root/include/xen/interface/xen.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


   1 /******************************************************************************
   2  * xen.h
   3  *
   4  * Guest OS interface to Xen.
   5  *
   6  * Permission is hereby granted, free of charge, to any person obtaining a copy
   7  * of this software and associated documentation files (the "Software"), to
   8  * deal in the Software without restriction, including without limitation the
   9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  10  * sell copies of the Software, and to permit persons to whom the Software is
  11  * furnished to do so, subject to the following conditions:
  12  *
  13  * The above copyright notice and this permission notice shall be included in
  14  * all copies or substantial portions of the Software.
  15  *
  16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22  * DEALINGS IN THE SOFTWARE.
  23  *
  24  * Copyright (c) 2004, K A Fraser
  25  */
  26 
  27 #ifndef __XEN_PUBLIC_XEN_H__
  28 #define __XEN_PUBLIC_XEN_H__
  29 
  30 #include <asm/xen/interface.h>
  31 
  32 /*
  33  * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
  34  */
  35 
  36 /*
  37  * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
  38  *         EAX = return value
  39  *         (argument registers may be clobbered on return)
  40  * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
  41  *         RAX = return value
  42  *         (argument registers not clobbered on return; RCX, R11 are)
  43  */
  44 #define __HYPERVISOR_set_trap_table        0
  45 #define __HYPERVISOR_mmu_update            1
  46 #define __HYPERVISOR_set_gdt               2
  47 #define __HYPERVISOR_stack_switch          3
  48 #define __HYPERVISOR_set_callbacks         4
  49 #define __HYPERVISOR_fpu_taskswitch        5
  50 #define __HYPERVISOR_sched_op_compat       6
  51 #define __HYPERVISOR_platform_op           7
  52 #define __HYPERVISOR_set_debugreg          8
  53 #define __HYPERVISOR_get_debugreg          9
  54 #define __HYPERVISOR_update_descriptor    10
  55 #define __HYPERVISOR_memory_op            12
  56 #define __HYPERVISOR_multicall            13
  57 #define __HYPERVISOR_update_va_mapping    14
  58 #define __HYPERVISOR_set_timer_op         15
  59 #define __HYPERVISOR_event_channel_op_compat 16
  60 #define __HYPERVISOR_xen_version          17
  61 #define __HYPERVISOR_console_io           18
  62 #define __HYPERVISOR_physdev_op_compat    19
  63 #define __HYPERVISOR_grant_table_op       20
  64 #define __HYPERVISOR_vm_assist            21
  65 #define __HYPERVISOR_update_va_mapping_otherdomain 22
  66 #define __HYPERVISOR_iret                 23 /* x86 only */
  67 #define __HYPERVISOR_vcpu_op              24
  68 #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
  69 #define __HYPERVISOR_mmuext_op            26
  70 #define __HYPERVISOR_xsm_op               27
  71 #define __HYPERVISOR_nmi_op               28
  72 #define __HYPERVISOR_sched_op             29
  73 #define __HYPERVISOR_callback_op          30
  74 #define __HYPERVISOR_xenoprof_op          31
  75 #define __HYPERVISOR_event_channel_op     32
  76 #define __HYPERVISOR_physdev_op           33
  77 #define __HYPERVISOR_hvm_op               34
  78 #define __HYPERVISOR_sysctl               35
  79 #define __HYPERVISOR_domctl               36
  80 #define __HYPERVISOR_kexec_op             37
  81 #define __HYPERVISOR_tmem_op              38
  82 #define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
  83 #define __HYPERVISOR_xenpmu_op            40
  84 #define __HYPERVISOR_dm_op                41
  85 
  86 /* Architecture-specific hypercall definitions. */
  87 #define __HYPERVISOR_arch_0               48
  88 #define __HYPERVISOR_arch_1               49
  89 #define __HYPERVISOR_arch_2               50
  90 #define __HYPERVISOR_arch_3               51
  91 #define __HYPERVISOR_arch_4               52
  92 #define __HYPERVISOR_arch_5               53
  93 #define __HYPERVISOR_arch_6               54
  94 #define __HYPERVISOR_arch_7               55
  95 
  96 /*
  97  * VIRTUAL INTERRUPTS
  98  *
  99  * Virtual interrupts that a guest OS may receive from Xen.
