root/arch/x86/kvm/vmx/nested.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. init_vmcs_shadow_fields
  2. nested_vmx_succeed
  3. nested_vmx_failInvalid
  4. nested_vmx_failValid
  5. nested_vmx_abort
  6. vmx_control_verify
  7. vmx_control_msr
  8. vmx_disable_shadow_vmcs
  9. nested_release_evmcs
  10. free_nested
  11. vmx_sync_vmcs_host_state
  12. vmx_switch_vmcs
  13. nested_vmx_free_vcpu
  14. nested_ept_inject_page_fault
  15. nested_ept_init_mmu_context
  16. nested_ept_uninit_mmu_context
  17. nested_vmx_is_page_fault_vmexit
  18. nested_vmx_check_exception
  19. vmx_inject_page_fault_nested
  20. page_address_valid
  21. nested_vmx_check_io_bitmap_controls
  22. nested_vmx_check_msr_bitmap_controls
  23. nested_vmx_check_tpr_shadow_controls
  24. msr_write_intercepted_l01
  25. nested_vmx_disable_intercept_for_msr
  26. enable_x2apic_msr_intercepts
  27. nested_vmx_prepare_msr_bitmap
  28. nested_cache_shadow_vmcs12
  29. nested_flush_cached_shadow_vmcs12
  30. nested_exit_intr_ack_set
  31. nested_exit_on_nmi
  32. nested_vmx_check_apic_access_controls
  33. nested_vmx_check_apicv_controls
  34. nested_vmx_check_msr_switch
  35. nested_vmx_check_exit_msr_switch_controls
  36. nested_vmx_check_entry_msr_switch_controls
  37. nested_vmx_check_pml_controls
  38. nested_vmx_check_unrestricted_guest_controls
  39. nested_vmx_check_mode_based_ept_exec_controls
  40. nested_vmx_check_shadow_vmcs_controls
  41. nested_vmx_msr_check_common
  42. nested_vmx_load_msr_check
  43. nested_vmx_store_msr_check
  44. nested_vmx_max_atomic_switch_msrs
  45. nested_vmx_load_msr
  46. nested_vmx_store_msr
  47. nested_cr3_valid
  48. nested_vmx_load_cr3
  49. nested_has_guest_tlb_tag
  50. nested_get_vpid02
  51. is_bitwise_subset
  52. vmx_restore_vmx_basic
  53. vmx_restore_control_msr
  54. vmx_restore_vmx_misc
  55. vmx_restore_vmx_ept_vpid_cap
  56. vmx_restore_fixed0_msr
  57. vmx_set_vmx_msr
  58. vmx_get_vmx_msr
  59. copy_shadow_to_vmcs12
  60. copy_vmcs12_to_shadow
  61. copy_enlightened_to_vmcs12
  62. copy_vmcs12_to_enlightened
  63. nested_vmx_handle_enlightened_vmptrld
  64. nested_sync_vmcs12_to_shadow
  65. vmx_preemption_timer_fn
  66. vmx_start_preemption_timer
  67. nested_vmx_calc_efer
  68. prepare_vmcs02_constant_state
  69. prepare_vmcs02_early_rare
  70. prepare_vmcs02_early
  71. prepare_vmcs02_rare
  72. prepare_vmcs02
  73. nested_vmx_check_nmi_controls
  74. valid_ept_address
  75. nested_check_vm_execution_controls
  76. nested_check_vm_exit_controls
  77. nested_check_vm_entry_controls
  78. nested_vmx_check_controls
  79. nested_vmx_check_host_state
  80. nested_vmx_check_vmcs_link_ptr
  81. nested_check_guest_non_reg_state
  82. nested_vmx_check_guest_state
  83. nested_vmx_check_vmentry_hw
  84. nested_get_vmcs12_pages
  85. nested_vmx_check_permission
  86. vmx_has_apicv_interrupt
  87. nested_vmx_enter_non_root_mode
  88. nested_vmx_run
  89. vmcs12_guest_cr0
  90. vmcs12_guest_cr4
  91. vmcs12_save_pending_event
  92. nested_mark_vmcs12_pages_dirty
  93. vmx_complete_nested_posted_interrupt
  94. nested_vmx_inject_exception_vmexit
  95. vmx_check_nested_events
  96. vmx_get_preemption_timer_value
  97. is_vmcs12_ext_field
  98. sync_vmcs02_to_vmcs12_rare
  99. copy_vmcs02_to_vmcs12_rare
  100. sync_vmcs02_to_vmcs12
  101. prepare_vmcs12
  102. load_vmcs12_host_state
  103. nested_vmx_get_vmcs01_guest_efer
  104. nested_vmx_restore_host_state
  105. nested_vmx_vmexit
  106. get_vmx_mem_address
  107. nested_vmx_get_vmptr
  108. alloc_shadow_vmcs
  109. enter_vmx_operation
  110. handle_vmon
  111. nested_release_vmcs12
  112. handle_vmoff
  113. handle_vmclear
  114. handle_vmlaunch
  115. handle_vmresume
  116. handle_vmread
  117. is_shadow_field_rw
  118. is_shadow_field_ro
  119. handle_vmwrite
  120. set_current_vmptr
  121. handle_vmptrld
  122. handle_vmptrst
  123. handle_invept
  124. handle_invvpid
  125. nested_vmx_eptp_switching
  126. handle_vmfunc
  127. nested_vmx_check_io_bitmaps
  128. nested_vmx_exit_handled_io
  129. nested_vmx_exit_handled_msr
  130. nested_vmx_exit_handled_cr
  131. nested_vmx_exit_handled_vmcs_access
  132. nested_vmx_exit_reflected
  133. vmx_get_nested_state
  134. vmx_leave_nested
  135. vmx_set_nested_state
  136. nested_vmx_vcpu_setup
  137. nested_vmx_setup_ctls_msrs
  138. nested_vmx_hardware_unsetup
  139. nested_vmx_hardware_setup

   1 // SPDX-License-Identifier: GPL-2.0
   2 
   3 #include <linux/frame.h>
   4 #include <linux/percpu.h>
   5 
   6 #include <asm/debugreg.h>
