root/arch/x86/platform/intel-quark/imr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. imr_is_enabled
  2. imr_read
  3. imr_write
  4. imr_dbgfs_state_show
  5. imr_debugfs_register
  6. imr_check_params
  7. imr_raw_size
  8. imr_address_overlap
  9. imr_add_range
  10. __imr_remove_range
  11. imr_remove_range
  12. imr_clear
  13. imr_fixup_memmap
  14. imr_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /**
   3  * imr.c -- Intel Isolated Memory Region driver
   4  *
   5  * Copyright(c) 2013 Intel Corporation.
   6  * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
   7  *
   8  * IMR registers define an isolated region of memory that can
   9  * be masked to prohibit certain system agents from accessing memory.
  10  * When a device behind a masked port performs an access - snooped or
  11  * not, an IMR may optionally prevent that transaction from changing
  12  * the state of memory or from getting correct data in response to the
  13  * operation.
  14  *
  15  * Write data will be dropped and reads will return 0xFFFFFFFF, the
  16  * system will reset and system BIOS will print out an error message to
  17  * inform the user that an IMR has been violated.
  18  *
  19  * This code is based on the Linux MTRR code and reference code from
  20  * Intel's Quark BSP EFI, Linux and grub code.
  21  *
  22  * See quark-x1000-datasheet.pdf for register definitions.
  23  * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
  24  */
  25 
  26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27 
  28 #include <asm-generic/sections.h>
  29 #include <asm/cpu_device_id.h>
  30 #include <asm/imr.h>
  31 #include <asm/iosf_mbi.h>
  32 #include <linux/debugfs.h>
  33 #include <linux/init.h>
  34 #include <linux/mm.h>
  35 #include <linux/types.h>
  36 
  37 struct imr_device {
  38         bool            init;
  39         struct mutex    lock;
  40         int             max_imr;
  41         int             reg_base;
  42 };
  43 
  44 static struct imr_device imr_dev;
  45 
  46 /*
  47  * IMR read/write mask control registers.
  48  * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
  49  * bit definitions.
  50  *
  51  * addr_hi
  52  * 31           Lock bit
  53  * 30:24        Reserved
  54  * 23:2         1 KiB aligned lo address
  55  * 1:0          Reserved
  56  *
  57  * addr_hi
  58  * 31:24        Reserved
  59  * 23:2         1 KiB aligned hi address
  60  * 1:0          Reserved
  61  */
  62 #define IMR_LOCK        BIT(31)
  63 
  64 struct imr_regs {
  65         u32 addr_lo;
  66         u32 addr_hi;
  67         u32 rmask;
  68         u32 wmask;
  69 };
  70 
  71 #define IMR_NUM_REGS    (sizeof(struct imr_regs)/sizeof(u32))
  72 #define IMR_SHIFT       8
  73 #define imr_to_phys(x)  ((x) << IMR_SHIFT)
  74 #define phys_to_imr(x)  ((x) >> IMR_SHIFT)
  75 
  76 /**
  77  * imr_is_enabled - true if an IMR is enabled false otherwise.
  78  *
  79  * Determines if an IMR is enabled based on address range and read/write
  80  * mask. An IMR set with an address range set to zero and a read/write
  81  * access mask set to all is considered to be disabled. An IMR in any
  82  * other state - for example set to zero but without read/write access
  83  * all is considered to be enabled. This definition of disabled is how
  84  * firmware switches off an IMR and is maintained in kernel for
  85  * consistency.
  86  *
  87  * @imr:        pointer to IMR descriptor.
  88  * @return:     true if IMR enabled false if disabled.
  89  */
  90 static inline int imr_is_enabled(struct imr_regs *imr)
  91 {
  92         return !(imr->rmask == IMR_READ_ACCESS_ALL &&
  93                  imr->wmask == IMR_WRITE_ACCESS_ALL &&
  94                  imr_to_phys(imr->addr_lo) == 0 &&
  95                  imr_to_phys(imr->addr_hi) == 0);
  96 }
  97 
  98 /**
  99  * imr_read - read an IMR at a given index.
