root/include/uapi/linux/btrfs_tree.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. chunk_to_extended
  2. extended_to_chunk
  3. btrfs_qgroup_level

   1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2 #ifndef _BTRFS_CTREE_H_
   3 #define _BTRFS_CTREE_H_
   4 
   5 #include <linux/btrfs.h>
   6 #include <linux/types.h>
   7 
   8 /*
   9  * This header contains the structure definitions and constants used
  10  * by file system objects that can be retrieved using
  11  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  12  * is needed to describe a leaf node's key or item contents.
  13  */
  14 
  15 /* holds pointers to all of the tree roots */
  16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
  17 
  18 /* stores information about which extents are in use, and reference counts */
  19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  20 
  21 /*
  22  * chunk tree stores translations from logical -> physical block numbering
  23  * the super block points to the chunk tree
  24  */
  25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  26 
  27 /*
  28  * stores information about which areas of a given device are in use.
  29  * one per device.  The tree of tree roots points to the device tree
  30  */
  31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
  32 
  33 /* one per subvolume, storing files and directories */
  34 #define BTRFS_FS_TREE_OBJECTID 5ULL
  35 
  36 /* directory objectid inside the root tree */
  37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  38 
  39 /* holds checksums of all the data extents */
  40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
  41 
  42 /* holds quota configuration and tracking */
  43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  44 
  45 /* for storing items that use the BTRFS_UUID_KEY* types */
  46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
  47 
  48 /* tracks free space in block groups. */
  49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  50 
  51 /* device stats in the device tree */
  52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
  53 
  54 /* for storing balance parameters in the root tree */
  55 #define BTRFS_BALANCE_OBJECTID -4ULL
  56 
  57 /* orhpan objectid for tracking unlinked/truncated files */
  58 #define BTRFS_ORPHAN_OBJECTID -5ULL
  59 
  60 /* does write ahead logging to speed up fsyncs */
  61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
  62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  63 
  64 /* for space balancing */
  65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
  66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  67 
  68 /*
  69  * extent checksums all have this objectid
  70  * this allows them to share the logging tree
  71  * for fsyncs
  72  */
  73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  74 
  75 /* For storing free space cache */
  76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
  77 
  78 /*
  79  * The inode number assigned to the special inode for storing
  80  * free ino cache
  81  */
  82 #define BTRFS_FREE_INO_OBJECTID -12ULL
  83 
  84 /* dummy objectid represents multiple objectids */
  85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  86 
  87 /*
  88  * All files have objectids in this range.
  89  */
  90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
  91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
  92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
  93 
  94 
  95 /*
  96  * the device items go into the chunk tree.  The key is in the form
  97  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
  98  */
  99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 100 
 101 #define BTRFS_BTREE_INODE_OBJECTID 1
 102 
 103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 104 
 105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
 106 
 107 /*
 108  * inode items have the data typically returned from stat and store other
 109  * info about object characteristics.  There is one for every file and dir in
 110  * the FS
 111  */
 112 #define BTRFS_INODE_ITEM_KEY            1
 113 #define BTRFS_INODE_REF_KEY             12
 114 #define BTRFS_INODE_EXTREF_KEY          13
 115 #define BTRFS_XATTR_ITEM_KEY            24
 116 #define BTRFS_ORPHAN_ITEM_KEY           48
 117 /* reserve 2-15 close to the inode for later flexibility */
 118 
 119 /*
 120  * dir items are the name -> inode pointers in a directory.  There is one
 121  * for every name in a directory.
 122  */
 123 #define BTRFS_DIR_LOG_ITEM_KEY  60
 124 #define BTRFS_DIR_LOG_INDEX_KEY 72
 125 #define BTRFS_DIR_ITEM_KEY      84
 126 #define BTRFS_DIR_INDEX_KEY     96
 127 /*
 128  * extent data is for file data
 129  */
 130 #define BTRFS_EXTENT_DATA_KEY   108
 131 
 132 /*
 133  * extent csums are stored in a separate tree and hold csums for
 134  * an entire extent on disk.
