root/drivers/net/ethernet/qlogic/qed/qed_hw.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qed_ptt_pool_alloc
  2. qed_ptt_invalidate
  3. qed_ptt_pool_free
  4. qed_ptt_acquire
  5. qed_ptt_release
  6. qed_ptt_get_hw_addr
  7. qed_ptt_config_addr
  8. qed_ptt_get_bar_addr
  9. qed_ptt_set_win
  10. qed_set_ptt
  11. qed_get_reserved_ptt
  12. qed_wr
  13. qed_rd
  14. qed_memcpy_hw
  15. qed_memcpy_from
  16. qed_memcpy_to
  17. qed_fid_pretend
  18. qed_port_pretend
  19. qed_port_unpretend
  20. qed_port_fid_pretend
  21. qed_vfid_to_concrete
  22. qed_dmae_opcode
  23. qed_dmae_idx_to_go_cmd
  24. qed_dmae_post_command
  25. qed_dmae_info_alloc
  26. qed_dmae_info_free
  27. qed_dmae_operation_wait
  28. qed_dmae_execute_sub_operation
  29. qed_dmae_execute_command
  30. qed_dmae_host2grc
  31. qed_dmae_grc2host
  32. qed_dmae_host2host
  33. qed_dmae_sanity

   1 /* QLogic qed NIC Driver
   2  * Copyright (c) 2015-2017  QLogic Corporation
   3  *
   4  * This software is available to you under a choice of one of two
   5  * licenses.  You may choose to be licensed under the terms of the GNU
   6  * General Public License (GPL) Version 2, available from the file
   7  * COPYING in the main directory of this source tree, or the
   8  * OpenIB.org BSD license below:
   9  *
  10  *     Redistribution and use in source and binary forms, with or
  11  *     without modification, are permitted provided that the following
  12  *     conditions are met:
  13  *
  14  *      - Redistributions of source code must retain the above
  15  *        copyright notice, this list of conditions and the following
  16  *        disclaimer.
  17  *
  18  *      - Redistributions in binary form must reproduce the above
  19  *        copyright notice, this list of conditions and the following
  20  *        disclaimer in the documentation and /or other materials
  21  *        provided with the distribution.
  22  *
  23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30  * SOFTWARE.
  31  */
  32 
  33 #include <linux/types.h>
  34 #include <linux/io.h>
  35 #include <linux/delay.h>
  36 #include <linux/dma-mapping.h>
  37 #include <linux/errno.h>
  38 #include <linux/kernel.h>
  39 #include <linux/list.h>
  40 #include <linux/mutex.h>
  41 #include <linux/pci.h>
  42 #include <linux/slab.h>
  43 #include <linux/spinlock.h>
  44 #include <linux/string.h>
  45 #include <linux/qed/qed_chain.h>
  46 #include "qed.h"
  47 #include "qed_hsi.h"
  48 #include "qed_hw.h"
  49 #include "qed_reg_addr.h"
  50 #include "qed_sriov.h"
  51 
  52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
  53 
  54 /* Invalid values */
  55 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
  56 
  57 struct qed_ptt {
  58         struct list_head        list_entry;
  59         unsigned int            idx;
  60         struct pxp_ptt_entry    pxp;
  61         u8                      hwfn_id;
  62 };
  63 
  64 struct qed_ptt_pool {
  65         struct list_head        free_list;
  66         spinlock_t              lock; /* ptt synchronized access */
  67         struct qed_ptt          ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
  68 };
  69 
  70 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
  71 {
  72         struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
  73         int i;
  74 
  75         if (!p_pool)
  76                 return -ENOMEM;
  77 
  78         INIT_LIST_HEAD(&p_pool->free_list);
  79         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
  80                 p_pool->ptts[i].idx = i;
  81                 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
  82                 p_pool->ptts[i].pxp.pretend.control = 0;
  83                 p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
  84                 if (i >= RESERVED_PTT_MAX)
  85                         list_add(&p_pool->ptts[i].list_entry,
  86                                  &p_pool->free_list);
  87         }
  88 
  89         p_hwfn->p_ptt_pool = p_pool;
  90         spin_lock_init(&p_pool->lock);
  91 
  92         return 0;
  93 }
  94 
  95 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
  96 {
  97         struct qed_ptt *p_ptt;
  98         int i;
  99 
 100         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
 101                 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
 102                 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
 103         }
 104 }
 105 
 106 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
 107 {
 108         kfree(p_hwfn->p_ptt_pool);
 109         p_hwfn->p_ptt_pool = NULL;
 110 }
 111 
 112 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
 113 {
 114         struct qed_ptt *p_ptt;
 115         unsigned int i;
 116 
 117         /* Take the free PTT from the list */
 118         for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
 119                 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
 120 
 121                 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
 122                         p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
 123                                                  struct qed_ptt, list_entry);
 124                         list_del(&p_ptt->list_entry);
 125 
 126                         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
 127 
 128                         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
