root/arch/riscv/include/asm/pgtable.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. pmd_present
  2. pmd_none
  3. pmd_bad
  4. set_pmd
  5. pmd_clear
  6. pfn_pgd
  7. _pgd_pfn
  8. pgd_offset
  9. pmd_page
  10. pmd_page_vaddr
  11. pte_pfn
  12. pfn_pte
  13. pte_offset_kernel
  14. pte_present
  15. pte_none
  16. pte_write
  17. pte_exec
  18. pte_huge
  19. pte_dirty
  20. pte_young
  21. pte_special
  22. pte_wrprotect
  23. pte_mkwrite
  24. pte_mkdirty
  25. pte_mkclean
  26. pte_mkyoung
  27. pte_mkold
  28. pte_mkspecial
  29. pte_mkhuge
  30. pte_modify
  31. update_mmu_cache
  32. pte_same
  33. set_pte
  34. set_pte_at
  35. pte_clear
  36. ptep_set_access_flags
  37. ptep_get_and_clear
  38. ptep_test_and_clear_young
  39. ptep_set_wrprotect
  40. ptep_clear_flush_young

   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /*
   3  * Copyright (C) 2012 Regents of the University of California
   4  */
   5 
   6 #ifndef _ASM_RISCV_PGTABLE_H
   7 #define _ASM_RISCV_PGTABLE_H
   8 
   9 #include <linux/mmzone.h>
  10 #include <linux/sizes.h>
  11 
  12 #include <asm/pgtable-bits.h>
  13 
  14 #ifndef __ASSEMBLY__
  15 
  16 /* Page Upper Directory not used in RISC-V */
  17 #include <asm-generic/pgtable-nopud.h>
  18 #include <asm/page.h>
  19 #include <asm/tlbflush.h>
  20 #include <linux/mm_types.h>
  21 
  22 #ifdef CONFIG_64BIT
  23 #include <asm/pgtable-64.h>
  24 #else
  25 #include <asm/pgtable-32.h>
  26 #endif /* CONFIG_64BIT */
  27 
  28 /* Number of entries in the page global directory */
  29 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
  30 /* Number of entries in the page table */
  31 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
  32 
  33 /* Number of PGD entries that a user-mode program can use */
  34 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
  35 #define FIRST_USER_ADDRESS  0
  36 
  37 /* Page protection bits */
  38 #define _PAGE_BASE      (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
  39 
  40 #define PAGE_NONE               __pgprot(_PAGE_PROT_NONE)
  41 #define PAGE_READ               __pgprot(_PAGE_BASE | _PAGE_READ)
  42 #define PAGE_WRITE              __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
  43 #define PAGE_EXEC               __pgprot(_PAGE_BASE | _PAGE_EXEC)
  44 #define PAGE_READ_EXEC          __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
  45 #define PAGE_WRITE_EXEC         __pgprot(_PAGE_BASE | _PAGE_READ |      \
  46                                          _PAGE_EXEC | _PAGE_WRITE)
  47 
  48 #define PAGE_COPY               PAGE_READ
  49 #define PAGE_COPY_EXEC          PAGE_EXEC
  50 #define PAGE_COPY_READ_EXEC     PAGE_READ_EXEC
  51 #define PAGE_SHARED             PAGE_WRITE
  52 #define PAGE_SHARED_EXEC        PAGE_WRITE_EXEC
  53 
  54 #define _PAGE_KERNEL            (_PAGE_READ \
  55                                 | _PAGE_WRITE \
  56                                 | _PAGE_PRESENT \
  57                                 | _PAGE_ACCESSED \
  58                                 | _PAGE_DIRTY)
  59 
  60 #define PAGE_KERNEL             __pgprot(_PAGE_KERNEL)
  61 #define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
  62 
  63 #define PAGE_TABLE              __pgprot(_PAGE_TABLE)
  64 
  65 extern pgd_t swapper_pg_dir[];
  66 
  67 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
  68 #define __P000  PAGE_NONE
  69 #define __P001  PAGE_READ
  70 #define __P010  PAGE_COPY
  71 #define __P011  PAGE_COPY
  72 #define __P100  PAGE_EXEC
  73 #define __P101  PAGE_READ_EXEC
  74 #define __P110  PAGE_COPY_EXEC
  75 #define __P111  PAGE_COPY_READ_EXEC
  76 
  77 /* MAP_SHARED permissions: xwr */
  78 #define __S000  PAGE_NONE
  79 #define __S001  PAGE_READ
  80 #define __S010  PAGE_SHARED
  81 #define __S011  PAGE_SHARED
  82 #define __S100  PAGE_EXEC
  83 #define __S101  PAGE_READ_EXEC
  84 #define __S110  PAGE_SHARED_EXEC
  85 #define __S111  PAGE_SHARED_EXEC
  86 
  87 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
  88 #define VMALLOC_END      (PAGE_OFFSET - 1)
  89 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
  90 #define PCI_IO_SIZE      SZ_16M
  91 
  92 /*
  93  * Roughly size the vmemmap space to be large enough to fit enough
  94  * struct pages to map half the virtual address space. Then
  95  * position vmemmap directly below the VMALLOC region.