 135  */
 136 #define BTRFS_EXTENT_CSUM_KEY   128
 137 
 138 /*
 139  * root items point to tree roots.  They are typically in the root
 140  * tree used by the super block to find all the other trees
 141  */
 142 #define BTRFS_ROOT_ITEM_KEY     132
 143 
 144 /*
 145  * root backrefs tie subvols and snapshots to the directory entries that
 146  * reference them
 147  */
 148 #define BTRFS_ROOT_BACKREF_KEY  144
 149 
 150 /*
 151  * root refs make a fast index for listing all of the snapshots and
 152  * subvolumes referenced by a given root.  They point directly to the
 153  * directory item in the root that references the subvol
 154  */
 155 #define BTRFS_ROOT_REF_KEY      156
 156 
 157 /*
 158  * extent items are in the extent map tree.  These record which blocks
 159  * are used, and how many references there are to each block
 160  */
 161 #define BTRFS_EXTENT_ITEM_KEY   168
 162 
 163 /*
 164  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 165  * the length, so we save the level in key->offset instead of the length.
 166  */
 167 #define BTRFS_METADATA_ITEM_KEY 169
 168 
 169 #define BTRFS_TREE_BLOCK_REF_KEY        176
 170 
 171 #define BTRFS_EXTENT_DATA_REF_KEY       178
 172 
 173 #define BTRFS_EXTENT_REF_V0_KEY         180
 174 
 175 #define BTRFS_SHARED_BLOCK_REF_KEY      182
 176 
 177 #define BTRFS_SHARED_DATA_REF_KEY       184
 178 
 179 /*
 180  * block groups give us hints into the extent allocation trees.  Which
 181  * blocks are free etc etc
 182  */
 183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 184 
 185 /*
 186  * Every block group is represented in the free space tree by a free space info
 187  * item, which stores some accounting information. It is keyed on
 188  * (block_group_start, FREE_SPACE_INFO, block_group_length).
 189  */
 190 #define BTRFS_FREE_SPACE_INFO_KEY 198
 191 
 192 /*
 193  * A free space extent tracks an extent of space that is free in a block group.
 194  * It is keyed on (start, FREE_SPACE_EXTENT, length).
 195  */
 196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
 197 
 198 /*
 199  * When a block group becomes very fragmented, we convert it to use bitmaps
 200  * instead of extents. A free space bitmap is keyed on
 201  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 202  * (length / sectorsize) bits.
 203  */
 204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
 205 
 206 #define BTRFS_DEV_EXTENT_KEY    204
 207 #define BTRFS_DEV_ITEM_KEY      216
 208 #define BTRFS_CHUNK_ITEM_KEY    228
 209 
 210 /*
 211  * Records the overall state of the qgroups.
 212  * There's only one instance of this key present,
 213  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 214  */
 215 #define BTRFS_QGROUP_STATUS_KEY         240
 216 /*
 217  * Records the currently used space of the qgroup.
 218  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 219  */
 220 #define BTRFS_QGROUP_INFO_KEY           242
 221 /*
 222  * Contains the user configured limits for the qgroup.
 223  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 224  */
 225 #define BTRFS_QGROUP_LIMIT_KEY          244
 226 /*
 227  * Records the child-parent relationship of qgroups. For
 228  * each relation, 2 keys are present:
 229  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 230  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 231  */
 232 #define BTRFS_QGROUP_RELATION_KEY       246
 233 
 234 /*
 235  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 236  */
 237 #define BTRFS_BALANCE_ITEM_KEY  248
 238 
 239 /*
 240  * The key type for tree items that are stored persistently, but do not need to
 241  * exist for extended period of time. The items can exist in any tree.
 242  *
 243  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 244  *
 245  * Existing items:
 246  *
 247  * - balance status item
 248  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 249  */
 250 #define BTRFS_TEMPORARY_ITEM_KEY        248
 251 
 252 /*
 253  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 254  */
 255 #define BTRFS_DEV_STATS_KEY             249
 256 
 257 /*
 258  * The key type for tree items that are stored persistently and usually exist
 259  * for a long period, eg. filesystem lifetime. The item kinds can be status
 260  * information, stats or preference values. The item can exist in any tree.
 261  *
 262  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 263  *
 264  * Existing items:
 265  *
 266  * - device statistics, store IO stats in the device tree, one key for all
 267  *   stats
 268  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 269  */
 270 #define BTRFS_PERSISTENT_ITEM_KEY       249
 271 
 272 /*
 273  * Persistantly stores the device replace state in the device tree.
 274  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 275  */
 276 #define BTRFS_DEV_REPLACE_KEY   250
 277 
 278 /*
 279  * Stores items that allow to quickly map UUIDs to something else.
 280  * These items are part of the filesystem UUID tree.
