root/arch/powerpc/include/asm/book3s/64/pgtable.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. ioremap_max_order
  2. pte_update
  3. __ptep_test_and_clear_young
  4. __pte_write
  5. pte_savedwrite
  6. pte_savedwrite
  7. pte_write
  8. pte_read
  9. ptep_set_wrprotect
  10. huge_ptep_set_wrprotect
  11. ptep_get_and_clear
  12. ptep_get_and_clear_full
  13. pte_clear
  14. pte_dirty
  15. pte_young
  16. pte_special
  17. pte_exec
  18. pte_soft_dirty
  19. pte_mksoft_dirty
  20. pte_clear_soft_dirty
  21. pte_protnone
  22. pte_mk_savedwrite
  23. pte_clear_savedwrite
  24. pte_clear_savedwrite
  25. pte_present
  26. pte_hw_valid
  27. arch_pte_access_permitted
  28. pte_user
  29. pte_access_permitted
  30. pfn_pte
  31. pte_pfn
  32. pte_wrprotect
  33. pte_exprotect
  34. pte_mkclean
  35. pte_mkold
  36. pte_mkexec
  37. pte_mkpte
  38. pte_mkwrite
  39. pte_mkdirty
  40. pte_mkyoung
  41. pte_mkspecial
  42. pte_mkhuge
  43. pte_mkdevmap
  44. pte_mkprivileged
  45. pte_mkuser
  46. pte_devmap
  47. pte_modify
  48. pte_swp_mksoft_dirty
  49. pte_swp_soft_dirty
  50. pte_swp_clear_soft_dirty
  51. check_pte_access
  52. __ptep_set_access_flags
  53. pte_same
  54. pte_none
  55. __set_pte_at
  56. pgprot_noncached
  57. pgprot_noncached_wc
  58. pgprot_cached
  59. pgprot_writecombine
  60. pte_ci
  61. pmd_clear
  62. pmd_none
  63. pmd_present
  64. pmd_is_serializing
  65. pmd_bad
  66. pud_clear
  67. pud_none
  68. pud_present
  69. pud_pte
  70. pte_pud
  71. pud_bad
  72. pud_access_permitted
  73. pgd_clear
  74. pgd_none
  75. pgd_present
  76. pgd_pte
  77. pte_pgd
  78. pgd_bad
  79. pgd_access_permitted
  80. pte_unmap
  81. map_kernel_page
  82. vmemmap_create_mapping
  83. vmemmap_remove_mapping
  84. pmd_pte
  85. pte_pmd
  86. pmdp_ptep
  87. pmd_protnone
  88. pmd_access_permitted
  89. has_transparent_hugepage
  90. pmd_hugepage_update
  91. pmd_large
  92. pmd_mknotpresent
  93. __pmdp_test_and_clear_young
  94. pmdp_set_wrprotect
  95. pmd_trans_huge
  96. pmd_same
  97. pmd_mkhuge
  98. pmdp_huge_get_and_clear
  99. pmdp_collapse_flush
  100. pgtable_trans_huge_deposit
  101. pgtable_trans_huge_withdraw
  102. arch_needs_pgtable_deposit
  103. pmd_mkdevmap
  104. pmd_devmap
  105. pud_devmap
  106. pgd_devmap
  107. pud_pfn
  108. is_pte_rw_upgrade
  109. pmd_is_leaf
  110. pud_is_leaf
  111. pgd_is_leaf

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
   3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
   4 
   5 #include <asm-generic/5level-fixup.h>
   6 
   7 #ifndef __ASSEMBLY__
   8 #include <linux/mmdebug.h>
   9 #include <linux/bug.h>
  10 #endif
  11 
  12 /*
  13  * Common bits between hash and Radix page table
  14  */
  15 #define _PAGE_BIT_SWAP_TYPE     0
  16 
  17 #define _PAGE_EXEC              0x00001 /* execute permission */
  18 #define _PAGE_WRITE             0x00002 /* write access allowed */
  19 #define _PAGE_READ              0x00004 /* read access allowed */
  20 #define _PAGE_RW                (_PAGE_READ | _PAGE_WRITE)
  21 #define _PAGE_RWX               (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
  22 #define _PAGE_PRIVILEGED        0x00008 /* kernel access only */
  23 #define _PAGE_SAO               0x00010 /* Strong access order */
  24 #define _PAGE_NON_IDEMPOTENT    0x00020 /* non idempotent memory */
  25 #define _PAGE_TOLERANT          0x00030 /* tolerant memory, cache inhibited */
  26 #define _PAGE_DIRTY             0x00080 /* C: page changed */
  27 #define _PAGE_ACCESSED          0x00100 /* R: page referenced */
  28 /*
  29  * Software bits
  30  */
  31 #define _RPAGE_SW0              0x2000000000000000UL
  32 #define _RPAGE_SW1              0x00800
  33 #define _RPAGE_SW2              0x00400
  34 #define _RPAGE_SW3              0x00200
  35 #define _RPAGE_RSV1             0x1000000000000000UL
  36 #define _RPAGE_RSV2             0x0800000000000000UL
  37 #define _RPAGE_RSV3             0x0400000000000000UL
  38 #define _RPAGE_RSV4             0x0200000000000000UL
  39 #define _RPAGE_RSV5             0x00040UL
  40 
  41 #define _PAGE_PTE               0x4000000000000000UL    /* distinguishes PTEs from pointers */
  42 #define _PAGE_PRESENT           0x8000000000000000UL    /* pte contains a translation */
  43 /*
  44  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
  45  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
  46  * differentiate between two use a SW field when invalidating.
  47  *
  48  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
  49  *
  50  * This is used only when _PAGE_PRESENT is cleared.
  51  */
  52 #define _PAGE_INVALID           _RPAGE_SW0
  53 
  54 /*
  55  * Top and bottom bits of RPN which can be used by hash
  56  * translation mode, because we expect them to be zero
  57  * otherwise.
