets_per_msecs, bytes_per_msecs;
3013         u32 time_passed_ms;
3014 
3015         tqp_vector = ring_group->ring->tqp_vector;
3016         time_passed_ms =
3017                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3018         if (!time_passed_ms)
3019                 return false;
3020 
3021         do_div(ring_group->total_packets, time_passed_ms);
3022         packets_per_msecs = ring_group->total_packets;
3023 
3024         do_div(ring_group->total_bytes, time_passed_ms);
3025         bytes_per_msecs = ring_group->total_bytes;
3026 
3027         new_flow_level = ring_group->coal.flow_level;
3028 
3029         /* Simple throttlerate management
3030          * 0-10MB/s   lower     (50000 ints/s)
3031          * 10-20MB/s   middle    (20000 ints/s)
3032          * 20-1249MB/s high      (18000 ints/s)
3033          * > 40000pps  ultra     (8000 ints/s)
3034          */
3035         switch (new_flow_level) {
3036         case HNS3_FLOW_LOW:
3037                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3038                         new_flow_level = HNS3_FLOW_MID;
3039                 break;
3040         case HNS3_FLOW_MID:
3041                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3042                         new_flow_level = HNS3_FLOW_HIGH;
3043                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3044                         new_flow_level = HNS3_FLOW_LOW;
3045                 break;
3046         case HNS3_FLOW_HIGH:
3047         case HNS3_FLOW_ULTRA:
3048         default:
3049                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3050                         new_flow_level = HNS3_FLOW_MID;
3051                 break;
3052         }
3053 
3054         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3055             &tqp_vector->rx_group == ring_group)
3056                 new_flow_level = HNS3_FLOW_ULTRA;
3057 
3058         ring_group->total_bytes = 0;
3059         ring_group->total_packets = 0;
3060         ring_group->coal.flow_level = new_flow_level;
3061 
3062         return true;
3063 }
3064 
3065 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3066 {
3067         struct hns3_enet_tqp_vector *tqp_vector;
3068         u16 new_int_gl;
3069 
3070         if (!ring_group->ring)
3071                 return false;
3072 
3073         tqp_vector = ring_group->ring->tqp_vector;
3074         if (!tqp_vector->last_jiffies)
3075                 return false;
3076 
3077         if (ring_group->total_packets == 0) {
3078                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
3079                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
3080                 return true;
3081         }
3082 
3083         if (!hns3_get_new_flow_lvl(ring_group))
3084                 return false;
3085 
3086         new_int_gl = ring_group->coal.int_gl;
3087         switch (ring_group->coal.flow_level) {
3088         case HNS3_FLOW_LOW:
3089                 new_int_gl = HNS3_INT_GL_50K;
3090                 break;
3091         case HNS3_FLOW_MID:
3092                 new_int_gl = HNS3_INT_GL_20K;
3093                 break;
3094         case HNS3_FLOW_HIGH:
3095                 new_int_gl = HNS3_INT_GL_18K;
3096                 break;
3097         case HNS3_FLOW_ULTRA:
3098                 new_int_gl = HNS3_INT_GL_8K;
3099                 break;
3100         default:
3101                 break;
3102         }
3103 
3104         if (new_int_gl != ring_group->coal.int_gl) {
3105                 ring_group->coal.int_gl = new_int_gl;
3106                 return true;
3107         }
3108         return false;
3109 }
3110 
3111 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3112 {
3113         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3114         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3115         bool rx_update, tx_update;
3116 
3117         /* update param every 1000ms */
3118         if (time_before(jiffies,
3119                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3120                 return;
3121 
3122         if (rx_group->coal.gl_adapt_enable) {
3123                 rx_update = hns3_get_new_int_gl(rx_group);
3124                 if (rx_update)
3125                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
3126                                                        rx_group->coal.int_gl);
3127         }
3128 
3129         if (tx_group->coal.gl_adapt_enable) {
3130                 tx_update = hns3_get_new_int_gl(tx_group);
3131                 if (tx_update)
3132                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
3133                                                        tx_group->coal.int_gl);
3134         }
3135 
3136         tqp_vector->last_jiffies = jiffies;
3137 }
3138 
3139 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3140 {
3141         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3142         struct hns3_enet_ring *ring;
3143         int rx_pkt_total = 0;
3144 
3145         struct hns3_enet_tqp_vector *tqp_vector =
3146                 container_of(napi, struct hns3_enet_tqp_vector, napi);
3147         bool clean_complete = true;
3148         int rx_budget = budget;
3149 
3150         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3151                 napi_complete(napi);
3152                 return 0;
3153         }
3154 
3155         /* Since the actual Tx work is minimal, we can give the Tx a larger
3156          * budget and be more aggressive about cleaning up the Tx descriptors.