 281  * The key is built like this:
 282  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 283  */
 284 #if BTRFS_UUID_SIZE != 16
 285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
 286 #endif
 287 #define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 289                                                  * received subvols */
 290 
 291 /*
 292  * string items are for debugging.  They just store a short string of
 293  * data in the FS
 294  */
 295 #define BTRFS_STRING_ITEM_KEY   253
 296 
 297 
 298 
 299 /* 32 bytes in various csum fields */
 300 #define BTRFS_CSUM_SIZE 32
 301 
 302 /* csum types */
 303 enum btrfs_csum_type {
 304         BTRFS_CSUM_TYPE_CRC32   = 0,
 305 };
 306 
 307 /*
 308  * flags definitions for directory entry item type
 309  *
 310  * Used by:
 311  * struct btrfs_dir_item.type
 312  *
 313  * Values 0..7 must match common file type values in fs_types.h.
 314  */
 315 #define BTRFS_FT_UNKNOWN        0
 316 #define BTRFS_FT_REG_FILE       1
 317 #define BTRFS_FT_DIR            2
 318 #define BTRFS_FT_CHRDEV         3
 319 #define BTRFS_FT_BLKDEV         4
 320 #define BTRFS_FT_FIFO           5
 321 #define BTRFS_FT_SOCK           6
 322 #define BTRFS_FT_SYMLINK        7
 323 #define BTRFS_FT_XATTR          8
 324 #define BTRFS_FT_MAX            9
 325 
 326 /*
 327  * The key defines the order in the tree, and so it also defines (optimal)
 328  * block layout.
 329  *
 330  * objectid corresponds to the inode number.
 331  *
 332  * type tells us things about the object, and is a kind of stream selector.
 333  * so for a given inode, keys with type of 1 might refer to the inode data,
 334  * type of 2 may point to file data in the btree and type == 3 may point to
 335  * extents.
 336  *
 337  * offset is the starting byte offset for this key in the stream.
 338  *
 339  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 340  * in cpu native order.  Otherwise they are identical and their sizes
 341  * should be the same (ie both packed)
 342  */
 343 struct btrfs_disk_key {
 344         __le64 objectid;
 345         __u8 type;
 346         __le64 offset;
 347 } __attribute__ ((__packed__));
 348 
 349 struct btrfs_key {
 350         __u64 objectid;
 351         __u8 type;
 352         __u64 offset;
 353 } __attribute__ ((__packed__));
 354 
 355 struct btrfs_dev_item {
 356         /* the internal btrfs device id */
 357         __le64 devid;
 358 
 359         /* size of the device */
 360         __le64 total_bytes;
 361 
 362         /* bytes used */
 363         __le64 bytes_used;
 364 
 365         /* optimal io alignment for this device */
 366         __le32 io_align;
 367 
 368         /* optimal io width for this device */
 369         __le32 io_width;
 370 
 371         /* minimal io size for this device */
 372         __le32 sector_size;
 373 
 374         /* type and info about this device */
 375         __le64 type;
 376 
 377         /* expected generation for this device */
 378         __le64 generation;
 379 
 380         /*
 381          * starting byte of this partition on the device,
 382          * to allow for stripe alignment in the future
 383          */
 384         __le64 start_offset;
 385 
 386         /* grouping information for allocation decisions */
 387         __le32 dev_group;
 388 
 389         /* seek speed 0-100 where 100 is fastest */
 390         __u8 seek_speed;
 391 
 392         /* bandwidth 0-100 where 100 is fastest */
 393         __u8 bandwidth;
 394 
 395         /* btrfs generated uuid for this device */
 396         __u8 uuid[BTRFS_UUID_SIZE];
 397 
 398         /* uuid of FS who owns this device */
 399         __u8 fsid[BTRFS_UUID_SIZE];
 400 } __attribute__ ((__packed__));
 401 
 402 struct btrfs_stripe {
 403         __le64 devid;
 404         __le64 offset;
 405         __u8 dev_uuid[BTRFS_UUID_SIZE];
 406 } __attribute__ ((__packed__));
 407 
 408 struct btrfs_chunk {
 409         /* size of this chunk in bytes */
 410         __le64 length;
 411 
 412         /* objectid of the root referencing this chunk */
 413         __le64 owner;
 414 
 415         __le64 stripe_len;
 416         __le64 type;
 417 
 418         /* optimal io alignment for this chunk */
 419         __le32 io_align;
 420 
 421         /* optimal io width for this chunk */
 422         __le32 io_width;
 423 
 424         /* minimal io size for this chunk */
 425         __le32 sector_size;
 426 
 427         /* 2^16 stripes is quite a lot, a second limit is the size of a single
 428          * item in the btree
 429          */
 430         __le16 num_stripes;
 431 
 432         /* sub stripes only matter for raid10 */
 433         __le16 sub_stripes;
 434         struct btrfs_stripe stripe;
 435         /* additional stripes go here */
