root/arch/sparc/mm/srmmu.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. srmmu_pmd_none
  2. srmmu_ctxd_set
  3. msi_set_sync
  4. pmd_set
  5. pmd_populate
  6. pte_offset_kernel
  7. __srmmu_get_nocache
  8. srmmu_get_nocache
  9. srmmu_free_nocache
  10. probe_memory
  11. srmmu_nocache_calcsize
  12. srmmu_nocache_init
  13. get_pgd_fast
  14. pte_alloc_one
  15. pte_free
  16. remove_from_ctx_list
  17. add_to_ctx_list
  18. alloc_context
  19. free_context
  20. sparc_context_init
  21. switch_mm
  22. srmmu_mapioaddr
  23. srmmu_mapiorange
  24. srmmu_unmapioaddr
  25. srmmu_unmapiorange
  26. swift_flush_tlb_page
  27. early_pgtable_allocfail
  28. srmmu_early_allocate_ptable_skeleton
  29. srmmu_allocate_ptable_skeleton
  30. srmmu_probe
  31. srmmu_inherit_prom_mappings
  32. do_large_mapping
  33. map_spbank
  34. map_kernel
  35. srmmu_paging_init
  36. mmu_info
  37. init_new_context
  38. destroy_context
  39. srmmu_is_bad
  40. init_vac_layout
  41. poke_hypersparc
  42. init_hypersparc
  43. poke_swift
  44. init_swift
  45. turbosparc_flush_cache_all
  46. turbosparc_flush_cache_mm
  47. turbosparc_flush_cache_range
  48. turbosparc_flush_cache_page
  49. turbosparc_flush_page_to_ram
  50. turbosparc_flush_sig_insns
  51. turbosparc_flush_page_for_dma
  52. turbosparc_flush_tlb_all
  53. turbosparc_flush_tlb_mm
  54. turbosparc_flush_tlb_range
  55. turbosparc_flush_tlb_page
  56. poke_turbosparc
  57. init_turbosparc
  58. poke_tsunami
  59. init_tsunami
  60. poke_viking
  61. init_viking
  62. get_srmmu_type
  63. smp_flush_page_for_dma
  64. smp_flush_cache_all
  65. smp_flush_tlb_all
  66. smp_flush_cache_mm
  67. smp_flush_tlb_mm
  68. smp_flush_cache_range
  69. smp_flush_tlb_range
  70. smp_flush_cache_page
  71. smp_flush_tlb_page
  72. smp_flush_page_to_ram
  73. smp_flush_sig_insns
  74. load_mmu

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * srmmu.c:  SRMMU specific routines for memory management.
   4  *
   5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10  */
  11 
  12 #include <linux/seq_file.h>
  13 #include <linux/spinlock.h>
  14 #include <linux/memblock.h>
  15 #include <linux/pagemap.h>
  16 #include <linux/vmalloc.h>
  17 #include <linux/kdebug.h>
  18 #include <linux/export.h>
  19 #include <linux/kernel.h>
  20 #include <linux/init.h>
  21 #include <linux/log2.h>
  22 #include <linux/gfp.h>
  23 #include <linux/fs.h>
  24 #include <linux/mm.h>
  25 
  26 #include <asm/mmu_context.h>
  27 #include <asm/cacheflush.h>
  28 #include <asm/tlbflush.h>
  29 #include <asm/io-unit.h>
  30 #include <asm/pgalloc.h>
  31 #include <asm/pgtable.h>
  32 #include <asm/bitext.h>
  33 #include <asm/vaddrs.h>
  34 #include <asm/cache.h>
  35 #include <asm/traps.h>
  36 #include <asm/oplib.h>
  37 #include <asm/mbus.h>
  38 #include <asm/page.h>
  39 #include <asm/asi.h>
  40 #include <asm/smp.h>
  41 #include <asm/io.h>
  42 
  43 /* Now the cpu specific definitions. */
  44 #include <asm/turbosparc.h>
  45 #include <asm/tsunami.h>
  46 #include <asm/viking.h>
  47 #include <asm/swift.h>
  48 #include <asm/leon.h>
  49 #include <asm/mxcc.h>
  50 #include <asm/ross.h>
  51 
  52 #include "mm_32.h"
  53 
  54 enum mbus_module srmmu_modtype;
  55 static unsigned int hwbug_bitmask;
  56 int vac_cache_size;
  57 EXPORT_SYMBOL(vac_cache_size);
  58 int vac_line_size;
  59 
  60 extern struct resource sparc_iomap;
  61 
  62 extern unsigned long last_valid_pfn;
  63 
  64 static pgd_t *srmmu_swapper_pg_dir;
  65 
  66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68 
  69 #ifdef CONFIG_SMP
  70 const struct sparc32_cachetlb_ops *local_ops;
  71 
  72 #define FLUSH_BEGIN(mm)
  73 #define FLUSH_END
  74 #else
  75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76 #define FLUSH_END       }
  77 #endif
  78 
  79 int flush_page_for_dma_global = 1;
  80 
  81 char *srmmu_name;
  82 
  83 ctxd_t *srmmu_ctx_table_phys;
  84 static ctxd_t *srmmu_context_table;
  85 
  86 int viking_mxcc_present;
  87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88 
  89 static int is_hypersparc;
  90 
  91 static int srmmu_cache_pagetables;
  92 
  93 /* these will be initialized in srmmu_nocache_calcsize() */
  94 static unsigned long srmmu_nocache_size;
  95 static unsigned long srmmu_nocache_end;
  96 
  97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99 
 100 /* The context table is a nocache user with the biggest alignment needs. */
 101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102 
 103 void *srmmu_nocache_pool;
 104 static struct bit_map srmmu_nocache_map;
 105 
 106 static inline int srmmu_pmd_none(pmd_t pmd)
 107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
 108 
 109 /* XXX should we hyper_flush_whole_icache here - Anton */
 110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111 {
 112         pte_t pte;
 113 
 114         pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115         set_pte((pte_t *)ctxp, pte);
 116 }
 117 
 118 /*
 119  * Locations of MSI Registers.
 120  */
 121 #define MSI_MBUS_ARBEN  0xe0001008      /* MBus Arbiter Enable register */
 122 
 123 /*
 124  * Useful bits in the MSI Registers.
 125  */
 126 #define MSI_ASYNC_MODE  0x80000000      /* Operate the MSI asynchronously */
 127 
 128 static void msi_set_sync(void)
 129 {
 130         __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131                               "andn %%g3, %2, %%g3\n\t"
 132                               "sta %%g3, [%0] %1\n\t" : :
 133                               "r" (MSI_MBUS_ARBEN),
 134                               "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135 }
 136 
 137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138 {
 139         unsigned long ptp;      /* Physical address, shifted right by 4 */
 140         int i;
 141 
 142         ptp = __nocache_pa(ptep) >> 4;
 143         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 144                 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 145                 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 146         }
 147 }
 148 
 149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 150 {
 151         unsigned long ptp;      /* Physical address, shifted right by 4 */
 152         int i;
 153 
 154         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
 155         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 156                 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 157                 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 158         }
 159 }
 160 
 161 /* Find an entry in the third-level page table.. */
 162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 163 {
 164         void *pte;
 165 
 166         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 167         return (pte_t *) pte +
 168             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 169 }
 170 
 171 /*
 172  * size: bytes to allocate in the nocache area.
 173  * align: bytes, number to align at.
 174  * Returns the virtual address of the allocated area.
