root/include/linux/mtd/mtd.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. mtd_set_ooblayout
  2. mtd_set_pairing_scheme
  3. mtd_set_of_node
  4. mtd_get_of_node
  5. mtd_oobavail
  6. mtd_max_bad_blocks
  7. mtd_sync
  8. mtd_suspend
  9. mtd_resume
  10. mtd_div_by_eb
  11. mtd_mod_by_eb
  12. mtd_align_erase_req
  13. mtd_div_by_ws
  14. mtd_mod_by_ws
  15. mtd_wunit_per_eb
  16. mtd_offset_to_wunit
  17. mtd_wunit_to_offset
  18. mtd_has_oob
  19. mtd_type_is_nand
  20. mtd_can_have_bb
  21. mtd_is_bitflip
  22. mtd_is_eccerr
  23. mtd_is_bitflip_or_eccerr

   1 /* SPDX-License-Identifier: GPL-2.0-or-later */
   2 /*
   3  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
   4  */
   5 
   6 #ifndef __MTD_MTD_H__
   7 #define __MTD_MTD_H__
   8 
   9 #include <linux/types.h>
  10 #include <linux/uio.h>
  11 #include <linux/notifier.h>
  12 #include <linux/device.h>
  13 #include <linux/of.h>
  14 #include <linux/nvmem-provider.h>
  15 
  16 #include <mtd/mtd-abi.h>
  17 
  18 #include <asm/div64.h>
  19 
  20 #define MTD_FAIL_ADDR_UNKNOWN -1LL
  21 
  22 struct mtd_info;
  23 
  24 /*
  25  * If the erase fails, fail_addr might indicate exactly which block failed. If
  26  * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
  27  * or was not specific to any particular block.
  28  */
  29 struct erase_info {
  30         uint64_t addr;
  31         uint64_t len;
  32         uint64_t fail_addr;
  33 };
  34 
  35 struct mtd_erase_region_info {
  36         uint64_t offset;                /* At which this region starts, from the beginning of the MTD */
  37         uint32_t erasesize;             /* For this region */
  38         uint32_t numblocks;             /* Number of blocks of erasesize in this region */
  39         unsigned long *lockmap;         /* If keeping bitmap of locks */
  40 };
  41 
  42 /**
  43  * struct mtd_oob_ops - oob operation operands
  44  * @mode:       operation mode
  45  *
  46  * @len:        number of data bytes to write/read
  47  *
  48  * @retlen:     number of data bytes written/read
  49  *
  50  * @ooblen:     number of oob bytes to write/read
  51  * @oobretlen:  number of oob bytes written/read
  52  * @ooboffs:    offset of oob data in the oob area (only relevant when
  53  *              mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
  54  * @datbuf:     data buffer - if NULL only oob data are read/written
  55  * @oobbuf:     oob data buffer
  56  *
  57  * Note, some MTD drivers do not allow you to write more than one OOB area at
  58  * one go. If you try to do that on such an MTD device, -EINVAL will be
  59  * returned. If you want to make your implementation portable on all kind of MTD
  60  * devices you should split the write request into several sub-requests when the
  61  * request crosses a page boundary.
  62  */
  63 struct mtd_oob_ops {
  64         unsigned int    mode;
  65         size_t          len;
  66         size_t          retlen;
  67         size_t          ooblen;
  68         size_t          oobretlen;
  69         uint32_t        ooboffs;
  70         uint8_t         *datbuf;
  71         uint8_t         *oobbuf;
  72 };
  73 
  74 #define MTD_MAX_OOBFREE_ENTRIES_LARGE   32
  75 #define MTD_MAX_ECCPOS_ENTRIES_LARGE    640
  76 /**
  77  * struct mtd_oob_region - oob region definition
  78  * @offset: region offset
  79  * @length: region length
  80  *
  81  * This structure describes a region of the OOB area, and is used
  82  * to retrieve ECC or free bytes sections.
  83  * Each section is defined by an offset within the OOB area and a
  84  * length.
  85  */
  86 struct mtd_oob_region {
  87         u32 offset;
  88         u32 length;
  89 };
  90 
  91 /*
  92  * struct mtd_ooblayout_ops - NAND OOB layout operations
  93  * @ecc: function returning an ECC region in the OOB area.