 436 } __attribute__ ((__packed__));
 437 
 438 #define BTRFS_FREE_SPACE_EXTENT 1
 439 #define BTRFS_FREE_SPACE_BITMAP 2
 440 
 441 struct btrfs_free_space_entry {
 442         __le64 offset;
 443         __le64 bytes;
 444         __u8 type;
 445 } __attribute__ ((__packed__));
 446 
 447 struct btrfs_free_space_header {
 448         struct btrfs_disk_key location;
 449         __le64 generation;
 450         __le64 num_entries;
 451         __le64 num_bitmaps;
 452 } __attribute__ ((__packed__));
 453 
 454 #define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 455 #define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 456 
 457 /* Super block flags */
 458 /* Errors detected */
 459 #define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 460 
 461 #define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 462 #define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 463 #define BTRFS_SUPER_FLAG_METADUMP_V2    (1ULL << 34)
 464 #define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
 465 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
 466 
 467 
 468 /*
 469  * items in the extent btree are used to record the objectid of the
 470  * owner of the block and the number of references
 471  */
 472 
 473 struct btrfs_extent_item {
 474         __le64 refs;
 475         __le64 generation;
 476         __le64 flags;
 477 } __attribute__ ((__packed__));
 478 
 479 struct btrfs_extent_item_v0 {
 480         __le32 refs;
 481 } __attribute__ ((__packed__));
 482 
 483 
 484 #define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 485 #define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 486 
 487 /* following flags only apply to tree blocks */
 488 
 489 /* use full backrefs for extent pointers in the block */
 490 #define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 491 
 492 /*
 493  * this flag is only used internally by scrub and may be changed at any time
 494  * it is only declared here to avoid collisions
 495  */
 496 #define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 497 
 498 struct btrfs_tree_block_info {
 499         struct btrfs_disk_key key;
 500         __u8 level;
 501 } __attribute__ ((__packed__));
 502 
 503 struct btrfs_extent_data_ref {
 504         __le64 root;
 505         __le64 objectid;
 506         __le64 offset;
 507         __le32 count;
 508 } __attribute__ ((__packed__));
 509 
 510 struct btrfs_shared_data_ref {
 511         __le32 count;
 512 } __attribute__ ((__packed__));
 513 
 514 struct btrfs_extent_inline_ref {
 515         __u8 type;
 516         __le64 offset;
 517 } __attribute__ ((__packed__));
 518 
 519 /* old style backrefs item */
 520 struct btrfs_extent_ref_v0 {
 521         __le64 root;
 522         __le64 generation;
 523         __le64 objectid;
 524         __le32 count;
 525 } __attribute__ ((__packed__));
 526 
 527 
 528 /* dev extents record free space on individual devices.  The owner
 529  * field points back to the chunk allocation mapping tree that allocated
 530  * the extent.  The chunk tree uuid field is a way to double check the owner
 531  */
 532 struct btrfs_dev_extent {
 533         __le64 chunk_tree;
 534         __le64 chunk_objectid;
 535         __le64 chunk_offset;
 536         __le64 length;
 537         __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 538 } __attribute__ ((__packed__));
 539 
 540 struct btrfs_inode_ref {
 541         __le64 index;
 542         __le16 name_len;
 543         /* name goes here */
 544 } __attribute__ ((__packed__));
 545 
 546 struct btrfs_inode_extref {
 547         __le64 parent_objectid;
 548         __le64 index;
 549         __le16 name_len;
 550         __u8   name[0];
 551         /* name goes here */
 552 } __attribute__ ((__packed__));
 553 
 554 struct btrfs_timespec {
 555         __le64 sec;
 556         __le32 nsec;
 557 } __attribute__ ((__packed__));
 558 
 559 struct btrfs_inode_item {
 560         /* nfs style generation number */
 561         __le64 generation;
 562         /* transid that last touched this inode */
 563         __le64 transid;
 564         __le64 size;
 565         __le64 nbytes;
 566         __le64 block_group;
 567         __le32 nlink;
 568         __le32 uid;
 569         __le32 gid;
 570         __le32 mode;
 571         __le64 rdev;
 572         __le64 flags;
 573 
 574         /* modification sequence number for NFS */
 575         __le64 sequence;
 576 
 577         /*
 578          * a little future expansion, for more than this we can
 579          * just grow the inode item and version it
 580          */
 581         __le64 reserved[4];
 582         struct btrfs_timespec atime;
 583         struct btrfs_timespec ctime;
 584         struct btrfs_timespec mtime;
 585         struct btrfs_timespec otime;