 100  * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
 101  * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
 102  * The latter can be allocated only once per guest: they must initially be
 103  * allocated to VCPU0 but can subsequently be re-bound.
 104  */
 105 #define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
 106 #define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
 107 #define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
 108 #define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
 109 #define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
 110 #define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
 111 #define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
 112 #define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
 113 #define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
 114 #define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
 115 #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
 116 #define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
 117 #define VIRQ_XENPMU     13  /* PMC interrupt                                 */
 118 
 119 /* Architecture-specific VIRQ definitions. */
 120 #define VIRQ_ARCH_0    16
 121 #define VIRQ_ARCH_1    17
 122 #define VIRQ_ARCH_2    18
 123 #define VIRQ_ARCH_3    19
 124 #define VIRQ_ARCH_4    20
 125 #define VIRQ_ARCH_5    21
 126 #define VIRQ_ARCH_6    22
 127 #define VIRQ_ARCH_7    23
 128 
 129 #define NR_VIRQS       24
 130 
 131 /*
 132  * enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[],
 133  *                                         unsigned count, unsigned *done_out,
 134  *                                         unsigned foreigndom)
 135  * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
 136  * @count is the length of the above array.
 137  * @pdone is an output parameter indicating number of completed operations
 138  * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
 139  *                    hypercall invocation. Can be DOMID_SELF.
 140  * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
 141  *                     in this hypercall invocation. The value of this field
 142  *                     (x) encodes the PFD as follows:
 143  *                     x == 0 => PFD == DOMID_SELF
 144  *                     x != 0 => PFD == x - 1
 145  *
 146  * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
 147  * -------------
 148  * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
 149  * Updates an entry in a page table belonging to PFD. If updating an L1 table,
 150  * and the new table entry is valid/present, the mapped frame must belong to
 151  * FD. If attempting to map an I/O page then the caller assumes the privilege
 152  * of the FD.
 153  * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
 154  * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
 155  * ptr[:2]  -- Machine address of the page-table entry to modify.
 156  * val      -- Value to write.
 157  *
 158  * There also certain implicit requirements when using this hypercall. The
 159  * pages that make up a pagetable must be mapped read-only in the guest.
 160  * This prevents uncontrolled guest updates to the pagetable. Xen strictly
 161  * enforces this, and will disallow any pagetable update which will end up
 162  * mapping pagetable page RW, and will disallow using any writable page as a
 163  * pagetable. In practice it means that when constructing a page table for a
 164  * process, thread, etc, we MUST be very dilligient in following these rules:
 165  *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
 166  *      the entries.
 167  *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
 168  *      or L2).
 169  *  3). Start filling out the PTE table (L1) with the PTE entries. Once
 170  *      done, make sure to set each of those entries to RO (so writeable bit
 171  *      is unset). Once that has been completed, set the PMD (L2) for this
 172  *      PTE table as RO.
 173  *  4). When completed with all of the PMD (L2) entries, and all of them have
 174  *      been set to RO, make sure to set RO the PUD (L3). Do the same
 175  *      operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
 176  *  5). Now before you can use those pages (so setting the cr3), you MUST also
 177  *      pin them so that the hypervisor can verify the entries. This is done
 178  *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
 179  *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
 180  *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
 181  *      issued.
 182  * For 32-bit guests, the L4 is not used (as there is less pagetables), so
 183  * instead use L3.
 184  * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
 185  * hypercall. Also if so desired the OS can also try to write to the PTE
 186  * and be trapped by the hypervisor (as the PTE entry is RO).
 187  *
 188  * To deallocate the pages, the operations are the reverse of the steps
 189  * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
 190  * pagetable MUST not be in use (meaning that the cr3 is not set to it).