  94  *       Should return -ERANGE if %section exceeds the total number of
  95  *       ECC sections.
  96  * @free: function returning a free region in the OOB area.
  97  *        Should return -ERANGE if %section exceeds the total number of
  98  *        free sections.
  99  */
 100 struct mtd_ooblayout_ops {
 101         int (*ecc)(struct mtd_info *mtd, int section,
 102                    struct mtd_oob_region *oobecc);
 103         int (*free)(struct mtd_info *mtd, int section,
 104                     struct mtd_oob_region *oobfree);
 105 };
 106 
 107 /**
 108  * struct mtd_pairing_info - page pairing information
 109  *
 110  * @pair: pair id
 111  * @group: group id
 112  *
 113  * The term "pair" is used here, even though TLC NANDs might group pages by 3
 114  * (3 bits in a single cell). A pair should regroup all pages that are sharing
 115  * the same cell. Pairs are then indexed in ascending order.
 116  *
 117  * @group is defining the position of a page in a given pair. It can also be
 118  * seen as the bit position in the cell: page attached to bit 0 belongs to
 119  * group 0, page attached to bit 1 belongs to group 1, etc.
 120  *
 121  * Example:
 122  * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
 123  *
 124  *              group-0         group-1
 125  *
 126  *  pair-0      page-0          page-4
 127  *  pair-1      page-1          page-5
 128  *  pair-2      page-2          page-8
 129  *  ...
 130  *  pair-127    page-251        page-255
 131  *
 132  *
 133  * Note that the "group" and "pair" terms were extracted from Samsung and
 134  * Hynix datasheets, and might be referenced under other names in other
 135  * datasheets (Micron is describing this concept as "shared pages").
 136  */
 137 struct mtd_pairing_info {
 138         int pair;
 139         int group;
 140 };
 141 
 142 /**
 143  * struct mtd_pairing_scheme - page pairing scheme description
 144  *
 145  * @ngroups: number of groups. Should be related to the number of bits
 146  *           per cell.
 147  * @get_info: converts a write-unit (page number within an erase block) into
 148  *            mtd_pairing information (pair + group). This function should
 149  *            fill the info parameter based on the wunit index or return
 150  *            -EINVAL if the wunit parameter is invalid.
 151  * @get_wunit: converts pairing information into a write-unit (page) number.
 152  *             This function should return the wunit index pointed by the
 153  *             pairing information described in the info argument. It should
 154  *             return -EINVAL, if there's no wunit corresponding to the
 155  *             passed pairing information.
 156  *
 157  * See mtd_pairing_info documentation for a detailed explanation of the
 158  * pair and group concepts.
 159  *
 160  * The mtd_pairing_scheme structure provides a generic solution to represent
 161  * NAND page pairing scheme. Instead of exposing two big tables to do the
 162  * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
 163  * implement the ->get_info() and ->get_wunit() functions.
 164  *
 165  * MTD users will then be able to query these information by using the
 166  * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
 167  *
 168  * @ngroups is here to help MTD users iterating over all the pages in a
 169  * given pair. This value can be retrieved by MTD users using the
 170  * mtd_pairing_groups() helper.
 171  *
 172  * Examples are given in the mtd_pairing_info_to_wunit() and
 173  * mtd_wunit_to_pairing_info() documentation.
 174  */
 175 struct mtd_pairing_scheme {
 176         int ngroups;
 177         int (*get_info)(struct mtd_info *mtd, int wunit,
 178                         struct mtd_pairing_info *info);
 179         int (*get_wunit)(struct mtd_info *mtd,
 180                          const struct mtd_pairing_info *info);
 181 };
 182 
 183 struct module;  /* only needed for owner field in mtd_info */
 184 
 185 /**
 186  * struct mtd_debug_info - debugging information for an MTD device.
 187  *
 188  * @dfs_dir: direntry object of the MTD device debugfs directory
 189  */
 190 struct mtd_debug_info {
 191         struct dentry *dfs_dir;
 192 
 193         const char *partname;
 194         const char *partid;
 195 };
 196 
 197 struct mtd_info {
 198         u_char type;
 199         uint32_t flags;
 200         uint32_t orig_flags; /* Flags as before running mtd checks */
 201         uint64_t size;   // Total size of the MTD
 202 
 203         /* "Major" erase size for the device. Naïve users may take this
 204          * to be the only erase size available, or may use the more detailed
 205          * information below if they desire
 206          */
 207         uint32_t erasesize;
 208         /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
 209          * though individual bits can be cleared), in case of NAND flash it is
 210          * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
 211          * it is of ECC block size, etc. It is illegal to have writesize = 0.