3157          */
3158         hns3_for_each_ring(ring, tqp_vector->tx_group)
3159                 hns3_clean_tx_ring(ring);
3160 
3161         /* make sure rx ring budget not smaller than 1 */
3162         if (tqp_vector->num_tqps > 1)
3163                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
3164 
3165         hns3_for_each_ring(ring, tqp_vector->rx_group) {
3166                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3167                                                     hns3_rx_skb);
3168 
3169                 if (rx_cleaned >= rx_budget)
3170                         clean_complete = false;
3171 
3172                 rx_pkt_total += rx_cleaned;
3173         }
3174 
3175         tqp_vector->rx_group.total_packets += rx_pkt_total;
3176 
3177         if (!clean_complete)
3178                 return budget;
3179 
3180         if (napi_complete(napi) &&
3181             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3182                 hns3_update_new_int_gl(tqp_vector);
3183                 hns3_mask_vector_irq(tqp_vector, 1);
3184         }
3185 
3186         return rx_pkt_total;
3187 }
3188 
3189 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3190                                       struct hnae3_ring_chain_node *head)
3191 {
3192         struct pci_dev *pdev = tqp_vector->handle->pdev;
3193         struct hnae3_ring_chain_node *cur_chain = head;
3194         struct hnae3_ring_chain_node *chain;
3195         struct hns3_enet_ring *tx_ring;
3196         struct hns3_enet_ring *rx_ring;
3197 
3198         tx_ring = tqp_vector->tx_group.ring;
3199         if (tx_ring) {
3200                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3201                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3202                               HNAE3_RING_TYPE_TX);
3203                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3204                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3205 
3206                 cur_chain->next = NULL;
3207 
3208                 while (tx_ring->next) {
3209                         tx_ring = tx_ring->next;
3210 
3211                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3212                                              GFP_KERNEL);
3213                         if (!chain)
3214                                 goto err_free_chain;
3215 
3216                         cur_chain->next = chain;
3217                         chain->tqp_index = tx_ring->tqp->tqp_index;
3218                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3219                                       HNAE3_RING_TYPE_TX);
3220                         hnae3_set_field(chain->int_gl_idx,
3221                                         HNAE3_RING_GL_IDX_M,
3222                                         HNAE3_RING_GL_IDX_S,
3223                                         HNAE3_RING_GL_TX);
3224 
3225                         cur_chain = chain;
3226                 }
3227         }
3228 
3229         rx_ring = tqp_vector->rx_group.ring;
3230         if (!tx_ring && rx_ring) {
3231                 cur_chain->next = NULL;
3232                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3233                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3234                               HNAE3_RING_TYPE_RX);
3235                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3236                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3237 
3238                 rx_ring = rx_ring->next;
3239         }
3240 
3241         while (rx_ring) {
3242                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3243                 if (!chain)
3244                         goto err_free_chain;
3245 
3246                 cur_chain->next = chain;
3247                 chain->tqp_index = rx_ring->tqp->tqp_index;
3248                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3249                               HNAE3_RING_TYPE_RX);
3250                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3251                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3252 
3253                 cur_chain = chain;
3254 
3255                 rx_ring = rx_ring->next;
3256         }
3257 
3258         return 0;
3259 
3260 err_free_chain:
3261         cur_chain = head->next;
3262         while (cur_chain) {
3263                 chain = cur_chain->next;
3264                 devm_kfree(&pdev->dev, cur_chain);
3265                 cur_chain = chain;
3266         }
3267         head->next = NULL;
3268 
3269         return -ENOMEM;
3270 }
3271 
3272 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3273                                         struct hnae3_ring_chain_node *head)
3274 {
3275         struct pci_dev *pdev = tqp_vector->handle->pdev;
3276         struct hnae3_ring_chain_node *chain_tmp, *chain;
3277 
3278         chain = head->next;
3279 
3280         while (chain) {
3281                 chain_tmp = chain->next;
3282                 devm_kfree(&pdev->dev, chain);
3283                 chain = chain_tmp;
3284         }
3285 }
3286 
3287 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3288                                    struct hns3_enet_ring *ring)
3289 {
3290         ring->next = group->ring;
3291         group->ring = ring;
3292 
3293         group->count++;
3294 }
3295 
3296 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3297 {
3298         struct pci_dev *pdev = priv->ae_handle->pdev;
3299         struct hns3_enet_tqp_vector *tqp_vector;
3300         int num_vectors = priv->vector_num;
3301         int numa_node;
3302         int vector_i;
3303 
3304         numa_node = dev_to_node(&pdev->dev);
3305 
3306         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3307                 tqp_vector = &priv->tqp_vector[vector_i];
3308                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3309                                 &tqp_vector->affinity_mask);
3310         }
3311 }
3312 
3313 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3314 {
3315         struct hnae3_ring_chain_node vector_ring_chain;
3316         struct hnae3_handle *h = priv->ae_handle;
3317         struct hns3_enet_tqp_vector *tqp_vector;
3318         int ret = 0;
3319         int i;
3320 
3321         hns3_nic_set_cpumask(priv);
3322 
3323         for (i = 0; i < priv->vector_num; i++) {
3324                 tqp_vector = &priv->tqp_vector[i];
3325                 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3326                 tqp_vector->num_tqps = 0;
3327         }
3328 
3329         for (i = 0; i < h->kinfo.num_tqps; i++) {
3330                 u16 vector_i = i % priv->vector_num;
3331                 u16 tqp_num = h->kinfo.num_tqps;
3332 
3333                 tqp_vector = &priv->tqp_vector[vector_i];
3334 
3335                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3336                                        priv->ring_data[i].ring);
3337 
3338                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3339                                        priv->ring_data[i + tqp_num].ring);
3340 
3341                 priv->ring_data[i].ring->tqp_vector = tqp_vector;
3342                 priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3343                 tqp_vector->num_tqps++;
3344         }
3345 
3346         for (i = 0; i < priv->vector_num; i++) {
3347                 tqp_vector = &priv->tqp_vector[i];
3348 
3349                 tqp_vector->rx_group.total_bytes = 0;
3350                 tqp_vector->rx_group.total_packets = 0;
3351                 tqp_vector->tx_group.total_bytes = 0;
3352                 tqp_vector->tx_group.total_packets = 0;