 100  *
 101  * Requires caller to hold imr mutex.
 102  *
 103  * @idev:       pointer to imr_device structure.
 104  * @imr_id:     IMR entry to read.
 105  * @imr:        IMR structure representing address and access masks.
 106  * @return:     0 on success or error code passed from mbi_iosf on failure.
 107  */
 108 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
 109 {
 110         u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
 111         int ret;
 112 
 113         ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
 114         if (ret)
 115                 return ret;
 116 
 117         ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
 118         if (ret)
 119                 return ret;
 120 
 121         ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
 122         if (ret)
 123                 return ret;
 124 
 125         return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
 126 }
 127 
 128 /**
 129  * imr_write - write an IMR at a given index.
 130  *
 131  * Requires caller to hold imr mutex.
 132  * Note lock bits need to be written independently of address bits.
 133  *
 134  * @idev:       pointer to imr_device structure.
 135  * @imr_id:     IMR entry to write.
 136  * @imr:        IMR structure representing address and access masks.
 137  * @return:     0 on success or error code passed from mbi_iosf on failure.
 138  */
 139 static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
 140 {
 141         unsigned long flags;
 142         u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
 143         int ret;
 144 
 145         local_irq_save(flags);
 146 
 147         ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
 148         if (ret)
 149                 goto failed;
 150 
 151         ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
 152         if (ret)
 153                 goto failed;
 154 
 155         ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
 156         if (ret)
 157                 goto failed;
 158 
 159         ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
 160         if (ret)
 161                 goto failed;
 162 
 163         local_irq_restore(flags);
 164         return 0;
 165 failed:
 166         /*
 167          * If writing to the IOSF failed then we're in an unknown state,
 168          * likely a very bad state. An IMR in an invalid state will almost
 169          * certainly lead to a memory access violation.
 170          */
 171         local_irq_restore(flags);
 172         WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
 173              imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
 174 
 175         return ret;
 176 }
 177 
 178 /**
 179  * imr_dbgfs_state_show - print state of IMR registers.
 180  *
 181  * @s:          pointer to seq_file for output.
 182  * @unused:     unused parameter.
 183  * @return:     0 on success or error code passed from mbi_iosf on failure.
 184  */
 185 static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
 186 {
 187         phys_addr_t base;
 188         phys_addr_t end;
 189         int i;
 190         struct imr_device *idev = s->private;
 191         struct imr_regs imr;
 192         size_t size;
 193         int ret = -ENODEV;
 194 
 195         mutex_lock(&idev->lock);
 196 
 197         for (i = 0; i < idev->max_imr; i++) {
 198 
 199                 ret = imr_read(idev, i, &imr);
 200                 if (ret)
 201                         break;
 202 
 203                 /*
 204                  * Remember to add IMR_ALIGN bytes to size to indicate the
 205                  * inherent IMR_ALIGN size bytes contained in the masked away
 206                  * lower ten bits.
 207                  */
 208                 if (imr_is_enabled(&imr)) {
 209                         base = imr_to_phys(imr.addr_lo);
 210                         end = imr_to_phys(imr.addr_hi) + IMR_MASK;
 211                         size = end - base + 1;
 212                 } else {
 213                         base = 0;
 214                         end = 0;
 215                         size = 0;
 216                 }
 217                 seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
 218                            "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
 219                            &base, &end, size, imr.rmask, imr.wmask,
 220                            imr_is_enabled(&imr) ? "enabled " : "disabled",
 221                            imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
 222         }
 223 
 224         mutex_unlock(&idev->lock);
 225         return ret;
 226 }
 227 DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state);
 228 
 229 /**
 230  * imr_debugfs_register - register debugfs hooks.
 231  *
 232  * @idev:       pointer to imr_device structure.
 233  */
 234 static void imr_debugfs_register(struct imr_device *idev)
 235 {
 236         debugfs_create_file("imr_state", 0444, NULL, idev,
 237                             &imr_dbgfs_state_fops);
 238 }
 239 
 240 /**
 241  * imr_check_params - check passed address range IMR alignment and non-zero size
 242  *
 243  * @base:       base address of intended IMR.