 129                                    "allocated ptt %d\n", p_ptt->idx);
 130                         return p_ptt;
 131                 }
 132 
 133                 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
 134                 usleep_range(1000, 2000);
 135         }
 136 
 137         DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
 138         return NULL;
 139 }
 140 
 141 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 142 {
 143         spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
 144         list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
 145         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
 146 }
 147 
 148 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 149 {
 150         /* The HW is using DWORDS and we need to translate it to Bytes */
 151         return le32_to_cpu(p_ptt->pxp.offset) << 2;
 152 }
 153 
 154 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
 155 {
 156         return PXP_PF_WINDOW_ADMIN_PER_PF_START +
 157                p_ptt->idx * sizeof(struct pxp_ptt_entry);
 158 }
 159 
 160 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
 161 {
 162         return PXP_EXTERNAL_BAR_PF_WINDOW_START +
 163                p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
 164 }
 165 
 166 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
 167                      struct qed_ptt *p_ptt, u32 new_hw_addr)
 168 {
 169         u32 prev_hw_addr;
 170 
 171         prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
 172 
 173         if (new_hw_addr == prev_hw_addr)
 174                 return;
 175 
 176         /* Update PTT entery in admin window */
 177         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
 178                    "Updating PTT entry %d to offset 0x%x\n",
 179                    p_ptt->idx, new_hw_addr);
 180 
 181         /* The HW is using DWORDS and the address is in Bytes */
 182         p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
 183 
 184         REG_WR(p_hwfn,
 185                qed_ptt_config_addr(p_ptt) +
 186                offsetof(struct pxp_ptt_entry, offset),
 187                le32_to_cpu(p_ptt->pxp.offset));
 188 }
 189 
 190 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
 191                        struct qed_ptt *p_ptt, u32 hw_addr)
 192 {
 193         u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
 194         u32 offset;
 195 
 196         offset = hw_addr - win_hw_addr;
 197 
 198         if (p_ptt->hwfn_id != p_hwfn->my_id)
 199                 DP_NOTICE(p_hwfn,
 200                           "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
 201                           p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
 202 
 203         /* Verify the address is within the window */
 204         if (hw_addr < win_hw_addr ||
 205             offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
 206                 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
 207                 offset = 0;
 208         }
 209 
 210         return qed_ptt_get_bar_addr(p_ptt) + offset;
 211 }
 212 
 213 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
 214                                      enum reserved_ptts ptt_idx)
 215 {
 216         if (ptt_idx >= RESERVED_PTT_MAX) {
 217                 DP_NOTICE(p_hwfn,
 218                           "Requested PTT %d is out of range\n", ptt_idx);
 219                 return NULL;
 220         }
 221 
 222         return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
 223 }
 224 
 225 void qed_wr(struct qed_hwfn *p_hwfn,
 226             struct qed_ptt *p_ptt,
 227             u32 hw_addr, u32 val)
 228 {
 229         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
 230 
 231         REG_WR(p_hwfn, bar_addr, val);
 232         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
 233                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
 234                    bar_addr, hw_addr, val);
 235 }
 236 
 237 u32 qed_rd(struct qed_hwfn *p_hwfn,
 238            struct qed_ptt *p_ptt,
 239            u32 hw_addr)
 240 {
 241         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
 242         u32 val = REG_RD(p_hwfn, bar_addr);
 243 
 244         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
 245                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
 246                    bar_addr, hw_addr, val);
 247 
 248         return val;
 249 }
 250 
 251 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
 252                           struct qed_ptt *p_ptt,
 253                           void *addr, u32 hw_addr, size_t n, bool to_device)
 254 {
 255         u32 dw_count, *host_addr, hw_offset;
 256         size_t quota, done = 0;
 257         u32 __iomem *reg_addr;
 258 
 259         while (done < n) {
 260                 quota = min_t(size_t, n - done,
 261                               PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
 262 
 263                 if (IS_PF(p_hwfn->cdev)) {
 264                         qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
 265                         hw_offset = qed_ptt_get_bar_addr(p_ptt);
 266                 } else {
 267                         hw_offset = hw_addr + done;
 268                 }
 269 
 270                 dw_count = quota / 4;
 271                 host_addr = (u32 *)((u8 *)addr + done);
 272                 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