  58  */
  59 #define _RPAGE_RPN0             0x01000
  60 #define _RPAGE_RPN1             0x02000
  61 #define _RPAGE_RPN44            0x0100000000000000UL
  62 #define _RPAGE_RPN43            0x0080000000000000UL
  63 #define _RPAGE_RPN42            0x0040000000000000UL
  64 #define _RPAGE_RPN41            0x0020000000000000UL
  65 
  66 /* Max physical address bit as per radix table */
  67 #define _RPAGE_PA_MAX           57
  68 
  69 /*
  70  * Max physical address bit we will use for now.
  71  *
  72  * This is mostly a hardware limitation and for now Power9 has
  73  * a 51 bit limit.
  74  *
  75  * This is different from the number of physical bit required to address
  76  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
  77  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
  78  * number of sections we can support (SECTIONS_SHIFT).
  79  *
  80  * This is different from Radix page table limitation above and
  81  * should always be less than that. The limit is done such that
  82  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
  83  * for hash linux page table specific bits.
  84  *
  85  * In order to be compatible with future hardware generations we keep
  86  * some offsets and limit this for now to 53
  87  */
  88 #define _PAGE_PA_MAX            53
  89 
  90 #define _PAGE_SOFT_DIRTY        _RPAGE_SW3 /* software: software dirty tracking */
  91 #define _PAGE_SPECIAL           _RPAGE_SW2 /* software: special page */
  92 #define _PAGE_DEVMAP            _RPAGE_SW1 /* software: ZONE_DEVICE page */
  93 
  94 /*
  95  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
  96  * Instead of fixing all of them, add an alternate define which
  97  * maps CI pte mapping.
  98  */
  99 #define _PAGE_NO_CACHE          _PAGE_TOLERANT
 100 /*
 101  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
 102  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
 103  * and every thing below PAGE_SHIFT;
 104  */
 105 #define PTE_RPN_MASK    (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
 106 /*
 107  * set of bits not changed in pmd_modify. Even though we have hash specific bits
 108  * in here, on radix we expect them to be zero.
 109  */
 110 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
 111                          _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
 112                          _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
 113 /*
 114  * user access blocked by key
 115  */
 116 #define _PAGE_KERNEL_RW         (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
 117 #define _PAGE_KERNEL_RO          (_PAGE_PRIVILEGED | _PAGE_READ)
 118 #define _PAGE_KERNEL_RWX        (_PAGE_PRIVILEGED | _PAGE_DIRTY |       \
 119                                  _PAGE_RW | _PAGE_EXEC)
 120 /*
 121  * _PAGE_CHG_MASK masks of bits that are to be preserved across
 122  * pgprot changes
 123  */
 124 #define _PAGE_CHG_MASK  (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
 125                          _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |   \
 126                          _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
 127 
 128 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
 129                      H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
 130 /*
 131  * We define 2 sets of base prot bits, one for basic pages (ie,
 132  * cacheable kernel and user pages) and one for non cacheable
 133  * pages. We always set _PAGE_COHERENT when SMP is enabled or
 134  * the processor might need it for DMA coherency.
 135  */
 136 #define _PAGE_BASE_NC   (_PAGE_PRESENT | _PAGE_ACCESSED)
 137 #define _PAGE_BASE      (_PAGE_BASE_NC)
 138 
 139 /* Permission masks used to generate the __P and __S table,
 140  *
 141  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
 142  *
 143  * Write permissions imply read permissions for now (we could make write-only
 144  * pages on BookE but we don't bother for now). Execute permission control is
 145  * possible on platforms that define _PAGE_EXEC
 146  */
 147 #define PAGE_NONE       __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
 148 #define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_RW)
 149 #define PAGE_SHARED_X   __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
 150 #define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_READ)
 151 #define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 152 #define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_READ)
 153 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 154 
 155 /* Permission masks used for kernel mappings */
 156 #define PAGE_KERNEL     __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
 157 #define PAGE_KERNEL_NC  __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
 158                                  _PAGE_TOLERANT)
 159 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
 160                                  _PAGE_NON_IDEMPOTENT)
 161 #define PAGE_KERNEL_X   __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
 162 #define PAGE_KERNEL_RO  __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
 163 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
 164 
 165 /*
 166  * Protection used for kernel text. We want the debuggers to be able to
 167  * set breakpoints anywhere, so don't write protect the kernel text
 168  * on platforms where such control is possible.
 169  */
 170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
 171         defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
 172 #define PAGE_KERNEL_TEXT        PAGE_KERNEL_X
 173 #else
 174 #define PAGE_KERNEL_TEXT        PAGE_KERNEL_ROX
 175 #endif
 176 
 177 /* Make modules code happy. We don't set RO yet */
 178 #define PAGE_KERNEL_EXEC        PAGE_KERNEL_X
 179 #define PAGE_AGP                (PAGE_KERNEL_NC)
 180 
 181 #ifndef __ASSEMBLY__
 182 /*
 183  * page table defines
 184  */
 185 extern unsigned long __pte_index_size;
 186 extern unsigned long __pmd_index_size;
 187 extern unsigned long __pud_index_size;
 188 extern unsigned long __pgd_index_size;
 189 extern unsigned long __pud_cache_index;
 190 #define PTE_INDEX_SIZE  __pte_index_size
 191 #define PMD_INDEX_SIZE  __pmd_index_size
 192 #define PUD_INDEX_SIZE  __pud_index_size
 193 #define PGD_INDEX_SIZE  __pgd_index_size
 194 /* pmd table use page table fragments */
 195 #define PMD_CACHE_INDEX  0
 196 #define PUD_CACHE_INDEX __pud_cache_index
 197 /*
 198  * Because of use of pte fragments and THP, size of page table
 199  * are not always derived out of index size above.