 175  */
 176 static void *__srmmu_get_nocache(int size, int align)
 177 {
 178         int offset;
 179         unsigned long addr;
 180 
 181         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 182                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 183                        size);
 184                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
 185         }
 186         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 187                 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 188                        size);
 189                 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 190         }
 191         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 192 
 193         offset = bit_map_string_get(&srmmu_nocache_map,
 194                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 195                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 196         if (offset == -1) {
 197                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 198                        size, (int) srmmu_nocache_size,
 199                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 200                 return NULL;
 201         }
 202 
 203         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 204         return (void *)addr;
 205 }
 206 
 207 void *srmmu_get_nocache(int size, int align)
 208 {
 209         void *tmp;
 210 
 211         tmp = __srmmu_get_nocache(size, align);
 212 
 213         if (tmp)
 214                 memset(tmp, 0, size);
 215 
 216         return tmp;
 217 }
 218 
 219 void srmmu_free_nocache(void *addr, int size)
 220 {
 221         unsigned long vaddr;
 222         int offset;
 223 
 224         vaddr = (unsigned long)addr;
 225         if (vaddr < SRMMU_NOCACHE_VADDR) {
 226                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 227                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 228                 BUG();
 229         }
 230         if (vaddr + size > srmmu_nocache_end) {
 231                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 232                     vaddr, srmmu_nocache_end);
 233                 BUG();
 234         }
 235         if (!is_power_of_2(size)) {
 236                 printk("Size 0x%x is not a power of 2\n", size);
 237                 BUG();
 238         }
 239         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 240                 printk("Size 0x%x is too small\n", size);
 241                 BUG();
 242         }
 243         if (vaddr & (size - 1)) {
 244                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 245                 BUG();
 246         }
 247 
 248         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 249         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 250 
 251         bit_map_clear(&srmmu_nocache_map, offset, size);
 252 }
 253 
 254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 255                                                  unsigned long end);
 256 
 257 /* Return how much physical memory we have.  */
 258 static unsigned long __init probe_memory(void)
 259 {
 260         unsigned long total = 0;
 261         int i;
 262 
 263         for (i = 0; sp_banks[i].num_bytes; i++)
 264                 total += sp_banks[i].num_bytes;
 265 
 266         return total;
 267 }
 268 
 269 /*
 270  * Reserve nocache dynamically proportionally to the amount of
 271  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 272  */
 273 static void __init srmmu_nocache_calcsize(void)
 274 {
 275         unsigned long sysmemavail = probe_memory() / 1024;
 276         int srmmu_nocache_npages;
 277 
 278         srmmu_nocache_npages =
 279                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 280 
 281  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 282         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 283         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 284                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 285 
 286         /* anything above 1280 blows up */
 287         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 288                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 289 
 290         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 291         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 292 }
 293 
 294 static void __init srmmu_nocache_init(void)
 295 {
 296         void *srmmu_nocache_bitmap;
 297         unsigned int bitmap_bits;
 298         pgd_t *pgd;
 299         pmd_t *pmd;
 300         pte_t *pte;
 301         unsigned long paddr, vaddr;
 302         unsigned long pteval;
 303 
 304         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 305 
 306         srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 307                                             SRMMU_NOCACHE_ALIGN_MAX);
 308         if (!srmmu_nocache_pool)
 309                 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 310                       __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 311         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 312 
 313         srmmu_nocache_bitmap =
 314                 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 315                                SMP_CACHE_BYTES);
 316         if (!srmmu_nocache_bitmap)
 317                 panic("%s: Failed to allocate %zu bytes\n", __func__,
 318                       BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 319         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 320 
 321         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 322         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 323         init_mm.pgd = srmmu_swapper_pg_dir;
 324 
 325         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 326 
 327         paddr = __pa((unsigned long)srmmu_nocache_pool);
 328         vaddr = SRMMU_NOCACHE_VADDR;
 329 
 330         while (vaddr < srmmu_nocache_end) {
 331                 pgd = pgd_offset_k(vaddr);
 332                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 333                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 334 
 335                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 336 
 337                 if (srmmu_cache_pagetables)
 338                         pteval |= SRMMU_CACHE;
 339 
 340                 set_pte(__nocache_fix(pte), __pte(pteval));
 341 
 342                 vaddr += PAGE_SIZE;
 343                 paddr += PAGE_SIZE;
 344         }
 345 
 346         flush_cache_all();
 347         flush_tlb_all();
 348 }
 349 
 350 pgd_t *get_pgd_fast(void)
 351 {
 352         pgd_t *pgd = NULL;
 353 
 354         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 355         if (pgd) {
 356                 pgd_t *init = pgd_offset_k(0);
 357                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 358                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 359                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 360         }
 361 
 362         return pgd;
 363 }
 364 
 365 /*
 366  * Hardware needs alignment to 256 only, but we align to whole page size
 367  * to reduce fragmentation problems due to the buddy principle.
 368  * XXX Provide actual fragmentation statistics in /proc.
 369  *
 370  * Alignments up to the page size are the same for physical and virtual
 371  * addresses of the nocache area.
 372  */
 373 pgtable_t pte_alloc_one(struct mm_struct *mm)
 374 {
 375         unsigned long pte;
 376         struct page *page;
 377 
 378         if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
 379                 return NULL;
 380         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 381         if (!pgtable_pte_page_ctor(page)) {
 382                 __free_page(page);
 383                 return NULL;
 384         }
 385         return page;
 386 }
 387 
 388 void pte_free(struct mm_struct *mm, pgtable_t pte)
 389 {
 390         unsigned long p;
 391 
 392         pgtable_pte_page_dtor(pte);
 393         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
 394         if (p == 0)
 395                 BUG();
 396         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
 397 
 398         /* free non cached virtual address*/
 399         srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 400 }
 401 
 402 /* context handling - a dynamically sized pool is used */
 403 #define NO_CONTEXT      -1
 404 
 405 struct ctx_list {
 406         struct ctx_list *next;
 407         struct ctx_list *prev;
 408         unsigned int ctx_number;
 409         struct mm_struct *ctx_mm;
 410 };
 411 
 412 static struct ctx_list *ctx_list_pool;
 413 static struct ctx_list ctx_free;
 414 static struct ctx_list ctx_used;
 415 
 416 /* At boot time we determine the number of contexts */
 417 static int num_contexts;
 418 
 419 static inline void remove_from_ctx_list(struct ctx_list *entry)
 420 {
 421         entry->next->prev = entry->prev;
 422         entry->prev->next = entry->next;
 423 }
 424 
 425 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 426 {
 427         entry->next = head;
 428         (entry->prev = head->prev)->next = entry;
 429         head->prev = entry;
 430 }
 431 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 432 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 433 
 434 
 435 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 436 {
 437         struct ctx_list *ctxp;
 438 
 439         ctxp = ctx_free.next;
 440         if (ctxp != &ctx_free) {
 441                 remove_from_ctx_list(ctxp);
 442                 add_to_used_ctxlist(ctxp);
 443                 mm->context = ctxp->ctx_number;
 444                 ctxp->ctx_mm = mm;