   7 #include <asm/mmu_context.h>
   8 
   9 #include "cpuid.h"
  10 #include "hyperv.h"
  11 #include "mmu.h"
  12 #include "nested.h"
  13 #include "trace.h"
  14 #include "x86.h"
  15 
  16 static bool __read_mostly enable_shadow_vmcs = 1;
  17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  18 
  19 static bool __read_mostly nested_early_check = 0;
  20 module_param(nested_early_check, bool, S_IRUGO);
  21 
  22 #define CC(consistency_check)                                           \
  23 ({                                                                      \
  24         bool failed = (consistency_check);                              \
  25         if (failed)                                                     \
  26                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
  27         failed;                                                         \
  28 })
  29 
  30 /*
  31  * Hyper-V requires all of these, so mark them as supported even though
  32  * they are just treated the same as all-context.
  33  */
  34 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
  35         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
  36         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
  37         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
  38         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
  39 
  40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
  41 
  42 enum {
  43         VMX_VMREAD_BITMAP,
  44         VMX_VMWRITE_BITMAP,
  45         VMX_BITMAP_NR
  46 };
  47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
  48 
  49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
  50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
  51 
  52 struct shadow_vmcs_field {
  53         u16     encoding;
  54         u16     offset;
  55 };
  56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
  57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
  58 #include "vmcs_shadow_fields.h"
  59 };
  60 static int max_shadow_read_only_fields =
  61         ARRAY_SIZE(shadow_read_only_fields);
  62 
  63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
  64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
  65 #include "vmcs_shadow_fields.h"
  66 };
  67 static int max_shadow_read_write_fields =
  68         ARRAY_SIZE(shadow_read_write_fields);
  69 
  70 static void init_vmcs_shadow_fields(void)
  71 {
  72         int i, j;
  73 
  74         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
  75         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
  76 
  77         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
  78                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
  79                 u16 field = entry.encoding;
  80 
  81                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
  82                     (i + 1 == max_shadow_read_only_fields ||
  83                      shadow_read_only_fields[i + 1].encoding != field + 1))
  84                         pr_err("Missing field from shadow_read_only_field %x\n",
  85                                field + 1);
  86 
  87                 clear_bit(field, vmx_vmread_bitmap);
  88                 if (field & 1)
  89 #ifdef CONFIG_X86_64
  90                         continue;
  91 #else
  92                         entry.offset += sizeof(u32);
  93 #endif
  94                 shadow_read_only_fields[j++] = entry;
  95         }
  96         max_shadow_read_only_fields = j;
  97 
  98         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
  99                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
 100                 u16 field = entry.encoding;
 101 
 102                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 103                     (i + 1 == max_shadow_read_write_fields ||
 104                      shadow_read_write_fields[i + 1].encoding != field + 1))
 105                         pr_err("Missing field from shadow_read_write_field %x\n",
 106                                field + 1);
 107 
 108                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
 109                           field <= GUEST_TR_AR_BYTES,
 110                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
 111 
 112                 /*
 113                  * PML and the preemption timer can be emulated, but the
 114                  * processor cannot vmwrite to fields that don't exist
 115                  * on bare metal.
