root/net/ipv4/ip_input.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ip_call_ra_chain
  2. ip_protocol_deliver_rcu
  3. ip_local_deliver_finish
  4. ip_local_deliver
  5. ip_rcv_options
  6. ip_rcv_finish_core
  7. ip_rcv_finish
  8. ip_rcv_core
  9. ip_rcv
  10. ip_sublist_rcv_finish
  11. ip_list_rcv_finish
  12. ip_sublist_rcv
  13. ip_list_rcv

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4  *              operating system.  INET is implemented using the  BSD Socket
   5  *              interface as the means of communication with the user level.
   6  *
   7  *              The Internet Protocol (IP) module.
   8  *
   9  * Authors:     Ross Biro
  10  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11  *              Donald Becker, <becker@super.org>
  12  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13  *              Richard Underwood
  14  *              Stefan Becker, <stefanb@yello.ping.de>
  15  *              Jorge Cwik, <jorge@laser.satlink.net>
  16  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  17  *
  18  * Fixes:
  19  *              Alan Cox        :       Commented a couple of minor bits of surplus code
  20  *              Alan Cox        :       Undefining IP_FORWARD doesn't include the code
  21  *                                      (just stops a compiler warning).
  22  *              Alan Cox        :       Frames with >=MAX_ROUTE record routes, strict routes or loose routes
  23  *                                      are junked rather than corrupting things.
  24  *              Alan Cox        :       Frames to bad broadcast subnets are dumped
  25  *                                      We used to process them non broadcast and
  26  *                                      boy could that cause havoc.
  27  *              Alan Cox        :       ip_forward sets the free flag on the
  28  *                                      new frame it queues. Still crap because
  29  *                                      it copies the frame but at least it
  30  *                                      doesn't eat memory too.
  31  *              Alan Cox        :       Generic queue code and memory fixes.
  32  *              Fred Van Kempen :       IP fragment support (borrowed from NET2E)
  33  *              Gerhard Koerting:       Forward fragmented frames correctly.
  34  *              Gerhard Koerting:       Fixes to my fix of the above 8-).
  35  *              Gerhard Koerting:       IP interface addressing fix.
  36  *              Linus Torvalds  :       More robustness checks
  37  *              Alan Cox        :       Even more checks: Still not as robust as it ought to be
  38  *              Alan Cox        :       Save IP header pointer for later
  39  *              Alan Cox        :       ip option setting
  40  *              Alan Cox        :       Use ip_tos/ip_ttl settings
  41  *              Alan Cox        :       Fragmentation bogosity removed
  42  *                                      (Thanks to Mark.Bush@prg.ox.ac.uk)
  43  *              Dmitry Gorodchanin :    Send of a raw packet crash fix.
  44  *              Alan Cox        :       Silly ip bug when an overlength
  45  *                                      fragment turns up. Now frees the
  46  *                                      queue.
  47  *              Linus Torvalds/ :       Memory leakage on fragmentation
  48  *              Alan Cox        :       handling.
  49  *              Gerhard Koerting:       Forwarding uses IP priority hints
  50  *              Teemu Rantanen  :       Fragment problems.
  51  *              Alan Cox        :       General cleanup, comments and reformat
  52  *              Alan Cox        :       SNMP statistics
  53  *              Alan Cox        :       BSD address rule semantics. Also see
  54  *                                      UDP as there is a nasty checksum issue
  55  *                                      if you do things the wrong way.
  56  *              Alan Cox        :       Always defrag, moved IP_FORWARD to the config.in file
  57  *              Alan Cox        :       IP options adjust sk->priority.
  58  *              Pedro Roque     :       Fix mtu/length error in ip_forward.
  59  *              Alan Cox        :       Avoid ip_chk_addr when possible.
  60  *      Richard Underwood       :       IP multicasting.
  61  *              Alan Cox        :       Cleaned up multicast handlers.