 445                 return;
 446         }
 447         ctxp = ctx_used.next;
 448         if (ctxp->ctx_mm == old_mm)
 449                 ctxp = ctxp->next;
 450         if (ctxp == &ctx_used)
 451                 panic("out of mmu contexts");
 452         flush_cache_mm(ctxp->ctx_mm);
 453         flush_tlb_mm(ctxp->ctx_mm);
 454         remove_from_ctx_list(ctxp);
 455         add_to_used_ctxlist(ctxp);
 456         ctxp->ctx_mm->context = NO_CONTEXT;
 457         ctxp->ctx_mm = mm;
 458         mm->context = ctxp->ctx_number;
 459 }
 460 
 461 static inline void free_context(int context)
 462 {
 463         struct ctx_list *ctx_old;
 464 
 465         ctx_old = ctx_list_pool + context;
 466         remove_from_ctx_list(ctx_old);
 467         add_to_free_ctxlist(ctx_old);
 468 }
 469 
 470 static void __init sparc_context_init(int numctx)
 471 {
 472         int ctx;
 473         unsigned long size;
 474 
 475         size = numctx * sizeof(struct ctx_list);
 476         ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 477         if (!ctx_list_pool)
 478                 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 479 
 480         for (ctx = 0; ctx < numctx; ctx++) {
 481                 struct ctx_list *clist;
 482 
 483                 clist = (ctx_list_pool + ctx);
 484                 clist->ctx_number = ctx;
 485                 clist->ctx_mm = NULL;
 486         }
 487         ctx_free.next = ctx_free.prev = &ctx_free;
 488         ctx_used.next = ctx_used.prev = &ctx_used;
 489         for (ctx = 0; ctx < numctx; ctx++)
 490                 add_to_free_ctxlist(ctx_list_pool + ctx);
 491 }
 492 
 493 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 494                struct task_struct *tsk)
 495 {
 496         unsigned long flags;
 497 
 498         if (mm->context == NO_CONTEXT) {
 499                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
 500                 alloc_context(old_mm, mm);
 501                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 502                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 503         }
 504 
 505         if (sparc_cpu_model == sparc_leon)
 506                 leon_switch_mm();
 507 
 508         if (is_hypersparc)
 509                 hyper_flush_whole_icache();
 510 
 511         srmmu_set_context(mm->context);
 512 }
 513 
 514 /* Low level IO area allocation on the SRMMU. */
 515 static inline void srmmu_mapioaddr(unsigned long physaddr,
 516                                    unsigned long virt_addr, int bus_type)
 517 {
 518         pgd_t *pgdp;
 519         pmd_t *pmdp;
 520         pte_t *ptep;
 521         unsigned long tmp;
 522 
 523         physaddr &= PAGE_MASK;
 524         pgdp = pgd_offset_k(virt_addr);
 525         pmdp = pmd_offset(pgdp, virt_addr);
 526         ptep = pte_offset_kernel(pmdp, virt_addr);
 527         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 528 
 529         /* I need to test whether this is consistent over all
 530          * sun4m's.  The bus_type represents the upper 4 bits of
 531          * 36-bit physical address on the I/O space lines...
 532          */
 533         tmp |= (bus_type << 28);
 534         tmp |= SRMMU_PRIV;
 535         __flush_page_to_ram(virt_addr);
 536         set_pte(ptep, __pte(tmp));
 537 }
 538 
 539 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 540                       unsigned long xva, unsigned int len)
 541 {
 542         while (len != 0) {
 543                 len -= PAGE_SIZE;
 544                 srmmu_mapioaddr(xpa, xva, bus);
 545                 xva += PAGE_SIZE;
 546                 xpa += PAGE_SIZE;
 547         }
 548         flush_tlb_all();
 549 }
 550 
 551 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 552 {
 553         pgd_t *pgdp;
 554         pmd_t *pmdp;
 555         pte_t *ptep;
 556 
 557         pgdp = pgd_offset_k(virt_addr);
 558         pmdp = pmd_offset(pgdp, virt_addr);
 559         ptep = pte_offset_kernel(pmdp, virt_addr);
 560 
 561         /* No need to flush uncacheable page. */
 562         __pte_clear(ptep);
 563 }
 564 
 565 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 566 {
 567         while (len != 0) {
 568                 len -= PAGE_SIZE;
 569                 srmmu_unmapioaddr(virt_addr);
 570                 virt_addr += PAGE_SIZE;
 571         }
 572         flush_tlb_all();
 573 }
 574 
 575 /* tsunami.S */
 576 extern void tsunami_flush_cache_all(void);
 577 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 578 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 579 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 580 extern void tsunami_flush_page_to_ram(unsigned long page);
 581 extern void tsunami_flush_page_for_dma(unsigned long page);
 582 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 583 extern void tsunami_flush_tlb_all(void);
 584 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 585 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 586 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 587 extern void tsunami_setup_blockops(void);
 588 
 589 /* swift.S */
 590 extern void swift_flush_cache_all(void);
 591 extern void swift_flush_cache_mm(struct mm_struct *mm);
 592 extern void swift_flush_cache_range(struct vm_area_struct *vma,
 593                                     unsigned long start, unsigned long end);
 594 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 595 extern void swift_flush_page_to_ram(unsigned long page);
 596 extern void swift_flush_page_for_dma(unsigned long page);
 597 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 598 extern void swift_flush_tlb_all(void);
 599 extern void swift_flush_tlb_mm(struct mm_struct *mm);
 600 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 601                                   unsigned long start, unsigned long end);
 602 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 603 
 604 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
 605 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 606 {
 607         int cctx, ctx1;
 608 
 609         page &= PAGE_MASK;
 610         if ((ctx1 = vma->vm_mm->context) != -1) {
 611                 cctx = srmmu_get_context();
 612 /* Is context # ever different from current context? P3 */
 613                 if (cctx != ctx1) {
 614                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 615                         srmmu_set_context(ctx1);
 616                         swift_flush_page(page);
 617                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 618                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
 619                         srmmu_set_context(cctx);
 620                 } else {
 621                          /* Rm. prot. bits from virt. c. */
 622                         /* swift_flush_cache_all(); */
 623                         /* swift_flush_cache_page(vma, page); */
 624                         swift_flush_page(page);
 625 
 626                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 627                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
 628                         /* same as above: srmmu_flush_tlb_page() */
 629                 }
 630         }
 631 }
 632 #endif
 633 
 634 /*
 635  * The following are all MBUS based SRMMU modules, and therefore could
 636  * be found in a multiprocessor configuration.  On the whole, these
 637  * chips seems to be much more touchy about DVMA and page tables
 638  * with respect to cache coherency.
 639  */
 640 
 641 /* viking.S */
 642 extern void viking_flush_cache_all(void);
 643 extern void viking_flush_cache_mm(struct mm_struct *mm);
 644 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 645                                      unsigned long end);
 646 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 647 extern void viking_flush_page_to_ram(unsigned long page);
 648 extern void viking_flush_page_for_dma(unsigned long page);
 649 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 650 extern void viking_flush_page(unsigned long page);
 651 extern void viking_mxcc_flush_page(unsigned long page);
 652 extern void viking_flush_tlb_all(void);
 653 extern void viking_flush_tlb_mm(struct mm_struct *mm);
 654 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 655                                    unsigned long end);
 656 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 657                                   unsigned long page);
 658 extern void sun4dsmp_flush_tlb_all(void);
 659 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 660 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 661                                    unsigned long end);
 662 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 663                                   unsigned long page);
 664 
 665 /* hypersparc.S */
 666 extern void hypersparc_flush_cache_all(void);
 667 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 668 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 669 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 670 extern void hypersparc_flush_page_to_ram(unsigned long page);
 671 extern void hypersparc_flush_page_for_dma(unsigned long page);
 672 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 673 extern void hypersparc_flush_tlb_all(void);
 674 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 675 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 676 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 677 extern void hypersparc_setup_blockops(void);
 678 
 679 /*
 680  * NOTE: All of this startup code assumes the low 16mb (approx.) of
 681  *       kernel mappings are done with one single contiguous chunk of
 682  *       ram.  On small ram machines (classics mainly) we only get
 683  *       around 8mb mapped for us.
