root/arch/sh/mm/cache-sh5.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sh64_setup_dtlb_cache_slot
  2. sh64_teardown_dtlb_cache_slot
  3. sh64_icache_inv_all
  4. sh64_icache_inv_kernel_range
  5. sh64_icache_inv_user_page
  6. sh64_icache_inv_user_page_range
  7. sh64_icache_inv_current_user_range
  8. sh64_dcache_purge_sets
  9. sh64_dcache_purge_all
  10. sh64_dcache_purge_coloured_phy_page
  11. sh64_dcache_purge_phy_page
  12. sh64_dcache_purge_user_pages
  13. sh64_dcache_purge_user_range
  14. sh5_flush_cache_all
  15. sh5_flush_cache_mm
  16. sh5_flush_cache_range
  17. sh5_flush_cache_page
  18. sh5_flush_dcache_page
  19. sh5_flush_icache_range
  20. sh5_flush_cache_sigtramp
  21. sh5_cache_init

   1 /*
   2  * arch/sh/mm/cache-sh5.c
   3  *
   4  * Copyright (C) 2000, 2001  Paolo Alberelli
   5  * Copyright (C) 2002  Benedict Gaster
   6  * Copyright (C) 2003  Richard Curnow
   7  * Copyright (C) 2003 - 2008  Paul Mundt
   8  *
   9  * This file is subject to the terms and conditions of the GNU General Public
  10  * License.  See the file "COPYING" in the main directory of this archive
  11  * for more details.
  12  */
  13 #include <linux/init.h>
  14 #include <linux/mman.h>
  15 #include <linux/mm.h>
  16 #include <asm/tlb.h>
  17 #include <asm/processor.h>
  18 #include <asm/cache.h>
  19 #include <asm/pgalloc.h>
  20 #include <linux/uaccess.h>
  21 #include <asm/mmu_context.h>
  22 
  23 extern void __weak sh4__flush_region_init(void);
  24 
  25 /* Wired TLB entry for the D-cache */
  26 static unsigned long long dtlb_cache_slot;
  27 
  28 /*
  29  * The following group of functions deal with mapping and unmapping a
  30  * temporary page into a DTLB slot that has been set aside for exclusive
  31  * use.
  32  */
  33 static inline void
  34 sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid,
  35                            unsigned long paddr)
  36 {
  37         local_irq_disable();
  38         sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr);
  39 }
  40 
  41 static inline void sh64_teardown_dtlb_cache_slot(void)
  42 {
  43         sh64_teardown_tlb_slot(dtlb_cache_slot);
  44         local_irq_enable();
  45 }
  46 
  47 static inline void sh64_icache_inv_all(void)
  48 {
  49         unsigned long long addr, flag, data;
  50         unsigned long flags;
  51 
  52         addr = ICCR0;
  53         flag = ICCR0_ICI;
  54         data = 0;
  55 
  56         /* Make this a critical section for safety (probably not strictly necessary.) */
  57         local_irq_save(flags);
  58 
  59         /* Without %1 it gets unexplicably wrong */
  60         __asm__ __volatile__ (
  61                 "getcfg %3, 0, %0\n\t"
  62                 "or     %0, %2, %0\n\t"
  63                 "putcfg %3, 0, %0\n\t"
  64                 "synci"
  65                 : "=&r" (data)
  66                 : "0" (data), "r" (flag), "r" (addr));
  67 
  68         local_irq_restore(flags);
  69 }
  70 
  71 static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end)
  72 {
  73         /* Invalidate range of addresses [start,end] from the I-cache, where
  74          * the addresses lie in the kernel superpage. */
  75 
  76         unsigned long long ullend, addr, aligned_start;
  77         aligned_start = (unsigned long long)(signed long long)(signed long) start;
  78         addr = L1_CACHE_ALIGN(aligned_start);
  79         ullend = (unsigned long long) (signed long long) (signed long) end;
  80 
  81         while (addr <= ullend) {
  82                 __asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
  83                 addr += L1_CACHE_BYTES;
  84         }
  85 }
  86 
  87 static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr)
  88 {
  89         /* If we get called, we know that vma->vm_flags contains VM_EXEC.