  62  *              Alan Cox        :       RAW sockets demultiplex in the BSD style.
  63  *              Gunther Mayer   :       Fix the SNMP reporting typo
  64  *              Alan Cox        :       Always in group 224.0.0.1
  65  *      Pauline Middelink       :       Fast ip_checksum update when forwarding
  66  *                                      Masquerading support.
  67  *              Alan Cox        :       Multicast loopback error for 224.0.0.1
  68  *              Alan Cox        :       IP_MULTICAST_LOOP option.
  69  *              Alan Cox        :       Use notifiers.
  70  *              Bjorn Ekwall    :       Removed ip_csum (from slhc.c too)
  71  *              Bjorn Ekwall    :       Moved ip_fast_csum to ip.h (inline!)
  72  *              Stefan Becker   :       Send out ICMP HOST REDIRECT
  73  *      Arnt Gulbrandsen        :       ip_build_xmit
  74  *              Alan Cox        :       Per socket routing cache
  75  *              Alan Cox        :       Fixed routing cache, added header cache.
  76  *              Alan Cox        :       Loopback didn't work right in original ip_build_xmit - fixed it.
  77  *              Alan Cox        :       Only send ICMP_REDIRECT if src/dest are the same net.
  78  *              Alan Cox        :       Incoming IP option handling.
  79  *              Alan Cox        :       Set saddr on raw output frames as per BSD.
  80  *              Alan Cox        :       Stopped broadcast source route explosions.
  81  *              Alan Cox        :       Can disable source routing
  82  *              Takeshi Sone    :       Masquerading didn't work.
  83  *      Dave Bonn,Alan Cox      :       Faster IP forwarding whenever possible.
  84  *              Alan Cox        :       Memory leaks, tramples, misc debugging.
  85  *              Alan Cox        :       Fixed multicast (by popular demand 8))
  86  *              Alan Cox        :       Fixed forwarding (by even more popular demand 8))
  87  *              Alan Cox        :       Fixed SNMP statistics [I think]
  88  *      Gerhard Koerting        :       IP fragmentation forwarding fix
  89  *              Alan Cox        :       Device lock against page fault.
  90  *              Alan Cox        :       IP_HDRINCL facility.
  91  *      Werner Almesberger      :       Zero fragment bug
  92  *              Alan Cox        :       RAW IP frame length bug
  93  *              Alan Cox        :       Outgoing firewall on build_xmit
  94  *              A.N.Kuznetsov   :       IP_OPTIONS support throughout the kernel
  95  *              Alan Cox        :       Multicast routing hooks
  96  *              Jos Vos         :       Do accounting *before* call_in_firewall
  97  *      Willy Konynenberg       :       Transparent proxying support
  98  *
  99  * To Fix:
 100  *              IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
 101  *              and could be made very efficient with the addition of some virtual memory hacks to permit
 102  *              the allocation of a buffer that can then be 'grown' by twiddling page tables.
 103  *              Output fragmentation wants updating along with the buffer management to use a single
 104  *              interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
 105  *              output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
 106  *              fragmentation anyway.