 116                  */
 117                 switch (field) {
 118                 case GUEST_PML_INDEX:
 119                         if (!cpu_has_vmx_pml())
 120                                 continue;
 121                         break;
 122                 case VMX_PREEMPTION_TIMER_VALUE:
 123                         if (!cpu_has_vmx_preemption_timer())
 124                                 continue;
 125                         break;
 126                 case GUEST_INTR_STATUS:
 127                         if (!cpu_has_vmx_apicv())
 128                                 continue;
 129                         break;
 130                 default:
 131                         break;
 132                 }
 133 
 134                 clear_bit(field, vmx_vmwrite_bitmap);
 135                 clear_bit(field, vmx_vmread_bitmap);
 136                 if (field & 1)
 137 #ifdef CONFIG_X86_64
 138                         continue;
 139 #else
 140                         entry.offset += sizeof(u32);
 141 #endif
 142                 shadow_read_write_fields[j++] = entry;
 143         }
 144         max_shadow_read_write_fields = j;
 145 }
 146 
 147 /*
 148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 149  * set the success or error code of an emulated VMX instruction (as specified
 150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 151  * instruction.
 152  */
 153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
 154 {
 155         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
 156                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 157                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
 158         return kvm_skip_emulated_instruction(vcpu);
 159 }
 160 
 161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
 162 {
 163         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 164                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
 165                             X86_EFLAGS_SF | X86_EFLAGS_OF))
 166                         | X86_EFLAGS_CF);
 167         return kvm_skip_emulated_instruction(vcpu);
 168 }
 169 
 170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
 171                                 u32 vm_instruction_error)
 172 {
 173         struct vcpu_vmx *vmx = to_vmx(vcpu);
 174 
 175         /*
 176          * failValid writes the error number to the current VMCS, which
 177          * can't be done if there isn't a current VMCS.
 178          */
 179         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
 180                 return nested_vmx_failInvalid(vcpu);
 181 
 182         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 183                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 184                             X86_EFLAGS_SF | X86_EFLAGS_OF))
 185                         | X86_EFLAGS_ZF);
 186         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
 187         /*
 188          * We don't need to force a shadow sync because
 189          * VM_INSTRUCTION_ERROR is not shadowed
 190          */
 191         return kvm_skip_emulated_instruction(vcpu);
 192 }
 193 
 194 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
 195 {
 196         /* TODO: not to reset guest simply here. */
 197         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 198         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
 199 }
 200 
 201 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
 202 {
 203         return fixed_bits_valid(control, low, high);
 204 }
 205 
 206 static inline u64 vmx_control_msr(u32 low, u32 high)
 207 {
 208         return low | ((u64)high << 32);
 209 }
 210 
 211 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
 212 {
 213         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
 214         vmcs_write64(VMCS_LINK_POINTER, -1ull);
 215         vmx->nested.need_vmcs12_to_shadow_sync = false;
 216 }
 217 
 218 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
 219 {
 220         struct vcpu_vmx *vmx = to_vmx(vcpu);
 221 
 222         if (!vmx->nested.hv_evmcs)
 223                 return;
 224 
 225         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
 226         vmx->nested.hv_evmcs_vmptr = 0;
 227         vmx->nested.hv_evmcs = NULL;
 228 }
 229 
 230 /*
 231  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 232  * just stops using VMX.