  90            Also, eaddr is page-aligned. */
  91         unsigned int cpu = smp_processor_id();
  92         unsigned long long addr, end_addr;
  93         unsigned long flags = 0;
  94         unsigned long running_asid, vma_asid;
  95         addr = eaddr;
  96         end_addr = addr + PAGE_SIZE;
  97 
  98         /* Check whether we can use the current ASID for the I-cache
  99            invalidation.  For example, if we're called via
 100            access_process_vm->flush_cache_page->here, (e.g. when reading from
 101            /proc), 'running_asid' will be that of the reader, not of the
 102            victim.
 103 
 104            Also, note the risk that we might get pre-empted between the ASID
 105            compare and blocking IRQs, and before we regain control, the
 106            pid->ASID mapping changes.  However, the whole cache will get
 107            invalidated when the mapping is renewed, so the worst that can
 108            happen is that the loop below ends up invalidating somebody else's
 109            cache entries.
 110         */
 111 
 112         running_asid = get_asid();
 113         vma_asid = cpu_asid(cpu, vma->vm_mm);
 114         if (running_asid != vma_asid) {
 115                 local_irq_save(flags);
 116                 switch_and_save_asid(vma_asid);
 117         }
 118         while (addr < end_addr) {
 119                 /* Worth unrolling a little */
 120                 __asm__ __volatile__("icbi %0,  0" : : "r" (addr));
 121                 __asm__ __volatile__("icbi %0, 32" : : "r" (addr));
 122                 __asm__ __volatile__("icbi %0, 64" : : "r" (addr));
 123                 __asm__ __volatile__("icbi %0, 96" : : "r" (addr));
 124                 addr += 128;
 125         }
 126         if (running_asid != vma_asid) {
 127                 switch_and_save_asid(running_asid);
 128                 local_irq_restore(flags);
 129         }
 130 }
 131 
 132 static void sh64_icache_inv_user_page_range(struct mm_struct *mm,
 133                           unsigned long start, unsigned long end)
 134 {
 135         /* Used for invalidating big chunks of I-cache, i.e. assume the range
 136            is whole pages.  If 'start' or 'end' is not page aligned, the code
 137            is conservative and invalidates to the ends of the enclosing pages.
 138            This is functionally OK, just a performance loss. */
 139 
 140         /* See the comments below in sh64_dcache_purge_user_range() regarding
 141            the choice of algorithm.  However, for the I-cache option (2) isn't
 142            available because there are no physical tags so aliases can't be
 143            resolved.  The icbi instruction has to be used through the user
 144            mapping.   Because icbi is cheaper than ocbp on a cache hit, it
 145            would be cheaper to use the selective code for a large range than is
 146            possible with the D-cache.  Just assume 64 for now as a working
 147            figure.
 148            */
 149         int n_pages;
 150 
 151         if (!mm)
 152                 return;
 153 
 154         n_pages = ((end - start) >> PAGE_SHIFT);
 155         if (n_pages >= 64) {
 156                 sh64_icache_inv_all();
 157         } else {
 158                 unsigned long aligned_start;
 159                 unsigned long eaddr;
 160                 unsigned long after_last_page_start;
 161                 unsigned long mm_asid, current_asid;
 162                 unsigned long flags = 0;
 163 
 164                 mm_asid = cpu_asid(smp_processor_id(), mm);
 165                 current_asid = get_asid();
 166 
 167                 if (mm_asid != current_asid) {
 168                         /* Switch ASID and run the invalidate loop under cli */
 169                         local_irq_save(flags);
 170                         switch_and_save_asid(mm_asid);
 171                 }
 172 
 173                 aligned_start = start & PAGE_MASK;
 174                 after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK);
 175 
 176                 while (aligned_start < after_last_page_start) {
 177                         struct vm_area_struct *vma;
 178                         unsigned long vma_end;
 179                         vma = find_vma(mm, aligned_start);
 180                         if (!vma || (aligned_start <= vma->vm_end)) {
 181                                 /* Avoid getting stuck in an error condition */
 182                                 aligned_start += PAGE_SIZE;
 183                                 continue;
 184                         }
 185                         vma_end = vma->vm_end;
 186                         if (vma->vm_flags & VM_EXEC) {
 187                                 /* Executable */
 188                                 eaddr = aligned_start;
 189                                 while (eaddr < vma_end) {
 190                                         sh64_icache_inv_user_page(vma, eaddr);
 191                                         eaddr += PAGE_SIZE;
 192                                 }
 193                         }