  96  */
  97 #define VMEMMAP_SHIFT \
  98         (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
  99 #define VMEMMAP_SIZE    BIT(VMEMMAP_SHIFT)
 100 #define VMEMMAP_END     (VMALLOC_START - 1)
 101 #define VMEMMAP_START   (VMALLOC_START - VMEMMAP_SIZE)
 102 
 103 #define vmemmap         ((struct page *)VMEMMAP_START)
 104 
 105 #define PCI_IO_END       VMEMMAP_START
 106 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
 107 #define FIXADDR_TOP      PCI_IO_START
 108 
 109 #ifdef CONFIG_64BIT
 110 #define FIXADDR_SIZE     PMD_SIZE
 111 #else
 112 #define FIXADDR_SIZE     PGDIR_SIZE
 113 #endif
 114 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
 115 
 116 /*
 117  * ZERO_PAGE is a global shared page that is always zero,
 118  * used for zero-mapped memory areas, etc.
 119  */
 120 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
 121 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 122 
 123 static inline int pmd_present(pmd_t pmd)
 124 {
 125         return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
 126 }
 127 
 128 static inline int pmd_none(pmd_t pmd)
 129 {
 130         return (pmd_val(pmd) == 0);
 131 }
 132 
 133 static inline int pmd_bad(pmd_t pmd)
 134 {
 135         return !pmd_present(pmd);
 136 }
 137 
 138 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
 139 {
 140         *pmdp = pmd;
 141 }
 142 
 143 static inline void pmd_clear(pmd_t *pmdp)
 144 {
 145         set_pmd(pmdp, __pmd(0));
 146 }
 147 
 148 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
 149 {
 150         return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
 151 }
 152 
 153 static inline unsigned long _pgd_pfn(pgd_t pgd)
 154 {
 155         return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
 156 }
 157 
 158 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
 159 
 160 /* Locate an entry in the page global directory */
 161 static inline pgd_t *pgd_offset(const struct mm_struct *mm, unsigned long addr)
 162 {
 163         return mm->pgd + pgd_index(addr);
 164 }
 165 /* Locate an entry in the kernel page global directory */
 166 #define pgd_offset_k(addr)      pgd_offset(&init_mm, (addr))
 167 
 168 static inline struct page *pmd_page(pmd_t pmd)
 169 {
 170         return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
 171 }
 172 
 173 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
 174 {
 175         return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
 176 }
 177 
 178 /* Yields the page frame number (PFN) of a page table entry */
 179 static inline unsigned long pte_pfn(pte_t pte)
 180 {
 181         return (pte_val(pte) >> _PAGE_PFN_SHIFT);
 182 }
 183 
 184 #define pte_page(x)     pfn_to_page(pte_pfn(x))
 185 
 186 /* Constructs a page table entry */
 187 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
 188 {
 189         return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
 190 }
 191 
 192 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
 193 
 194 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 195 
 196 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long addr)
 197 {
 198         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(addr);
 199 }
 200 
 201 #define pte_offset_map(dir, addr)       pte_offset_kernel((dir), (addr))
 202 #define pte_unmap(pte)                  ((void)(pte))
 203 
 204 static inline int pte_present(pte_t pte)