 273                 if (to_device)
 274                         while (dw_count--)
 275                                 DIRECT_REG_WR(reg_addr++, *host_addr++);
 276                 else
 277                         while (dw_count--)
 278                                 *host_addr++ = DIRECT_REG_RD(reg_addr++);
 279 
 280                 done += quota;
 281         }
 282 }
 283 
 284 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
 285                      struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
 286 {
 287         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
 288                    "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
 289                    hw_addr, dest, hw_addr, (unsigned long)n);
 290 
 291         qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
 292 }
 293 
 294 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
 295                    struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
 296 {
 297         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
 298                    "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
 299                    hw_addr, hw_addr, src, (unsigned long)n);
 300 
 301         qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
 302 }
 303 
 304 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
 305 {
 306         u16 control = 0;
 307 
 308         SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
 309         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
 310 
 311         /* Every pretend undos previous pretends, including
 312          * previous port pretend.
 313          */
 314         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
 315         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
 316         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
 317 
 318         if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
 319                 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
 320 
 321         p_ptt->pxp.pretend.control = cpu_to_le16(control);
 322         p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
 323 
 324         REG_WR(p_hwfn,
 325                qed_ptt_config_addr(p_ptt) +
 326                offsetof(struct pxp_ptt_entry, pretend),
 327                *(u32 *)&p_ptt->pxp.pretend);
 328 }
 329 
 330 void qed_port_pretend(struct qed_hwfn *p_hwfn,
 331                       struct qed_ptt *p_ptt, u8 port_id)
 332 {
 333         u16 control = 0;
 334 
 335         SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
 336         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
 337         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
 338 
 339         p_ptt->pxp.pretend.control = cpu_to_le16(control);
 340 
 341         REG_WR(p_hwfn,
 342                qed_ptt_config_addr(p_ptt) +
 343                offsetof(struct pxp_ptt_entry, pretend),
 344                *(u32 *)&p_ptt->pxp.pretend);
 345 }
 346 
 347 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 348 {
 349         u16 control = 0;
 350 
 351         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
 352         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
 353         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
 354 
 355         p_ptt->pxp.pretend.control = cpu_to_le16(control);
 356 
 357         REG_WR(p_hwfn,
 358                qed_ptt_config_addr(p_ptt) +
 359                offsetof(struct pxp_ptt_entry, pretend),
 360                *(u32 *)&p_ptt->pxp.pretend);
 361 }
 362 
 363 void qed_port_fid_pretend(struct qed_hwfn *p_hwfn,
 364                           struct qed_ptt *p_ptt, u8 port_id, u16 fid)
 365 {
 366         u16 control = 0;
 367 
 368         SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
 369         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
 370         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
 371         SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
 372         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
 373         if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
 374                 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
 375         p_ptt->pxp.pretend.control = cpu_to_le16(control);
 376         p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
 377         REG_WR(p_hwfn,
 378                qed_ptt_config_addr(p_ptt) +
 379                offsetof(struct pxp_ptt_entry, pretend),
 380                *(u32 *)&p_ptt->pxp.pretend);
 381 }
 382 
 383 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
 384 {
 385         u32 concrete_fid = 0;
 386 
 387         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
 388         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
 389         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
 390 
 391         return concrete_fid;
 392 }
 393 
 394 /* DMAE */
 395 #define QED_DMAE_FLAGS_IS_SET(params, flag) \
 396         ((params) != NULL && ((params)->flags & QED_DMAE_FLAG_##flag))
 397 
 398 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
 399                             const u8 is_src_type_grc,
 400                             const u8 is_dst_type_grc,
 401                             struct qed_dmae_params *p_params)
 402 {
 403         u8 src_pfid, dst_pfid, port_id;
 404         u16 opcode_b = 0;
 405         u32 opcode = 0;
 406 
 407         /* Whether the source is the PCIe or the GRC.