3353                 tqp_vector->handle = h;
3354 
3355                 ret = hns3_get_vector_ring_chain(tqp_vector,
3356                                                  &vector_ring_chain);
3357                 if (ret)
3358                         goto map_ring_fail;
3359 
3360                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3361                         tqp_vector->vector_irq, &vector_ring_chain);
3362 
3363                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3364 
3365                 if (ret)
3366                         goto map_ring_fail;
3367 
3368                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3369                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3370         }
3371 
3372         return 0;
3373 
3374 map_ring_fail:
3375         while (i--)
3376                 netif_napi_del(&priv->tqp_vector[i].napi);
3377 
3378         return ret;
3379 }
3380 
3381 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3382 {
3383 #define HNS3_VECTOR_PF_MAX_NUM          64
3384 
3385         struct hnae3_handle *h = priv->ae_handle;
3386         struct hns3_enet_tqp_vector *tqp_vector;
3387         struct hnae3_vector_info *vector;
3388         struct pci_dev *pdev = h->pdev;
3389         u16 tqp_num = h->kinfo.num_tqps;
3390         u16 vector_num;
3391         int ret = 0;
3392         u16 i;
3393 
3394         /* RSS size, cpu online and vector_num should be the same */
3395         /* Should consider 2p/4p later */
3396         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3397         vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3398 
3399         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3400                               GFP_KERNEL);
3401         if (!vector)
3402                 return -ENOMEM;
3403 
3404         /* save the actual available vector number */
3405         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3406 
3407         priv->vector_num = vector_num;
3408         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3409                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3410                              GFP_KERNEL);
3411         if (!priv->tqp_vector) {
3412                 ret = -ENOMEM;
3413                 goto out;
3414         }
3415 
3416         for (i = 0; i < priv->vector_num; i++) {
3417                 tqp_vector = &priv->tqp_vector[i];
3418                 tqp_vector->idx = i;
3419                 tqp_vector->mask_addr = vector[i].io_addr;
3420                 tqp_vector->vector_irq = vector[i].vector;
3421                 hns3_vector_gl_rl_init(tqp_vector, priv);
3422         }
3423 
3424 out:
3425         devm_kfree(&pdev->dev, vector);
3426         return ret;
3427 }
3428 
3429 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3430 {
3431         group->ring = NULL;
3432         group->count = 0;
3433 }
3434 
3435 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3436 {
3437         struct hnae3_ring_chain_node vector_ring_chain;
3438         struct hnae3_handle *h = priv->ae_handle;
3439         struct hns3_enet_tqp_vector *tqp_vector;
3440         int i;
3441 
3442         for (i = 0; i < priv->vector_num; i++) {
3443                 tqp_vector = &priv->tqp_vector[i];
3444 
3445                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3446                         continue;
3447 
3448                 hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3449 
3450                 h->ae_algo->ops->unmap_ring_from_vector(h,
3451                         tqp_vector->vector_irq, &vector_ring_chain);
3452 
3453                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3454 
3455                 if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3456                         irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3457                         free_irq(tqp_vector->vector_irq, tqp_vector);
3458                         tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3459                 }
3460 
3461                 hns3_clear_ring_group(&tqp_vector->rx_group);
3462                 hns3_clear_ring_group(&tqp_vector->tx_group);
3463                 netif_napi_del(&priv->tqp_vector[i].napi);
3464         }
3465 }
3466 
3467 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3468 {
3469         struct hnae3_handle *h = priv->ae_handle;
3470         struct pci_dev *pdev = h->pdev;
3471         int i, ret;
3472 
3473         for (i = 0; i < priv->vector_num; i++) {
3474                 struct hns3_enet_tqp_vector *tqp_vector;
3475 
3476                 tqp_vector = &priv->tqp_vector[i];
3477                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3478                 if (ret)
3479                         return ret;
3480         }
3481 
3482         devm_kfree(&pdev->dev, priv->tqp_vector);
3483         return 0;
3484 }
3485 
3486 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3487                              unsigned int ring_type)
3488 {
3489         struct hns3_nic_ring_data *ring_data = priv->ring_data;
3490         int queue_num = priv->ae_handle->kinfo.num_tqps;
3491         struct pci_dev *pdev = priv->ae_handle->pdev;
3492         struct hns3_enet_ring *ring;
3493         int desc_num;
3494 
3495         ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3496         if (!ring)
3497                 return -ENOMEM;
3498 
3499         if (ring_type == HNAE3_RING_TYPE_TX) {
3500                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3501                 ring_data[q->tqp_index].ring = ring;
3502                 ring_data[q->tqp_index].queue_index = q->tqp_index;
3503                 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3504         } else {
3505                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3506                 ring_data[q->tqp_index + queue_num].ring = ring;
3507                 ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3508                 ring->io_base = q->io_base;
3509         }
3510 
3511         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3512 
3513         ring->tqp = q;
3514         ring->desc = NULL;
3515         ring->desc_cb = NULL;
3516         ring->dev = priv->dev;
3517         ring->desc_dma_addr = 0;
3518         ring->buf_size = q->buf_size;
3519         ring->desc_num = desc_num;
3520         ring->next_to_use = 0;
3521         ring->next_to_clean = 0;
3522 
3523         return 0;
3524 }
3525 
3526 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3527                               struct hns3_nic_priv *priv)
3528 {
3529         int ret;
3530 
3531         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3532         if (ret)
3533                 return ret;
3534 
3535         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3536         if (ret) {
3537                 devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3538                 return ret;
3539         }
3540 
3541         return 0;
3542 }
3543 
3544 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3545 {
3546         struct hnae3_handle *h = priv->ae_handle;
3547         struct pci_dev *pdev = h->pdev;
3548         int i, ret;
3549 
3550         priv->ring_data =  devm_kzalloc(&pdev->dev,
3551                                         array3_size(h->kinfo.num_tqps,
3552                                                     sizeof(*priv->ring_data),
3553                                                     2),
3554                                         GFP_KERNEL);
3555         if (!priv->ring_data)
3556                 return -ENOMEM;
3557 
3558         for (i = 0; i < h->kinfo.num_tqps; i++) {