 205 {
 206         return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
 207 }
 208 
 209 static inline int pte_none(pte_t pte)
 210 {
 211         return (pte_val(pte) == 0);
 212 }
 213 
 214 static inline int pte_write(pte_t pte)
 215 {
 216         return pte_val(pte) & _PAGE_WRITE;
 217 }
 218 
 219 static inline int pte_exec(pte_t pte)
 220 {
 221         return pte_val(pte) & _PAGE_EXEC;
 222 }
 223 
 224 static inline int pte_huge(pte_t pte)
 225 {
 226         return pte_present(pte)
 227                 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
 228 }
 229 
 230 static inline int pte_dirty(pte_t pte)
 231 {
 232         return pte_val(pte) & _PAGE_DIRTY;
 233 }
 234 
 235 static inline int pte_young(pte_t pte)
 236 {
 237         return pte_val(pte) & _PAGE_ACCESSED;
 238 }
 239 
 240 static inline int pte_special(pte_t pte)
 241 {
 242         return pte_val(pte) & _PAGE_SPECIAL;
 243 }
 244 
 245 /* static inline pte_t pte_rdprotect(pte_t pte) */
 246 
 247 static inline pte_t pte_wrprotect(pte_t pte)
 248 {
 249         return __pte(pte_val(pte) & ~(_PAGE_WRITE));
 250 }
 251 
 252 /* static inline pte_t pte_mkread(pte_t pte) */
 253 
 254 static inline pte_t pte_mkwrite(pte_t pte)
 255 {
 256         return __pte(pte_val(pte) | _PAGE_WRITE);
 257 }
 258 
 259 /* static inline pte_t pte_mkexec(pte_t pte) */
 260 
 261 static inline pte_t pte_mkdirty(pte_t pte)
 262 {
 263         return __pte(pte_val(pte) | _PAGE_DIRTY);
 264 }
 265 
 266 static inline pte_t pte_mkclean(pte_t pte)
 267 {
 268         return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
 269 }
 270 
 271 static inline pte_t pte_mkyoung(pte_t pte)
 272 {
 273         return __pte(pte_val(pte) | _PAGE_ACCESSED);
 274 }
 275 
 276 static inline pte_t pte_mkold(pte_t pte)
 277 {
 278         return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
 279 }
 280 
 281 static inline pte_t pte_mkspecial(pte_t pte)
 282 {
 283         return __pte(pte_val(pte) | _PAGE_SPECIAL);
 284 }
 285 
 286 static inline pte_t pte_mkhuge(pte_t pte)
 287 {
 288         return pte;
 289 }
 290 
 291 /* Modify page protection bits */
 292 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 293 {
 294         return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
 295 }
 296 
 297 #define pgd_ERROR(e) \
 298         pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
 299 
 300 
 301 /* Commit new configuration to MMU hardware */
 302 static inline void update_mmu_cache(struct vm_area_struct *vma,
 303         unsigned long address, pte_t *ptep)
 304 {
 305         /*
 306          * The kernel assumes that TLBs don't cache invalid entries, but
 307          * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
 308          * cache flush; it is necessary even after writing invalid entries.
 309          * Relying on flush_tlb_fix_spurious_fault would suffice, but
 310          * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
 311          */
 312         local_flush_tlb_page(address);
 313 }
 314 
 315 #define __HAVE_ARCH_PTE_SAME
 316 static inline int pte_same(pte_t pte_a, pte_t pte_b)
 317 {
 318         return pte_val(pte_a) == pte_val(pte_b);
 319 }
 320 
 321 /*
 322  * Certain architectures need to do special things when PTEs within
 323  * a page table are directly modified.  Thus, the following hook is
 324  * made available.