 194                         aligned_start = vma->vm_end; /* Skip to start of next region */
 195                 }
 196 
 197                 if (mm_asid != current_asid) {
 198                         switch_and_save_asid(current_asid);
 199                         local_irq_restore(flags);
 200                 }
 201         }
 202 }
 203 
 204 static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end)
 205 {
 206         /* The icbi instruction never raises ITLBMISS.  i.e. if there's not a
 207            cache hit on the virtual tag the instruction ends there, without a
 208            TLB lookup. */
 209 
 210         unsigned long long aligned_start;
 211         unsigned long long ull_end;
 212         unsigned long long addr;
 213 
 214         ull_end = end;
 215 
 216         /* Just invalidate over the range using the natural addresses.  TLB
 217            miss handling will be OK (TBC).  Since it's for the current process,
 218            either we're already in the right ASID context, or the ASIDs have
 219            been recycled since we were last active in which case we might just
 220            invalidate another processes I-cache entries : no worries, just a
 221            performance drop for him. */
 222         aligned_start = L1_CACHE_ALIGN(start);
 223         addr = aligned_start;
 224         while (addr < ull_end) {
 225                 __asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
 226                 __asm__ __volatile__ ("nop");
 227                 __asm__ __volatile__ ("nop");
 228                 addr += L1_CACHE_BYTES;
 229         }
 230 }
 231 
 232 /* Buffer used as the target of alloco instructions to purge data from cache
 233    sets by natural eviction. -- RPC */
 234 #define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4))
 235 static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, };
 236 
 237 static inline void sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets)
 238 {
 239         /* Purge all ways in a particular block of sets, specified by the base
 240            set number and number of sets.  Can handle wrap-around, if that's
 241            needed.  */
 242 
 243         int dummy_buffer_base_set;
 244         unsigned long long eaddr, eaddr0, eaddr1;
 245         int j;
 246         int set_offset;
 247 
 248         dummy_buffer_base_set = ((int)&dummy_alloco_area &
 249                                  cpu_data->dcache.entry_mask) >>
 250                                  cpu_data->dcache.entry_shift;
 251         set_offset = sets_to_purge_base - dummy_buffer_base_set;
 252 
 253         for (j = 0; j < n_sets; j++, set_offset++) {
 254                 set_offset &= (cpu_data->dcache.sets - 1);
 255                 eaddr0 = (unsigned long long)dummy_alloco_area +
 256                         (set_offset << cpu_data->dcache.entry_shift);
 257 
 258                 /*
 259                  * Do one alloco which hits the required set per cache
 260                  * way.  For write-back mode, this will purge the #ways
 261                  * resident lines.  There's little point unrolling this
 262                  * loop because the allocos stall more if they're too
 263                  * close together.
 264                  */
 265                 eaddr1 = eaddr0 + cpu_data->dcache.way_size *
 266                                   cpu_data->dcache.ways;
 267 
 268                 for (eaddr = eaddr0; eaddr < eaddr1;
 269                      eaddr += cpu_data->dcache.way_size) {
 270                         __asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr));
 271                         __asm__ __volatile__ ("synco"); /* TAKum03020 */
 272                 }
 273 
 274                 eaddr1 = eaddr0 + cpu_data->dcache.way_size *
 275                                   cpu_data->dcache.ways;
 276 
 277                 for (eaddr = eaddr0; eaddr < eaddr1;
 278                      eaddr += cpu_data->dcache.way_size) {
 279                         /*
 280                          * Load from each address.  Required because
 281                          * alloco is a NOP if the cache is write-through.
 282                          */
 283                         if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)))
 284                                 __raw_readb((unsigned long)eaddr);
 285                 }
 286         }
 287 
 288         /*
 289          * Don't use OCBI to invalidate the lines.  That costs cycles
 290          * directly.  If the dummy block is just left resident, it will
 291          * naturally get evicted as required.
 292          */
 293 }
 294 
 295 /*
 296  * Purge the entire contents of the dcache.  The most efficient way to
 297  * achieve this is to use alloco instructions on a region of unused
 298  * memory equal in size to the cache, thereby causing the current
 299  * contents to be discarded by natural eviction.  The alternative, namely
 300  * reading every tag, setting up a mapping for the corresponding page and
 301  * doing an OCBP for the line, would be much more expensive.