3559                 ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3560                 if (ret)
3561                         goto err;
3562         }
3563 
3564         return 0;
3565 err:
3566         while (i--) {
3567                 devm_kfree(priv->dev, priv->ring_data[i].ring);
3568                 devm_kfree(priv->dev,
3569                            priv->ring_data[i + h->kinfo.num_tqps].ring);
3570         }
3571 
3572         devm_kfree(&pdev->dev, priv->ring_data);
3573         priv->ring_data = NULL;
3574         return ret;
3575 }
3576 
3577 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3578 {
3579         struct hnae3_handle *h = priv->ae_handle;
3580         int i;
3581 
3582         if (!priv->ring_data)
3583                 return;
3584 
3585         for (i = 0; i < h->kinfo.num_tqps; i++) {
3586                 devm_kfree(priv->dev, priv->ring_data[i].ring);
3587                 devm_kfree(priv->dev,
3588                            priv->ring_data[i + h->kinfo.num_tqps].ring);
3589         }
3590         devm_kfree(priv->dev, priv->ring_data);
3591         priv->ring_data = NULL;
3592 }
3593 
3594 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3595 {
3596         int ret;
3597 
3598         if (ring->desc_num <= 0 || ring->buf_size <= 0)
3599                 return -EINVAL;
3600 
3601         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3602                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
3603         if (!ring->desc_cb) {
3604                 ret = -ENOMEM;
3605                 goto out;
3606         }
3607 
3608         ret = hns3_alloc_desc(ring);
3609         if (ret)
3610                 goto out_with_desc_cb;
3611 
3612         if (!HNAE3_IS_TX_RING(ring)) {
3613                 ret = hns3_alloc_ring_buffers(ring);
3614                 if (ret)
3615                         goto out_with_desc;
3616         }
3617 
3618         return 0;
3619 
3620 out_with_desc:
3621         hns3_free_desc(ring);
3622 out_with_desc_cb:
3623         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3624         ring->desc_cb = NULL;
3625 out:
3626         return ret;
3627 }
3628 
3629 void hns3_fini_ring(struct hns3_enet_ring *ring)
3630 {
3631         hns3_free_desc(ring);
3632         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3633         ring->desc_cb = NULL;
3634         ring->next_to_clean = 0;
3635         ring->next_to_use = 0;
3636         ring->pending_buf = 0;
3637         if (ring->skb) {
3638                 dev_kfree_skb_any(ring->skb);
3639                 ring->skb = NULL;
3640         }
3641 }
3642 
3643 static int hns3_buf_size2type(u32 buf_size)
3644 {
3645         int bd_size_type;
3646 
3647         switch (buf_size) {
3648         case 512:
3649                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3650                 break;
3651         case 1024:
3652                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3653                 break;
3654         case 2048:
3655                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3656                 break;
3657         case 4096:
3658                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3659                 break;
3660         default:
3661                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3662         }
3663 
3664         return bd_size_type;
3665 }
3666 
3667 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3668 {
3669         dma_addr_t dma = ring->desc_dma_addr;
3670         struct hnae3_queue *q = ring->tqp;
3671 
3672         if (!HNAE3_IS_TX_RING(ring)) {
3673                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3674                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3675                                (u32)((dma >> 31) >> 1));
3676 
3677                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3678                                hns3_buf_size2type(ring->buf_size));
3679                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3680                                ring->desc_num / 8 - 1);
3681 
3682         } else {
3683                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3684                                (u32)dma);
3685                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3686                                (u32)((dma >> 31) >> 1));
3687 
3688                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3689                                ring->desc_num / 8 - 1);
3690         }
3691 }
3692 
3693 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3694 {
3695         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3696         int i;
3697 
3698         for (i = 0; i < HNAE3_MAX_TC; i++) {
3699                 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3700                 int j;
3701 
3702                 if (!tc_info->enable)
3703                         continue;
3704 
3705                 for (j = 0; j < tc_info->tqp_count; j++) {
3706                         struct hnae3_queue *q;
3707 
3708                         q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3709                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3710                                        tc_info->tc);
3711                 }
3712         }
3713 }
3714 
3715 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3716 {
3717         struct hnae3_handle *h = priv->ae_handle;
3718         int ring_num = h->kinfo.num_tqps * 2;
3719         int i, j;
3720         int ret;
3721 
3722         for (i = 0; i < ring_num; i++) {
3723                 ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3724                 if (ret) {
3725                         dev_err(priv->dev,
3726                                 "Alloc ring memory fail! ret=%d\n", ret);
3727                         goto out_when_alloc_ring_memory;
3728                 }
3729 
3730                 u64_stats_init(&priv->ring_data[i].ring->syncp);
3731         }
3732 
3733         return 0;
3734 
3735 out_when_alloc_ring_memory:
3736         for (j = i - 1; j >= 0; j--)
3737                 hns3_fini_ring(priv->ring_data[j].ring);
3738 
3739         return -ENOMEM;
3740 }
3741 
3742 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3743 {
3744         struct hnae3_handle *h = priv->ae_handle;
3745         int i;
3746 
3747         for (i = 0; i < h->kinfo.num_tqps; i++) {
3748                 hns3_fini_ring(priv->ring_data[i].ring);
3749                 hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3750         }
3751         return 0;
3752 }
3753 
3754 /* Set mac addr if it is configured. or leave it to the AE driver */
3755 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3756 {
3757         struct hns3_nic_priv *priv = netdev_priv(netdev);
3758         struct hnae3_handle *h = priv->ae_handle;
3759         u8 mac_addr_temp[ETH_ALEN];
3760         int ret = 0;
3761 
3762         if (h->ae_algo->ops->get_mac_addr && init) {
3763                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3764                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3765         }
3766 
3767         /* Check if the MAC address is valid, if not get a random one */
3768         if (!is_valid_ether_addr(netdev->dev_addr)) {
3769                 eth_hw_addr_random(netdev);
3770                 dev_warn(priv->dev, "using random MAC address %pM\n",
3771                          netdev->dev_addr);
3772         }
3773 
3774         if (h->ae_algo->ops->set_mac_addr)
3775                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3776 
3777         return ret;
3778 }
3779 