 684  */
 685 
 686 static void __init early_pgtable_allocfail(char *type)
 687 {
 688         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 689         prom_halt();
 690 }
 691 
 692 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 693                                                         unsigned long end)
 694 {
 695         pgd_t *pgdp;
 696         pmd_t *pmdp;
 697         pte_t *ptep;
 698 
 699         while (start < end) {
 700                 pgdp = pgd_offset_k(start);
 701                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 702                         pmdp = __srmmu_get_nocache(
 703                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 704                         if (pmdp == NULL)
 705                                 early_pgtable_allocfail("pmd");
 706                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 707                         pgd_set(__nocache_fix(pgdp), pmdp);
 708                 }
 709                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
 710                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 711                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 712                         if (ptep == NULL)
 713                                 early_pgtable_allocfail("pte");
 714                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
 715                         pmd_set(__nocache_fix(pmdp), ptep);
 716                 }
 717                 if (start > (0xffffffffUL - PMD_SIZE))
 718                         break;
 719                 start = (start + PMD_SIZE) & PMD_MASK;
 720         }
 721 }
 722 
 723 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 724                                                   unsigned long end)
 725 {
 726         pgd_t *pgdp;
 727         pmd_t *pmdp;
 728         pte_t *ptep;
 729 
 730         while (start < end) {
 731                 pgdp = pgd_offset_k(start);
 732                 if (pgd_none(*pgdp)) {
 733                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 734                         if (pmdp == NULL)
 735                                 early_pgtable_allocfail("pmd");
 736                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 737                         pgd_set(pgdp, pmdp);
 738                 }
 739                 pmdp = pmd_offset(pgdp, start);
 740                 if (srmmu_pmd_none(*pmdp)) {
 741                         ptep = __srmmu_get_nocache(PTE_SIZE,
 742                                                              PTE_SIZE);
 743                         if (ptep == NULL)
 744                                 early_pgtable_allocfail("pte");
 745                         memset(ptep, 0, PTE_SIZE);
 746                         pmd_set(pmdp, ptep);
 747                 }
 748                 if (start > (0xffffffffUL - PMD_SIZE))
 749                         break;
 750                 start = (start + PMD_SIZE) & PMD_MASK;
 751         }
 752 }
 753 
 754 /* These flush types are not available on all chips... */
 755 static inline unsigned long srmmu_probe(unsigned long vaddr)
 756 {
 757         unsigned long retval;
 758 
 759         if (sparc_cpu_model != sparc_leon) {
 760 
 761                 vaddr &= PAGE_MASK;
 762                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
 763                                      "=r" (retval) :
 764                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 765         } else {
 766                 retval = leon_swprobe(vaddr, NULL);
 767         }
 768         return retval;
 769 }
 770 
 771 /*
 772  * This is much cleaner than poking around physical address space
 773  * looking at the prom's page table directly which is what most
 774  * other OS's do.  Yuck... this is much better.
 775  */
 776 static void __init srmmu_inherit_prom_mappings(unsigned long start,
 777                                                unsigned long end)
 778 {
 779         unsigned long probed;
 780         unsigned long addr;
 781         pgd_t *pgdp;
 782         pmd_t *pmdp;
 783         pte_t *ptep;
 784         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 785 
 786         while (start <= end) {
 787                 if (start == 0)
 788                         break; /* probably wrap around */
 789                 if (start == 0xfef00000)
 790                         start = KADB_DEBUGGER_BEGVM;
 791                 probed = srmmu_probe(start);
 792                 if (!probed) {
 793                         /* continue probing until we find an entry */
 794                         start += PAGE_SIZE;
 795                         continue;
 796                 }
 797 
 798                 /* A red snapper, see what it really is. */
 799                 what = 0;
 800                 addr = start - PAGE_SIZE;
 801 
 802                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 803                         if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 804                                 what = 1;
 805                 }
 806 
 807                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
 808                         if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 809                                 what = 2;
 810                 }
 811 
 812                 pgdp = pgd_offset_k(start);
 813                 if (what == 2) {
 814                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 815                         start += SRMMU_PGDIR_SIZE;
 816                         continue;
 817                 }
 818                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 819                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 820                                                    SRMMU_PMD_TABLE_SIZE);
 821                         if (pmdp == NULL)
 822                                 early_pgtable_allocfail("pmd");
 823                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 824                         pgd_set(__nocache_fix(pgdp), pmdp);
 825                 }
 826                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
 827                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 828                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 829                         if (ptep == NULL)
 830                                 early_pgtable_allocfail("pte");
 831                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
 832                         pmd_set(__nocache_fix(pmdp), ptep);
 833                 }
 834                 if (what == 1) {
 835                         /* We bend the rule where all 16 PTPs in a pmd_t point
 836                          * inside the same PTE page, and we leak a perfectly
 837                          * good hardware PTE piece. Alternatives seem worse.
 838                          */
 839                         unsigned int x; /* Index of HW PMD in soft cluster */
 840                         unsigned long *val;
 841                         x = (start >> PMD_SHIFT) & 15;
 842                         val = &pmdp->pmdv[x];
 843                         *(unsigned long *)__nocache_fix(val) = probed;
 844                         start += SRMMU_REAL_PMD_SIZE;
 845                         continue;
 846                 }
 847                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 848                 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
 849                 start += PAGE_SIZE;
 850         }
 851 }
 852 
 853 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 854 
 855 /* Create a third-level SRMMU 16MB page mapping. */
 856 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 857 {
 858         pgd_t *pgdp = pgd_offset_k(vaddr);
 859         unsigned long big_pte;
 860 
 861         big_pte = KERNEL_PTE(phys_base >> 4);
 862         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 863 }
 864 
 865 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 866 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 867 {
 868         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 869         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 870         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 871         /* Map "low" memory only */
 872         const unsigned long min_vaddr = PAGE_OFFSET;
 873         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 874 
 875         if (vstart < min_vaddr || vstart >= max_vaddr)
 876                 return vstart;
 877 
 878         if (vend > max_vaddr || vend < min_vaddr)
 879                 vend = max_vaddr;
 880 
 881         while (vstart < vend) {
 882                 do_large_mapping(vstart, pstart);
 883                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 884         }
 885         return vstart;
 886 }
 887 
 888 static void __init map_kernel(void)
 889 {
 890         int i;
 891 
 892         if (phys_base > 0) {
 893                 do_large_mapping(PAGE_OFFSET, phys_base);
 894         }
 895 
 896         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 897                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 898         }
 899 }
 900 
 901 void (*poke_srmmu)(void) = NULL;
 902 
 903 void __init srmmu_paging_init(void)
 904 {
 905         int i;
 906         phandle cpunode;
 907         char node_str[128];
 908         pgd_t *pgd;
 909         pmd_t *pmd;
 910         pte_t *pte;
 911         unsigned long pages_avail;
 912 
 913         init_mm.context = (unsigned long) NO_CONTEXT;