 244  * @size:       size of intended IMR.
 245  * @return:     zero on valid range -EINVAL on unaligned base/size.
 246  */
 247 static int imr_check_params(phys_addr_t base, size_t size)
 248 {
 249         if ((base & IMR_MASK) || (size & IMR_MASK)) {
 250                 pr_err("base %pa size 0x%08zx must align to 1KiB\n",
 251                         &base, size);
 252                 return -EINVAL;
 253         }
 254         if (size == 0)
 255                 return -EINVAL;
 256 
 257         return 0;
 258 }
 259 
 260 /**
 261  * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
 262  *
 263  * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
 264  * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
 265  * as a result.
 266  *
 267  * @size:       input size bytes.
 268  * @return:     reduced size.
 269  */
 270 static inline size_t imr_raw_size(size_t size)
 271 {
 272         return size - IMR_ALIGN;
 273 }
 274 
 275 /**
 276  * imr_address_overlap - detects an address overlap.
 277  *
 278  * @addr:       address to check against an existing IMR.
 279  * @imr:        imr being checked.
 280  * @return:     true for overlap false for no overlap.
 281  */
 282 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
 283 {
 284         return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
 285 }
 286 
 287 /**
 288  * imr_add_range - add an Isolated Memory Region.
 289  *
 290  * @base:       physical base address of region aligned to 1KiB.
 291  * @size:       physical size of region in bytes must be aligned to 1KiB.
 292  * @read_mask:  read access mask.
 293  * @write_mask: write access mask.
 294  * @return:     zero on success or negative value indicating error.
 295  */
 296 int imr_add_range(phys_addr_t base, size_t size,
 297                   unsigned int rmask, unsigned int wmask)
 298 {
 299         phys_addr_t end;
 300         unsigned int i;
 301         struct imr_device *idev = &imr_dev;
 302         struct imr_regs imr;
 303         size_t raw_size;
 304         int reg;
 305         int ret;
 306 
 307         if (WARN_ONCE(idev->init == false, "driver not initialized"))
 308                 return -ENODEV;
 309 
 310         ret = imr_check_params(base, size);
 311         if (ret)
 312                 return ret;
 313 
 314         /* Tweak the size value. */
 315         raw_size = imr_raw_size(size);
 316         end = base + raw_size;
 317 
 318         /*
 319          * Check for reserved IMR value common to firmware, kernel and grub
 320          * indicating a disabled IMR.
 321          */
 322         imr.addr_lo = phys_to_imr(base);
 323         imr.addr_hi = phys_to_imr(end);
 324         imr.rmask = rmask;
 325         imr.wmask = wmask;
 326         if (!imr_is_enabled(&imr))
 327                 return -ENOTSUPP;
 328 
 329         mutex_lock(&idev->lock);
 330 
 331         /*
 332          * Find a free IMR while checking for an existing overlapping range.
 333          * Note there's no restriction in silicon to prevent IMR overlaps.
 334          * For the sake of simplicity and ease in defining/debugging an IMR
 335          * memory map we exclude IMR overlaps.
 336          */
 337         reg = -1;
 338         for (i = 0; i < idev->max_imr; i++) {
 339                 ret = imr_read(idev, i, &imr);
 340                 if (ret)
 341                         goto failed;
 342 
 343                 /* Find overlap @ base or end of requested range. */
 344                 ret = -EINVAL;
 345                 if (imr_is_enabled(&imr)) {
 346                         if (imr_address_overlap(base, &imr))
 347                                 goto failed;
 348                         if (imr_address_overlap(end, &imr))
 349                                 goto failed;
 350                 } else {
 351                         reg = i;
 352                 }
 353         }
 354 
 355         /* Error out if we have no free IMR entries. */
 356         if (reg == -1) {
 357                 ret = -ENOMEM;
 358                 goto failed;
 359         }
 360 
 361         pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
 362                  reg, &base, &end, raw_size, rmask, wmask);
 363 
 364         /* Enable IMR at specified range and access mask. */
 365         imr.addr_lo = phys_to_imr(base);
 366         imr.addr_hi = phys_to_imr(end);
 367         imr.rmask = rmask;
 368         imr.wmask = wmask;
 369 
 370         ret = imr_write(idev, reg, &imr);
 371         if (ret < 0) {
 372                 /*
 373                  * In the highly unlikely event iosf_mbi_write failed
 374                  * attempt to rollback the IMR setup skipping the trapping
 375                  * of further IOSF write failures.