 233  */
 234 static void free_nested(struct kvm_vcpu *vcpu)
 235 {
 236         struct vcpu_vmx *vmx = to_vmx(vcpu);
 237 
 238         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
 239                 return;
 240 
 241         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
 242 
 243         vmx->nested.vmxon = false;
 244         vmx->nested.smm.vmxon = false;
 245         free_vpid(vmx->nested.vpid02);
 246         vmx->nested.posted_intr_nv = -1;
 247         vmx->nested.current_vmptr = -1ull;
 248         if (enable_shadow_vmcs) {
 249                 vmx_disable_shadow_vmcs(vmx);
 250                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
 251                 free_vmcs(vmx->vmcs01.shadow_vmcs);
 252                 vmx->vmcs01.shadow_vmcs = NULL;
 253         }
 254         kfree(vmx->nested.cached_vmcs12);
 255         vmx->nested.cached_vmcs12 = NULL;
 256         kfree(vmx->nested.cached_shadow_vmcs12);
 257         vmx->nested.cached_shadow_vmcs12 = NULL;
 258         /* Unpin physical memory we referred to in the vmcs02 */
 259         if (vmx->nested.apic_access_page) {
 260                 kvm_release_page_dirty(vmx->nested.apic_access_page);
 261                 vmx->nested.apic_access_page = NULL;
 262         }
 263         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
 264         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
 265         vmx->nested.pi_desc = NULL;
 266 
 267         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 268 
 269         nested_release_evmcs(vcpu);
 270 
 271         free_loaded_vmcs(&vmx->nested.vmcs02);
 272 }
 273 
 274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
 275                                      struct loaded_vmcs *prev)
 276 {
 277         struct vmcs_host_state *dest, *src;
 278 
 279         if (unlikely(!vmx->guest_state_loaded))
 280                 return;
 281 
 282         src = &prev->host_state;
 283         dest = &vmx->loaded_vmcs->host_state;
 284 
 285         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
 286         dest->ldt_sel = src->ldt_sel;
 287 #ifdef CONFIG_X86_64
 288         dest->ds_sel = src->ds_sel;
 289         dest->es_sel = src->es_sel;
 290 #endif
 291 }
 292 
 293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
 294 {
 295         struct vcpu_vmx *vmx = to_vmx(vcpu);
 296         struct loaded_vmcs *prev;
 297         int cpu;
 298 
 299         if (vmx->loaded_vmcs == vmcs)
 300                 return;
 301 
 302         cpu = get_cpu();
 303         prev = vmx->loaded_vmcs;
 304         vmx->loaded_vmcs = vmcs;
 305         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
 306         vmx_sync_vmcs_host_state(vmx, prev);
 307         put_cpu();
 308 
 309         vmx_segment_cache_clear(vmx);
 310 }
 311 
 312 /*
 313  * Ensure that the current vmcs of the logical processor is the
 314  * vmcs01 of the vcpu before calling free_nested().
 315  */
 316 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
 317 {
 318         vcpu_load(vcpu);
 319         vmx_leave_nested(vcpu);
 320         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
 321         free_nested(vcpu);
 322         vcpu_put(vcpu);
 323 }
 324 
 325 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
 326                 struct x86_exception *fault)
 327 {
 328         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 329         struct vcpu_vmx *vmx = to_vmx(vcpu);
 330         u32 exit_reason;
 331         unsigned long exit_qualification = vcpu->arch.exit_qualification;
 332 
 333         if (vmx->nested.pml_full) {
 334                 exit_reason = EXIT_REASON_PML_FULL;
 335                 vmx->nested.pml_full = false;
 336                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
 337         } else if (fault->error_code & PFERR_RSVD_MASK)
 338                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
 339         else
 340                 exit_reason = EXIT_REASON_EPT_VIOLATION;
 341 
 342         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
 343         vmcs12->guest_physical_address = fault->address;
 344 }
 345 
 346 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
 347 {
 348         WARN_ON(mmu_is_nested(vcpu));
 349 
 350         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
 351         kvm_init_shadow_ept_mmu(vcpu,
 352                         to_vmx(vcpu)->nested.msrs.ept_caps &
 353                         VMX_EPT_EXECUTE_ONLY_BIT,
 354                         nested_ept_ad_enabled(vcpu),
 355                         nested_ept_get_cr3(vcpu));
 356         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
 357         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
 358         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
 359         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
 360 
 361         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 362 }
 363 
 364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
 365 {
 366         vcpu->arch.mmu = &vcpu->arch.root_mmu;
 367         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 368 }
 369 
 370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 371                                             u16 error_code)
 372 {
 373         bool inequality, bit;
 374 
 375         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
 376         inequality =
 377                 (error_code & vmcs12->page_fault_error_code_mask) !=
 378                  vmcs12->page_fault_error_code_match;
 379         return inequality ^ bit;
 380 }
 381 
 382 
 383 /*
 384  * KVM wants to inject page-faults which it got to the guest. This function
 385  * checks whether in a nested guest, we need to inject them to L1 or L2.