 212          * Any driver registering a struct mtd_info must ensure a writesize of
 213          * 1 or larger.
 214          */
 215         uint32_t writesize;
 216 
 217         /*
 218          * Size of the write buffer used by the MTD. MTD devices having a write
 219          * buffer can write multiple writesize chunks at a time. E.g. while
 220          * writing 4 * writesize bytes to a device with 2 * writesize bytes
 221          * buffer the MTD driver can (but doesn't have to) do 2 writesize
 222          * operations, but not 4. Currently, all NANDs have writebufsize
 223          * equivalent to writesize (NAND page size). Some NOR flashes do have
 224          * writebufsize greater than writesize.
 225          */
 226         uint32_t writebufsize;
 227 
 228         uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
 229         uint32_t oobavail;  // Available OOB bytes per block
 230 
 231         /*
 232          * If erasesize is a power of 2 then the shift is stored in
 233          * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
 234          */
 235         unsigned int erasesize_shift;
 236         unsigned int writesize_shift;
 237         /* Masks based on erasesize_shift and writesize_shift */
 238         unsigned int erasesize_mask;
 239         unsigned int writesize_mask;
 240 
 241         /*
 242          * read ops return -EUCLEAN if max number of bitflips corrected on any
 243          * one region comprising an ecc step equals or exceeds this value.
 244          * Settable by driver, else defaults to ecc_strength.  User can override
 245          * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
 246          * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
 247          */
 248         unsigned int bitflip_threshold;
 249 
 250         /* Kernel-only stuff starts here. */
 251         const char *name;
 252         int index;
 253 
 254         /* OOB layout description */
 255         const struct mtd_ooblayout_ops *ooblayout;
 256 
 257         /* NAND pairing scheme, only provided for MLC/TLC NANDs */
 258         const struct mtd_pairing_scheme *pairing;
 259 
 260         /* the ecc step size. */
 261         unsigned int ecc_step_size;
 262 
 263         /* max number of correctible bit errors per ecc step */
 264         unsigned int ecc_strength;
 265 
 266         /* Data for variable erase regions. If numeraseregions is zero,
 267          * it means that the whole device has erasesize as given above.
 268          */
 269         int numeraseregions;
 270         struct mtd_erase_region_info *eraseregions;
 271 
 272         /*
 273          * Do not call via these pointers, use corresponding mtd_*()
 274          * wrappers instead.
 275          */
 276         int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
 277         int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
 278                        size_t *retlen, void **virt, resource_size_t *phys);
 279         int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
 280         int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
 281                       size_t *retlen, u_char *buf);
 282         int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
 283                        size_t *retlen, const u_char *buf);
 284         int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
 285                              size_t *retlen, const u_char *buf);
 286         int (*_read_oob) (struct mtd_info *mtd, loff_t from,
 287                           struct mtd_oob_ops *ops);
 288         int (*_write_oob) (struct mtd_info *mtd, loff_t to,
 289                            struct mtd_oob_ops *ops);
 290         int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
 291                                     size_t *retlen, struct otp_info *buf);
 292         int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
 293                                     size_t len, size_t *retlen, u_char *buf);
 294         int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
 295                                     size_t *retlen, struct otp_info *buf);
 296         int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
 297                                     size_t len, size_t *retlen, u_char *buf);
 298         int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
 299                                      size_t len, size_t *retlen, u_char *buf);
 300         int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
 301                                     size_t len);
 302         int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
 303                         unsigned long count, loff_t to, size_t *retlen);
 304         void (*_sync) (struct mtd_info *mtd);
 305         int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
 306         int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
 307         int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
 308         int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
 309         int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
 310         int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
 311         int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
 312         int (*_suspend) (struct mtd_info *mtd);
 313         void (*_resume) (struct mtd_info *mtd);
 314         void (*_reboot) (struct mtd_info *mtd);
 315         /*
 316          * If the driver is something smart, like UBI, it may need to maintain
 317          * its own reference counting. The below functions are only for driver.