 107  */
 108 
 109 #define pr_fmt(fmt) "IPv4: " fmt
 110 
 111 #include <linux/module.h>
 112 #include <linux/types.h>
 113 #include <linux/kernel.h>
 114 #include <linux/string.h>
 115 #include <linux/errno.h>
 116 #include <linux/slab.h>
 117 
 118 #include <linux/net.h>
 119 #include <linux/socket.h>
 120 #include <linux/sockios.h>
 121 #include <linux/in.h>
 122 #include <linux/inet.h>
 123 #include <linux/inetdevice.h>
 124 #include <linux/netdevice.h>
 125 #include <linux/etherdevice.h>
 126 #include <linux/indirect_call_wrapper.h>
 127 
 128 #include <net/snmp.h>
 129 #include <net/ip.h>
 130 #include <net/protocol.h>
 131 #include <net/route.h>
 132 #include <linux/skbuff.h>
 133 #include <net/sock.h>
 134 #include <net/arp.h>
 135 #include <net/icmp.h>
 136 #include <net/raw.h>
 137 #include <net/checksum.h>
 138 #include <net/inet_ecn.h>
 139 #include <linux/netfilter_ipv4.h>
 140 #include <net/xfrm.h>
 141 #include <linux/mroute.h>
 142 #include <linux/netlink.h>
 143 #include <net/dst_metadata.h>
 144 
 145 /*
 146  *      Process Router Attention IP option (RFC 2113)
 147  */
 148 bool ip_call_ra_chain(struct sk_buff *skb)
 149 {
 150         struct ip_ra_chain *ra;
 151         u8 protocol = ip_hdr(skb)->protocol;
 152         struct sock *last = NULL;
 153         struct net_device *dev = skb->dev;
 154         struct net *net = dev_net(dev);
 155 
 156         for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
 157                 struct sock *sk = ra->sk;
 158 
 159                 /* If socket is bound to an interface, only report
 160                  * the packet if it came  from that interface.
 161                  */
 162                 if (sk && inet_sk(sk)->inet_num == protocol &&
 163                     (!sk->sk_bound_dev_if ||
 164                      sk->sk_bound_dev_if == dev->ifindex)) {
 165                         if (ip_is_fragment(ip_hdr(skb))) {
 166                                 if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
 167                                         return true;
 168                         }
 169                         if (last) {
 170                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
 171                                 if (skb2)
 172                                         raw_rcv(last, skb2);
 173                         }
 174                         last = sk;
 175                 }
 176         }
 177 
 178         if (last) {
 179                 raw_rcv(last, skb);
 180                 return true;
 181         }
 182         return false;
 183 }
 184 
 185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
 186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
 187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
 188 {
 189         const struct net_protocol *ipprot;
 190         int raw, ret;
 191 
 192 resubmit:
 193         raw = raw_local_deliver(skb, protocol);
 194 
 195         ipprot = rcu_dereference(inet_protos[protocol]);
 196         if (ipprot) {
 197                 if (!ipprot->no_policy) {
 198                         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 199                                 kfree_skb(skb);
 200                                 return;
 201                         }
 202                         nf_reset_ct(skb);
 203                 }
 204                 ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
 205                                       skb);
 206                 if (ret < 0) {
 207                         protocol = -ret;
 208                         goto resubmit;
 209                 }
 210                 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
 211         } else {
 212                 if (!raw) {
 213                         if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 214                                 __IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
 215                                 icmp_send(skb, ICMP_DEST_UNREACH,
 216                                           ICMP_PROT_UNREACH, 0);
 217                         }
 218                         kfree_skb(skb);
 219                 } else {
 220                         __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
 221                         consume_skb(skb);
 222                 }
 223         }
 224 }
 225 
 226 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 227 {
 228         __skb_pull(skb, skb_network_header_len(skb));
 229 
 230         rcu_read_lock();
 231         ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
 232         rcu_read_unlock();
 233 
 234         return 0;
 235 }
 236 
 237 /*
 238  *      Deliver IP Packets to the higher protocol layers.
 239  */
 240 int ip_local_deliver(struct sk_buff *skb)
 241 {
 242         /*
 243          *      Reassemble IP fragments.
 244          */
 245         struct net *net = dev_net(skb->dev);
 246 
 247         if (ip_is_fragment(ip_hdr(skb))) {
 248                 if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
 249                         return 0;
 250         }
 251 
 252         return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
 253                        net, NULL, skb, skb->dev, NULL,
 254                        ip_local_deliver_finish);
 255 }
 256 
 257 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
 258 {
 259         struct ip_options *opt;
 260         const struct iphdr *iph;
 261 
 262         /* It looks as overkill, because not all
 263            IP options require packet mangling.
 264            But it is the easiest for now, especially taking
 265            into account that combination of IP options
 266            and running sniffer is extremely rare condition.