 200  */
 201 extern unsigned long __pte_table_size;
 202 extern unsigned long __pmd_table_size;
 203 extern unsigned long __pud_table_size;
 204 extern unsigned long __pgd_table_size;
 205 #define PTE_TABLE_SIZE  __pte_table_size
 206 #define PMD_TABLE_SIZE  __pmd_table_size
 207 #define PUD_TABLE_SIZE  __pud_table_size
 208 #define PGD_TABLE_SIZE  __pgd_table_size
 209 
 210 extern unsigned long __pmd_val_bits;
 211 extern unsigned long __pud_val_bits;
 212 extern unsigned long __pgd_val_bits;
 213 #define PMD_VAL_BITS    __pmd_val_bits
 214 #define PUD_VAL_BITS    __pud_val_bits
 215 #define PGD_VAL_BITS    __pgd_val_bits
 216 
 217 extern unsigned long __pte_frag_nr;
 218 #define PTE_FRAG_NR __pte_frag_nr
 219 extern unsigned long __pte_frag_size_shift;
 220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
 221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
 222 
 223 extern unsigned long __pmd_frag_nr;
 224 #define PMD_FRAG_NR __pmd_frag_nr
 225 extern unsigned long __pmd_frag_size_shift;
 226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
 227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
 228 
 229 #define PTRS_PER_PTE    (1 << PTE_INDEX_SIZE)
 230 #define PTRS_PER_PMD    (1 << PMD_INDEX_SIZE)
 231 #define PTRS_PER_PUD    (1 << PUD_INDEX_SIZE)
 232 #define PTRS_PER_PGD    (1 << PGD_INDEX_SIZE)
 233 
 234 /* PMD_SHIFT determines what a second-level page table entry can map */
 235 #define PMD_SHIFT       (PAGE_SHIFT + PTE_INDEX_SIZE)
 236 #define PMD_SIZE        (1UL << PMD_SHIFT)
 237 #define PMD_MASK        (~(PMD_SIZE-1))
 238 
 239 /* PUD_SHIFT determines what a third-level page table entry can map */
 240 #define PUD_SHIFT       (PMD_SHIFT + PMD_INDEX_SIZE)
 241 #define PUD_SIZE        (1UL << PUD_SHIFT)
 242 #define PUD_MASK        (~(PUD_SIZE-1))
 243 
 244 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
 245 #define PGDIR_SHIFT     (PUD_SHIFT + PUD_INDEX_SIZE)
 246 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 247 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
 248 
 249 /* Bits to mask out from a PMD to get to the PTE page */
 250 #define PMD_MASKED_BITS         0xc0000000000000ffUL
 251 /* Bits to mask out from a PUD to get to the PMD page */
 252 #define PUD_MASKED_BITS         0xc0000000000000ffUL
 253 /* Bits to mask out from a PGD to get to the PUD page */
 254 #define PGD_MASKED_BITS         0xc0000000000000ffUL
 255 
 256 /*
 257  * Used as an indicator for rcu callback functions
 258  */
 259 enum pgtable_index {
 260         PTE_INDEX = 0,
 261         PMD_INDEX,
 262         PUD_INDEX,
 263         PGD_INDEX,
 264         /*
 265          * Below are used with 4k page size and hugetlb
 266          */
 267         HTLB_16M_INDEX,
 268         HTLB_16G_INDEX,
 269 };
 270 
 271 extern unsigned long __vmalloc_start;
 272 extern unsigned long __vmalloc_end;
 273 #define VMALLOC_START   __vmalloc_start
 274 #define VMALLOC_END     __vmalloc_end
 275 
 276 static inline unsigned int ioremap_max_order(void)
 277 {
 278         if (radix_enabled())
 279                 return PUD_SHIFT;
 280         return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
 281 }
 282 #define IOREMAP_MAX_ORDER ioremap_max_order()
 283 
 284 extern unsigned long __kernel_virt_start;
 285 extern unsigned long __kernel_io_start;
 286 extern unsigned long __kernel_io_end;
 287 #define KERN_VIRT_START __kernel_virt_start
 288 #define KERN_IO_START  __kernel_io_start
 289 #define KERN_IO_END __kernel_io_end
 290 
 291 extern struct page *vmemmap;
 292 extern unsigned long pci_io_base;
 293 #endif /* __ASSEMBLY__ */
 294 
 295 #include <asm/book3s/64/hash.h>
 296 #include <asm/book3s/64/radix.h>
 297 
 298 #ifdef CONFIG_PPC_64K_PAGES
 299 #include <asm/book3s/64/pgtable-64k.h>
 300 #else
 301 #include <asm/book3s/64/pgtable-4k.h>
 302 #endif
 303 
 304 #include <asm/barrier.h>
 305 /*
 306  * IO space itself carved into the PIO region (ISA and PHB IO space) and
 307  * the ioremap space
 308  *
 309  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
 310  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
 311  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
 312  */
 313 #define FULL_IO_SIZE    0x80000000ul
 314 #define  ISA_IO_BASE    (KERN_IO_START)
 315 #define  ISA_IO_END     (KERN_IO_START + 0x10000ul)
 316 #define  PHB_IO_BASE    (ISA_IO_END)
 317 #define  PHB_IO_END     (KERN_IO_START + FULL_IO_SIZE)
 318 #define IOREMAP_BASE    (PHB_IO_END)
 319 #define IOREMAP_START   (ioremap_bot)
 320 #define IOREMAP_END     (KERN_IO_END)
 321 
 322 /* Advertise special mapping type for AGP */
 323 #define HAVE_PAGE_AGP
 324 
 325 #ifndef __ASSEMBLY__
 326 
 327 /*
 328  * This is the default implementation of various PTE accessors, it's
 329  * used in all cases except Book3S with 64K pages where we have a
 330  * concept of sub-pages
 331  */
 332 #ifndef __real_pte
 333 
 334 #define __real_pte(e, p, o)             ((real_pte_t){(e)})
 335 #define __rpte_to_pte(r)        ((r).pte)
 336 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
 337 
 338 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
 339         do {                                                             \
 340                 index = 0;                                               \
 341                 shift = mmu_psize_defs[psize].shift;                     \
 342 
 343 #define pte_iterate_hashed_end() } while(0)
 344 
 345 /*
 346  * We expect this to be called only for user addresses or kernel virtual
 347  * addresses other than the linear mapping.