 302  */
 303 static void sh64_dcache_purge_all(void)
 304 {
 305 
 306         sh64_dcache_purge_sets(0, cpu_data->dcache.sets);
 307 }
 308 
 309 
 310 /* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for
 311    anything else in the kernel */
 312 #define MAGIC_PAGE0_START 0xffffffffec000000ULL
 313 
 314 /* Purge the physical page 'paddr' from the cache.  It's known that any
 315  * cache lines requiring attention have the same page colour as the the
 316  * address 'eaddr'.
 317  *
 318  * This relies on the fact that the D-cache matches on physical tags when
 319  * no virtual tag matches.  So we create an alias for the original page
 320  * and purge through that.  (Alternatively, we could have done this by
 321  * switching ASID to match the original mapping and purged through that,
 322  * but that involves ASID switching cost + probably a TLBMISS + refill
 323  * anyway.)
 324  */
 325 static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr,
 326                                                 unsigned long eaddr)
 327 {
 328         unsigned long long magic_page_start;
 329         unsigned long long magic_eaddr, magic_eaddr_end;
 330 
 331         magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK);
 332 
 333         /* As long as the kernel is not pre-emptible, this doesn't need to be
 334            under cli/sti. */
 335         sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr);
 336 
 337         magic_eaddr = magic_page_start;
 338         magic_eaddr_end = magic_eaddr + PAGE_SIZE;
 339 
 340         while (magic_eaddr < magic_eaddr_end) {
 341                 /* Little point in unrolling this loop - the OCBPs are blocking
 342                    and won't go any quicker (i.e. the loop overhead is parallel
 343                    to part of the OCBP execution.) */
 344                 __asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr));
 345                 magic_eaddr += L1_CACHE_BYTES;
 346         }
 347 
 348         sh64_teardown_dtlb_cache_slot();
 349 }
 350 
 351 /*
 352  * Purge a page given its physical start address, by creating a temporary
 353  * 1 page mapping and purging across that.  Even if we know the virtual
 354  * address (& vma or mm) of the page, the method here is more elegant
 355  * because it avoids issues of coping with page faults on the purge
 356  * instructions (i.e. no special-case code required in the critical path
 357  * in the TLB miss handling).
 358  */
 359 static void sh64_dcache_purge_phy_page(unsigned long paddr)
 360 {
 361         unsigned long long eaddr_start, eaddr, eaddr_end;
 362         int i;
 363 
 364         /* As long as the kernel is not pre-emptible, this doesn't need to be
 365            under cli/sti. */
 366         eaddr_start = MAGIC_PAGE0_START;
 367         for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) {
 368                 sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr);
 369 
 370                 eaddr = eaddr_start;
 371                 eaddr_end = eaddr + PAGE_SIZE;
 372                 while (eaddr < eaddr_end) {
 373                         __asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr));
 374                         eaddr += L1_CACHE_BYTES;
 375                 }
 376 
 377                 sh64_teardown_dtlb_cache_slot();
 378                 eaddr_start += PAGE_SIZE;
 379         }
 380 }
 381 
 382 static void sh64_dcache_purge_user_pages(struct mm_struct *mm,
 383                                 unsigned long addr, unsigned long end)
 384 {
 385         pgd_t *pgd;
 386         pud_t *pud;
 387         pmd_t *pmd;
 388         pte_t *pte;
 389         pte_t entry;
 390         spinlock_t *ptl;
 391         unsigned long paddr;
 392 
 393         if (!mm)
 394                 return; /* No way to find physical address of page */
 395 
 396         pgd = pgd_offset(mm, addr);
 397         if (pgd_bad(*pgd))
 398                 return;
 399 
 400         pud = pud_offset(pgd, addr);
 401         if (pud_none(*pud) || pud_bad(*pud))
 402                 return;
 403 
 404         pmd = pmd_offset(pud, addr);
 405         if (pmd_none(*pmd) || pmd_bad(*pmd))
 406                 return;
 407 
 408         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 409         do {
 410                 entry = *pte;
 411                 if (pte_none(entry) || !pte_present(entry))
 412                         continue;