 267                                               --ANK (980813)
 268         */
 269         if (skb_cow(skb, skb_headroom(skb))) {
 270                 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
 271                 goto drop;
 272         }
 273 
 274         iph = ip_hdr(skb);
 275         opt = &(IPCB(skb)->opt);
 276         opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
 277 
 278         if (ip_options_compile(dev_net(dev), opt, skb)) {
 279                 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
 280                 goto drop;
 281         }
 282 
 283         if (unlikely(opt->srr)) {
 284                 struct in_device *in_dev = __in_dev_get_rcu(dev);
 285 
 286                 if (in_dev) {
 287                         if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
 288                                 if (IN_DEV_LOG_MARTIANS(in_dev))
 289                                         net_info_ratelimited("source route option %pI4 -> %pI4\n",
 290                                                              &iph->saddr,
 291                                                              &iph->daddr);
 292                                 goto drop;
 293                         }
 294                 }
 295 
 296                 if (ip_options_rcv_srr(skb, dev))
 297                         goto drop;
 298         }
 299 
 300         return false;
 301 drop:
 302         return true;
 303 }
 304 
 305 INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
 306 INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
 307 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
 308                               struct sk_buff *skb, struct net_device *dev)
 309 {
 310         const struct iphdr *iph = ip_hdr(skb);
 311         int (*edemux)(struct sk_buff *skb);
 312         struct rtable *rt;
 313         int err;
 314 
 315         if (net->ipv4.sysctl_ip_early_demux &&
 316             !skb_dst(skb) &&
 317             !skb->sk &&
 318             !ip_is_fragment(iph)) {
 319                 const struct net_protocol *ipprot;
 320                 int protocol = iph->protocol;
 321 
 322                 ipprot = rcu_dereference(inet_protos[protocol]);
 323                 if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
 324                         err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
 325                                               udp_v4_early_demux, skb);
 326                         if (unlikely(err))
 327                                 goto drop_error;
 328                         /* must reload iph, skb->head might have changed */
 329                         iph = ip_hdr(skb);
 330                 }
 331         }
 332 
 333         /*
 334          *      Initialise the virtual path cache for the packet. It describes
 335          *      how the packet travels inside Linux networking.
 336          */
 337         if (!skb_valid_dst(skb)) {
 338                 err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
 339                                            iph->tos, dev);
 340                 if (unlikely(err))
 341                         goto drop_error;
 342         }
 343 
 344 #ifdef CONFIG_IP_ROUTE_CLASSID
 345         if (unlikely(skb_dst(skb)->tclassid)) {
 346                 struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
 347                 u32 idx = skb_dst(skb)->tclassid;
 348                 st[idx&0xFF].o_packets++;
 349                 st[idx&0xFF].o_bytes += skb->len;
 350                 st[(idx>>16)&0xFF].i_packets++;
 351                 st[(idx>>16)&0xFF].i_bytes += skb->len;
 352         }
 353 #endif
 354 
 355         if (iph->ihl > 5 && ip_rcv_options(skb, dev))
 356                 goto drop;
 357 
 358         rt = skb_rtable(skb);
 359         if (rt->rt_type == RTN_MULTICAST) {
 360                 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
 361         } else if (rt->rt_type == RTN_BROADCAST) {
 362                 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
 363         } else if (skb->pkt_type == PACKET_BROADCAST ||
 364                    skb->pkt_type == PACKET_MULTICAST) {
 365                 struct in_device *in_dev = __in_dev_get_rcu(dev);
 366 
 367                 /* RFC 1122 3.3.6:
 368                  *
 369                  *   When a host sends a datagram to a link-layer broadcast
 370                  *   address, the IP destination address MUST be a legal IP
 371                  *   broadcast or IP multicast address.