 191  *
 192  * ptr[1:0] == MMU_MACHPHYS_UPDATE:
 193  * Updates an entry in the machine->pseudo-physical mapping table.
 194  * ptr[:2]  -- Machine address within the frame whose mapping to modify.
 195  *             The frame must belong to the FD, if one is specified.
 196  * val      -- Value to write into the mapping entry.
 197  *
 198  * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
 199  * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
 200  * with those in @val.
 201  *
 202  * @val is usually the machine frame number along with some attributes.
 203  * The attributes by default follow the architecture defined bits. Meaning that
 204  * if this is a X86_64 machine and four page table layout is used, the layout
 205  * of val is:
 206  *  - 63 if set means No execute (NX)
 207  *  - 46-13 the machine frame number
 208  *  - 12 available for guest
 209  *  - 11 available for guest
 210  *  - 10 available for guest
 211  *  - 9 available for guest
 212  *  - 8 global
 213  *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
 214  *  - 6 dirty
 215  *  - 5 accessed
 216  *  - 4 page cached disabled
 217  *  - 3 page write through
 218  *  - 2 userspace accessible
 219  *  - 1 writeable
 220  *  - 0 present
 221  *
 222  *  The one bits that does not fit with the default layout is the PAGE_PSE
 223  *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
 224  *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
 225  *  (or 2MB) instead of using the PAGE_PSE bit.
 226  *
 227  *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
 228  *  using it as the Page Attribute Table (PAT) bit - for details on it please
 229  *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
 230  *  pages instead of using MTRRs.
 231  *
 232  *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
 233  *                    PAT4                 PAT0
 234  *  +-----+-----+----+----+----+-----+----+----+
 235  *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
 236  *  +-----+-----+----+----+----+-----+----+----+
 237  *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
 238  *  +-----+-----+----+----+----+-----+----+----+
 239  *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
 240  *  +-----+-----+----+----+----+-----+----+----+
 241  *
 242  *  The lookup of this index table translates to looking up
 243  *  Bit 7, Bit 4, and Bit 3 of val entry:
 244  *
 245  *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
 246  *
 247  *  If all bits are off, then we are using PAT0. If bit 3 turned on,
 248  *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
 249  *
 250  *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
 251  *  that if a guest that follows Linux's PAT setup and would like to set Write
 252  *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
 253  *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
 254  *  caching as:
 255  *
 256  *   WB = none (so PAT0)
 257  *   WC = PWT (bit 3 on)
 258  *   UC = PWT | PCD (bit 3 and 4 are on).
 259  *
 260  * To make it work with Xen, it needs to translate the WC bit as so:
 261  *
 262  *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
 263  *
 264  * And to translate back it would:
 265  *
 266  * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
 267  */
 268 #define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
 269 #define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
 270 #define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
 271 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
 272 
 273 /*
 274  * MMU EXTENDED OPERATIONS
 275  *
 276  * enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[],
 277  *                                        unsigned int count,
 278  *                                        unsigned int *pdone,
 279  *                                        unsigned int foreigndom)
 280  */
 281 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
 282  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
 283  * Where the FD has some effect, it is described below.
 284  *
 285  * cmd: MMUEXT_(UN)PIN_*_TABLE
 286  * mfn: Machine frame number to be (un)pinned as a p.t. page.
 287  *      The frame must belong to the FD, if one is specified.
 288  *
 289  * cmd: MMUEXT_NEW_BASEPTR
 290  * mfn: Machine frame number of new page-table base to install in MMU.
 291  *
 292  * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
 293  * mfn: Machine frame number of new page-table base to install in MMU
 294  *      when in user space.
 295  *
 296  * cmd: MMUEXT_TLB_FLUSH_LOCAL
 297  * No additional arguments. Flushes local TLB.
 298  *
 299  * cmd: MMUEXT_INVLPG_LOCAL
 300  * linear_addr: Linear address to be flushed from the local TLB.