 348  */
 349 #define pte_pagesize_index(mm, addr, pte)       MMU_PAGE_4K
 350 
 351 #endif /* __real_pte */
 352 
 353 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
 354                                        pte_t *ptep, unsigned long clr,
 355                                        unsigned long set, int huge)
 356 {
 357         if (radix_enabled())
 358                 return radix__pte_update(mm, addr, ptep, clr, set, huge);
 359         return hash__pte_update(mm, addr, ptep, clr, set, huge);
 360 }
 361 /*
 362  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
 363  * We currently remove entries from the hashtable regardless of whether
 364  * the entry was young or dirty.
 365  *
 366  * We should be more intelligent about this but for the moment we override
 367  * these functions and force a tlb flush unconditionally
 368  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
 369  * function for both hash and radix.
 370  */
 371 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
 372                                               unsigned long addr, pte_t *ptep)
 373 {
 374         unsigned long old;
 375 
 376         if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
 377                 return 0;
 378         old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
 379         return (old & _PAGE_ACCESSED) != 0;
 380 }
 381 
 382 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 383 #define ptep_test_and_clear_young(__vma, __addr, __ptep)        \
 384 ({                                                              \
 385         int __r;                                                \
 386         __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
 387         __r;                                                    \
 388 })
 389 
 390 static inline int __pte_write(pte_t pte)
 391 {
 392         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
 393 }
 394 
 395 #ifdef CONFIG_NUMA_BALANCING
 396 #define pte_savedwrite pte_savedwrite
 397 static inline bool pte_savedwrite(pte_t pte)
 398 {
 399         /*
 400          * Saved write ptes are prot none ptes that doesn't have
 401          * privileged bit sit. We mark prot none as one which has
 402          * present and pviliged bit set and RWX cleared. To mark
 403          * protnone which used to have _PAGE_WRITE set we clear
 404          * the privileged bit.
 405          */
 406         return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
 407 }
 408 #else
 409 #define pte_savedwrite pte_savedwrite
 410 static inline bool pte_savedwrite(pte_t pte)
 411 {
 412         return false;
 413 }
 414 #endif
 415 
 416 static inline int pte_write(pte_t pte)
 417 {
 418         return __pte_write(pte) || pte_savedwrite(pte);
 419 }
 420 
 421 static inline int pte_read(pte_t pte)
 422 {
 423         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
 424 }
 425 
 426 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
 427 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 428                                       pte_t *ptep)
 429 {
 430         if (__pte_write(*ptep))
 431                 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
 432         else if (unlikely(pte_savedwrite(*ptep)))
 433                 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
 434 }
 435 
 436 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
 437 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 438                                            unsigned long addr, pte_t *ptep)
 439 {
 440         /*
 441          * We should not find protnone for hugetlb, but this complete the
 442          * interface.
 443          */
 444         if (__pte_write(*ptep))
 445                 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
 446         else if (unlikely(pte_savedwrite(*ptep)))
 447                 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
 448 }
 449 
 450 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 452                                        unsigned long addr, pte_t *ptep)
 453 {
 454         unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
 455         return __pte(old);
 456 }
 457 
 458 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 459 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 460                                             unsigned long addr,
 461                                             pte_t *ptep, int full)
 462 {
 463         if (full && radix_enabled()) {
 464                 /*
 465                  * We know that this is a full mm pte clear and
 466                  * hence can be sure there is no parallel set_pte.
 467                  */
 468                 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
 469         }
 470         return ptep_get_and_clear(mm, addr, ptep);
 471 }
 472 
 473 
 474 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 475                              pte_t * ptep)
 476 {
 477         pte_update(mm, addr, ptep, ~0UL, 0, 0);
 478 }
 479 
 480 static inline int pte_dirty(pte_t pte)
 481 {
 482         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
 483 }
 484 
 485 static inline int pte_young(pte_t pte)
 486 {
 487         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
 488 }
 489 
 490 static inline int pte_special(pte_t pte)
 491 {
 492         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
 493 }
 494 
 495 static inline bool pte_exec(pte_t pte)
 496 {
 497         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
 498 }
 499 
 500 
 501 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 502 static inline bool pte_soft_dirty(pte_t pte)
 503 {
 504         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
 505 }
 506 
 507 static inline pte_t pte_mksoft_dirty(pte_t pte)
 508 {
 509         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
 510 }
 511 
 512 static inline pte_t pte_clear_soft_dirty(pte_t pte)
 513 {
 514         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
 515 }
 516 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 517 
 518 #ifdef CONFIG_NUMA_BALANCING
 519 static inline int pte_protnone(pte_t pte)
 520 {
 521         return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
 522                 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
 523 }
 524 
 525 #define pte_mk_savedwrite pte_mk_savedwrite
 526 static inline pte_t pte_mk_savedwrite(pte_t pte)
 527 {
 528         /*
 529          * Used by Autonuma subsystem to preserve the write bit
 530          * while marking the pte PROT_NONE. Only allow this
 531          * on PROT_NONE pte
 532          */
 533         VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
 534                   cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
 535         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
 536 }
 537 
 538 #define pte_clear_savedwrite pte_clear_savedwrite
 539 static inline pte_t pte_clear_savedwrite(pte_t pte)
 540 {
 541         /*
 542          * Used by KSM subsystem to make a protnone pte readonly.
 543          */
 544         VM_BUG_ON(!pte_protnone(pte));
 545         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
 546 }
 547 #else
 548 #define pte_clear_savedwrite pte_clear_savedwrite
 549 static inline pte_t pte_clear_savedwrite(pte_t pte)
 550 {
 551         VM_WARN_ON(1);
 552         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
 553 }
 554 #endif /* CONFIG_NUMA_BALANCING */
 555 
 556 static inline int pte_present(pte_t pte)
 557 {
 558         /*
 559          * A pte is considerent present if _PAGE_PRESENT is set.