 408          * 0- The source is the PCIe
 409          * 1- The source is the GRC.
 410          */
 411         opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
 412                                    : DMAE_CMD_SRC_MASK_PCIE) <<
 413                    DMAE_CMD_SRC_SHIFT;
 414         src_pfid = QED_DMAE_FLAGS_IS_SET(p_params, PF_SRC) ?
 415                    p_params->src_pfid : p_hwfn->rel_pf_id;
 416         opcode |= ((src_pfid & DMAE_CMD_SRC_PF_ID_MASK) <<
 417                    DMAE_CMD_SRC_PF_ID_SHIFT);
 418 
 419         /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
 420         opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
 421                                    : DMAE_CMD_DST_MASK_PCIE) <<
 422                    DMAE_CMD_DST_SHIFT;
 423         dst_pfid = QED_DMAE_FLAGS_IS_SET(p_params, PF_DST) ?
 424                    p_params->dst_pfid : p_hwfn->rel_pf_id;
 425         opcode |= ((dst_pfid & DMAE_CMD_DST_PF_ID_MASK) <<
 426                    DMAE_CMD_DST_PF_ID_SHIFT);
 427 
 428         /* Whether to write a completion word to the completion destination:
 429          * 0-Do not write a completion word
 430          * 1-Write the completion word
 431          */
 432         opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
 433         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
 434                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
 435 
 436         if (QED_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST))
 437                 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
 438 
 439         opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
 440 
 441         port_id = (QED_DMAE_FLAGS_IS_SET(p_params, PORT)) ?
 442                    p_params->port_id : p_hwfn->port_id;
 443         opcode |= (port_id << DMAE_CMD_PORT_ID_SHIFT);
 444 
 445         /* reset source address in next go */
 446         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
 447                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
 448 
 449         /* reset dest address in next go */
 450         opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
 451                    DMAE_CMD_DST_ADDR_RESET_SHIFT);
 452 
 453         /* SRC/DST VFID: all 1's - pf, otherwise VF id */
 454         if (QED_DMAE_FLAGS_IS_SET(p_params, VF_SRC)) {
 455                 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
 456                 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
 457         } else {
 458                 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
 459                             DMAE_CMD_SRC_VF_ID_SHIFT;
 460         }
 461 
 462         if (QED_DMAE_FLAGS_IS_SET(p_params, VF_DST)) {
 463                 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
 464                 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
 465         } else {
 466                 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
 467         }
 468 
 469         p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
 470         p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
 471 }
 472 
 473 u32 qed_dmae_idx_to_go_cmd(u8 idx)
 474 {
 475         /* All the DMAE 'go' registers form an array in internal memory */
 476         return DMAE_REG_GO_C0 + (idx << 2);
 477 }
 478 
 479 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
 480                                  struct qed_ptt *p_ptt)
 481 {
 482         struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
 483         u8 idx_cmd = p_hwfn->dmae_info.channel, i;
 484         int qed_status = 0;
 485 
 486         /* verify address is not NULL */
 487         if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
 488              ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
 489                 DP_NOTICE(p_hwfn,
 490                           "source or destination address 0 idx_cmd=%d\n"
 491                           "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
 492                           idx_cmd,
 493                           le32_to_cpu(p_command->opcode),
 494                           le16_to_cpu(p_command->opcode_b),
 495                           le16_to_cpu(p_command->length_dw),
 496                           le32_to_cpu(p_command->src_addr_hi),
 497                           le32_to_cpu(p_command->src_addr_lo),
 498                           le32_to_cpu(p_command->dst_addr_hi),
 499                           le32_to_cpu(p_command->dst_addr_lo));
 500 
 501                 return -EINVAL;
 502         }
 503 
 504         DP_VERBOSE(p_hwfn,
 505                    NETIF_MSG_HW,
 506                    "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
 507                    idx_cmd,
 508                    le32_to_cpu(p_command->opcode),
 509                    le16_to_cpu(p_command->opcode_b),
 510                    le16_to_cpu(p_command->length_dw),
 511                    le32_to_cpu(p_command->src_addr_hi),
 512                    le32_to_cpu(p_command->src_addr_lo),
 513                    le32_to_cpu(p_command->dst_addr_hi),
 514                    le32_to_cpu(p_command->dst_addr_lo));
 515 
 516         /* Copy the command to DMAE - need to do it before every call
 517          * for source/dest address no reset.