 301  *
 302  * cmd: MMUEXT_TLB_FLUSH_MULTI
 303  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
 304  *
 305  * cmd: MMUEXT_INVLPG_MULTI
 306  * linear_addr: Linear address to be flushed.
 307  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
 308  *
 309  * cmd: MMUEXT_TLB_FLUSH_ALL
 310  * No additional arguments. Flushes all VCPUs' TLBs.
 311  *
 312  * cmd: MMUEXT_INVLPG_ALL
 313  * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
 314  *
 315  * cmd: MMUEXT_FLUSH_CACHE
 316  * No additional arguments. Writes back and flushes cache contents.
 317  *
 318  * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
 319  * No additional arguments. Writes back and flushes cache contents
 320  * on all CPUs in the system.
 321  *
 322  * cmd: MMUEXT_SET_LDT
 323  * linear_addr: Linear address of LDT base (NB. must be page-aligned).
 324  * nr_ents: Number of entries in LDT.
 325  *
 326  * cmd: MMUEXT_CLEAR_PAGE
 327  * mfn: Machine frame number to be cleared.
 328  *
 329  * cmd: MMUEXT_COPY_PAGE
 330  * mfn: Machine frame number of the destination page.
 331  * src_mfn: Machine frame number of the source page.
 332  *
 333  * cmd: MMUEXT_[UN]MARK_SUPER
 334  * mfn: Machine frame number of head of superpage to be [un]marked.
 335  */
 336 #define MMUEXT_PIN_L1_TABLE      0
 337 #define MMUEXT_PIN_L2_TABLE      1
 338 #define MMUEXT_PIN_L3_TABLE      2
 339 #define MMUEXT_PIN_L4_TABLE      3
 340 #define MMUEXT_UNPIN_TABLE       4
 341 #define MMUEXT_NEW_BASEPTR       5
 342 #define MMUEXT_TLB_FLUSH_LOCAL   6
 343 #define MMUEXT_INVLPG_LOCAL      7
 344 #define MMUEXT_TLB_FLUSH_MULTI   8
 345 #define MMUEXT_INVLPG_MULTI      9
 346 #define MMUEXT_TLB_FLUSH_ALL    10
 347 #define MMUEXT_INVLPG_ALL       11
 348 #define MMUEXT_FLUSH_CACHE      12
 349 #define MMUEXT_SET_LDT          13
 350 #define MMUEXT_NEW_USER_BASEPTR 15
 351 #define MMUEXT_CLEAR_PAGE       16
 352 #define MMUEXT_COPY_PAGE        17
 353 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
 354 #define MMUEXT_MARK_SUPER       19
 355 #define MMUEXT_UNMARK_SUPER     20
 356 
 357 #ifndef __ASSEMBLY__
 358 struct mmuext_op {
 359         unsigned int cmd;
 360         union {
 361                 /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
 362                  * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
 363                 xen_pfn_t mfn;
 364                 /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
 365                 unsigned long linear_addr;
 366         } arg1;
 367         union {
 368                 /* SET_LDT */
 369                 unsigned int nr_ents;
 370                 /* TLB_FLUSH_MULTI, INVLPG_MULTI */
 371                 void *vcpumask;
 372                 /* COPY_PAGE */
 373                 xen_pfn_t src_mfn;
 374         } arg2;
 375 };
 376 DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
 377 #endif
 378 
 379 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
 380 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
 381 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
 382 #define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
 383 #define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
 384 #define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
 385 #define UVMF_FLUSHTYPE_MASK     (3UL<<0)
 386 #define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
 387 #define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
 388 #define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
 389 
 390 /*
 391  * Commands to HYPERVISOR_console_io().
 392  */
 393 #define CONSOLEIO_write         0
 394 #define CONSOLEIO_read          1
 395 
 396 /*
 397  * Commands to HYPERVISOR_vm_assist().
 398  */
 399 #define VMASST_CMD_enable                0
 400 #define VMASST_CMD_disable               1
 401 
 402 /* x86/32 guests: simulate full 4GB segment limits. */
 403 #define VMASST_TYPE_4gb_segments         0
 404 
 405 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
 406 #define VMASST_TYPE_4gb_segments_notify  1
 407 
 408 /*
 409  * x86 guests: support writes to bottom-level PTEs.