 560          * We also need to consider the pte present which is marked
 561          * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
 562          * if we find _PAGE_PRESENT cleared.
 563          */
 564         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
 565 }
 566 
 567 static inline bool pte_hw_valid(pte_t pte)
 568 {
 569         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
 570 }
 571 
 572 #ifdef CONFIG_PPC_MEM_KEYS
 573 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
 574 #else
 575 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
 576 {
 577         return true;
 578 }
 579 #endif /* CONFIG_PPC_MEM_KEYS */
 580 
 581 static inline bool pte_user(pte_t pte)
 582 {
 583         return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
 584 }
 585 
 586 #define pte_access_permitted pte_access_permitted
 587 static inline bool pte_access_permitted(pte_t pte, bool write)
 588 {
 589         /*
 590          * _PAGE_READ is needed for any access and will be
 591          * cleared for PROT_NONE
 592          */
 593         if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
 594                 return false;
 595 
 596         if (write && !pte_write(pte))
 597                 return false;
 598 
 599         return arch_pte_access_permitted(pte_val(pte), write, 0);
 600 }
 601 
 602 /*
 603  * Conversion functions: convert a page and protection to a page entry,
 604  * and a page entry and page directory to the page they refer to.
 605  *
 606  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 607  * long for now.
 608  */
 609 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 610 {
 611         VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
 612         VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
 613 
 614         return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot));
 615 }
 616 
 617 static inline unsigned long pte_pfn(pte_t pte)
 618 {
 619         return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
 620 }
 621 
 622 /* Generic modifiers for PTE bits */
 623 static inline pte_t pte_wrprotect(pte_t pte)
 624 {
 625         if (unlikely(pte_savedwrite(pte)))
 626                 return pte_clear_savedwrite(pte);
 627         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
 628 }
 629 
 630 static inline pte_t pte_exprotect(pte_t pte)
 631 {
 632         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
 633 }
 634 
 635 static inline pte_t pte_mkclean(pte_t pte)
 636 {
 637         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
 638 }
 639 
 640 static inline pte_t pte_mkold(pte_t pte)
 641 {
 642         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
 643 }
 644 
 645 static inline pte_t pte_mkexec(pte_t pte)
 646 {
 647         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
 648 }
 649 
 650 static inline pte_t pte_mkpte(pte_t pte)
 651 {
 652         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
 653 }
 654 
 655 static inline pte_t pte_mkwrite(pte_t pte)
 656 {
 657         /*
 658          * write implies read, hence set both
 659          */
 660         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
 661 }
 662 
 663 static inline pte_t pte_mkdirty(pte_t pte)
 664 {
 665         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
 666 }
 667 
 668 static inline pte_t pte_mkyoung(pte_t pte)
 669 {
 670         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
 671 }
 672 
 673 static inline pte_t pte_mkspecial(pte_t pte)
 674 {
 675         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
 676 }
 677 
 678 static inline pte_t pte_mkhuge(pte_t pte)
 679 {
 680         return pte;
 681 }
 682 
 683 static inline pte_t pte_mkdevmap(pte_t pte)
 684 {
 685         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
 686 }
 687 
 688 static inline pte_t pte_mkprivileged(pte_t pte)
 689 {
 690         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
 691 }
 692 
 693 static inline pte_t pte_mkuser(pte_t pte)
 694 {
 695         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
 696 }
 697 
 698 /*
 699  * This is potentially called with a pmd as the argument, in which case it's not
 700  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
 701  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
 702  * use in page directory entries (ie. non-ptes).
 703  */
 704 static inline int pte_devmap(pte_t pte)
 705 {
 706         u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
 707 
 708         return (pte_raw(pte) & mask) == mask;
 709 }
 710 
 711 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 712 {
 713         /* FIXME!! check whether this need to be a conditional */
 714         return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
 715                          cpu_to_be64(pgprot_val(newprot)));
 716 }
 717 
 718 /* Encode and de-code a swap entry */
 719 #define MAX_SWAPFILES_CHECK() do { \
 720         BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
 721         /*                                                      \
 722          * Don't have overlapping bits with _PAGE_HPTEFLAGS     \
 723          * We filter HPTEFLAGS on set_pte.                      \
 724          */                                                     \
 725         BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
 726         BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);   \
 727         } while (0)
 728 
 729 #define SWP_TYPE_BITS 5
 730 #define __swp_type(x)           (((x).val >> _PAGE_BIT_SWAP_TYPE) \
 731                                 & ((1UL << SWP_TYPE_BITS) - 1))
 732 #define __swp_offset(x)         (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
 733 #define __swp_entry(type, offset)       ((swp_entry_t) { \
 734                                 ((type) << _PAGE_BIT_SWAP_TYPE) \
 735                                 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
 736 /*
 737  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
 738  * swap type and offset we get from swap and convert that to pte to find a
 739  * matching pte in linux page table.
 740  * Clear bits not found in swap entries here.