 318          */
 319         int (*_get_device) (struct mtd_info *mtd);
 320         void (*_put_device) (struct mtd_info *mtd);
 321 
 322         /*
 323          * flag indicates a panic write, low level drivers can take appropriate
 324          * action if required to ensure writes go through
 325          */
 326         bool oops_panic_write;
 327 
 328         struct notifier_block reboot_notifier;  /* default mode before reboot */
 329 
 330         /* ECC status information */
 331         struct mtd_ecc_stats ecc_stats;
 332         /* Subpage shift (NAND) */
 333         int subpage_sft;
 334 
 335         void *priv;
 336 
 337         struct module *owner;
 338         struct device dev;
 339         int usecount;
 340         struct mtd_debug_info dbg;
 341         struct nvmem_device *nvmem;
 342 };
 343 
 344 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
 345                       struct mtd_oob_region *oobecc);
 346 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
 347                                  int *section,
 348                                  struct mtd_oob_region *oobregion);
 349 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
 350                                const u8 *oobbuf, int start, int nbytes);
 351 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
 352                                u8 *oobbuf, int start, int nbytes);
 353 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
 354                        struct mtd_oob_region *oobfree);
 355 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
 356                                 const u8 *oobbuf, int start, int nbytes);
 357 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
 358                                 u8 *oobbuf, int start, int nbytes);
 359 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
 360 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
 361 
 362 static inline void mtd_set_ooblayout(struct mtd_info *mtd,
 363                                      const struct mtd_ooblayout_ops *ooblayout)
 364 {
 365         mtd->ooblayout = ooblayout;
 366 }
 367 
 368 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
 369                                 const struct mtd_pairing_scheme *pairing)
 370 {
 371         mtd->pairing = pairing;
 372 }
 373 
 374 static inline void mtd_set_of_node(struct mtd_info *mtd,
 375                                    struct device_node *np)
 376 {
 377         mtd->dev.of_node = np;
 378         if (!mtd->name)
 379                 of_property_read_string(np, "label", &mtd->name);
 380 }
 381 
 382 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
 383 {
 384         return dev_of_node(&mtd->dev);
 385 }
 386 
 387 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
 388 {
 389         return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
 390 }
 391 
 392 static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
 393                                      loff_t ofs, size_t len)
 394 {
 395         if (!mtd->_max_bad_blocks)
 396                 return -ENOTSUPP;
 397 
 398         if (mtd->size < (len + ofs) || ofs < 0)
 399                 return -EINVAL;
 400 
 401         return mtd->_max_bad_blocks(mtd, ofs, len);
 402 }
 403 
 404 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 405                               struct mtd_pairing_info *info);
 406 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 407                               const struct mtd_pairing_info *info);
 408 int mtd_pairing_groups(struct mtd_info *mtd);
 409 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
 410 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 411               void **virt, resource_size_t *phys);
 412 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
 413 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
 414                                     unsigned long offset, unsigned long flags);
 415 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 416              u_char *buf);
 417 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 418               const u_char *buf);
 419 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 420                     const u_char *buf);
 421 
 422 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
 423 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
 424 
 425 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
 426                            struct otp_info *buf);
 427 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
 428                            size_t *retlen, u_char *buf);
 429 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
 430                            struct otp_info *buf);
 431 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
 432                            size_t *retlen, u_char *buf);
 433 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
 434                             size_t *retlen, u_char *buf);
 435 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
 436 
 437 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
 438                unsigned long count, loff_t to, size_t *retlen);
 439 
 440 static inline void mtd_sync(struct mtd_info *mtd)
 441 {
 442         if (mtd->_sync)
 443                 mtd->_sync(mtd);
 444 }
 445 
 446 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 447 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 448 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 449 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
 450 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
 451 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
 452 
 453 static inline int mtd_suspend(struct mtd_info *mtd)
 454 {
 455         return mtd->_suspend ? mtd->_suspend(mtd) : 0;
 456 }
 457 
 458 static inline void mtd_resume(struct mtd_info *mtd)
 459 {
 460         if (mtd->_resume)
 461                 mtd->_resume(mtd);
 462 }
 463 
 464 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
 465 {
 466         if (mtd->erasesize_shift)
 467                 return sz >> mtd->erasesize_shift;
 468         do_div(sz, mtd->erasesize);
 469         return sz;
 470 }
 471 
 472 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
 473 {
 474         if (mtd->erasesize_shift)
 475                 return sz & mtd->erasesize_mask;
 476         return do_div(sz, mtd->erasesize);
 477 }
 478 
 479 /**
 480  * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
 481  *                       boundaries.