 410  * NB1. Page-directory entries cannot be written.
 411  * NB2. Guest must continue to remove all writable mappings of PTEs.
 412  */
 413 #define VMASST_TYPE_writable_pagetables  2
 414 
 415 /* x86/PAE guests: support PDPTs above 4GB. */
 416 #define VMASST_TYPE_pae_extended_cr3     3
 417 
 418 /*
 419  * x86 guests: Sane behaviour for virtual iopl
 420  *  - virtual iopl updated from do_iret() hypercalls.
 421  *  - virtual iopl reported in bounce frames.
 422  *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
 423  */
 424 #define VMASST_TYPE_architectural_iopl   4
 425 
 426 /*
 427  * All guests: activate update indicator in vcpu_runstate_info
 428  * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
 429  * vcpu_runstate_info during updates of the runstate information.
 430  */
 431 #define VMASST_TYPE_runstate_update_flag 5
 432 
 433 #define MAX_VMASST_TYPE 5
 434 
 435 #ifndef __ASSEMBLY__
 436 
 437 typedef uint16_t domid_t;
 438 
 439 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
 440 #define DOMID_FIRST_RESERVED (0x7FF0U)
 441 
 442 /* DOMID_SELF is used in certain contexts to refer to oneself. */
 443 #define DOMID_SELF (0x7FF0U)
 444 
 445 /*
 446  * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
 447  * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
 448  * is useful to ensure that no mappings to the OS's own heap are accidentally
 449  * installed. (e.g., in Linux this could cause havoc as reference counts
 450  * aren't adjusted on the I/O-mapping code path).
 451  * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
 452  * be specified by any calling domain.
 453  */
 454 #define DOMID_IO   (0x7FF1U)
 455 
 456 /*
 457  * DOMID_XEN is used to allow privileged domains to map restricted parts of
 458  * Xen's heap space (e.g., the machine_to_phys table).
 459  * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
 460  * the caller is privileged.
 461  */
 462 #define DOMID_XEN  (0x7FF2U)
 463 
 464 /* DOMID_COW is used as the owner of sharable pages */
 465 #define DOMID_COW  (0x7FF3U)
 466 
 467 /* DOMID_INVALID is used to identify pages with unknown owner. */
 468 #define DOMID_INVALID (0x7FF4U)
 469 
 470 /* Idle domain. */
 471 #define DOMID_IDLE (0x7FFFU)
 472 
 473 /*
 474  * Send an array of these to HYPERVISOR_mmu_update().
 475  * NB. The fields are natural pointer/address size for this architecture.
 476  */
 477 struct mmu_update {
 478     uint64_t ptr;       /* Machine address of PTE. */
 479     uint64_t val;       /* New contents of PTE.    */
 480 };
 481 DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
 482 
 483 /*
 484  * Send an array of these to HYPERVISOR_multicall().
 485  * NB. The fields are logically the natural register size for this
 486  * architecture. In cases where xen_ulong_t is larger than this then
 487  * any unused bits in the upper portion must be zero.
 488  */
 489 struct multicall_entry {
 490     xen_ulong_t op;
 491     xen_long_t result;
 492     xen_ulong_t args[6];
 493 };
 494 DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
 495 
 496 struct vcpu_time_info {
 497         /*
 498          * Updates to the following values are preceded and followed
 499          * by an increment of 'version'. The guest can therefore
 500          * detect updates by looking for changes to 'version'. If the
 501          * least-significant bit of the version number is set then an
 502          * update is in progress and the guest must wait to read a
 503          * consistent set of values.  The correct way to interact with
 504          * the version number is similar to Linux's seqlock: see the
 505          * implementations of read_seqbegin/read_seqretry.