 741  */
 742 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
 743 #define __swp_entry_to_pte(x)   __pte((x).val | _PAGE_PTE)
 744 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
 745 #define __swp_entry_to_pmd(x)   (pte_pmd(__swp_entry_to_pte(x)))
 746 
 747 #ifdef CONFIG_MEM_SOFT_DIRTY
 748 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
 749 #else
 750 #define _PAGE_SWP_SOFT_DIRTY    0UL
 751 #endif /* CONFIG_MEM_SOFT_DIRTY */
 752 
 753 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 754 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 755 {
 756         return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
 757 }
 758 
 759 static inline bool pte_swp_soft_dirty(pte_t pte)
 760 {
 761         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
 762 }
 763 
 764 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 765 {
 766         return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
 767 }
 768 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 769 
 770 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
 771 {
 772         /*
 773          * This check for _PAGE_RWX and _PAGE_PRESENT bits
 774          */
 775         if (access & ~ptev)
 776                 return false;
 777         /*
 778          * This check for access to privilege space
 779          */
 780         if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
 781                 return false;
 782 
 783         return true;
 784 }
 785 /*
 786  * Generic functions with hash/radix callbacks
 787  */
 788 
 789 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
 790                                            pte_t *ptep, pte_t entry,
 791                                            unsigned long address,
 792                                            int psize)
 793 {
 794         if (radix_enabled())
 795                 return radix__ptep_set_access_flags(vma, ptep, entry,
 796                                                     address, psize);
 797         return hash__ptep_set_access_flags(ptep, entry);
 798 }
 799 
 800 #define __HAVE_ARCH_PTE_SAME
 801 static inline int pte_same(pte_t pte_a, pte_t pte_b)
 802 {
 803         if (radix_enabled())
 804                 return radix__pte_same(pte_a, pte_b);
 805         return hash__pte_same(pte_a, pte_b);
 806 }
 807 
 808 static inline int pte_none(pte_t pte)
 809 {
 810         if (radix_enabled())
 811                 return radix__pte_none(pte);
 812         return hash__pte_none(pte);
 813 }
 814 
 815 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 816                                 pte_t *ptep, pte_t pte, int percpu)
 817 {
 818         if (radix_enabled())
 819                 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
 820         return hash__set_pte_at(mm, addr, ptep, pte, percpu);
 821 }
 822 
 823 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
 824 
 825 #define pgprot_noncached pgprot_noncached
 826 static inline pgprot_t pgprot_noncached(pgprot_t prot)
 827 {
 828         return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 829                         _PAGE_NON_IDEMPOTENT);
 830 }
 831 
 832 #define pgprot_noncached_wc pgprot_noncached_wc
 833 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
 834 {
 835         return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 836                         _PAGE_TOLERANT);
 837 }
 838 
 839 #define pgprot_cached pgprot_cached
 840 static inline pgprot_t pgprot_cached(pgprot_t prot)
 841 {
 842         return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
 843 }
 844 
 845 #define pgprot_writecombine pgprot_writecombine
 846 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
 847 {
 848         return pgprot_noncached_wc(prot);
 849 }
 850 /*
 851  * check a pte mapping have cache inhibited property
 852  */
 853 static inline bool pte_ci(pte_t pte)
 854 {
 855         __be64 pte_v = pte_raw(pte);
 856 
 857         if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
 858             ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
 859                 return true;
 860         return false;
 861 }
 862 
 863 static inline void pmd_clear(pmd_t *pmdp)
 864 {
 865         *pmdp = __pmd(0);
 866 }
 867 
 868 static inline int pmd_none(pmd_t pmd)
 869 {
 870         return !pmd_raw(pmd);
 871 }
 872 
 873 static inline int pmd_present(pmd_t pmd)
 874 {
 875         /*
 876          * A pmd is considerent present if _PAGE_PRESENT is set.
 877          * We also need to consider the pmd present which is marked
 878          * invalid during a split. Hence we look for _PAGE_INVALID
 879          * if we find _PAGE_PRESENT cleared.
 880          */
 881         if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
 882                 return true;
 883 
 884         return false;
 885 }
 886 
 887 static inline int pmd_is_serializing(pmd_t pmd)
 888 {
 889         /*
 890          * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
 891          * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
 892          *
 893          * This condition may also occur when flushing a pmd while flushing
 894          * it (see ptep_modify_prot_start), so callers must ensure this
 895          * case is fine as well.
 896          */
 897         if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
 898                                                 cpu_to_be64(_PAGE_INVALID))
 899                 return true;
 900 
 901         return false;
 902 }
 903 
 904 static inline int pmd_bad(pmd_t pmd)
 905 {
 906         if (radix_enabled())
 907                 return radix__pmd_bad(pmd);
 908         return hash__pmd_bad(pmd);
 909 }
 910 
 911 static inline void pud_clear(pud_t *pudp)
 912 {
 913         *pudp = __pud(0);
 914 }
 915 
 916 static inline int pud_none(pud_t pud)
 917 {
 918         return !pud_raw(pud);
 919 }
 920 
 921 static inline int pud_present(pud_t pud)
 922 {
 923         return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
 924 }
 925 
 926 extern struct page *pud_page(pud_t pud);
 927 extern struct page *pmd_page(pmd_t pmd);
 928 static inline pte_t pud_pte(pud_t pud)
 929 {
 930         return __pte_raw(pud_raw(pud));
 931 }
 932 
 933 static inline pud_t pte_pud(pte_t pte)
 934 {
 935         return __pud_raw(pte_raw(pte));
 936 }
 937 #define pud_write(pud)          pte_write(pud_pte(pud))
 938 
 939 static inline int pud_bad(pud_t pud)
 940 {
 941         if (radix_enabled())
 942                 return radix__pud_bad(pud);
 943         return hash__pud_bad(pud);
 944 }
 945 
 946 #define pud_access_permitted pud_access_permitted
 947 static inline bool pud_access_permitted(pud_t pud, bool write)
 948 {
 949         return pte_access_permitted(pud_pte(pud), write);
 950 }
 951 
 952 #define pgd_write(pgd)          pte_write(pgd_pte(pgd))
 953 
 954 static inline void pgd_clear(pgd_t *pgdp)
 955 {
 956         *pgdp = __pgd(0);
 957 }
 958 
 959 static inline int pgd_none(pgd_t pgd)
 960 {
 961         return !pgd_raw(pgd);
 962 }
 963 
 964 static inline int pgd_present(pgd_t pgd)
 965 {
 966         return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
 967 }
 968 
 969 static inline pte_t pgd_pte(pgd_t pgd)
 970 {
 971         return __pte_raw(pgd_raw(pgd));
 972 }
 973 
 974 static inline pgd_t pte_pgd(pte_t pte)
 975 {
 976         return __pgd_raw(pte_raw(pte));
 977 }
 978 
 979 static inline int pgd_bad(pgd_t pgd)
 980 {
 981         if (radix_enabled())
 982                 return radix__pgd_bad(pgd);
 983         return hash__pgd_bad(pgd);
 984 }
 985 
 986 #define pgd_access_permitted pgd_access_permitted
 987 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
 988 {
 989         return pte_access_permitted(pgd_pte(pgd), write);
 990 }
 991 
 992 extern struct page *pgd_page(pgd_t pgd);
 993 
 994 /* Pointers in the page table tree are physical addresses */
 995 #define __pgtable_ptr_val(ptr)  __pa(ptr)
 996 
 997 #define pmd_page_vaddr(pmd)     __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
 998 #define pud_page_vaddr(pud)     __va(pud_val(pud) & ~PUD_MASKED_BITS)
 999 #define pgd_page_vaddr(pgd)     __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
1000 
1001 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
1002 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
1003 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
1004 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
1005 
1006 /*
1007  * Find an entry in a page-table-directory.  We combine the address region
1008  * (the high order N bits) and the pgd portion of the address.