 386  */
 387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
 388 {
 389         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 390         unsigned int nr = vcpu->arch.exception.nr;
 391         bool has_payload = vcpu->arch.exception.has_payload;
 392         unsigned long payload = vcpu->arch.exception.payload;
 393 
 394         if (nr == PF_VECTOR) {
 395                 if (vcpu->arch.exception.nested_apf) {
 396                         *exit_qual = vcpu->arch.apf.nested_apf_token;
 397                         return 1;
 398                 }
 399                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
 400                                                     vcpu->arch.exception.error_code)) {
 401                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
 402                         return 1;
 403                 }
 404         } else if (vmcs12->exception_bitmap & (1u << nr)) {
 405                 if (nr == DB_VECTOR) {
 406                         if (!has_payload) {
 407                                 payload = vcpu->arch.dr6;
 408                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
 409                                 payload ^= DR6_RTM;
 410                         }
 411                         *exit_qual = payload;
 412                 } else
 413                         *exit_qual = 0;
 414                 return 1;
 415         }
 416 
 417         return 0;
 418 }
 419 
 420 
 421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
 422                 struct x86_exception *fault)
 423 {
 424         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 425 
 426         WARN_ON(!is_guest_mode(vcpu));
 427 
 428         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
 429                 !to_vmx(vcpu)->nested.nested_run_pending) {
 430                 vmcs12->vm_exit_intr_error_code = fault->error_code;
 431                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
 432                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
 433                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
 434                                   fault->address);
 435         } else {
 436                 kvm_inject_page_fault(vcpu, fault);
 437         }
 438 }
 439 
 440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
 441 {
 442         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
 443 }
 444 
 445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
 446                                                struct vmcs12 *vmcs12)
 447 {
 448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 449                 return 0;
 450 
 451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
 452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
 453                 return -EINVAL;
 454 
 455         return 0;
 456 }
 457 
 458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
 459                                                 struct vmcs12 *vmcs12)
 460 {
 461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 462                 return 0;
 463 
 464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
 465                 return -EINVAL;
 466 
 467         return 0;
 468 }
 469 
 470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
 471                                                 struct vmcs12 *vmcs12)
 472 {
 473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 474                 return 0;
 475 
 476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
 477                 return -EINVAL;
 478 
 479         return 0;
 480 }
 481 
 482 /*
 483  * Check if MSR is intercepted for L01 MSR bitmap.
 484  */
 485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
 486 {
 487         unsigned long *msr_bitmap;
 488         int f = sizeof(unsigned long);
 489 
 490         if (!cpu_has_vmx_msr_bitmap())
 491                 return true;
 492 
 493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
 494 
 495         if (msr <= 0x1fff) {
 496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
 497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 498                 msr &= 0x1fff;
 499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 500         }
 501 
 502         return true;
 503 }
 504 
 505 /*
 506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
 507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
 508  */
 509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
 510                                                unsigned long *msr_bitmap_nested,
 511                                                u32 msr, int type)
 512 {
 513         int f = sizeof(unsigned long);
 514 
 515         /*
 516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
 517          * have the write-low and read-high bitmap offsets the wrong way round.
 518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
 519          */
 520         if (msr <= 0x1fff) {
 521                 if (type & MSR_TYPE_R &&
 522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
 523                         /* read-low */
 524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
 525 
 526                 if (type & MSR_TYPE_W &&
 527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
 528                         /* write-low */
 529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
 530 
 531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 532                 msr &= 0x1fff;
 533                 if (type & MSR_TYPE_R &&
 534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
 535                         /* read-high */
 536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
 537 
 538                 if (type & MSR_TYPE_W &&
 539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
 540                         /* write-high */
 541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
 542 
 543         }
 544 }
 545 
 546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
 547         int msr;
 548 
 549         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 550                 unsigned word = msr / BITS_PER_LONG;
 551 
 552                 msr_bitmap[word] = ~0;
 553                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
 554         }
 555 }
 556 
 557 /*
 558  * Merge L0's and L1's MSR bitmap, return false to indicate that
 559  * we do not use the hardware.
 560  */
 561 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
 562                                                  struct vmcs12 *vmcs12)
 563 {
 564         int msr;
 565         unsigned long *msr_bitmap_l1;
 566         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
 567         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
 568 
 569         /* Nothing to do if the MSR bitmap is not in use.  */
 570         if (!cpu_has_vmx_msr_bitmap() ||
 571             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 572                 return false;
 573 
 574         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
 575                 return false;
 576 
 577         msr_bitmap_l1 = (unsigned long *)map->hva;
 578 
 579         /*
 580          * To keep the control flow simple, pay eight 8-byte writes (sixteen
 581          * 4-byte writes on 32-bit systems) up front to enable intercepts for
 582          * the x2APIC MSR range and selectively disable them below.
 583          */
 584         enable_x2apic_msr_intercepts(msr_bitmap_l0);
 585 
 586         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
 587                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
 588                         /*
 589                          * L0 need not intercept reads for MSRs between 0x800
 590                          * and 0x8ff, it just lets the processor take the value
 591                          * from the virtual-APIC page; take those 256 bits
 592                          * directly from the L1 bitmap.