 506          */
 507         uint32_t version;
 508         uint32_t pad0;
 509         uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
 510         uint64_t system_time;     /* Time, in nanosecs, since boot.    */
 511         /*
 512          * Current system time:
 513          *   system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
 514          * CPU frequency (Hz):
 515          *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
 516          */
 517         uint32_t tsc_to_system_mul;
 518         int8_t   tsc_shift;
 519         int8_t   pad1[3];
 520 }; /* 32 bytes */
 521 
 522 struct vcpu_info {
 523         /*
 524          * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
 525          * a pending notification for a particular VCPU. It is then cleared
 526          * by the guest OS /before/ checking for pending work, thus avoiding
 527          * a set-and-check race. Note that the mask is only accessed by Xen
 528          * on the CPU that is currently hosting the VCPU. This means that the
 529          * pending and mask flags can be updated by the guest without special
 530          * synchronisation (i.e., no need for the x86 LOCK prefix).
 531          * This may seem suboptimal because if the pending flag is set by
 532          * a different CPU then an IPI may be scheduled even when the mask
 533          * is set. However, note:
 534          *  1. The task of 'interrupt holdoff' is covered by the per-event-
 535          *     channel mask bits. A 'noisy' event that is continually being
 536          *     triggered can be masked at source at this very precise
 537          *     granularity.
 538          *  2. The main purpose of the per-VCPU mask is therefore to restrict
 539          *     reentrant execution: whether for concurrency control, or to
 540          *     prevent unbounded stack usage. Whatever the purpose, we expect
 541          *     that the mask will be asserted only for short periods at a time,
 542          *     and so the likelihood of a 'spurious' IPI is suitably small.
 543          * The mask is read before making an event upcall to the guest: a
 544          * non-zero mask therefore guarantees that the VCPU will not receive
 545          * an upcall activation. The mask is cleared when the VCPU requests
 546          * to block: this avoids wakeup-waiting races.
 547          */
 548         uint8_t evtchn_upcall_pending;
 549         uint8_t evtchn_upcall_mask;
 550         xen_ulong_t evtchn_pending_sel;
 551         struct arch_vcpu_info arch;
 552         struct pvclock_vcpu_time_info time;
 553 }; /* 64 bytes (x86) */
 554 
 555 /*
 556  * Xen/kernel shared data -- pointer provided in start_info.
 557  * NB. We expect that this struct is smaller than a page.
 558  */
 559 struct shared_info {
 560         struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
 561 
 562         /*
 563          * A domain can create "event channels" on which it can send and receive
 564          * asynchronous event notifications. There are three classes of event that
 565          * are delivered by this mechanism:
 566          *  1. Bi-directional inter- and intra-domain connections. Domains must
 567          *     arrange out-of-band to set up a connection (usually by allocating
 568          *     an unbound 'listener' port and avertising that via a storage service
 569          *     such as xenstore).
 570          *  2. Physical interrupts. A domain with suitable hardware-access
 571          *     privileges can bind an event-channel port to a physical interrupt
 572          *     source.
 573          *  3. Virtual interrupts ('events'). A domain can bind an event-channel
 574          *     port to a virtual interrupt source, such as the virtual-timer
 575          *     device or the emergency console.
 576          *
 577          * Event channels are addressed by a "port index". Each channel is
 578          * associated with two bits of information:
 579          *  1. PENDING -- notifies the domain that there is a pending notification
 580          *     to be processed. This bit is cleared by the guest.
 581          *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
 582          *     will cause an asynchronous upcall to be scheduled. This bit is only
 583          *     updated by the guest. It is read-only within Xen. If a channel
 584          *     becomes pending while the channel is masked then the 'edge' is lost
 585          *     (i.e., when the channel is unmasked, the guest must manually handle
 586          *     pending notifications as no upcall will be scheduled by Xen).
 587          *
 588          * To expedite scanning of pending notifications, any 0->1 pending
 589          * transition on an unmasked channel causes a corresponding bit in a
 590          * per-vcpu selector word to be set. Each bit in the selector covers a
 591          * 'C long' in the PENDING bitfield array.