 372                  *
 373                  *   A host SHOULD silently discard a datagram that is received
 374                  *   via a link-layer broadcast (see Section 2.4) but does not
 375                  *   specify an IP multicast or broadcast destination address.
 376                  *
 377                  * This doesn't explicitly say L2 *broadcast*, but broadcast is
 378                  * in a way a form of multicast and the most common use case for
 379                  * this is 802.11 protecting against cross-station spoofing (the
 380                  * so-called "hole-196" attack) so do it for both.
 381                  */
 382                 if (in_dev &&
 383                     IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
 384                         goto drop;
 385         }
 386 
 387         return NET_RX_SUCCESS;
 388 
 389 drop:
 390         kfree_skb(skb);
 391         return NET_RX_DROP;
 392 
 393 drop_error:
 394         if (err == -EXDEV)
 395                 __NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
 396         goto drop;
 397 }
 398 
 399 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 400 {
 401         struct net_device *dev = skb->dev;
 402         int ret;
 403 
 404         /* if ingress device is enslaved to an L3 master device pass the
 405          * skb to its handler for processing
 406          */
 407         skb = l3mdev_ip_rcv(skb);
 408         if (!skb)
 409                 return NET_RX_SUCCESS;
 410 
 411         ret = ip_rcv_finish_core(net, sk, skb, dev);
 412         if (ret != NET_RX_DROP)
 413                 ret = dst_input(skb);
 414         return ret;
 415 }
 416 
 417 /*
 418  *      Main IP Receive routine.
 419  */
 420 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
 421 {
 422         const struct iphdr *iph;
 423         u32 len;
 424 
 425         /* When the interface is in promisc. mode, drop all the crap
 426          * that it receives, do not try to analyse it.
 427          */
 428         if (skb->pkt_type == PACKET_OTHERHOST)
 429                 goto drop;
 430 
 431         __IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
 432 
 433         skb = skb_share_check(skb, GFP_ATOMIC);
 434         if (!skb) {
 435                 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
 436                 goto out;
 437         }
 438 
 439         if (!pskb_may_pull(skb, sizeof(struct iphdr)))
 440                 goto inhdr_error;
 441 
 442         iph = ip_hdr(skb);
 443 
 444         /*
 445          *      RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
 446          *
 447          *      Is the datagram acceptable?
 448          *
 449          *      1.      Length at least the size of an ip header
 450          *      2.      Version of 4
 451          *      3.      Checksums correctly. [Speed optimisation for later, skip loopback checksums]
 452          *      4.      Doesn't have a bogus length
 453          */
 454 
 455         if (iph->ihl < 5 || iph->version != 4)
 456                 goto inhdr_error;
 457 
 458         BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
 459         BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
 460         BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
 461         __IP_ADD_STATS(net,
 462                        IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
 463                        max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
 464 
 465         if (!pskb_may_pull(skb, iph->ihl*4))
 466                 goto inhdr_error;
 467 
 468         iph = ip_hdr(skb);
 469 
 470         if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
 471                 goto csum_error;
 472 
 473         len = ntohs(iph->tot_len);
 474         if (skb->len < len) {
 475                 __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
 476                 goto drop;
 477         } else if (len < (iph->ihl*4))
 478                 goto inhdr_error;
 479 
 480         /* Our transport medium may have padded the buffer out. Now we know it
 481          * is IP we can trim to the true length of the frame.
 482          * Note this now means skb->len holds ntohs(iph->tot_len).