3780 static int hns3_init_phy(struct net_device *netdev)
3781 {
3782         struct hnae3_handle *h = hns3_get_handle(netdev);
3783         int ret = 0;
3784 
3785         if (h->ae_algo->ops->mac_connect_phy)
3786                 ret = h->ae_algo->ops->mac_connect_phy(h);
3787 
3788         return ret;
3789 }
3790 
3791 static void hns3_uninit_phy(struct net_device *netdev)
3792 {
3793         struct hnae3_handle *h = hns3_get_handle(netdev);
3794 
3795         if (h->ae_algo->ops->mac_disconnect_phy)
3796                 h->ae_algo->ops->mac_disconnect_phy(h);
3797 }
3798 
3799 static int hns3_restore_fd_rules(struct net_device *netdev)
3800 {
3801         struct hnae3_handle *h = hns3_get_handle(netdev);
3802         int ret = 0;
3803 
3804         if (h->ae_algo->ops->restore_fd_rules)
3805                 ret = h->ae_algo->ops->restore_fd_rules(h);
3806 
3807         return ret;
3808 }
3809 
3810 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3811 {
3812         struct hnae3_handle *h = hns3_get_handle(netdev);
3813 
3814         if (h->ae_algo->ops->del_all_fd_entries)
3815                 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3816 }
3817 
3818 static int hns3_client_start(struct hnae3_handle *handle)
3819 {
3820         if (!handle->ae_algo->ops->client_start)
3821                 return 0;
3822 
3823         return handle->ae_algo->ops->client_start(handle);
3824 }
3825 
3826 static void hns3_client_stop(struct hnae3_handle *handle)
3827 {
3828         if (!handle->ae_algo->ops->client_stop)
3829                 return;
3830 
3831         handle->ae_algo->ops->client_stop(handle);
3832 }
3833 
3834 static void hns3_info_show(struct hns3_nic_priv *priv)
3835 {
3836         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3837 
3838         dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3839         dev_info(priv->dev, "Task queue pairs numbers: %d\n", kinfo->num_tqps);
3840         dev_info(priv->dev, "RSS size: %d\n", kinfo->rss_size);
3841         dev_info(priv->dev, "Allocated RSS size: %d\n", kinfo->req_rss_size);
3842         dev_info(priv->dev, "RX buffer length: %d\n", kinfo->rx_buf_len);
3843         dev_info(priv->dev, "Desc num per TX queue: %d\n", kinfo->num_tx_desc);
3844         dev_info(priv->dev, "Desc num per RX queue: %d\n", kinfo->num_rx_desc);
3845         dev_info(priv->dev, "Total number of enabled TCs: %d\n", kinfo->num_tc);
3846         dev_info(priv->dev, "Max mtu size: %d\n", priv->netdev->max_mtu);
3847 }
3848 
3849 static int hns3_client_init(struct hnae3_handle *handle)
3850 {
3851         struct pci_dev *pdev = handle->pdev;
3852         u16 alloc_tqps, max_rss_size;
3853         struct hns3_nic_priv *priv;
3854         struct net_device *netdev;
3855         int ret;
3856 
3857         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3858                                                     &max_rss_size);
3859         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3860         if (!netdev)
3861                 return -ENOMEM;
3862 
3863         priv = netdev_priv(netdev);
3864         priv->dev = &pdev->dev;
3865         priv->netdev = netdev;
3866         priv->ae_handle = handle;
3867         priv->tx_timeout_count = 0;
3868         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3869 
3870         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
3871 
3872         handle->kinfo.netdev = netdev;
3873         handle->priv = (void *)priv;
3874 
3875         hns3_init_mac_addr(netdev, true);
3876 
3877         hns3_set_default_feature(netdev);
3878 
3879         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3880         netdev->priv_flags |= IFF_UNICAST_FLT;
3881         netdev->netdev_ops = &hns3_nic_netdev_ops;
3882         SET_NETDEV_DEV(netdev, &pdev->dev);
3883         hns3_ethtool_set_ops(netdev);
3884 
3885         /* Carrier off reporting is important to ethtool even BEFORE open */
3886         netif_carrier_off(netdev);
3887 
3888         ret = hns3_get_ring_config(priv);
3889         if (ret) {
3890                 ret = -ENOMEM;
3891                 goto out_get_ring_cfg;
3892         }
3893 
3894         ret = hns3_nic_alloc_vector_data(priv);
3895         if (ret) {
3896                 ret = -ENOMEM;
3897                 goto out_alloc_vector_data;
3898         }
3899 
3900         ret = hns3_nic_init_vector_data(priv);
3901         if (ret) {
3902                 ret = -ENOMEM;
3903                 goto out_init_vector_data;
3904         }
3905 
3906         ret = hns3_init_all_ring(priv);
3907         if (ret) {
3908                 ret = -ENOMEM;
3909                 goto out_init_ring_data;
3910         }
3911 
3912         ret = hns3_init_phy(netdev);
3913         if (ret)
3914                 goto out_init_phy;
3915 
3916         ret = register_netdev(netdev);
3917         if (ret) {
3918                 dev_err(priv->dev, "probe register netdev fail!\n");
3919                 goto out_reg_netdev_fail;
3920         }
3921 
3922         ret = hns3_client_start(handle);
3923         if (ret) {
3924                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3925                 goto out_client_start;
3926         }
3927 
3928         hns3_dcbnl_setup(handle);
3929 
3930         hns3_dbg_init(handle);
3931 
3932         /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3933         netdev->max_mtu = HNS3_MAX_MTU;
3934 
3935         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3936 
3937         if (netif_msg_drv(handle))
3938                 hns3_info_show(priv);
3939 
3940         return ret;
3941 
3942 out_client_start:
3943         unregister_netdev(netdev);
3944 out_reg_netdev_fail:
3945         hns3_uninit_phy(netdev);
3946 out_init_phy:
3947         hns3_uninit_all_ring(priv);
3948 out_init_ring_data:
3949         hns3_nic_uninit_vector_data(priv);
3950 out_init_vector_data:
3951         hns3_nic_dealloc_vector_data(priv);
3952 out_alloc_vector_data:
3953         priv->ring_data = NULL;
3954 out_get_ring_cfg:
3955         priv->ae_handle = NULL;
3956         free_netdev(netdev);
3957         return ret;
3958 }
3959 
3960 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3961 {
3962         struct net_device *netdev = handle->kinfo.netdev;
3963         struct hns3_nic_priv *priv = netdev_priv(netdev);
3964         int ret;
3965 
3966         hns3_remove_hw_addr(netdev);
3967 
3968         if (netdev->reg_state != NETREG_UNINITIALIZED)
3969                 unregister_netdev(netdev);
3970 
3971         hns3_client_stop(handle);
3972 
3973         hns3_uninit_phy(netdev);
3974 
3975         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3976                 netdev_warn(netdev, "already uninitialized\n");
3977                 goto out_netdev_free;
3978         }
3979 
3980         hns3_del_all_fd_rules(netdev, true);
3981 
3982         hns3_clear_all_ring(handle, true);
3983 
3984         hns3_nic_uninit_vector_data(priv);
3985 
3986         ret = hns3_nic_dealloc_vector_data(priv);
3987         if (ret)
3988                 netdev_err(netdev, "dealloc vector error\n");
3989 
3990         ret = hns3_uninit_all_ring(priv);
3991         if (ret)
3992                 netdev_err(netdev, "uninit ring error\n");
3993 
3994         hns3_put_ring_config(priv);
3995 
3996         hns3_dbg_uninit(handle);
3997 
3998 out_netdev_free:
3999         free_netdev(netdev);
4000 }
4001 
4002 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4003 {
4004         struct net_device *netdev = handle->kinfo.netdev;
4005 
4006         if (!netdev)
4007                 return;
4008 
4009         if (linkup) {
4010                 netif_carrier_on(netdev);