 482  * @mtd: the MTD device this erase request applies on
 483  * @req: the erase request to adjust
 484  *
 485  * This function will adjust @req->addr and @req->len to align them on
 486  * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
 487  */
 488 static inline void mtd_align_erase_req(struct mtd_info *mtd,
 489                                        struct erase_info *req)
 490 {
 491         u32 mod;
 492 
 493         if (WARN_ON(!mtd->erasesize))
 494                 return;
 495 
 496         mod = mtd_mod_by_eb(req->addr, mtd);
 497         if (mod) {
 498                 req->addr -= mod;
 499                 req->len += mod;
 500         }
 501 
 502         mod = mtd_mod_by_eb(req->addr + req->len, mtd);
 503         if (mod)
 504                 req->len += mtd->erasesize - mod;
 505 }
 506 
 507 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
 508 {
 509         if (mtd->writesize_shift)
 510                 return sz >> mtd->writesize_shift;
 511         do_div(sz, mtd->writesize);
 512         return sz;
 513 }
 514 
 515 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
 516 {
 517         if (mtd->writesize_shift)
 518                 return sz & mtd->writesize_mask;
 519         return do_div(sz, mtd->writesize);
 520 }
 521 
 522 static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
 523 {
 524         return mtd->erasesize / mtd->writesize;
 525 }
 526 
 527 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
 528 {
 529         return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
 530 }
 531 
 532 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
 533                                          int wunit)
 534 {
 535         return base + (wunit * mtd->writesize);
 536 }
 537 
 538 
 539 static inline int mtd_has_oob(const struct mtd_info *mtd)
 540 {
 541         return mtd->_read_oob && mtd->_write_oob;
 542 }
 543 
 544 static inline int mtd_type_is_nand(const struct mtd_info *mtd)
 545 {
 546         return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
 547 }
 548 
 549 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
 550 {
 551         return !!mtd->_block_isbad;
 552 }
 553 
 554         /* Kernel-side ioctl definitions */
 555 
 556 struct mtd_partition;
 557 struct mtd_part_parser_data;
 558 
 559 extern int mtd_device_parse_register(struct mtd_info *mtd,
 560                                      const char * const *part_probe_types,
 561                                      struct mtd_part_parser_data *parser_data,
 562                                      const struct mtd_partition *defparts,
 563                                      int defnr_parts);
 564 #define mtd_device_register(master, parts, nr_parts)    \
 565         mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
 566 extern int mtd_device_unregister(struct mtd_info *master);
 567 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
 568 extern int __get_mtd_device(struct mtd_info *mtd);
 569 extern void __put_mtd_device(struct mtd_info *mtd);
 570 extern struct mtd_info *get_mtd_device_nm(const char *name);
 571 extern void put_mtd_device(struct mtd_info *mtd);
 572 
 573 
 574 struct mtd_notifier {
 575         void (*add)(struct mtd_info *mtd);
 576         void (*remove)(struct mtd_info *mtd);
 577         struct list_head list;
 578 };
 579 
 580 
 581 extern void register_mtd_user (struct mtd_notifier *new);
 582 extern int unregister_mtd_user (struct mtd_notifier *old);
 583 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
 584 
 585 static inline int mtd_is_bitflip(int err) {
 586         return err == -EUCLEAN;
 587 }
 588 
 589 static inline int mtd_is_eccerr(int err) {
 590         return err == -EBADMSG;
 591 }
 592 
 593 static inline int mtd_is_bitflip_or_eccerr(int err) {
 594         return mtd_is_bitflip(err) || mtd_is_eccerr(err);
 595 }
 596 
 597 unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
 598 
 599 #endif /* __MTD_MTD_H__ */

/* [<][>][^][v][top][bottom][index][help] */