 586 } __attribute__ ((__packed__));
 587 
 588 struct btrfs_dir_log_item {
 589         __le64 end;
 590 } __attribute__ ((__packed__));
 591 
 592 struct btrfs_dir_item {
 593         struct btrfs_disk_key location;
 594         __le64 transid;
 595         __le16 data_len;
 596         __le16 name_len;
 597         __u8 type;
 598 } __attribute__ ((__packed__));
 599 
 600 #define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 601 
 602 /*
 603  * Internal in-memory flag that a subvolume has been marked for deletion but
 604  * still visible as a directory
 605  */
 606 #define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 607 
 608 struct btrfs_root_item {
 609         struct btrfs_inode_item inode;
 610         __le64 generation;
 611         __le64 root_dirid;
 612         __le64 bytenr;
 613         __le64 byte_limit;
 614         __le64 bytes_used;
 615         __le64 last_snapshot;
 616         __le64 flags;
 617         __le32 refs;
 618         struct btrfs_disk_key drop_progress;
 619         __u8 drop_level;
 620         __u8 level;
 621 
 622         /*
 623          * The following fields appear after subvol_uuids+subvol_times
 624          * were introduced.
 625          */
 626 
 627         /*
 628          * This generation number is used to test if the new fields are valid
 629          * and up to date while reading the root item. Every time the root item
 630          * is written out, the "generation" field is copied into this field. If
 631          * anyone ever mounted the fs with an older kernel, we will have
 632          * mismatching generation values here and thus must invalidate the
 633          * new fields. See btrfs_update_root and btrfs_find_last_root for
 634          * details.
 635          * the offset of generation_v2 is also used as the start for the memset
 636          * when invalidating the fields.
 637          */
 638         __le64 generation_v2;
 639         __u8 uuid[BTRFS_UUID_SIZE];
 640         __u8 parent_uuid[BTRFS_UUID_SIZE];
 641         __u8 received_uuid[BTRFS_UUID_SIZE];
 642         __le64 ctransid; /* updated when an inode changes */
 643         __le64 otransid; /* trans when created */
 644         __le64 stransid; /* trans when sent. non-zero for received subvol */
 645         __le64 rtransid; /* trans when received. non-zero for received subvol */
 646         struct btrfs_timespec ctime;
 647         struct btrfs_timespec otime;
 648         struct btrfs_timespec stime;
 649         struct btrfs_timespec rtime;
 650         __le64 reserved[8]; /* for future */
 651 } __attribute__ ((__packed__));
 652 
 653 /*
 654  * this is used for both forward and backward root refs
 655  */
 656 struct btrfs_root_ref {
 657         __le64 dirid;
 658         __le64 sequence;
 659         __le16 name_len;
 660 } __attribute__ ((__packed__));
 661 
 662 struct btrfs_disk_balance_args {
 663         /*
 664          * profiles to operate on, single is denoted by
 665          * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 666          */
 667         __le64 profiles;
 668 
 669         /*
 670          * usage filter
 671          * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
 672          * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
 673          */
 674         union {
 675                 __le64 usage;
 676                 struct {
 677                         __le32 usage_min;
 678                         __le32 usage_max;
 679                 };
 680         };
 681 
 682         /* devid filter */
 683         __le64 devid;
 684 
 685         /* devid subset filter [pstart..pend) */
 686         __le64 pstart;
 687         __le64 pend;
 688 
 689         /* btrfs virtual address space subset filter [vstart..vend) */
 690         __le64 vstart;
 691         __le64 vend;
 692 
 693         /*
 694          * profile to convert to, single is denoted by
 695          * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 696          */
 697         __le64 target;
 698 
 699         /* BTRFS_BALANCE_ARGS_* */
 700         __le64 flags;
 701 
 702         /*
 703          * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
 704          * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
 705          * and maximum
 706          */
 707         union {
 708                 __le64 limit;
 709                 struct {
 710                         __le32 limit_min;
 711                         __le32 limit_max;
 712                 };
 713         };
 714 
 715         /*
 716          * Process chunks that cross stripes_min..stripes_max devices,
 717          * BTRFS_BALANCE_ARGS_STRIPES_RANGE
 718          */
 719         __le32 stripes_min;
 720         __le32 stripes_max;
 721 
 722         __le64 unused[6];