4011                 netif_tx_wake_all_queues(netdev);
4012                 if (netif_msg_link(handle))
4013                         netdev_info(netdev, "link up\n");
4014         } else {
4015                 netif_carrier_off(netdev);
4016                 netif_tx_stop_all_queues(netdev);
4017                 if (netif_msg_link(handle))
4018                         netdev_info(netdev, "link down\n");
4019         }
4020 }
4021 
4022 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4023 {
4024         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4025         struct net_device *ndev = kinfo->netdev;
4026 
4027         if (tc > HNAE3_MAX_TC)
4028                 return -EINVAL;
4029 
4030         if (!ndev)
4031                 return -ENODEV;
4032 
4033         return hns3_nic_set_real_num_queue(ndev);
4034 }
4035 
4036 static int hns3_recover_hw_addr(struct net_device *ndev)
4037 {
4038         struct netdev_hw_addr_list *list;
4039         struct netdev_hw_addr *ha, *tmp;
4040         int ret = 0;
4041 
4042         netif_addr_lock_bh(ndev);
4043         /* go through and sync uc_addr entries to the device */
4044         list = &ndev->uc;
4045         list_for_each_entry_safe(ha, tmp, &list->list, list) {
4046                 ret = hns3_nic_uc_sync(ndev, ha->addr);
4047                 if (ret)
4048                         goto out;
4049         }
4050 
4051         /* go through and sync mc_addr entries to the device */
4052         list = &ndev->mc;
4053         list_for_each_entry_safe(ha, tmp, &list->list, list) {
4054                 ret = hns3_nic_mc_sync(ndev, ha->addr);
4055                 if (ret)
4056                         goto out;
4057         }
4058 
4059 out:
4060         netif_addr_unlock_bh(ndev);
4061         return ret;
4062 }
4063 
4064 static void hns3_remove_hw_addr(struct net_device *netdev)
4065 {
4066         struct netdev_hw_addr_list *list;
4067         struct netdev_hw_addr *ha, *tmp;
4068 
4069         hns3_nic_uc_unsync(netdev, netdev->dev_addr);
4070 
4071         netif_addr_lock_bh(netdev);
4072         /* go through and unsync uc_addr entries to the device */
4073         list = &netdev->uc;
4074         list_for_each_entry_safe(ha, tmp, &list->list, list)
4075                 hns3_nic_uc_unsync(netdev, ha->addr);
4076 
4077         /* go through and unsync mc_addr entries to the device */
4078         list = &netdev->mc;
4079         list_for_each_entry_safe(ha, tmp, &list->list, list)
4080                 if (ha->refcount > 1)
4081                         hns3_nic_mc_unsync(netdev, ha->addr);
4082 
4083         netif_addr_unlock_bh(netdev);
4084 }
4085 
4086 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4087 {
4088         while (ring->next_to_clean != ring->next_to_use) {
4089                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4090                 hns3_free_buffer_detach(ring, ring->next_to_clean);
4091                 ring_ptr_move_fw(ring, next_to_clean);
4092         }
4093 }
4094 
4095 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4096 {
4097         struct hns3_desc_cb res_cbs;
4098         int ret;
4099 
4100         while (ring->next_to_use != ring->next_to_clean) {
4101                 /* When a buffer is not reused, it's memory has been
4102                  * freed in hns3_handle_rx_bd or will be freed by
4103                  * stack, so we need to replace the buffer here.
4104                  */
4105                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4106                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
4107                         if (ret) {
4108                                 u64_stats_update_begin(&ring->syncp);
4109                                 ring->stats.sw_err_cnt++;
4110                                 u64_stats_update_end(&ring->syncp);
4111                                 /* if alloc new buffer fail, exit directly
4112                                  * and reclear in up flow.
4113                                  */
4114                                 netdev_warn(ring->tqp->handle->kinfo.netdev,
4115                                             "reserve buffer map failed, ret = %d\n",
4116                                             ret);
4117                                 return ret;
4118                         }
4119                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4120                 }
4121                 ring_ptr_move_fw(ring, next_to_use);
4122         }
4123 
4124         /* Free the pending skb in rx ring */
4125         if (ring->skb) {
4126                 dev_kfree_skb_any(ring->skb);
4127                 ring->skb = NULL;
4128                 ring->pending_buf = 0;
4129         }
4130 
4131         return 0;
4132 }
4133 
4134 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4135 {
4136         while (ring->next_to_use != ring->next_to_clean) {
4137                 /* When a buffer is not reused, it's memory has been
4138                  * freed in hns3_handle_rx_bd or will be freed by
4139                  * stack, so only need to unmap the buffer here.
4140                  */
4141                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4142                         hns3_unmap_buffer(ring,
4143                                           &ring->desc_cb[ring->next_to_use]);
4144                         ring->desc_cb[ring->next_to_use].dma = 0;
4145                 }
4146 
4147                 ring_ptr_move_fw(ring, next_to_use);
4148         }
4149 }
4150 
4151 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4152 {
4153         struct net_device *ndev = h->kinfo.netdev;
4154         struct hns3_nic_priv *priv = netdev_priv(ndev);
4155         u32 i;
4156 
4157         for (i = 0; i < h->kinfo.num_tqps; i++) {
4158                 struct hns3_enet_ring *ring;
4159 
4160                 ring = priv->ring_data[i].ring;
4161                 hns3_clear_tx_ring(ring);
4162 
4163                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4164                 /* Continue to clear other rings even if clearing some
4165                  * rings failed.
4166                  */
4167                 if (force)
4168                         hns3_force_clear_rx_ring(ring);
4169                 else
4170                         hns3_clear_rx_ring(ring);
4171         }
4172 }
4173 
4174 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4175 {
4176         struct net_device *ndev = h->kinfo.netdev;
4177         struct hns3_nic_priv *priv = netdev_priv(ndev);
4178         struct hns3_enet_ring *rx_ring;
4179         int i, j;
4180         int ret;
4181 
4182         for (i = 0; i < h->kinfo.num_tqps; i++) {
4183                 ret = h->ae_algo->ops->reset_queue(h, i);
4184                 if (ret)
4185                         return ret;
4186 
4187                 hns3_init_ring_hw(priv->ring_data[i].ring);
4188 
4189                 /* We need to clear tx ring here because self test will
4190                  * use the ring and will not run down before up
4191                  */
4192                 hns3_clear_tx_ring(priv->ring_data[i].ring);
4193                 priv->ring_data[i].ring->next_to_clean = 0;
4194                 priv->ring_data[i].ring->next_to_use = 0;
4195 
4196                 rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4197                 hns3_init_ring_hw(rx_ring);
4198                 ret = hns3_clear_rx_ring(rx_ring);
4199                 if (ret)
4200                         return ret;
4201 
4202                 /* We can not know the hardware head and tail when this
4203                  * function is called in reset flow, so we reuse all desc.