 914         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
 915 
 916         if (sparc_cpu_model == sun4d)
 917                 num_contexts = 65536; /* We know it is Viking */
 918         else {
 919                 /* Find the number of contexts on the srmmu. */
 920                 cpunode = prom_getchild(prom_root_node);
 921                 num_contexts = 0;
 922                 while (cpunode != 0) {
 923                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 924                         if (!strcmp(node_str, "cpu")) {
 925                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 926                                 break;
 927                         }
 928                         cpunode = prom_getsibling(cpunode);
 929                 }
 930         }
 931 
 932         if (!num_contexts) {
 933                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 934                 prom_halt();
 935         }
 936 
 937         pages_avail = 0;
 938         last_valid_pfn = bootmem_init(&pages_avail);
 939 
 940         srmmu_nocache_calcsize();
 941         srmmu_nocache_init();
 942         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 943         map_kernel();
 944 
 945         /* ctx table has to be physically aligned to its size */
 946         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 947         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 948 
 949         for (i = 0; i < num_contexts; i++)
 950                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 951 
 952         flush_cache_all();
 953         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 954 #ifdef CONFIG_SMP
 955         /* Stop from hanging here... */
 956         local_ops->tlb_all();
 957 #else
 958         flush_tlb_all();
 959 #endif
 960         poke_srmmu();
 961 
 962         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 963         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 964 
 965         srmmu_allocate_ptable_skeleton(
 966                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 967         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 968 
 969         pgd = pgd_offset_k(PKMAP_BASE);
 970         pmd = pmd_offset(pgd, PKMAP_BASE);
 971         pte = pte_offset_kernel(pmd, PKMAP_BASE);
 972         pkmap_page_table = pte;
 973 
 974         flush_cache_all();
 975         flush_tlb_all();
 976 
 977         sparc_context_init(num_contexts);
 978 
 979         kmap_init();
 980 
 981         {
 982                 unsigned long zones_size[MAX_NR_ZONES];
 983                 unsigned long zholes_size[MAX_NR_ZONES];
 984                 unsigned long npages;
 985                 int znum;
 986 
 987                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
 988                         zones_size[znum] = zholes_size[znum] = 0;
 989 
 990                 npages = max_low_pfn - pfn_base;
 991 
 992                 zones_size[ZONE_DMA] = npages;
 993                 zholes_size[ZONE_DMA] = npages - pages_avail;
 994 
 995                 npages = highend_pfn - max_low_pfn;
 996                 zones_size[ZONE_HIGHMEM] = npages;
 997                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 998 
 999                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1000         }
1001 }
1002 
1003 void mmu_info(struct seq_file *m)
1004 {
1005         seq_printf(m,
1006                    "MMU type\t: %s\n"
1007                    "contexts\t: %d\n"
1008                    "nocache total\t: %ld\n"
1009                    "nocache used\t: %d\n",
1010                    srmmu_name,
1011                    num_contexts,
1012                    srmmu_nocache_size,
1013                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1014 }
1015 
1016 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1017 {
1018         mm->context = NO_CONTEXT;
1019         return 0;
1020 }
1021 
1022 void destroy_context(struct mm_struct *mm)
1023 {
1024         unsigned long flags;
1025 
1026         if (mm->context != NO_CONTEXT) {
1027                 flush_cache_mm(mm);
1028                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1029                 flush_tlb_mm(mm);
1030                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1031                 free_context(mm->context);
1032                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1033                 mm->context = NO_CONTEXT;
1034         }
1035 }
1036 
1037 /* Init various srmmu chip types. */
1038 static void __init srmmu_is_bad(void)
1039 {
1040         prom_printf("Could not determine SRMMU chip type.\n");
1041         prom_halt();
1042 }
1043 
1044 static void __init init_vac_layout(void)
1045 {
1046         phandle nd;
1047         int cache_lines;
1048         char node_str[128];
1049 #ifdef CONFIG_SMP
1050         int cpu = 0;
1051         unsigned long max_size = 0;
1052         unsigned long min_line_size = 0x10000000;
1053 #endif
1054 
1055         nd = prom_getchild(prom_root_node);
1056         while ((nd = prom_getsibling(nd)) != 0) {
1057                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1058                 if (!strcmp(node_str, "cpu")) {
1059                         vac_line_size = prom_getint(nd, "cache-line-size");
1060                         if (vac_line_size == -1) {
1061                                 prom_printf("can't determine cache-line-size, halting.\n");
1062                                 prom_halt();
1063                         }
1064                         cache_lines = prom_getint(nd, "cache-nlines");
1065                         if (cache_lines == -1) {
1066                                 prom_printf("can't determine cache-nlines, halting.\n");
1067                                 prom_halt();
1068                         }
1069 
1070                         vac_cache_size = cache_lines * vac_line_size;
1071 #ifdef CONFIG_SMP
1072                         if (vac_cache_size > max_size)
1073                                 max_size = vac_cache_size;
1074                         if (vac_line_size < min_line_size)
1075                                 min_line_size = vac_line_size;
1076                         //FIXME: cpus not contiguous!!
1077                         cpu++;
1078                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1079                                 break;
1080 #else
1081                         break;
1082 #endif
1083                 }
1084         }
1085         if (nd == 0) {
1086                 prom_printf("No CPU nodes found, halting.\n");
1087                 prom_halt();
1088         }
1089 #ifdef CONFIG_SMP
1090         vac_cache_size = max_size;
1091         vac_line_size = min_line_size;
1092 #endif
1093         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094                (int)vac_cache_size, (int)vac_line_size);
1095 }
1096 
1097 static void poke_hypersparc(void)
1098 {
1099         volatile unsigned long clear;
1100         unsigned long mreg = srmmu_get_mmureg();
1101 
1102         hyper_flush_unconditional_combined();
1103 
1104         mreg &= ~(HYPERSPARC_CWENABLE);
1105         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1106         mreg |= (HYPERSPARC_CMODE);
1107 
1108         srmmu_set_mmureg(mreg);
1109 
1110 #if 0 /* XXX I think this is bad news... -DaveM */
1111         hyper_clear_all_tags();
1112 #endif
1113 
1114         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1115         hyper_flush_whole_icache();
1116         clear = srmmu_get_faddr();
1117         clear = srmmu_get_fstatus();
1118 }
1119 
1120 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1121         .cache_all      = hypersparc_flush_cache_all,
1122         .cache_mm       = hypersparc_flush_cache_mm,
1123         .cache_page     = hypersparc_flush_cache_page,
1124         .cache_range    = hypersparc_flush_cache_range,
1125         .tlb_all        = hypersparc_flush_tlb_all,
1126         .tlb_mm         = hypersparc_flush_tlb_mm,
1127         .tlb_page       = hypersparc_flush_tlb_page,
1128         .tlb_range      = hypersparc_flush_tlb_range,
1129         .page_to_ram    = hypersparc_flush_page_to_ram,
1130         .sig_insns      = hypersparc_flush_sig_insns,
1131         .page_for_dma   = hypersparc_flush_page_for_dma,
1132 };
1133 
1134 static void __init init_hypersparc(void)
1135 {
1136         srmmu_name = "ROSS HyperSparc";
1137         srmmu_modtype = HyperSparc;
1138 
1139         init_vac_layout();
1140 
1141         is_hypersparc = 1;
1142         sparc32_cachetlb_ops = &hypersparc_ops;
1143 
1144         poke_srmmu = poke_hypersparc;
1145 
1146         hypersparc_setup_blockops();
1147 }
1148 
1149 static void poke_swift(void)
1150 {
1151         unsigned long mreg;
1152 
1153         /* Clear any crap from the cache or else... */
1154         swift_flush_cache_all();
1155 
1156         /* Enable I & D caches */
1157         mreg = srmmu_get_mmureg();
1158         mreg |= (SWIFT_IE | SWIFT_DE);
1159         /*
1160          * The Swift branch folding logic is completely broken.  At
1161          * trap time, if things are just right, if can mistakenly
1162          * think that a trap is coming from kernel mode when in fact
1163          * it is coming from user mode (it mis-executes the branch in
1164          * the trap code).  So you see things like crashme completely
1165          * hosing your machine which is completely unacceptable.  Turn
1166          * this shit off... nice job Fujitsu.