 376                  */
 377                 imr.addr_lo = 0;
 378                 imr.addr_hi = 0;
 379                 imr.rmask = IMR_READ_ACCESS_ALL;
 380                 imr.wmask = IMR_WRITE_ACCESS_ALL;
 381                 imr_write(idev, reg, &imr);
 382         }
 383 failed:
 384         mutex_unlock(&idev->lock);
 385         return ret;
 386 }
 387 EXPORT_SYMBOL_GPL(imr_add_range);
 388 
 389 /**
 390  * __imr_remove_range - delete an Isolated Memory Region.
 391  *
 392  * This function allows you to delete an IMR by its index specified by reg or
 393  * by address range specified by base and size respectively. If you specify an
 394  * index on its own the base and size parameters are ignored.
 395  * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
 396  * imr_remove_range(-1, base, size); delete IMR from base to base+size.
 397  *
 398  * @reg:        imr index to remove.
 399  * @base:       physical base address of region aligned to 1 KiB.
 400  * @size:       physical size of region in bytes aligned to 1 KiB.
 401  * @return:     -EINVAL on invalid range or out or range id
 402  *              -ENODEV if reg is valid but no IMR exists or is locked
 403  *              0 on success.
 404  */
 405 static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
 406 {
 407         phys_addr_t end;
 408         bool found = false;
 409         unsigned int i;
 410         struct imr_device *idev = &imr_dev;
 411         struct imr_regs imr;
 412         size_t raw_size;
 413         int ret = 0;
 414 
 415         if (WARN_ONCE(idev->init == false, "driver not initialized"))
 416                 return -ENODEV;
 417 
 418         /*
 419          * Validate address range if deleting by address, else we are
 420          * deleting by index where base and size will be ignored.
 421          */
 422         if (reg == -1) {
 423                 ret = imr_check_params(base, size);
 424                 if (ret)
 425                         return ret;
 426         }
 427 
 428         /* Tweak the size value. */
 429         raw_size = imr_raw_size(size);
 430         end = base + raw_size;
 431 
 432         mutex_lock(&idev->lock);
 433 
 434         if (reg >= 0) {
 435                 /* If a specific IMR is given try to use it. */
 436                 ret = imr_read(idev, reg, &imr);
 437                 if (ret)
 438                         goto failed;
 439 
 440                 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
 441                         ret = -ENODEV;
 442                         goto failed;
 443                 }
 444                 found = true;
 445         } else {
 446                 /* Search for match based on address range. */
 447                 for (i = 0; i < idev->max_imr; i++) {
 448                         ret = imr_read(idev, i, &imr);
 449                         if (ret)
 450                                 goto failed;
 451 
 452                         if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
 453                                 continue;
 454 
 455                         if ((imr_to_phys(imr.addr_lo) == base) &&
 456                             (imr_to_phys(imr.addr_hi) == end)) {
 457                                 found = true;
 458                                 reg = i;
 459                                 break;
 460                         }
 461                 }
 462         }
 463 
 464         if (!found) {
 465                 ret = -ENODEV;
 466                 goto failed;
 467         }
 468 
 469         pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
 470 
 471         /* Tear down the IMR. */
 472         imr.addr_lo = 0;
 473         imr.addr_hi = 0;
 474         imr.rmask = IMR_READ_ACCESS_ALL;
 475         imr.wmask = IMR_WRITE_ACCESS_ALL;
 476 
 477         ret = imr_write(idev, reg, &imr);
 478 
 479 failed:
 480         mutex_unlock(&idev->lock);
 481         return ret;
 482 }
 483 
 484 /**
 485  * imr_remove_range - delete an Isolated Memory Region by address
 486  *
 487  * This function allows you to delete an IMR by an address range specified
 488  * by base and size respectively.