 518          * The first 9 DWs are the command registers, the 10 DW is the
 519          * GO register, and the rest are result registers
 520          * (which are read only by the client).
 521          */
 522         for (i = 0; i < DMAE_CMD_SIZE; i++) {
 523                 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
 524                            *(((u32 *)p_command) + i) : 0;
 525 
 526                 qed_wr(p_hwfn, p_ptt,
 527                        DMAE_REG_CMD_MEM +
 528                        (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
 529                        (i * sizeof(u32)), data);
 530         }
 531 
 532         qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
 533 
 534         return qed_status;
 535 }
 536 
 537 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
 538 {
 539         dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
 540         struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
 541         u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
 542         u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
 543 
 544         *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
 545                                      sizeof(u32), p_addr, GFP_KERNEL);
 546         if (!*p_comp)
 547                 goto err;
 548 
 549         p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
 550         *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
 551                                     sizeof(struct dmae_cmd),
 552                                     p_addr, GFP_KERNEL);
 553         if (!*p_cmd)
 554                 goto err;
 555 
 556         p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
 557         *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
 558                                      sizeof(u32) * DMAE_MAX_RW_SIZE,
 559                                      p_addr, GFP_KERNEL);
 560         if (!*p_buff)
 561                 goto err;
 562 
 563         p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
 564 
 565         return 0;
 566 err:
 567         qed_dmae_info_free(p_hwfn);
 568         return -ENOMEM;
 569 }
 570 
 571 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
 572 {
 573         dma_addr_t p_phys;
 574 
 575         /* Just make sure no one is in the middle */
 576         mutex_lock(&p_hwfn->dmae_info.mutex);
 577 
 578         if (p_hwfn->dmae_info.p_completion_word) {
 579                 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
 580                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
 581                                   sizeof(u32),
 582                                   p_hwfn->dmae_info.p_completion_word, p_phys);
 583                 p_hwfn->dmae_info.p_completion_word = NULL;
 584         }
 585 
 586         if (p_hwfn->dmae_info.p_dmae_cmd) {
 587                 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
 588                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
 589                                   sizeof(struct dmae_cmd),
 590                                   p_hwfn->dmae_info.p_dmae_cmd, p_phys);
 591                 p_hwfn->dmae_info.p_dmae_cmd = NULL;
 592         }
 593 
 594         if (p_hwfn->dmae_info.p_intermediate_buffer) {
 595                 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
 596                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
 597                                   sizeof(u32) * DMAE_MAX_RW_SIZE,
 598                                   p_hwfn->dmae_info.p_intermediate_buffer,
 599                                   p_phys);
 600                 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
 601         }
 602 
 603         mutex_unlock(&p_hwfn->dmae_info.mutex);
 604 }
 605 
 606 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
 607 {
 608         u32 wait_cnt_limit = 10000, wait_cnt = 0;
 609         int qed_status = 0;
 610 
 611         barrier();
 612         while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
 613                 udelay(DMAE_MIN_WAIT_TIME);
 614                 if (++wait_cnt > wait_cnt_limit) {
 615                         DP_NOTICE(p_hwfn->cdev,
 616                                   "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
 617                                   *p_hwfn->dmae_info.p_completion_word,
 618                                  DMAE_COMPLETION_VAL);
 619                         qed_status = -EBUSY;
 620                         break;
 621                 }
 622 
 623                 /* to sync the completion_word since we are not
 624                  * using the volatile keyword for p_completion_word
 625                  */
 626                 barrier();
 627         }
 628 
 629         if (qed_status == 0)
 630                 *p_hwfn->dmae_info.p_completion_word = 0;
 631 
 632         return qed_status;
 633 }
 634 
 635 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
 636                                           struct qed_ptt *p_ptt,
 637                                           u64 src_addr,
 638                                           u64 dst_addr,
 639                                           u8 src_type,
 640                                           u8 dst_type,
 641                                           u32 length_dw)
 642 {
 643         dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
 644         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
 645         int qed_status = 0;
 646 
 647         switch (src_type) {
 648         case QED_DMAE_ADDRESS_GRC:
 649         case QED_DMAE_ADDRESS_HOST_PHYS:
 650                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
 651                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
 652                 break;
 653         /* for virtual source addresses we use the intermediate buffer. */
 654         case QED_DMAE_ADDRESS_HOST_VIRT:
 655                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
 656                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
 657                 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
 658                        (void *)(uintptr_t)src_addr,
 659                        length_dw * sizeof(u32));
 660                 break;
 661         default:
 662                 return -EINVAL;
 663         }
 664 
 665         switch (dst_type) {
 666         case QED_DMAE_ADDRESS_GRC:
 667         case QED_DMAE_ADDRESS_HOST_PHYS:
 668                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
 669                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
 670                 break;
 671         /* for virtual source addresses we use the intermediate buffer. */
 672         case QED_DMAE_ADDRESS_HOST_VIRT:
 673                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
 674                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
 675                 break;
 676         default:
 677                 return -EINVAL;
 678         }
 679 
 680         cmd->length_dw = cpu_to_le16((u16)length_dw);
 681 
 682         qed_dmae_post_command(p_hwfn, p_ptt);
 683 
 684         qed_status = qed_dmae_operation_wait(p_hwfn);
 685 
 686         if (qed_status) {
 687                 DP_NOTICE(p_hwfn,
 688                           "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
 689                           src_addr, dst_addr, length_dw);
 690                 return qed_status;
 691         }
 692 
 693         if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
 694                 memcpy((void *)(uintptr_t)(dst_addr),
 695                        &p_hwfn->dmae_info.p_intermediate_buffer[0],
 696                        length_dw * sizeof(u32));
 697 
 698         return 0;
 699 }
 700 
 701 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
 702                                     struct qed_ptt *p_ptt,
 703                                     u64 src_addr, u64 dst_addr,
 704                                     u8 src_type, u8 dst_type,
 705                                     u32 size_in_dwords,
 706                                     struct qed_dmae_params *p_params)
 707 {
 708         dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
 709         u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
 710         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
 711         u64 src_addr_split = 0, dst_addr_split = 0;
 712         u16 length_limit = DMAE_MAX_RW_SIZE;
 713         int qed_status = 0;
 714         u32 offset = 0;
 715 
 716         if (p_hwfn->cdev->recov_in_prog) {
 717                 DP_VERBOSE(p_hwfn,
 718                            NETIF_MSG_HW,
 719                            "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
 720                            src_addr, src_type, dst_addr, dst_type,
 721                            size_in_dwords);
 722 
 723                 /* Let the flow complete w/o any error handling */
 724                 return 0;
 725         }
 726 
 727         qed_dmae_opcode(p_hwfn,
 728                         (src_type == QED_DMAE_ADDRESS_GRC),
 729                         (dst_type == QED_DMAE_ADDRESS_GRC),
 730                         p_params);
 731 
 732         cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
 733         cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
 734         cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
 735 
 736         /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
 737         cnt_split = size_in_dwords / length_limit;
 738         length_mod = size_in_dwords % length_limit;
 739 
 740         src_addr_split = src_addr;
 741         dst_addr_split = dst_addr;
 742 
 743         for (i = 0; i <= cnt_split; i++) {
 744                 offset = length_limit * i;
 745 
 746                 if (!QED_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) {
 747                         if (src_type == QED_DMAE_ADDRESS_GRC)
 748                                 src_addr_split = src_addr + offset;
 749                         else
 750                                 src_addr_split = src_addr + (offset * 4);
 751                 }
 752 
 753                 if (dst_type == QED_DMAE_ADDRESS_GRC)
 754                         dst_addr_split = dst_addr + offset;
 755                 else
 756                         dst_addr_split = dst_addr + (offset * 4);
 757 
 758                 length_cur = (cnt_split == i) ? length_mod : length_limit;
 759 
 760                 /* might be zero on last iteration */
 761                 if (!length_cur)
 762                         continue;
 763 
 764                 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
 765                                                             p_ptt,
 766                                                             src_addr_split,
 767                                                             dst_addr_split,
 768                                                             src_type,
 769                                                             dst_type,
 770                                                             length_cur);
 771                 if (qed_status) {