 413                 paddr = pte_val(entry) & PAGE_MASK;
 414                 sh64_dcache_purge_coloured_phy_page(paddr, addr);
 415         } while (pte++, addr += PAGE_SIZE, addr != end);
 416         pte_unmap_unlock(pte - 1, ptl);
 417 }
 418 
 419 /*
 420  * There are at least 5 choices for the implementation of this, with
 421  * pros (+), cons(-), comments(*):
 422  *
 423  * 1. ocbp each line in the range through the original user's ASID
 424  *    + no lines spuriously evicted
 425  *    - tlbmiss handling (must either handle faults on demand => extra
 426  *      special-case code in tlbmiss critical path), or map the page in
 427  *      advance (=> flush_tlb_range in advance to avoid multiple hits)
 428  *    - ASID switching
 429  *    - expensive for large ranges
 430  *
 431  * 2. temporarily map each page in the range to a special effective
 432  *    address and ocbp through the temporary mapping; relies on the
 433  *    fact that SH-5 OCB* always do TLB lookup and match on ptags (they
 434  *    never look at the etags)
 435  *    + no spurious evictions
 436  *    - expensive for large ranges
 437  *    * surely cheaper than (1)
 438  *
 439  * 3. walk all the lines in the cache, check the tags, if a match
 440  *    occurs create a page mapping to ocbp the line through
 441  *    + no spurious evictions
 442  *    - tag inspection overhead
 443  *    - (especially for small ranges)
 444  *    - potential cost of setting up/tearing down page mapping for
 445  *      every line that matches the range
 446  *    * cost partly independent of range size
 447  *
 448  * 4. walk all the lines in the cache, check the tags, if a match
 449  *    occurs use 4 * alloco to purge the line (+3 other probably
 450  *    innocent victims) by natural eviction
 451  *    + no tlb mapping overheads
 452  *    - spurious evictions
 453  *    - tag inspection overhead
 454  *
 455  * 5. implement like flush_cache_all
 456  *    + no tag inspection overhead
 457  *    - spurious evictions
 458  *    - bad for small ranges
 459  *
 460  * (1) can be ruled out as more expensive than (2).  (2) appears best
 461  * for small ranges.  The choice between (3), (4) and (5) for large
 462  * ranges and the range size for the large/small boundary need
 463  * benchmarking to determine.
 464  *
 465  * For now use approach (2) for small ranges and (5) for large ones.
 466  */
 467 static void sh64_dcache_purge_user_range(struct mm_struct *mm,
 468                           unsigned long start, unsigned long end)
 469 {
 470         int n_pages = ((end - start) >> PAGE_SHIFT);
 471 
 472         if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) {
 473                 sh64_dcache_purge_all();
 474         } else {
 475                 /* Small range, covered by a single page table page */
 476                 start &= PAGE_MASK;     /* should already be so */
 477                 end = PAGE_ALIGN(end);  /* should already be so */
 478                 sh64_dcache_purge_user_pages(mm, start, end);
 479         }
 480 }
 481 
 482 /*
 483  * Invalidate the entire contents of both caches, after writing back to
 484  * memory any dirty data from the D-cache.
 485  */
 486 static void sh5_flush_cache_all(void *unused)
 487 {
 488         sh64_dcache_purge_all();
 489         sh64_icache_inv_all();
 490 }
 491 
 492 /*
 493  * Invalidate an entire user-address space from both caches, after
 494  * writing back dirty data (e.g. for shared mmap etc).
 495  *
 496  * This could be coded selectively by inspecting all the tags then
 497  * doing 4*alloco on any set containing a match (as for
 498  * flush_cache_range), but fork/exit/execve (where this is called from)
 499  * are expensive anyway.
 500  *
 501  * Have to do a purge here, despite the comments re I-cache below.
 502  * There could be odd-coloured dirty data associated with the mm still
 503  * in the cache - if this gets written out through natural eviction
 504  * after the kernel has reused the page there will be chaos.
 505  *
 506  * The mm being torn down won't ever be active again, so any Icache
 507  * lines tagged with its ASID won't be visible for the rest of the
 508  * lifetime of this ASID cycle.  Before the ASID gets reused, there
 509  * will be a flush_cache_all.  Hence we don't need to touch the
 510  * I-cache.  This is similar to the lack of action needed in
 511  * flush_tlb_mm - see fault.c.