 723 } __attribute__ ((__packed__));
 724 
 725 /*
 726  * store balance parameters to disk so that balance can be properly
 727  * resumed after crash or unmount
 728  */
 729 struct btrfs_balance_item {
 730         /* BTRFS_BALANCE_* */
 731         __le64 flags;
 732 
 733         struct btrfs_disk_balance_args data;
 734         struct btrfs_disk_balance_args meta;
 735         struct btrfs_disk_balance_args sys;
 736 
 737         __le64 unused[4];
 738 } __attribute__ ((__packed__));
 739 
 740 #define BTRFS_FILE_EXTENT_INLINE 0
 741 #define BTRFS_FILE_EXTENT_REG 1
 742 #define BTRFS_FILE_EXTENT_PREALLOC 2
 743 #define BTRFS_FILE_EXTENT_TYPES 2
 744 
 745 struct btrfs_file_extent_item {
 746         /*
 747          * transaction id that created this extent
 748          */
 749         __le64 generation;
 750         /*
 751          * max number of bytes to hold this extent in ram
 752          * when we split a compressed extent we can't know how big
 753          * each of the resulting pieces will be.  So, this is
 754          * an upper limit on the size of the extent in ram instead of
 755          * an exact limit.
 756          */
 757         __le64 ram_bytes;
 758 
 759         /*
 760          * 32 bits for the various ways we might encode the data,
 761          * including compression and encryption.  If any of these
 762          * are set to something a given disk format doesn't understand
 763          * it is treated like an incompat flag for reading and writing,
 764          * but not for stat.
 765          */
 766         __u8 compression;
 767         __u8 encryption;
 768         __le16 other_encoding; /* spare for later use */
 769 
 770         /* are we inline data or a real extent? */
 771         __u8 type;
 772 
 773         /*
 774          * disk space consumed by the extent, checksum blocks are included
 775          * in these numbers
 776          *
 777          * At this offset in the structure, the inline extent data start.
 778          */
 779         __le64 disk_bytenr;
 780         __le64 disk_num_bytes;
 781         /*
 782          * the logical offset in file blocks (no csums)
 783          * this extent record is for.  This allows a file extent to point
 784          * into the middle of an existing extent on disk, sharing it
 785          * between two snapshots (useful if some bytes in the middle of the
 786          * extent have changed
 787          */
 788         __le64 offset;
 789         /*
 790          * the logical number of file blocks (no csums included).  This
 791          * always reflects the size uncompressed and without encoding.
 792          */
 793         __le64 num_bytes;
 794 
 795 } __attribute__ ((__packed__));
 796 
 797 struct btrfs_csum_item {
 798         __u8 csum;
 799 } __attribute__ ((__packed__));
 800 
 801 struct btrfs_dev_stats_item {
 802         /*
 803          * grow this item struct at the end for future enhancements and keep
 804          * the existing values unchanged
 805          */
 806         __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 807 } __attribute__ ((__packed__));
 808 
 809 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
 810 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
 811 
 812 struct btrfs_dev_replace_item {
 813         /*
 814          * grow this item struct at the end for future enhancements and keep
 815          * the existing values unchanged
 816          */
 817         __le64 src_devid;
 818         __le64 cursor_left;
 819         __le64 cursor_right;
 820         __le64 cont_reading_from_srcdev_mode;
 821 
 822         __le64 replace_state;
 823         __le64 time_started;
 824         __le64 time_stopped;
 825         __le64 num_write_errors;
 826         __le64 num_uncorrectable_read_errors;
 827 } __attribute__ ((__packed__));
 828 
 829 /* different types of block groups (and chunks) */
 830 #define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 831 #define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 832 #define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 833 #define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 834 #define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 835 #define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 836 #define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 837 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 838 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 839 #define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 840                                          BTRFS_SPACE_INFO_GLOBAL_RSV)
 841 
 842 enum btrfs_raid_types {
 843         BTRFS_RAID_RAID10,
 844         BTRFS_RAID_RAID1,
 845         BTRFS_RAID_DUP,
 846         BTRFS_RAID_RAID0,