 483          */
 484         if (pskb_trim_rcsum(skb, len)) {
 485                 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
 486                 goto drop;
 487         }
 488 
 489         iph = ip_hdr(skb);
 490         skb->transport_header = skb->network_header + iph->ihl*4;
 491 
 492         /* Remove any debris in the socket control block */
 493         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 494         IPCB(skb)->iif = skb->skb_iif;
 495 
 496         /* Must drop socket now because of tproxy. */
 497         skb_orphan(skb);
 498 
 499         return skb;
 500 
 501 csum_error:
 502         __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
 503 inhdr_error:
 504         __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
 505 drop:
 506         kfree_skb(skb);
 507 out:
 508         return NULL;
 509 }
 510 
 511 /*
 512  * IP receive entry point
 513  */
 514 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
 515            struct net_device *orig_dev)
 516 {
 517         struct net *net = dev_net(dev);
 518 
 519         skb = ip_rcv_core(skb, net);
 520         if (skb == NULL)
 521                 return NET_RX_DROP;
 522 
 523         return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
 524                        net, NULL, skb, dev, NULL,
 525                        ip_rcv_finish);
 526 }
 527 
 528 static void ip_sublist_rcv_finish(struct list_head *head)
 529 {
 530         struct sk_buff *skb, *next;
 531 
 532         list_for_each_entry_safe(skb, next, head, list) {
 533                 skb_list_del_init(skb);
 534                 dst_input(skb);
 535         }
 536 }
 537 
 538 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
 539                                struct list_head *head)
 540 {
 541         struct dst_entry *curr_dst = NULL;
 542         struct sk_buff *skb, *next;
 543         struct list_head sublist;
 544 
 545         INIT_LIST_HEAD(&sublist);
 546         list_for_each_entry_safe(skb, next, head, list) {
 547                 struct net_device *dev = skb->dev;
 548                 struct dst_entry *dst;
 549 
 550                 skb_list_del_init(skb);
 551                 /* if ingress device is enslaved to an L3 master device pass the
 552                  * skb to its handler for processing
 553                  */
 554                 skb = l3mdev_ip_rcv(skb);
 555                 if (!skb)
 556                         continue;
 557                 if (ip_rcv_finish_core(net, sk, skb, dev) == NET_RX_DROP)
 558                         continue;
 559 
 560                 dst = skb_dst(skb);
 561                 if (curr_dst != dst) {
 562                         /* dispatch old sublist */
 563                         if (!list_empty(&sublist))
 564                                 ip_sublist_rcv_finish(&sublist);
 565                         /* start new sublist */
 566                         INIT_LIST_HEAD(&sublist);
 567                         curr_dst = dst;
 568                 }
 569                 list_add_tail(&skb->list, &sublist);
 570         }
 571         /* dispatch final sublist */
 572         ip_sublist_rcv_finish(&sublist);
 573 }
 574 
 575 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
 576                            struct net *net)
 577 {
 578         NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
 579                      head, dev, NULL, ip_rcv_finish);
 580         ip_list_rcv_finish(net, NULL, head);
 581 }
 582 
 583 /* Receive a list of IP packets */
 584 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
 585                  struct net_device *orig_dev)
 586 {
 587         struct net_device *curr_dev = NULL;
 588         struct net *curr_net = NULL;
 589         struct sk_buff *skb, *next;
 590         struct list_head sublist;
 591 
 592         INIT_LIST_HEAD(&sublist);
 593         list_for_each_entry_safe(skb, next, head, list) {
 594                 struct net_device *dev = skb->dev;
 595                 struct net *net = dev_net(dev);
 596 
 597                 skb_list_del_init(skb);
 598                 skb = ip_rcv_core(skb, net);
 599                 if (skb == NULL)
 600                         continue;
 601 
 602                 if (curr_dev != dev || curr_net != net) {
 603                         /* dispatch old sublist */
 604                         if (!list_empty(&sublist))
 605                                 ip_sublist_rcv(&sublist, curr_dev, curr_net);
 606                         /* start new sublist */
 607                         INIT_LIST_HEAD(&sublist);
 608                         curr_dev = dev;
 609                         curr_net = net;
 610                 }
 611                 list_add_tail(&skb->list, &sublist);
 612         }
 613         /* dispatch final sublist */
 614         ip_sublist_rcv(&sublist, curr_dev, curr_net);
 615 }

/* [<][>][^][v][top][bottom][index][help] */