1167          */
1168         mreg &= ~(SWIFT_BF);
1169         srmmu_set_mmureg(mreg);
1170 }
1171 
1172 static const struct sparc32_cachetlb_ops swift_ops = {
1173         .cache_all      = swift_flush_cache_all,
1174         .cache_mm       = swift_flush_cache_mm,
1175         .cache_page     = swift_flush_cache_page,
1176         .cache_range    = swift_flush_cache_range,
1177         .tlb_all        = swift_flush_tlb_all,
1178         .tlb_mm         = swift_flush_tlb_mm,
1179         .tlb_page       = swift_flush_tlb_page,
1180         .tlb_range      = swift_flush_tlb_range,
1181         .page_to_ram    = swift_flush_page_to_ram,
1182         .sig_insns      = swift_flush_sig_insns,
1183         .page_for_dma   = swift_flush_page_for_dma,
1184 };
1185 
1186 #define SWIFT_MASKID_ADDR  0x10003018
1187 static void __init init_swift(void)
1188 {
1189         unsigned long swift_rev;
1190 
1191         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1192                              "srl %0, 0x18, %0\n\t" :
1193                              "=r" (swift_rev) :
1194                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1195         srmmu_name = "Fujitsu Swift";
1196         switch (swift_rev) {
1197         case 0x11:
1198         case 0x20:
1199         case 0x23:
1200         case 0x30:
1201                 srmmu_modtype = Swift_lots_o_bugs;
1202                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1203                 /*
1204                  * Gee george, I wonder why Sun is so hush hush about
1205                  * this hardware bug... really braindamage stuff going
1206                  * on here.  However I think we can find a way to avoid
1207                  * all of the workaround overhead under Linux.  Basically,
1208                  * any page fault can cause kernel pages to become user
1209                  * accessible (the mmu gets confused and clears some of
1210                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1211                  * horrible eh?  But wait, after extensive testing it appears
1212                  * that if you use pgd_t level large kernel pte's (like the
1213                  * 4MB pages on the Pentium) the bug does not get tripped
1214                  * at all.  This avoids almost all of the major overhead.
1215                  * Welcome to a world where your vendor tells you to,
1216                  * "apply this kernel patch" instead of "sorry for the
1217                  * broken hardware, send it back and we'll give you
1218                  * properly functioning parts"
1219                  */
1220                 break;
1221         case 0x25:
1222         case 0x31:
1223                 srmmu_modtype = Swift_bad_c;
1224                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1225                 /*
1226                  * You see Sun allude to this hardware bug but never
1227                  * admit things directly, they'll say things like,
1228                  * "the Swift chip cache problems" or similar.
1229                  */
1230                 break;
1231         default:
1232                 srmmu_modtype = Swift_ok;
1233                 break;
1234         }
1235 
1236         sparc32_cachetlb_ops = &swift_ops;
1237         flush_page_for_dma_global = 0;
1238 
1239         /*
1240          * Are you now convinced that the Swift is one of the
1241          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1242          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1243          * you examined the microcode of the Swift you'd find
1244          * XXX's all over the place.
1245          */
1246         poke_srmmu = poke_swift;
1247 }
1248 
1249 static void turbosparc_flush_cache_all(void)
1250 {
1251         flush_user_windows();
1252         turbosparc_idflash_clear();
1253 }
1254 
1255 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1256 {
1257         FLUSH_BEGIN(mm)
1258         flush_user_windows();
1259         turbosparc_idflash_clear();
1260         FLUSH_END
1261 }
1262 
1263 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1264 {
1265         FLUSH_BEGIN(vma->vm_mm)
1266         flush_user_windows();
1267         turbosparc_idflash_clear();
1268         FLUSH_END
1269 }
1270 
1271 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1272 {
1273         FLUSH_BEGIN(vma->vm_mm)
1274         flush_user_windows();
1275         if (vma->vm_flags & VM_EXEC)
1276                 turbosparc_flush_icache();
1277         turbosparc_flush_dcache();
1278         FLUSH_END
1279 }
1280 
1281 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282 static void turbosparc_flush_page_to_ram(unsigned long page)
1283 {
1284 #ifdef TURBOSPARC_WRITEBACK
1285         volatile unsigned long clear;
1286 
1287         if (srmmu_probe(page))
1288                 turbosparc_flush_page_cache(page);
1289         clear = srmmu_get_fstatus();
1290 #endif
1291 }
1292 
1293 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1294 {
1295 }
1296 
1297 static void turbosparc_flush_page_for_dma(unsigned long page)
1298 {
1299         turbosparc_flush_dcache();
1300 }
1301 
1302 static void turbosparc_flush_tlb_all(void)
1303 {
1304         srmmu_flush_whole_tlb();
1305 }
1306 
1307 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1308 {
1309         FLUSH_BEGIN(mm)
1310         srmmu_flush_whole_tlb();
1311         FLUSH_END
1312 }
1313 
1314 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1315 {
1316         FLUSH_BEGIN(vma->vm_mm)
1317         srmmu_flush_whole_tlb();
1318         FLUSH_END
1319 }
1320 
1321 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1322 {
1323         FLUSH_BEGIN(vma->vm_mm)
1324         srmmu_flush_whole_tlb();
1325         FLUSH_END
1326 }
1327 
1328 
1329 static void poke_turbosparc(void)
1330 {
1331         unsigned long mreg = srmmu_get_mmureg();
1332         unsigned long ccreg;
1333 
1334         /* Clear any crap from the cache or else... */
1335         turbosparc_flush_cache_all();
1336         /* Temporarily disable I & D caches */
1337         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1338         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1339         srmmu_set_mmureg(mreg);
1340 
1341         ccreg = turbosparc_get_ccreg();
1342 
1343 #ifdef TURBOSPARC_WRITEBACK
1344         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1345         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1346                         /* Write-back D-cache, emulate VLSI
1347                          * abortion number three, not number one */
1348 #else
1349         /* For now let's play safe, optimize later */
1350         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1351                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1352         ccreg &= ~(TURBOSPARC_uS2);
1353                         /* Emulate VLSI abortion number three, not number one */
1354 #endif
1355 
1356         switch (ccreg & 7) {
1357         case 0: /* No SE cache */
1358         case 7: /* Test mode */
1359                 break;
1360         default:
1361                 ccreg |= (TURBOSPARC_SCENABLE);
1362         }
1363         turbosparc_set_ccreg(ccreg);
1364 
1365         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1366         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1367         srmmu_set_mmureg(mreg);
1368 }
1369 
1370 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1371         .cache_all      = turbosparc_flush_cache_all,
1372         .cache_mm       = turbosparc_flush_cache_mm,
1373         .cache_page     = turbosparc_flush_cache_page,
1374         .cache_range    = turbosparc_flush_cache_range,
1375         .tlb_all        = turbosparc_flush_tlb_all,
1376         .tlb_mm         = turbosparc_flush_tlb_mm,
1377         .tlb_page       = turbosparc_flush_tlb_page,
1378         .tlb_range      = turbosparc_flush_tlb_range,
1379         .page_to_ram    = turbosparc_flush_page_to_ram,
1380         .sig_insns      = turbosparc_flush_sig_insns,
1381         .page_for_dma   = turbosparc_flush_page_for_dma,
1382 };
1383 
1384 static void __init init_turbosparc(void)
1385 {
1386         srmmu_name = "Fujitsu TurboSparc";
1387         srmmu_modtype = TurboSparc;
1388         sparc32_cachetlb_ops = &turbosparc_ops;
1389         poke_srmmu = poke_turbosparc;
1390 }
1391 
1392 static void poke_tsunami(void)
1393 {
1394         unsigned long mreg = srmmu_get_mmureg();
1395 
1396         tsunami_flush_icache();
1397         tsunami_flush_dcache();
1398         mreg &= ~TSUNAMI_ITD;
1399         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1400         srmmu_set_mmureg(mreg);
1401 }
1402 
1403 static const struct sparc32_cachetlb_ops tsunami_ops = {
1404         .cache_all      = tsunami_flush_cache_all,
1405         .cache_mm       = tsunami_flush_cache_mm,
1406         .cache_page     = tsunami_flush_cache_page,
1407         .cache_range    = tsunami_flush_cache_range,
1408         .tlb_all        = tsunami_flush_tlb_all,
1409         .tlb_mm         = tsunami_flush_tlb_mm,
1410         .tlb_page       = tsunami_flush_tlb_page,
1411         .tlb_range      = tsunami_flush_tlb_range,
1412         .page_to_ram    = tsunami_flush_page_to_ram,
1413         .sig_insns      = tsunami_flush_sig_insns,
1414         .page_for_dma   = tsunami_flush_page_for_dma,
1415 };
1416 
1417 static void __init init_tsunami(void)
1418 {
1419         /*
1420          * Tsunami's pretty sane, Sun and TI actually got it
1421          * somewhat right this time.  Fujitsu should have
1422          * taken some lessons from them.