 847         BTRFS_RAID_SINGLE,
 848         BTRFS_RAID_RAID5,
 849         BTRFS_RAID_RAID6,
 850         BTRFS_NR_RAID_TYPES
 851 };
 852 
 853 #define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 854                                          BTRFS_BLOCK_GROUP_SYSTEM |  \
 855                                          BTRFS_BLOCK_GROUP_METADATA)
 856 
 857 #define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 858                                          BTRFS_BLOCK_GROUP_RAID1 |   \
 859                                          BTRFS_BLOCK_GROUP_RAID5 |   \
 860                                          BTRFS_BLOCK_GROUP_RAID6 |   \
 861                                          BTRFS_BLOCK_GROUP_DUP |     \
 862                                          BTRFS_BLOCK_GROUP_RAID10)
 863 #define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 864                                          BTRFS_BLOCK_GROUP_RAID6)
 865 
 866 #define BTRFS_BLOCK_GROUP_RAID1_MASK    (BTRFS_BLOCK_GROUP_RAID1)
 867 
 868 /*
 869  * We need a bit for restriper to be able to tell when chunks of type
 870  * SINGLE are available.  This "extended" profile format is used in
 871  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 872  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 873  * to avoid remappings between two formats in future.
 874  */
 875 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 876 
 877 /*
 878  * A fake block group type that is used to communicate global block reserve
 879  * size to userspace via the SPACE_INFO ioctl.
 880  */
 881 #define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 882 
 883 #define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 884                                          BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 885 
 886 static inline __u64 chunk_to_extended(__u64 flags)
 887 {
 888         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
 889                 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 890 
 891         return flags;
 892 }
 893 static inline __u64 extended_to_chunk(__u64 flags)
 894 {
 895         return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 896 }
 897 
 898 struct btrfs_block_group_item {
 899         __le64 used;
 900         __le64 chunk_objectid;
 901         __le64 flags;
 902 } __attribute__ ((__packed__));
 903 
 904 struct btrfs_free_space_info {
 905         __le32 extent_count;
 906         __le32 flags;
 907 } __attribute__ ((__packed__));
 908 
 909 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
 910 
 911 #define BTRFS_QGROUP_LEVEL_SHIFT                48
 912 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
 913 {
 914         return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
 915 }
 916 
 917 /*
 918  * is subvolume quota turned on?
 919  */
 920 #define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
 921 /*
 922  * RESCAN is set during the initialization phase
 923  */
 924 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
 925 /*
 926  * Some qgroup entries are known to be out of date,
 927  * either because the configuration has changed in a way that
 928  * makes a rescan necessary, or because the fs has been mounted
 929  * with a non-qgroup-aware version.
 930  * Turning qouta off and on again makes it inconsistent, too.
 931  */
 932 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
 933 
 934 #define BTRFS_QGROUP_STATUS_VERSION        1
 935 
 936 struct btrfs_qgroup_status_item {
 937         __le64 version;
 938         /*
 939          * the generation is updated during every commit. As older
 940          * versions of btrfs are not aware of qgroups, it will be
 941          * possible to detect inconsistencies by checking the
 942          * generation on mount time
 943          */
 944         __le64 generation;
 945 
 946         /* flag definitions see above */
 947         __le64 flags;
 948 
 949         /*
 950          * only used during scanning to record the progress
 951          * of the scan. It contains a logical address
 952          */
 953         __le64 rescan;
 954 } __attribute__ ((__packed__));
 955 
 956 struct btrfs_qgroup_info_item {
 957         __le64 generation;
 958         __le64 rfer;
 959         __le64 rfer_cmpr;
 960         __le64 excl;
 961         __le64 excl_cmpr;
 962 } __attribute__ ((__packed__));
 963 
 964 struct btrfs_qgroup_limit_item {
 965         /*
 966          * only updated when any of the other values change
 967          */
 968         __le64 flags;
 969         __le64 max_rfer;
 970         __le64 max_excl;
 971         __le64 rsv_rfer;
 972         __le64 rsv_excl;
 973 } __attribute__ ((__packed__));
 974 
 975 #endif /* _BTRFS_CTREE_H_ */

/* [<][>][^][v][top][bottom][index][help] */