 592          */
 593         xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
 594         xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
 595 
 596         /*
 597          * Wallclock time: updated only by control software. Guests should base
 598          * their gettimeofday() syscall on this wallclock-base value.
 599          */
 600         struct pvclock_wall_clock wc;
 601 
 602         struct arch_shared_info arch;
 603 
 604 };
 605 
 606 /*
 607  * Start-of-day memory layout
 608  *
 609  *  1. The domain is started within contiguous virtual-memory region.
 610  *  2. The contiguous region begins and ends on an aligned 4MB boundary.
 611  *  3. This the order of bootstrap elements in the initial virtual region:
 612  *      a. relocated kernel image
 613  *      b. initial ram disk              [mod_start, mod_len]
 614  *         (may be omitted)
 615  *      c. list of allocated page frames [mfn_list, nr_pages]
 616  *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
 617  *      d. start_info_t structure        [register ESI (x86)]
 618  *         in case of dom0 this page contains the console info, too
 619  *      e. unless dom0: xenstore ring page
 620  *      f. unless dom0: console ring page
 621  *      g. bootstrap page tables         [pt_base, CR3 (x86)]
 622  *      h. bootstrap stack               [register ESP (x86)]
 623  *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
 624  *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
 625  *     layout for the domain. In particular, the bootstrap virtual-memory
 626  *     region is a 1:1 mapping to the first section of the pseudo-physical map.
 627  *  6. All bootstrap elements are mapped read-writable for the guest OS. The
 628  *     only exception is the bootstrap page table, which is mapped read-only.
 629  *  7. There is guaranteed to be at least 512kB padding after the final
 630  *     bootstrap element. If necessary, the bootstrap virtual region is
 631  *     extended by an extra 4MB to ensure this.
 632  */
 633 
 634 #define MAX_GUEST_CMDLINE 1024
 635 struct start_info {
 636         /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
 637         char magic[32];             /* "xen-<version>-<platform>".            */
 638         unsigned long nr_pages;     /* Total pages allocated to this domain.  */
 639         unsigned long shared_info;  /* MACHINE address of shared info struct. */
 640         uint32_t flags;             /* SIF_xxx flags.                         */
 641         xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
 642         uint32_t store_evtchn;      /* Event channel for store communication. */
 643         union {
 644                 struct {
 645                         xen_pfn_t mfn;      /* MACHINE page number of console page.   */
 646                         uint32_t  evtchn;   /* Event channel for console page.        */
 647                 } domU;
 648                 struct {
 649                         uint32_t info_off;  /* Offset of console_info struct.         */
 650                         uint32_t info_size; /* Size of console_info struct from start.*/
 651                 } dom0;
 652         } console;
 653         /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
 654         unsigned long pt_base;      /* VIRTUAL address of page directory.     */
 655         unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
 656         unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
 657         unsigned long mod_start;    /* VIRTUAL address of pre-loaded module.  */
 658         unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
 659         int8_t cmd_line[MAX_GUEST_CMDLINE];
 660         /* The pfn range here covers both page table and p->m table frames.   */
 661         unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
 662         unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
 663 };
 664 
 665 /* These flags are passed in the 'flags' field of start_info_t. */
 666 #define SIF_PRIVILEGED      (1<<0)  /* Is the domain privileged? */
 667 #define SIF_INITDOMAIN      (1<<1)  /* Is this the initial control domain? */
 668 #define SIF_MULTIBOOT_MOD   (1<<2)  /* Is mod_start a multiboot module? */
 669 #define SIF_MOD_START_PFN   (1<<3)  /* Is mod_start a PFN? */
 670 #define SIF_VIRT_P2M_4TOOLS (1<<4)  /* Do Xen tools understand a virt. mapped */
 671                                     /* P->M making the 3 level tree obsolete? */
 672 #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
 673 
 674 /*
 675  * A multiboot module is a package containing modules very similar to a
 676  * multiboot module array. The only differences are:
 677  * - the array of module descriptors is by convention simply at the beginning
 678  *   of the multiboot module,
 679  * - addresses in the module descriptors are based on the beginning of the
 680  *   multiboot module,
 681  * - the number of modules is determined by a termination descriptor that has
 682  *   mod_start == 0.