1423          */
1424 
1425         srmmu_name = "TI Tsunami";
1426         srmmu_modtype = Tsunami;
1427         sparc32_cachetlb_ops = &tsunami_ops;
1428         poke_srmmu = poke_tsunami;
1429 
1430         tsunami_setup_blockops();
1431 }
1432 
1433 static void poke_viking(void)
1434 {
1435         unsigned long mreg = srmmu_get_mmureg();
1436         static int smp_catch;
1437 
1438         if (viking_mxcc_present) {
1439                 unsigned long mxcc_control = mxcc_get_creg();
1440 
1441                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1442                 mxcc_control &= ~(MXCC_CTL_RRC);
1443                 mxcc_set_creg(mxcc_control);
1444 
1445                 /*
1446                  * We don't need memory parity checks.
1447                  * XXX This is a mess, have to dig out later. ecd.
1448                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1449                  */
1450 
1451                 /* We do cache ptables on MXCC. */
1452                 mreg |= VIKING_TCENABLE;
1453         } else {
1454                 unsigned long bpreg;
1455 
1456                 mreg &= ~(VIKING_TCENABLE);
1457                 if (smp_catch++) {
1458                         /* Must disable mixed-cmd mode here for other cpu's. */
1459                         bpreg = viking_get_bpreg();
1460                         bpreg &= ~(VIKING_ACTION_MIX);
1461                         viking_set_bpreg(bpreg);
1462 
1463                         /* Just in case PROM does something funny. */
1464                         msi_set_sync();
1465                 }
1466         }
1467 
1468         mreg |= VIKING_SPENABLE;
1469         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1470         mreg |= VIKING_SBENABLE;
1471         mreg &= ~(VIKING_ACENABLE);
1472         srmmu_set_mmureg(mreg);
1473 }
1474 
1475 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1476         .cache_all      = viking_flush_cache_all,
1477         .cache_mm       = viking_flush_cache_mm,
1478         .cache_page     = viking_flush_cache_page,
1479         .cache_range    = viking_flush_cache_range,
1480         .tlb_all        = viking_flush_tlb_all,
1481         .tlb_mm         = viking_flush_tlb_mm,
1482         .tlb_page       = viking_flush_tlb_page,
1483         .tlb_range      = viking_flush_tlb_range,
1484         .page_to_ram    = viking_flush_page_to_ram,
1485         .sig_insns      = viking_flush_sig_insns,
1486         .page_for_dma   = viking_flush_page_for_dma,
1487 };
1488 
1489 #ifdef CONFIG_SMP
1490 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491  * perform the local TLB flush and all the other cpus will see it.
1492  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493  * that requires that we add some synchronization to these flushes.
1494  *
1495  * The bug is that the fifo which keeps track of all the pending TLB
1496  * broadcasts in the system is an entry or two too small, so if we
1497  * have too many going at once we'll overflow that fifo and lose a TLB
1498  * flush resulting in corruption.
1499  *
1500  * Our workaround is to take a global spinlock around the TLB flushes,
1501  * which guarentees we won't ever have too many pending.  It's a big
1502  * hammer, but a semaphore like system to make sure we only have N TLB
1503  * flushes going at once will require SMP locking anyways so there's
1504  * no real value in trying any harder than this.
1505  */
1506 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1507         .cache_all      = viking_flush_cache_all,
1508         .cache_mm       = viking_flush_cache_mm,
1509         .cache_page     = viking_flush_cache_page,
1510         .cache_range    = viking_flush_cache_range,
1511         .tlb_all        = sun4dsmp_flush_tlb_all,
1512         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1513         .tlb_page       = sun4dsmp_flush_tlb_page,
1514         .tlb_range      = sun4dsmp_flush_tlb_range,
1515         .page_to_ram    = viking_flush_page_to_ram,
1516         .sig_insns      = viking_flush_sig_insns,
1517         .page_for_dma   = viking_flush_page_for_dma,
1518 };
1519 #endif
1520 
1521 static void __init init_viking(void)
1522 {
1523         unsigned long mreg = srmmu_get_mmureg();
1524 
1525         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1526         if (mreg & VIKING_MMODE) {
1527                 srmmu_name = "TI Viking";
1528                 viking_mxcc_present = 0;
1529                 msi_set_sync();
1530 
1531                 /*
1532                  * We need this to make sure old viking takes no hits
1533                  * on it's cache for dma snoops to workaround the
1534                  * "load from non-cacheable memory" interrupt bug.
1535                  * This is only necessary because of the new way in
1536                  * which we use the IOMMU.
1537                  */
1538                 viking_ops.page_for_dma = viking_flush_page;
1539 #ifdef CONFIG_SMP
1540                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1541 #endif
1542                 flush_page_for_dma_global = 0;
1543         } else {
1544                 srmmu_name = "TI Viking/MXCC";
1545                 viking_mxcc_present = 1;
1546                 srmmu_cache_pagetables = 1;
1547         }
1548 
1549         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1550                 &viking_ops;
1551 #ifdef CONFIG_SMP
1552         if (sparc_cpu_model == sun4d)
1553                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1554                         &viking_sun4d_smp_ops;
1555 #endif
1556 
1557         poke_srmmu = poke_viking;
1558 }
1559 
1560 /* Probe for the srmmu chip version. */
1561 static void __init get_srmmu_type(void)
1562 {
1563         unsigned long mreg, psr;
1564         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1565 
1566         srmmu_modtype = SRMMU_INVAL_MOD;
1567         hwbug_bitmask = 0;
1568 
1569         mreg = srmmu_get_mmureg(); psr = get_psr();
1570         mod_typ = (mreg & 0xf0000000) >> 28;
1571         mod_rev = (mreg & 0x0f000000) >> 24;
1572         psr_typ = (psr >> 28) & 0xf;
1573         psr_vers = (psr >> 24) & 0xf;
1574 
1575         /* First, check for sparc-leon. */
1576         if (sparc_cpu_model == sparc_leon) {
1577                 init_leon();
1578                 return;
1579         }
1580 
1581         /* Second, check for HyperSparc or Cypress. */
1582         if (mod_typ == 1) {
1583                 switch (mod_rev) {
1584                 case 7:
1585                         /* UP or MP Hypersparc */
1586                         init_hypersparc();
1587                         break;
1588                 case 0:
1589                 case 2:
1590                 case 10:
1591                 case 11:
1592                 case 12:
1593                 case 13:
1594                 case 14:
1595                 case 15:
1596                 default:
1597                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1598                         prom_halt();
1599                         break;
1600                 }
1601                 return;
1602         }
1603 
1604         /* Now Fujitsu TurboSparc. It might happen that it is
1605          * in Swift emulation mode, so we will check later...