4204                  */
4205                 for (j = 0; j < rx_ring->desc_num; j++)
4206                         hns3_reuse_buffer(rx_ring, j);
4207 
4208                 rx_ring->next_to_clean = 0;
4209                 rx_ring->next_to_use = 0;
4210         }
4211 
4212         hns3_init_tx_ring_tc(priv);
4213 
4214         return 0;
4215 }
4216 
4217 static void hns3_store_coal(struct hns3_nic_priv *priv)
4218 {
4219         /* ethtool only support setting and querying one coal
4220          * configuration for now, so save the vector 0' coal
4221          * configuration here in order to restore it.
4222          */
4223         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4224                sizeof(struct hns3_enet_coalesce));
4225         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4226                sizeof(struct hns3_enet_coalesce));
4227 }
4228 
4229 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4230 {
4231         u16 vector_num = priv->vector_num;
4232         int i;
4233 
4234         for (i = 0; i < vector_num; i++) {
4235                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4236                        sizeof(struct hns3_enet_coalesce));
4237                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4238                        sizeof(struct hns3_enet_coalesce));
4239         }
4240 }
4241 
4242 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4243 {
4244         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4245         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4246         struct net_device *ndev = kinfo->netdev;
4247         struct hns3_nic_priv *priv = netdev_priv(ndev);
4248 
4249         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4250                 return 0;
4251 
4252         /* it is cumbersome for hardware to pick-and-choose entries for deletion
4253          * from table space. Hence, for function reset software intervention is
4254          * required to delete the entries
4255          */
4256         if (hns3_dev_ongoing_func_reset(ae_dev)) {
4257                 hns3_remove_hw_addr(ndev);
4258                 hns3_del_all_fd_rules(ndev, false);
4259         }
4260 
4261         if (!netif_running(ndev))
4262                 return 0;
4263 
4264         return hns3_nic_net_stop(ndev);
4265 }
4266 
4267 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4268 {
4269         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4270         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4271         int ret = 0;
4272 
4273         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4274 
4275         if (netif_running(kinfo->netdev)) {
4276                 ret = hns3_nic_net_open(kinfo->netdev);
4277                 if (ret) {
4278                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4279                         netdev_err(kinfo->netdev,
4280                                    "net up fail, ret=%d!\n", ret);
4281                         return ret;
4282                 }
4283         }
4284 
4285         return ret;
4286 }
4287 
4288 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4289 {
4290         struct net_device *netdev = handle->kinfo.netdev;
4291         struct hns3_nic_priv *priv = netdev_priv(netdev);
4292         int ret;
4293 
4294         /* Carrier off reporting is important to ethtool even BEFORE open */
4295         netif_carrier_off(netdev);
4296 
4297         ret = hns3_get_ring_config(priv);
4298         if (ret)
4299                 return ret;
4300 
4301         ret = hns3_nic_alloc_vector_data(priv);
4302         if (ret)
4303                 goto err_put_ring;
4304 
4305         hns3_restore_coal(priv);
4306 
4307         ret = hns3_nic_init_vector_data(priv);
4308         if (ret)
4309                 goto err_dealloc_vector;
4310 
4311         ret = hns3_init_all_ring(priv);
4312         if (ret)
4313                 goto err_uninit_vector;
4314 
4315         ret = hns3_client_start(handle);
4316         if (ret) {
4317                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4318                 goto err_uninit_ring;
4319         }
4320 
4321         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4322 
4323         return ret;
4324 
4325 err_uninit_ring:
4326         hns3_uninit_all_ring(priv);
4327 err_uninit_vector:
4328         hns3_nic_uninit_vector_data(priv);
4329 err_dealloc_vector:
4330         hns3_nic_dealloc_vector_data(priv);
4331 err_put_ring:
4332         hns3_put_ring_config(priv);
4333 
4334         return ret;
4335 }
4336 
4337 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4338 {
4339         struct net_device *netdev = handle->kinfo.netdev;
4340         bool vlan_filter_enable;
4341         int ret;
4342 
4343         ret = hns3_init_mac_addr(netdev, false);
4344         if (ret)
4345                 return ret;
4346 
4347         ret = hns3_recover_hw_addr(netdev);
4348         if (ret)
4349                 return ret;
4350 
4351         ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4352         if (ret)
4353                 return ret;
4354 
4355         vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4356         hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4357 
4358         if (handle->ae_algo->ops->restore_vlan_table)
4359                 handle->ae_algo->ops->restore_vlan_table(handle);
4360 
4361         return hns3_restore_fd_rules(netdev);
4362 }
4363 
4364 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4365 {
4366         struct net_device *netdev = handle->kinfo.netdev;
4367         struct hns3_nic_priv *priv = netdev_priv(netdev);
4368         int ret;
4369 
4370         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4371                 netdev_warn(netdev, "already uninitialized\n");
4372                 return 0;
4373         }
4374 
4375         hns3_clear_all_ring(handle, true);
4376         hns3_reset_tx_queue(priv->ae_handle);
4377 
4378         hns3_nic_uninit_vector_data(priv);
4379 
4380         hns3_store_coal(priv);
4381 
4382         ret = hns3_nic_dealloc_vector_data(priv);
4383         if (ret)
4384                 netdev_err(netdev, "dealloc vector error\n");
4385 
4386         ret = hns3_uninit_all_ring(priv);
4387         if (ret)
4388                 netdev_err(netdev, "uninit ring error\n");
4389 
4390         hns3_put_ring_config(priv);
4391 
4392         return ret;
4393 }
4394 
4395 static int hns3_reset_notify(struct hnae3_handle *handle,
4396                              enum hnae3_reset_notify_type type)
4397 {
4398         int ret = 0;
4399 
4400         switch (type) {
4401         case HNAE3_UP_CLIENT:
4402                 ret = hns3_reset_notify_up_enet(handle);