 593                          */
 594                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 595                                 unsigned word = msr / BITS_PER_LONG;
 596 
 597                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
 598                         }
 599                 }
 600 
 601                 nested_vmx_disable_intercept_for_msr(
 602                         msr_bitmap_l1, msr_bitmap_l0,
 603                         X2APIC_MSR(APIC_TASKPRI),
 604                         MSR_TYPE_R | MSR_TYPE_W);
 605 
 606                 if (nested_cpu_has_vid(vmcs12)) {
 607                         nested_vmx_disable_intercept_for_msr(
 608                                 msr_bitmap_l1, msr_bitmap_l0,
 609                                 X2APIC_MSR(APIC_EOI),
 610                                 MSR_TYPE_W);
 611                         nested_vmx_disable_intercept_for_msr(
 612                                 msr_bitmap_l1, msr_bitmap_l0,
 613                                 X2APIC_MSR(APIC_SELF_IPI),
 614                                 MSR_TYPE_W);
 615                 }
 616         }
 617 
 618         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
 619         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 620                                              MSR_FS_BASE, MSR_TYPE_RW);
 621 
 622         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 623                                              MSR_GS_BASE, MSR_TYPE_RW);
 624 
 625         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 626                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
 627 
 628         /*
 629          * Checking the L0->L1 bitmap is trying to verify two things:
 630          *
 631          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
 632          *    ensures that we do not accidentally generate an L02 MSR bitmap
 633          *    from the L12 MSR bitmap that is too permissive.
 634          * 2. That L1 or L2s have actually used the MSR. This avoids
 635          *    unnecessarily merging of the bitmap if the MSR is unused. This
 636          *    works properly because we only update the L01 MSR bitmap lazily.
 637          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
 638          *    updated to reflect this when L1 (or its L2s) actually write to
 639          *    the MSR.
 640          */
 641         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
 642                 nested_vmx_disable_intercept_for_msr(
 643                                         msr_bitmap_l1, msr_bitmap_l0,
 644                                         MSR_IA32_SPEC_CTRL,
 645                                         MSR_TYPE_R | MSR_TYPE_W);
 646 
 647         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
 648                 nested_vmx_disable_intercept_for_msr(
 649                                         msr_bitmap_l1, msr_bitmap_l0,
 650                                         MSR_IA32_PRED_CMD,
 651                                         MSR_TYPE_W);
 652 
 653         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
 654 
 655         return true;
 656 }
 657 
 658 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
 659                                        struct vmcs12 *vmcs12)
 660 {
 661         struct kvm_host_map map;
 662         struct vmcs12 *shadow;
 663 
 664         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 665             vmcs12->vmcs_link_pointer == -1ull)
 666                 return;
 667 
 668         shadow = get_shadow_vmcs12(vcpu);
 669 
 670         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
 671                 return;
 672 
 673         memcpy(shadow, map.hva, VMCS12_SIZE);
 674         kvm_vcpu_unmap(vcpu, &map, false);
 675 }
 676 
 677 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
 678                                               struct vmcs12 *vmcs12)
 679 {
 680         struct vcpu_vmx *vmx = to_vmx(vcpu);
 681 
 682         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 683             vmcs12->vmcs_link_pointer == -1ull)
 684                 return;
 685 
 686         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
 687                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
 688 }
 689 
 690 /*
 691  * In nested virtualization, check if L1 has set
 692  * VM_EXIT_ACK_INTR_ON_EXIT
 693  */
 694 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
 695 {
 696         return get_vmcs12(vcpu)->vm_exit_controls &
 697                 VM_EXIT_ACK_INTR_ON_EXIT;
 698 }
 699 
 700 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
 701 {
 702         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
 703 }
 704 
 705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
 706                                           struct vmcs12 *vmcs12)
 707 {
 708         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
 709             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
 710                 return -EINVAL;
 711         else
 712                 return 0;
 713 }
 714 
 715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
 716                                            struct vmcs12 *vmcs12)
 717 {
 718         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 719             !nested_cpu_has_apic_reg_virt(vmcs12) &&
 720             !nested_cpu_has_vid(vmcs12) &&
 721             !nested_cpu_has_posted_intr(vmcs12))
 722                 return 0;
 723 
 724         /*
 725          * If virtualize x2apic mode is enabled,
 726          * virtualize apic access must be disabled.
 727          */
 728         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 729                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
 730                 return -EINVAL;
 731 
 732         /*
 733          * If virtual interrupt delivery is enabled,
 734          * we must exit on external interrupts.
 735          */
 736         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
 737                 return -EINVAL;
 738 
 739         /*
 740          * bits 15:8 should be zero in posted_intr_nv,
 741          * the descriptor address has been already checked
 742          * in nested_get_vmcs12_pages.
 743          *
 744          * bits 5:0 of posted_intr_desc_addr should be zero.