 512  */
 513 static void sh5_flush_cache_mm(void *unused)
 514 {
 515         sh64_dcache_purge_all();
 516 }
 517 
 518 /*
 519  * Invalidate (from both caches) the range [start,end) of virtual
 520  * addresses from the user address space specified by mm, after writing
 521  * back any dirty data.
 522  *
 523  * Note, 'end' is 1 byte beyond the end of the range to flush.
 524  */
 525 static void sh5_flush_cache_range(void *args)
 526 {
 527         struct flusher_data *data = args;
 528         struct vm_area_struct *vma;
 529         unsigned long start, end;
 530 
 531         vma = data->vma;
 532         start = data->addr1;
 533         end = data->addr2;
 534 
 535         sh64_dcache_purge_user_range(vma->vm_mm, start, end);
 536         sh64_icache_inv_user_page_range(vma->vm_mm, start, end);
 537 }
 538 
 539 /*
 540  * Invalidate any entries in either cache for the vma within the user
 541  * address space vma->vm_mm for the page starting at virtual address
 542  * 'eaddr'.   This seems to be used primarily in breaking COW.  Note,
 543  * the I-cache must be searched too in case the page in question is
 544  * both writable and being executed from (e.g. stack trampolines.)
 545  *
 546  * Note, this is called with pte lock held.
 547  */
 548 static void sh5_flush_cache_page(void *args)
 549 {
 550         struct flusher_data *data = args;
 551         struct vm_area_struct *vma;
 552         unsigned long eaddr, pfn;
 553 
 554         vma = data->vma;
 555         eaddr = data->addr1;
 556         pfn = data->addr2;
 557 
 558         sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT);
 559 
 560         if (vma->vm_flags & VM_EXEC)
 561                 sh64_icache_inv_user_page(vma, eaddr);
 562 }
 563 
 564 static void sh5_flush_dcache_page(void *page)
 565 {
 566         sh64_dcache_purge_phy_page(page_to_phys((struct page *)page));
 567         wmb();
 568 }
 569 
 570 /*
 571  * Flush the range [start,end] of kernel virtual address space from
 572  * the I-cache.  The corresponding range must be purged from the
 573  * D-cache also because the SH-5 doesn't have cache snooping between
 574  * the caches.  The addresses will be visible through the superpage
 575  * mapping, therefore it's guaranteed that there no cache entries for
 576  * the range in cache sets of the wrong colour.
 577  */
 578 static void sh5_flush_icache_range(void *args)
 579 {
 580         struct flusher_data *data = args;
 581         unsigned long start, end;
 582 
 583         start = data->addr1;
 584         end = data->addr2;
 585 
 586         __flush_purge_region((void *)start, end);
 587         wmb();
 588         sh64_icache_inv_kernel_range(start, end);
 589 }
 590 
 591 /*
 592  * For the address range [start,end), write back the data from the
 593  * D-cache and invalidate the corresponding region of the I-cache for the
 594  * current process.  Used to flush signal trampolines on the stack to
 595  * make them executable.
 596  */
 597 static void sh5_flush_cache_sigtramp(void *vaddr)
 598 {
 599         unsigned long end = (unsigned long)vaddr + L1_CACHE_BYTES;
 600 
 601         __flush_wback_region(vaddr, L1_CACHE_BYTES);
 602         wmb();
 603         sh64_icache_inv_current_user_range((unsigned long)vaddr, end);
 604 }
 605 
 606 void __init sh5_cache_init(void)
 607 {
 608         local_flush_cache_all           = sh5_flush_cache_all;
 609         local_flush_cache_mm            = sh5_flush_cache_mm;
 610         local_flush_cache_dup_mm        = sh5_flush_cache_mm;
 611         local_flush_cache_page          = sh5_flush_cache_page;
 612         local_flush_cache_range         = sh5_flush_cache_range;
 613         local_flush_dcache_page         = sh5_flush_dcache_page;
 614         local_flush_icache_range        = sh5_flush_icache_range;
 615         local_flush_cache_sigtramp      = sh5_flush_cache_sigtramp;
 616 
 617         /* Reserve a slot for dcache colouring in the DTLB */
 618         dtlb_cache_slot = sh64_get_wired_dtlb_entry();
 619 
 620         sh4__flush_region_init();
 621 }

/* [<][>][^][v][top][bottom][index][help] */