4403                 break;
4404         case HNAE3_DOWN_CLIENT:
4405                 ret = hns3_reset_notify_down_enet(handle);
4406                 break;
4407         case HNAE3_INIT_CLIENT:
4408                 ret = hns3_reset_notify_init_enet(handle);
4409                 break;
4410         case HNAE3_UNINIT_CLIENT:
4411                 ret = hns3_reset_notify_uninit_enet(handle);
4412                 break;
4413         case HNAE3_RESTORE_CLIENT:
4414                 ret = hns3_reset_notify_restore_enet(handle);
4415                 break;
4416         default:
4417                 break;
4418         }
4419 
4420         return ret;
4421 }
4422 
4423 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4424                                 bool rxfh_configured)
4425 {
4426         int ret;
4427 
4428         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4429                                                  rxfh_configured);
4430         if (ret) {
4431                 dev_err(&handle->pdev->dev,
4432                         "Change tqp num(%u) fail.\n", new_tqp_num);
4433                 return ret;
4434         }
4435 
4436         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4437         if (ret)
4438                 return ret;
4439 
4440         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4441         if (ret)
4442                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4443 
4444         return ret;
4445 }
4446 
4447 int hns3_set_channels(struct net_device *netdev,
4448                       struct ethtool_channels *ch)
4449 {
4450         struct hnae3_handle *h = hns3_get_handle(netdev);
4451         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4452         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4453         u32 new_tqp_num = ch->combined_count;
4454         u16 org_tqp_num;
4455         int ret;
4456 
4457         if (hns3_nic_resetting(netdev))
4458                 return -EBUSY;
4459 
4460         if (ch->rx_count || ch->tx_count)
4461                 return -EINVAL;
4462 
4463         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4464             new_tqp_num < 1) {
4465                 dev_err(&netdev->dev,
4466                         "Change tqps fail, the tqp range is from 1 to %d",
4467                         hns3_get_max_available_channels(h));
4468                 return -EINVAL;
4469         }
4470 
4471         if (kinfo->rss_size == new_tqp_num)
4472                 return 0;
4473 
4474         netif_dbg(h, drv, netdev,
4475                   "set channels: tqp_num=%u, rxfh=%d\n",
4476                   new_tqp_num, rxfh_configured);
4477 
4478         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4479         if (ret)
4480                 return ret;
4481 
4482         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4483         if (ret)
4484                 return ret;
4485 
4486         org_tqp_num = h->kinfo.num_tqps;
4487         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4488         if (ret) {
4489                 int ret1;
4490 
4491                 netdev_warn(netdev,
4492                             "Change channels fail, revert to old value\n");
4493                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4494                 if (ret1) {
4495                         netdev_err(netdev,
4496                                    "revert to old channel fail\n");
4497                         return ret1;
4498                 }
4499 
4500                 return ret;
4501         }
4502 
4503         return 0;
4504 }
4505 
4506 static const struct hns3_hw_error_info hns3_hw_err[] = {
4507         { .type = HNAE3_PPU_POISON_ERROR,
4508           .msg = "PPU poison" },
4509         { .type = HNAE3_CMDQ_ECC_ERROR,
4510           .msg = "IMP CMDQ error" },
4511         { .type = HNAE3_IMP_RD_POISON_ERROR,
4512           .msg = "IMP RD poison" },
4513 };
4514 
4515 static void hns3_process_hw_error(struct hnae3_handle *handle,
4516                                   enum hnae3_hw_error_type type)
4517 {
4518         int i;
4519 
4520         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4521                 if (hns3_hw_err[i].type == type) {
4522                         dev_err(&handle->pdev->dev, "Detected %s!\n",
4523                                 hns3_hw_err[i].msg);
4524                         break;
4525                 }
4526         }
4527 }
4528 
4529 static const struct hnae3_client_ops client_ops = {
4530         .init_instance = hns3_client_init,
4531         .uninit_instance = hns3_client_uninit,
4532         .link_status_change = hns3_link_status_change,
4533         .setup_tc = hns3_client_setup_tc,
4534         .reset_notify = hns3_reset_notify,
4535         .process_hw_error = hns3_process_hw_error,
4536 };
4537 
4538 /* hns3_init_module - Driver registration routine
4539  * hns3_init_module is the first routine called when the driver is
4540  * loaded. All it does is register with the PCI subsystem.
4541  */
4542 static int __init hns3_init_module(void)
4543 {
4544         int ret;
4545 
4546         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4547         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4548 
4549         client.type = HNAE3_CLIENT_KNIC;
4550         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4551                  hns3_driver_name);
4552 
4553         client.ops = &client_ops;
4554 
4555         INIT_LIST_HEAD(&client.node);
4556 
4557         hns3_dbg_register_debugfs(hns3_driver_name);
4558 
4559         ret = hnae3_register_client(&client);
4560         if (ret)
4561                 goto err_reg_client;
4562 
4563         ret = pci_register_driver(&hns3_driver);
4564         if (ret)
4565                 goto err_reg_driver;
4566 
4567         return ret;
4568 
4569 err_reg_driver:
4570         hnae3_unregister_client(&client);
4571 err_reg_client:
4572         hns3_dbg_unregister_debugfs();
4573         return ret;
4574 }
4575 module_init(hns3_init_module);
4576 
4577 /* hns3_exit_module - Driver exit cleanup routine
4578  * hns3_exit_module is called just before the driver is removed
4579  * from memory.
4580  */
4581 static void __exit hns3_exit_module(void)
4582 {
4583         pci_unregister_driver(&hns3_driver);
4584         hnae3_unregister_client(&client);
4585         hns3_dbg_unregister_debugfs();
4586 }
4587 module_exit(hns3_exit_module);
4588 
4589 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4590 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4591 MODULE_LICENSE("GPL");
4592 MODULE_ALIAS("pci:hns-nic");
4593 MODULE_VERSION(HNS3_MOD_VERSION);

/* [<][>][^][v][top][bottom][index][help] */