 745          */
 746         if (nested_cpu_has_posted_intr(vmcs12) &&
 747            (CC(!nested_cpu_has_vid(vmcs12)) ||
 748             CC(!nested_exit_intr_ack_set(vcpu)) ||
 749             CC((vmcs12->posted_intr_nv & 0xff00)) ||
 750             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
 751             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
 752                 return -EINVAL;
 753 
 754         /* tpr shadow is needed by all apicv features. */
 755         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
 756                 return -EINVAL;
 757 
 758         return 0;
 759 }
 760 
 761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
 762                                        u32 count, u64 addr)
 763 {
 764         int maxphyaddr;
 765 
 766         if (count == 0)
 767                 return 0;
 768         maxphyaddr = cpuid_maxphyaddr(vcpu);
 769         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
 770             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
 771                 return -EINVAL;
 772 
 773         return 0;
 774 }
 775 
 776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
 777                                                      struct vmcs12 *vmcs12)
 778 {
 779         if (CC(nested_vmx_check_msr_switch(vcpu,
 780                                            vmcs12->vm_exit_msr_load_count,
 781                                            vmcs12->vm_exit_msr_load_addr)) ||
 782             CC(nested_vmx_check_msr_switch(vcpu,
 783                                            vmcs12->vm_exit_msr_store_count,
 784                                            vmcs12->vm_exit_msr_store_addr)))
 785                 return -EINVAL;
 786 
 787         return 0;
 788 }
 789 
 790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
 791                                                       struct vmcs12 *vmcs12)
 792 {
 793         if (CC(nested_vmx_check_msr_switch(vcpu,
 794                                            vmcs12->vm_entry_msr_load_count,
 795                                            vmcs12->vm_entry_msr_load_addr)))
 796                 return -EINVAL;
 797 
 798         return 0;
 799 }
 800 
 801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
 802                                          struct vmcs12 *vmcs12)
 803 {
 804         if (!nested_cpu_has_pml(vmcs12))
 805                 return 0;
 806 
 807         if (CC(!nested_cpu_has_ept(vmcs12)) ||
 808             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
 809                 return -EINVAL;
 810 
 811         return 0;
 812 }
 813 
 814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
 815                                                         struct vmcs12 *vmcs12)
 816 {
 817         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
 818                !nested_cpu_has_ept(vmcs12)))
 819                 return -EINVAL;
 820         return 0;
 821 }
 822 
 823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
 824                                                          struct vmcs12 *vmcs12)
 825 {
 826         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
 827                !nested_cpu_has_ept(vmcs12)))
 828                 return -EINVAL;
 829         return 0;
 830 }
 831 
 832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
 833                                                  struct vmcs12 *vmcs12)
 834 {
 835         if (!nested_cpu_has_shadow_vmcs(vmcs12))
 836                 return 0;
 837 
 838         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
 839             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
 840                 return -EINVAL;
 841 
 842         return 0;
 843 }
 844 
 845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
 846                                        struct vmx_msr_entry *e)
 847 {
 848         /* x2APIC MSR accesses are not allowed */
 849         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
 850                 return -EINVAL;
 851         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
 852             CC(e->index == MSR_IA32_UCODE_REV))
 853                 return -EINVAL;
 854         if (CC(e->reserved != 0))
 855                 return -EINVAL;
 856         return 0;
 857 }
 858 
 859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
 860                                      struct vmx_msr_entry *e)
 861 {
 862         if (CC(e->index == MSR_FS_BASE) ||
 863             CC(e->index == MSR_GS_BASE) ||
 864             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
 865             nested_vmx_msr_check_common(vcpu, e))
 866                 return -EINVAL;
 867         return 0;
 868 }
 869 
 870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
 871                                       struct vmx_msr_entry *e)
 872 {
 873         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
 874             nested_vmx_msr_check_common(vcpu, e))
 875                 return -EINVAL;
 876         return 0;
 877 }
 878 
 879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
 880 {
 881         struct vcpu_vmx *vmx = to_vmx(vcpu);
 882         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
 883                                        vmx->nested.msrs.misc_high);
 884 
 885         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
 886 }
 887 
 888 /*
 889  * Load guest's/host's msr at nested entry/exit.
 890  * return 0 for success, entry index for failure.
 891  *
 892  * One of the failure modes for MSR load/store is when a list exceeds the
 893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
 894  * as possible, process all valid entries before failing rather than precheck
 895  * for a capacity violation.