 325  */
 326 static inline void set_pte(pte_t *ptep, pte_t pteval)
 327 {
 328         *ptep = pteval;
 329 }
 330 
 331 void flush_icache_pte(pte_t pte);
 332 
 333 static inline void set_pte_at(struct mm_struct *mm,
 334         unsigned long addr, pte_t *ptep, pte_t pteval)
 335 {
 336         if (pte_present(pteval) && pte_exec(pteval))
 337                 flush_icache_pte(pteval);
 338 
 339         set_pte(ptep, pteval);
 340 }
 341 
 342 static inline void pte_clear(struct mm_struct *mm,
 343         unsigned long addr, pte_t *ptep)
 344 {
 345         set_pte_at(mm, addr, ptep, __pte(0));
 346 }
 347 
 348 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 349 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
 350                                         unsigned long address, pte_t *ptep,
 351                                         pte_t entry, int dirty)
 352 {
 353         if (!pte_same(*ptep, entry))
 354                 set_pte_at(vma->vm_mm, address, ptep, entry);
 355         /*
 356          * update_mmu_cache will unconditionally execute, handling both
 357          * the case that the PTE changed and the spurious fault case.
 358          */
 359         return true;
 360 }
 361 
 362 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 363 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 364                                        unsigned long address, pte_t *ptep)
 365 {
 366         return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
 367 }
 368 
 369 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 370 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 371                                             unsigned long address,
 372                                             pte_t *ptep)
 373 {
 374         if (!pte_young(*ptep))
 375                 return 0;
 376         return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
 377 }
 378 
 379 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
 380 static inline void ptep_set_wrprotect(struct mm_struct *mm,
 381                                       unsigned long address, pte_t *ptep)
 382 {
 383         atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
 384 }
 385 
 386 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 387 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
 388                                          unsigned long address, pte_t *ptep)
 389 {
 390         /*
 391          * This comment is borrowed from x86, but applies equally to RISC-V:
 392          *
 393          * Clearing the accessed bit without a TLB flush
 394          * doesn't cause data corruption. [ It could cause incorrect
 395          * page aging and the (mistaken) reclaim of hot pages, but the
 396          * chance of that should be relatively low. ]
 397          *
 398          * So as a performance optimization don't flush the TLB when
 399          * clearing the accessed bit, it will eventually be flushed by
 400          * a context switch or a VM operation anyway. [ In the rare
 401          * event of it not getting flushed for a long time the delay
 402          * shouldn't really matter because there's no real memory
 403          * pressure for swapout to react to. ]
 404          */
 405         return ptep_test_and_clear_young(vma, address, ptep);
 406 }
 407 
 408 /*
 409  * Encode and decode a swap entry
 410  *
 411  * Format of swap PTE:
 412  *      bit            0:       _PAGE_PRESENT (zero)
 413  *      bit            1:       _PAGE_PROT_NONE (zero)
 414  *      bits      2 to 6:       swap type
 415  *      bits 7 to XLEN-1:       swap offset
 416  */
 417 #define __SWP_TYPE_SHIFT        2
 418 #define __SWP_TYPE_BITS         5
 419 #define __SWP_TYPE_MASK         ((1UL << __SWP_TYPE_BITS) - 1)
 420 #define __SWP_OFFSET_SHIFT      (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
 421 
 422 #define MAX_SWAPFILES_CHECK()   \
 423         BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
 424 
 425 #define __swp_type(x)   (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
 426 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
 427 #define __swp_entry(type, offset) ((swp_entry_t) \
 428         { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
 429 
 430 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 431 #define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
 432 
 433 #define kern_addr_valid(addr)   (1) /* FIXME */
 434 
 435 extern void *dtb_early_va;
 436 extern void setup_bootmem(void);
 437 extern void paging_init(void);
 438 
 439 /*
 440  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
 441  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
 442  */
 443 #ifdef CONFIG_64BIT
 444 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
 445 #else
 446 #define TASK_SIZE FIXADDR_START
 447 #endif
 448 
 449 #include <asm-generic/pgtable.h>
 450 
 451 #endif /* !__ASSEMBLY__ */
 452 
 453 #endif /* _ASM_RISCV_PGTABLE_H */

/* [<][>][^][v][top][bottom][index][help] */