1606          */
1607         if (psr_typ == 0 && psr_vers == 5) {
1608                 init_turbosparc();
1609                 return;
1610         }
1611 
1612         /* Next check for Fujitsu Swift. */
1613         if (psr_typ == 0 && psr_vers == 4) {
1614                 phandle cpunode;
1615                 char node_str[128];
1616 
1617                 /* Look if it is not a TurboSparc emulating Swift... */
1618                 cpunode = prom_getchild(prom_root_node);
1619                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1620                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1621                         if (!strcmp(node_str, "cpu")) {
1622                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1623                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1624                                         init_turbosparc();
1625                                         return;
1626                                 }
1627                                 break;
1628                         }
1629                 }
1630 
1631                 init_swift();
1632                 return;
1633         }
1634 
1635         /* Now the Viking family of srmmu. */
1636         if (psr_typ == 4 &&
1637            ((psr_vers == 0) ||
1638             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1639                 init_viking();
1640                 return;
1641         }
1642 
1643         /* Finally the Tsunami. */
1644         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1645                 init_tsunami();
1646                 return;
1647         }
1648 
1649         /* Oh well */
1650         srmmu_is_bad();
1651 }
1652 
1653 #ifdef CONFIG_SMP
1654 /* Local cross-calls. */
1655 static void smp_flush_page_for_dma(unsigned long page)
1656 {
1657         xc1((smpfunc_t) local_ops->page_for_dma, page);
1658         local_ops->page_for_dma(page);
1659 }
1660 
1661 static void smp_flush_cache_all(void)
1662 {
1663         xc0((smpfunc_t) local_ops->cache_all);
1664         local_ops->cache_all();
1665 }
1666 
1667 static void smp_flush_tlb_all(void)
1668 {
1669         xc0((smpfunc_t) local_ops->tlb_all);
1670         local_ops->tlb_all();
1671 }
1672 
1673 static void smp_flush_cache_mm(struct mm_struct *mm)
1674 {
1675         if (mm->context != NO_CONTEXT) {
1676                 cpumask_t cpu_mask;
1677                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1678                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1679                 if (!cpumask_empty(&cpu_mask))
1680                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1681                 local_ops->cache_mm(mm);
1682         }
1683 }
1684 
1685 static void smp_flush_tlb_mm(struct mm_struct *mm)
1686 {
1687         if (mm->context != NO_CONTEXT) {
1688                 cpumask_t cpu_mask;
1689                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1690                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1691                 if (!cpumask_empty(&cpu_mask)) {
1692                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1693                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1694                                 cpumask_copy(mm_cpumask(mm),
1695                                              cpumask_of(smp_processor_id()));
1696                 }
1697                 local_ops->tlb_mm(mm);
1698         }
1699 }
1700 
1701 static void smp_flush_cache_range(struct vm_area_struct *vma,
1702                                   unsigned long start,
1703                                   unsigned long end)
1704 {
1705         struct mm_struct *mm = vma->vm_mm;
1706 
1707         if (mm->context != NO_CONTEXT) {
1708                 cpumask_t cpu_mask;
1709                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711                 if (!cpumask_empty(&cpu_mask))
1712                         xc3((smpfunc_t) local_ops->cache_range,
1713                             (unsigned long) vma, start, end);
1714                 local_ops->cache_range(vma, start, end);
1715         }
1716 }
1717 
1718 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1719                                 unsigned long start,
1720                                 unsigned long end)
1721 {
1722         struct mm_struct *mm = vma->vm_mm;
1723 
1724         if (mm->context != NO_CONTEXT) {
1725                 cpumask_t cpu_mask;
1726                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1727                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1728                 if (!cpumask_empty(&cpu_mask))
1729                         xc3((smpfunc_t) local_ops->tlb_range,
1730                             (unsigned long) vma, start, end);
1731                 local_ops->tlb_range(vma, start, end);
1732         }
1733 }
1734 
1735 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1736 {
1737         struct mm_struct *mm = vma->vm_mm;
1738 
1739         if (mm->context != NO_CONTEXT) {
1740                 cpumask_t cpu_mask;
1741                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743                 if (!cpumask_empty(&cpu_mask))
1744                         xc2((smpfunc_t) local_ops->cache_page,
1745                             (unsigned long) vma, page);
1746                 local_ops->cache_page(vma, page);
1747         }
1748 }
1749 
1750 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1751 {
1752         struct mm_struct *mm = vma->vm_mm;
1753 
1754         if (mm->context != NO_CONTEXT) {
1755                 cpumask_t cpu_mask;
1756                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758                 if (!cpumask_empty(&cpu_mask))
1759                         xc2((smpfunc_t) local_ops->tlb_page,
1760                             (unsigned long) vma, page);
1761                 local_ops->tlb_page(vma, page);
1762         }
1763 }
1764 
1765 static void smp_flush_page_to_ram(unsigned long page)
1766 {
1767         /* Current theory is that those who call this are the one's
1768          * who have just dirtied their cache with the pages contents
1769          * in kernel space, therefore we only run this on local cpu.
1770          *
1771          * XXX This experiment failed, research further... -DaveM
1772          */
1773 #if 1
1774         xc1((smpfunc_t) local_ops->page_to_ram, page);
1775 #endif
1776         local_ops->page_to_ram(page);
1777 }
1778 
1779 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1780 {
1781         cpumask_t cpu_mask;
1782         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1783         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1784         if (!cpumask_empty(&cpu_mask))
1785                 xc2((smpfunc_t) local_ops->sig_insns,
1786                     (unsigned long) mm, insn_addr);
1787         local_ops->sig_insns(mm, insn_addr);
1788 }
1789 
1790 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1791         .cache_all      = smp_flush_cache_all,
1792         .cache_mm       = smp_flush_cache_mm,
1793         .cache_page     = smp_flush_cache_page,
1794         .cache_range    = smp_flush_cache_range,
1795         .tlb_all        = smp_flush_tlb_all,
1796         .tlb_mm         = smp_flush_tlb_mm,
1797         .tlb_page       = smp_flush_tlb_page,
1798         .tlb_range      = smp_flush_tlb_range,
1799         .page_to_ram    = smp_flush_page_to_ram,
1800         .sig_insns      = smp_flush_sig_insns,
1801         .page_for_dma   = smp_flush_page_for_dma,
1802 };
1803 #endif
1804 
1805 /* Load up routines and constants for sun4m and sun4d mmu */
1806 void __init load_mmu(void)
1807 {
1808         /* Functions */
1809         get_srmmu_type();
1810 
1811 #ifdef CONFIG_SMP
1812         /* El switcheroo... */
1813         local_ops = sparc32_cachetlb_ops;
1814 
1815         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1816                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1817                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1818                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1819                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1820         }
1821 
1822         if (poke_srmmu == poke_viking) {
1823                 /* Avoid unnecessary cross calls. */
1824                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1825                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1826                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1827                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1828 
1829                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1830                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1831                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1832         }
1833 
1834         /* It really is const after this point. */
1835         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1836                 &smp_cachetlb_ops;
1837 #endif
1838 
1839         if (sparc_cpu_model == sun4d)
1840                 ld_mmu_iounit();
1841         else
1842                 ld_mmu_iommu();
1843 #ifdef CONFIG_SMP
1844         if (sparc_cpu_model == sun4d)
1845                 sun4d_init_smp();
1846         else if (sparc_cpu_model == sparc_leon)
1847                 leon_init_smp();
1848         else
1849                 sun4m_init_smp();
1850 #endif
1851 }

/* [<][>][^][v][top][bottom][index][help] */