1009  */
1010 
1011 #define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
1012 
1013 #define pud_offset(pgdp, addr)  \
1014         (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1015 #define pmd_offset(pudp,addr) \
1016         (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1017 #define pte_offset_kernel(dir,addr) \
1018         (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1019 
1020 #define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
1021 
1022 static inline void pte_unmap(pte_t *pte) { }
1023 
1024 /* to find an entry in a kernel page-table-directory */
1025 /* This now only contains the vmalloc pages */
1026 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1027 
1028 #define pte_ERROR(e) \
1029         pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1030 #define pmd_ERROR(e) \
1031         pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1032 #define pud_ERROR(e) \
1033         pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1034 #define pgd_ERROR(e) \
1035         pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1036 
1037 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1038 {
1039         if (radix_enabled()) {
1040 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1041                 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1042                 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1043 #endif
1044                 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1045         }
1046         return hash__map_kernel_page(ea, pa, prot);
1047 }
1048 
1049 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1050                                                    unsigned long page_size,
1051                                                    unsigned long phys)
1052 {
1053         if (radix_enabled())
1054                 return radix__vmemmap_create_mapping(start, page_size, phys);
1055         return hash__vmemmap_create_mapping(start, page_size, phys);
1056 }
1057 
1058 #ifdef CONFIG_MEMORY_HOTPLUG
1059 static inline void vmemmap_remove_mapping(unsigned long start,
1060                                           unsigned long page_size)
1061 {
1062         if (radix_enabled())
1063                 return radix__vmemmap_remove_mapping(start, page_size);
1064         return hash__vmemmap_remove_mapping(start, page_size);
1065 }
1066 #endif
1067 
1068 static inline pte_t pmd_pte(pmd_t pmd)
1069 {
1070         return __pte_raw(pmd_raw(pmd));
1071 }
1072 
1073 static inline pmd_t pte_pmd(pte_t pte)
1074 {
1075         return __pmd_raw(pte_raw(pte));
1076 }
1077 
1078 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1079 {
1080         return (pte_t *)pmd;
1081 }
1082 #define pmd_pfn(pmd)            pte_pfn(pmd_pte(pmd))
1083 #define pmd_dirty(pmd)          pte_dirty(pmd_pte(pmd))
1084 #define pmd_young(pmd)          pte_young(pmd_pte(pmd))
1085 #define pmd_mkold(pmd)          pte_pmd(pte_mkold(pmd_pte(pmd)))
1086 #define pmd_wrprotect(pmd)      pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1087 #define pmd_mkdirty(pmd)        pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1088 #define pmd_mkclean(pmd)        pte_pmd(pte_mkclean(pmd_pte(pmd)))
1089 #define pmd_mkyoung(pmd)        pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1090 #define pmd_mkwrite(pmd)        pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1091 #define pmd_mk_savedwrite(pmd)  pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1092 #define pmd_clear_savedwrite(pmd)       pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1093 
1094 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1095 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1096 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1097 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1098 
1099 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1100 #define pmd_swp_mksoft_dirty(pmd)       pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1101 #define pmd_swp_soft_dirty(pmd)         pte_swp_soft_dirty(pmd_pte(pmd))
1102 #define pmd_swp_clear_soft_dirty(pmd)   pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1103 #endif
1104 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1105 
1106 #ifdef CONFIG_NUMA_BALANCING
1107 static inline int pmd_protnone(pmd_t pmd)
1108 {
1109         return pte_protnone(pmd_pte(pmd));
1110 }
1111 #endif /* CONFIG_NUMA_BALANCING */
1112 
1113 #define pmd_write(pmd)          pte_write(pmd_pte(pmd))
1114 #define __pmd_write(pmd)        __pte_write(pmd_pte(pmd))
1115 #define pmd_savedwrite(pmd)     pte_savedwrite(pmd_pte(pmd))
1116 
1117 #define pmd_access_permitted pmd_access_permitted
1118 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1119 {
1120         /*
1121          * pmdp_invalidate sets this combination (which is not caught by
1122          * !pte_present() check in pte_access_permitted), to prevent
1123          * lock-free lookups, as part of the serialize_against_pte_lookup()
1124          * synchronisation.
1125          *
1126          * This also catches the case where the PTE's hardware PRESENT bit is
1127          * cleared while TLB is flushed, which is suboptimal but should not
1128          * be frequent.