 683  *
 684  * This permits to both build it statically and reference it in a configuration
 685  * file, and let the PV guest easily rebase the addresses to virtual addresses
 686  * and at the same time count the number of modules.
 687  */
 688 struct xen_multiboot_mod_list {
 689         /* Address of first byte of the module */
 690         uint32_t mod_start;
 691         /* Address of last byte of the module (inclusive) */
 692         uint32_t mod_end;
 693         /* Address of zero-terminated command line */
 694         uint32_t cmdline;
 695         /* Unused, must be zero */
 696         uint32_t pad;
 697 };
 698 /*
 699  * The console structure in start_info.console.dom0
 700  *
 701  * This structure includes a variety of information required to
 702  * have a working VGA/VESA console.
 703  */
 704 struct dom0_vga_console_info {
 705         uint8_t video_type;
 706 #define XEN_VGATYPE_TEXT_MODE_3 0x03
 707 #define XEN_VGATYPE_VESA_LFB    0x23
 708 #define XEN_VGATYPE_EFI_LFB     0x70
 709 
 710         union {
 711                 struct {
 712                         /* Font height, in pixels. */
 713                         uint16_t font_height;
 714                         /* Cursor location (column, row). */
 715                         uint16_t cursor_x, cursor_y;
 716                         /* Number of rows and columns (dimensions in characters). */
 717                         uint16_t rows, columns;
 718                 } text_mode_3;
 719 
 720                 struct {
 721                         /* Width and height, in pixels. */
 722                         uint16_t width, height;
 723                         /* Bytes per scan line. */
 724                         uint16_t bytes_per_line;
 725                         /* Bits per pixel. */
 726                         uint16_t bits_per_pixel;
 727                         /* LFB physical address, and size (in units of 64kB). */
 728                         uint32_t lfb_base;
 729                         uint32_t lfb_size;
 730                         /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
 731                         uint8_t  red_pos, red_size;
 732                         uint8_t  green_pos, green_size;
 733                         uint8_t  blue_pos, blue_size;
 734                         uint8_t  rsvd_pos, rsvd_size;
 735 
 736                         /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
 737                         uint32_t gbl_caps;
 738                         /* Mode attributes (offset 0x0, VESA command 0x4f01). */
 739                         uint16_t mode_attrs;
 740                 } vesa_lfb;
 741         } u;
 742 };
 743 
 744 typedef uint64_t cpumap_t;
 745 
 746 typedef uint8_t xen_domain_handle_t[16];
 747 
 748 /* Turn a plain number into a C unsigned long constant. */
 749 #define __mk_unsigned_long(x) x ## UL
 750 #define mk_unsigned_long(x) __mk_unsigned_long(x)
 751 
 752 #define TMEM_SPEC_VERSION 1
 753 
 754 struct tmem_op {
 755         uint32_t cmd;
 756         int32_t pool_id;
 757         union {
 758                 struct {  /* for cmd == TMEM_NEW_POOL */
 759                         uint64_t uuid[2];
 760                         uint32_t flags;
 761                 } new;
 762                 struct {
 763                         uint64_t oid[3];
 764                         uint32_t index;
 765                         uint32_t tmem_offset;
 766                         uint32_t pfn_offset;
 767                         uint32_t len;
 768                         GUEST_HANDLE(void) gmfn; /* guest machine page frame */
 769                 } gen;
 770         } u;
 771 };
 772 
 773 DEFINE_GUEST_HANDLE(u64);
 774 
 775 #else /* __ASSEMBLY__ */
 776 
 777 /* In assembly code we cannot use C numeric constant suffixes. */
 778 #define mk_unsigned_long(x) x
 779 
 780 #endif /* !__ASSEMBLY__ */
 781 
 782 #endif /* __XEN_PUBLIC_XEN_H__ */

/* [<][>][^][v][top][bottom][index][help] */