 772                         DP_NOTICE(p_hwfn,
 773                                   "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
 774                                   qed_status, src_addr, dst_addr, length_cur);
 775                         break;
 776                 }
 777         }
 778 
 779         return qed_status;
 780 }
 781 
 782 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
 783                       struct qed_ptt *p_ptt,
 784                       u64 source_addr, u32 grc_addr, u32 size_in_dwords,
 785                       struct qed_dmae_params *p_params)
 786 {
 787         u32 grc_addr_in_dw = grc_addr / sizeof(u32);
 788         int rc;
 789 
 790 
 791         mutex_lock(&p_hwfn->dmae_info.mutex);
 792 
 793         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
 794                                       grc_addr_in_dw,
 795                                       QED_DMAE_ADDRESS_HOST_VIRT,
 796                                       QED_DMAE_ADDRESS_GRC,
 797                                       size_in_dwords, p_params);
 798 
 799         mutex_unlock(&p_hwfn->dmae_info.mutex);
 800 
 801         return rc;
 802 }
 803 
 804 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
 805                       struct qed_ptt *p_ptt,
 806                       u32 grc_addr,
 807                       dma_addr_t dest_addr, u32 size_in_dwords,
 808                       struct qed_dmae_params *p_params)
 809 {
 810         u32 grc_addr_in_dw = grc_addr / sizeof(u32);
 811         int rc;
 812 
 813 
 814         mutex_lock(&p_hwfn->dmae_info.mutex);
 815 
 816         rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
 817                                       dest_addr, QED_DMAE_ADDRESS_GRC,
 818                                       QED_DMAE_ADDRESS_HOST_VIRT,
 819                                       size_in_dwords, p_params);
 820 
 821         mutex_unlock(&p_hwfn->dmae_info.mutex);
 822 
 823         return rc;
 824 }
 825 
 826 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
 827                        struct qed_ptt *p_ptt,
 828                        dma_addr_t source_addr,
 829                        dma_addr_t dest_addr,
 830                        u32 size_in_dwords, struct qed_dmae_params *p_params)
 831 {
 832         int rc;
 833 
 834         mutex_lock(&(p_hwfn->dmae_info.mutex));
 835 
 836         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
 837                                       dest_addr,
 838                                       QED_DMAE_ADDRESS_HOST_PHYS,
 839                                       QED_DMAE_ADDRESS_HOST_PHYS,
 840                                       size_in_dwords, p_params);
 841 
 842         mutex_unlock(&(p_hwfn->dmae_info.mutex));
 843 
 844         return rc;
 845 }
 846 
 847 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
 848                     struct qed_ptt *p_ptt, const char *phase)
 849 {
 850         u32 size = PAGE_SIZE / 2, val;
 851         int rc = 0;
 852         dma_addr_t p_phys;
 853         void *p_virt;
 854         u32 *p_tmp;
 855 
 856         p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
 857                                     2 * size, &p_phys, GFP_KERNEL);
 858         if (!p_virt) {
 859                 DP_NOTICE(p_hwfn,
 860                           "DMAE sanity [%s]: failed to allocate memory\n",
 861                           phase);
 862                 return -ENOMEM;
 863         }
 864 
 865         /* Fill the bottom half of the allocated memory with a known pattern */
 866         for (p_tmp = (u32 *)p_virt;
 867              p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
 868                 /* Save the address itself as the value */
 869                 val = (u32)(uintptr_t)p_tmp;
 870                 *p_tmp = val;
 871         }
 872 
 873         /* Zero the top half of the allocated memory */
 874         memset((u8 *)p_virt + size, 0, size);
 875 
 876         DP_VERBOSE(p_hwfn,
 877                    QED_MSG_SP,
 878                    "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
 879                    phase,
 880                    (u64)p_phys,
 881                    p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
 882 
 883         rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
 884                                 size / 4, NULL);
 885         if (rc) {
 886                 DP_NOTICE(p_hwfn,
 887                           "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
 888                           phase, rc);
 889                 goto out;
 890         }
 891 
 892         /* Verify that the top half of the allocated memory has the pattern */
 893         for (p_tmp = (u32 *)((u8 *)p_virt + size);
 894              p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
 895                 /* The corresponding address in the bottom half */
 896                 val = (u32)(uintptr_t)p_tmp - size;
 897 
 898                 if (*p_tmp != val) {
 899                         DP_NOTICE(p_hwfn,
 900                                   "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
 901                                   phase,
 902                                   (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
 903                                   p_tmp, *p_tmp, val);
 904                         rc = -EINVAL;
 905                         goto out;
 906                 }
 907         }
 908 
 909 out:
 910         dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
 911         return rc;
 912 }

/* [<][>][^][v][top][bottom][index][help] */