1129          */
1130         if (pmd_is_serializing(pmd))
1131                 return false;
1132 
1133         return pte_access_permitted(pmd_pte(pmd), write);
1134 }
1135 
1136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1137 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1138 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1139 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1140 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1141                        pmd_t *pmdp, pmd_t pmd);
1142 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1143                                  pmd_t *pmd);
1144 extern int hash__has_transparent_hugepage(void);
1145 static inline int has_transparent_hugepage(void)
1146 {
1147         if (radix_enabled())
1148                 return radix__has_transparent_hugepage();
1149         return hash__has_transparent_hugepage();
1150 }
1151 #define has_transparent_hugepage has_transparent_hugepage
1152 
1153 static inline unsigned long
1154 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1155                     unsigned long clr, unsigned long set)
1156 {
1157         if (radix_enabled())
1158                 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1159         return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1160 }
1161 
1162 /*
1163  * returns true for pmd migration entries, THP, devmap, hugetlb
1164  * But compile time dependent on THP config
1165  */
1166 static inline int pmd_large(pmd_t pmd)
1167 {
1168         return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1169 }
1170 
1171 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1172 {
1173         return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1174 }
1175 /*
1176  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1177  * the below will work for radix too
1178  */
1179 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1180                                               unsigned long addr, pmd_t *pmdp)
1181 {
1182         unsigned long old;
1183 
1184         if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1185                 return 0;
1186         old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1187         return ((old & _PAGE_ACCESSED) != 0);
1188 }
1189 
1190 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1191 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1192                                       pmd_t *pmdp)
1193 {
1194         if (__pmd_write((*pmdp)))
1195                 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1196         else if (unlikely(pmd_savedwrite(*pmdp)))
1197                 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1198 }
1199 
1200 /*
1201  * Only returns true for a THP. False for pmd migration entry.
1202  * We also need to return true when we come across a pte that
1203  * in between a thp split. While splitting THP, we mark the pmd
1204  * invalid (pmdp_invalidate()) before we set it with pte page
1205  * address. A pmd_trans_huge() check against a pmd entry during that time
1206  * should return true.
1207  * We should not call this on a hugetlb entry. We should check for HugeTLB
1208  * entry using vma->vm_flags
1209  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1210  */
1211 static inline int pmd_trans_huge(pmd_t pmd)
1212 {
1213         if (!pmd_present(pmd))
1214                 return false;
1215 
1216         if (radix_enabled())
1217                 return radix__pmd_trans_huge(pmd);
1218         return hash__pmd_trans_huge(pmd);
1219 }
1220 
1221 #define __HAVE_ARCH_PMD_SAME
1222 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1223 {
1224         if (radix_enabled())
1225                 return radix__pmd_same(pmd_a, pmd_b);
1226         return hash__pmd_same(pmd_a, pmd_b);
1227 }
1228 
1229 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1230 {
1231         if (radix_enabled())
1232                 return radix__pmd_mkhuge(pmd);
1233         return hash__pmd_mkhuge(pmd);
1234 }
1235 
1236 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1237 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1238                                  unsigned long address, pmd_t *pmdp,
1239                                  pmd_t entry, int dirty);
1240 
1241 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1242 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1243                                      unsigned long address, pmd_t *pmdp);
1244 
1245 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1246 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1247                                             unsigned long addr, pmd_t *pmdp)
1248 {
1249         if (radix_enabled())
1250                 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1251         return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1252 }
1253 
1254 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1255                                         unsigned long address, pmd_t *pmdp)
1256 {
1257         if (radix_enabled())
1258                 return radix__pmdp_collapse_flush(vma, address, pmdp);
1259         return hash__pmdp_collapse_flush(vma, address, pmdp);
1260 }
1261 #define pmdp_collapse_flush pmdp_collapse_flush
1262 
1263 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1264 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1265                                               pmd_t *pmdp, pgtable_t pgtable)
1266 {
1267         if (radix_enabled())
1268                 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1269         return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1270 }
1271 
1272 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1273 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1274                                                     pmd_t *pmdp)
1275 {
1276         if (radix_enabled())
1277                 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1278         return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1279 }
1280 
1281 #define __HAVE_ARCH_PMDP_INVALIDATE
1282 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1283                              pmd_t *pmdp);
1284 
1285 #define pmd_move_must_withdraw pmd_move_must_withdraw
1286 struct spinlock;
1287 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1288                                   struct spinlock *old_pmd_ptl,
1289                                   struct vm_area_struct *vma);
1290 /*
1291  * Hash translation mode use the deposited table to store hash pte
1292  * slot information.
1293  */
1294 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1295 static inline bool arch_needs_pgtable_deposit(void)
1296 {
1297         if (radix_enabled())
1298                 return false;
1299         return true;
1300 }
1301 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1302 
1303 
1304 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1305 {
1306         if (radix_enabled())
1307                 return radix__pmd_mkdevmap(pmd);
1308         return hash__pmd_mkdevmap(pmd);
1309 }
1310 
1311 static inline int pmd_devmap(pmd_t pmd)
1312 {
1313         return pte_devmap(pmd_pte(pmd));
1314 }
1315 
1316 static inline int pud_devmap(pud_t pud)
1317 {
1318         return 0;
1319 }
1320 
1321 static inline int pgd_devmap(pgd_t pgd)
1322 {
1323         return 0;
1324 }
1325 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1326 
1327 static inline int pud_pfn(pud_t pud)
1328 {
1329         /*
1330          * Currently all calls to pud_pfn() are gated around a pud_devmap()
1331          * check so this should never be used. If it grows another user we
1332          * want to know about it.
1333          */
1334         BUILD_BUG();
1335         return 0;
1336 }
1337 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1338 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1339 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1340                              pte_t *, pte_t, pte_t);
1341 
1342 /*
1343  * Returns true for a R -> RW upgrade of pte
1344  */
1345 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1346 {
1347         if (!(old_val & _PAGE_READ))
1348                 return false;
1349 
1350         if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1351                 return true;
1352 
1353         return false;
1354 }
1355 
1356 /*
1357  * Like pmd_huge() and pmd_large(), but works regardless of config options
1358  */
1359 #define pmd_is_leaf pmd_is_leaf
1360 static inline bool pmd_is_leaf(pmd_t pmd)
1361 {
1362         return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1363 }
1364 
1365 #define pud_is_leaf pud_is_leaf
1366 static inline bool pud_is_leaf(pud_t pud)
1367 {
1368         return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1369 }
1370 
1371 #define pgd_is_leaf pgd_is_leaf
1372 static inline bool pgd_is_leaf(pgd_t pgd)
1373 {
1374         return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PTE));
1375 }
1376 
1377 #endif /* __ASSEMBLY__ */
1378 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */

/* [<][>][^][v][top][bottom][index][help] */