 489  * imr_remove_range(base, size); delete IMR from base to base+size.
 490  *
 491  * @base:       physical base address of region aligned to 1 KiB.
 492  * @size:       physical size of region in bytes aligned to 1 KiB.
 493  * @return:     -EINVAL on invalid range or out or range id
 494  *              -ENODEV if reg is valid but no IMR exists or is locked
 495  *              0 on success.
 496  */
 497 int imr_remove_range(phys_addr_t base, size_t size)
 498 {
 499         return __imr_remove_range(-1, base, size);
 500 }
 501 EXPORT_SYMBOL_GPL(imr_remove_range);
 502 
 503 /**
 504  * imr_clear - delete an Isolated Memory Region by index
 505  *
 506  * This function allows you to delete an IMR by an address range specified
 507  * by the index of the IMR. Useful for initial sanitization of the IMR
 508  * address map.
 509  * imr_ge(base, size); delete IMR from base to base+size.
 510  *
 511  * @reg:        imr index to remove.
 512  * @return:     -EINVAL on invalid range or out or range id
 513  *              -ENODEV if reg is valid but no IMR exists or is locked
 514  *              0 on success.
 515  */
 516 static inline int imr_clear(int reg)
 517 {
 518         return __imr_remove_range(reg, 0, 0);
 519 }
 520 
 521 /**
 522  * imr_fixup_memmap - Tear down IMRs used during bootup.
 523  *
 524  * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
 525  * that need to be removed before the kernel hands out one of the IMR
 526  * encased addresses to a downstream DMA agent such as the SD or Ethernet.
 527  * IMRs on Galileo are setup to immediately reset the system on violation.
 528  * As a result if you're running a root filesystem from SD - you'll need
 529  * the boot-time IMRs torn down or you'll find seemingly random resets when
 530  * using your filesystem.
 531  *
 532  * @idev:       pointer to imr_device structure.
 533  * @return:
 534  */
 535 static void __init imr_fixup_memmap(struct imr_device *idev)
 536 {
 537         phys_addr_t base = virt_to_phys(&_text);
 538         size_t size = virt_to_phys(&__end_rodata) - base;
 539         unsigned long start, end;
 540         int i;
 541         int ret;
 542 
 543         /* Tear down all existing unlocked IMRs. */
 544         for (i = 0; i < idev->max_imr; i++)
 545                 imr_clear(i);
 546 
 547         start = (unsigned long)_text;
 548         end = (unsigned long)__end_rodata - 1;
 549 
 550         /*
 551          * Setup an unlocked IMR around the physical extent of the kernel
 552          * from the beginning of the .text secton to the end of the
 553          * .rodata section as one physically contiguous block.
 554          *
 555          * We don't round up @size since it is already PAGE_SIZE aligned.
 556          * See vmlinux.lds.S for details.
 557          */
 558         ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
 559         if (ret < 0) {
 560                 pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
 561                         size / 1024, start, end);
 562         } else {
 563                 pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
 564                         size / 1024, start, end);
 565         }
 566 
 567 }
 568 
 569 static const struct x86_cpu_id imr_ids[] __initconst = {
 570         { X86_VENDOR_INTEL, 5, 9 },     /* Intel Quark SoC X1000. */
 571         {}
 572 };
 573 
 574 /**
 575  * imr_init - entry point for IMR driver.
 576  *
 577  * return: -ENODEV for no IMR support 0 if good to go.
 578  */
 579 static int __init imr_init(void)
 580 {
 581         struct imr_device *idev = &imr_dev;
 582 
 583         if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
 584                 return -ENODEV;
 585 
 586         idev->max_imr = QUARK_X1000_IMR_MAX;
 587         idev->reg_base = QUARK_X1000_IMR_REGBASE;
 588         idev->init = true;
 589 
 590         mutex_init(&idev->lock);
 591         imr_debugfs_register(idev);
 592         imr_fixup_memmap(idev);
 593         return 0;
 594 }
 595 device_initcall(imr_init);

/* [<][>][^][v][top][bottom][index][help] */