 896  */
 897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 898 {
 899         u32 i;
 900         struct vmx_msr_entry e;
 901         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 902 
 903         for (i = 0; i < count; i++) {
 904                 if (unlikely(i >= max_msr_list_size))
 905                         goto fail;
 906 
 907                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
 908                                         &e, sizeof(e))) {
 909                         pr_debug_ratelimited(
 910                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
 911                                 __func__, i, gpa + i * sizeof(e));
 912                         goto fail;
 913                 }
 914                 if (nested_vmx_load_msr_check(vcpu, &e)) {
 915                         pr_debug_ratelimited(
 916                                 "%s check failed (%u, 0x%x, 0x%x)\n",
 917                                 __func__, i, e.index, e.reserved);
 918                         goto fail;
 919                 }
 920                 if (kvm_set_msr(vcpu, e.index, e.value)) {
 921                         pr_debug_ratelimited(
 922                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 923                                 __func__, i, e.index, e.value);
 924                         goto fail;
 925                 }
 926         }
 927         return 0;
 928 fail:
 929         return i + 1;
 930 }
 931 
 932 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 933 {
 934         u64 data;
 935         u32 i;
 936         struct vmx_msr_entry e;
 937         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 938 
 939         for (i = 0; i < count; i++) {
 940                 if (unlikely(i >= max_msr_list_size))
 941                         return -EINVAL;
 942 
 943                 if (kvm_vcpu_read_guest(vcpu,
 944                                         gpa + i * sizeof(e),
 945                                         &e, 2 * sizeof(u32))) {
 946                         pr_debug_ratelimited(
 947                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
 948                                 __func__, i, gpa + i * sizeof(e));
 949                         return -EINVAL;
 950                 }
 951                 if (nested_vmx_store_msr_check(vcpu, &e)) {
 952                         pr_debug_ratelimited(
 953                                 "%s check failed (%u, 0x%x, 0x%x)\n",
 954                                 __func__, i, e.index, e.reserved);
 955                         return -EINVAL;
 956                 }
 957                 if (kvm_get_msr(vcpu, e.index, &data)) {
 958                         pr_debug_ratelimited(
 959                                 "%s cannot read MSR (%u, 0x%x)\n",
 960                                 __func__, i, e.index);
 961                         return -EINVAL;
 962                 }
 963                 if (kvm_vcpu_write_guest(vcpu,
 964                                          gpa + i * sizeof(e) +
 965                                              offsetof(struct vmx_msr_entry, value),
 966                                          &data, sizeof(data))) {
 967                         pr_debug_ratelimited(
 968                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 969                                 __func__, i, e.index, data);
 970                         return -EINVAL;
 971                 }
 972         }
 973         return 0;
 974 }
 975 
 976 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
 977 {
 978         unsigned long invalid_mask;
 979 
 980         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
 981         return (val & invalid_mask) == 0;
 982 }
 983 
 984 /*
 985  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
 986  * emulating VM entry into a guest with EPT enabled.
 987  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 988  * is assigned to entry_failure_code on failure.
 989  */
 990 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
 991                                u32 *entry_failure_code)
 992 {
 993         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
 994                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
 995                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
 996                         return -EINVAL;
 997                 }
 998 
 999                 /*
1000                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1001                  * must not be dereferenced.
1002                  */
1003                 if (is_pae_paging(vcpu) && !nested_ept) {
1004                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1005                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1006                                 return -EINVAL;
1007                         }
1008                 }
1009         }
1010 
1011         if (!nested_ept)
1012                 kvm_mmu_new_cr3(vcpu, cr3, false);
1013 
1014         vcpu->arch.cr3 = cr3;
1015         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1016 
1017         kvm_init_mmu(vcpu, false);
1018 
1019         return 0;
1020 }
1021 
1022 /*
1023  * Returns if KVM is able to config CPU to tag TLB entries
1024  * populated by L2 differently than TLB entries populated
1025  * by L1.
1026  *
1027  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
1028  *
1029  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1030  * with different VPID (L1 entries are tagged with vmx->vpid
1031  * while L2 entries are tagged with vmx->nested.vpid02).
1032  */
1033 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1034 {
1035         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1036 
1037         return nested_cpu_has_ept(vmcs12) ||
1038                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1039 }
1040 
1041 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1042 {
1043         struct vcpu_vmx *vmx = to_vmx(vcpu);
1044 
1045         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1046 }
1047 
1048 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1049 {
1050         superset &= mask;
1051         subset &= mask;
1052 
1053         return (superset | subset) == superset;
1054 }
1055 
1056 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1057 {
1058         const u64 feature_and_reserved =
1059                 /* feature (except bit 48; see below) */
1060                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1061                 /* reserved */
1062                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1063         u64 vmx_basic = vmx->nested.msrs.basic;
1064 
1065         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1066                 return -EINVAL;
1067 
1068         /*
1069          * KVM does not emulate a version of VMX that constrains physical
1070          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1071          */
1072         if (data & BIT_ULL(48))
1073                 return -EINVAL;
1074 
1075         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1076             vmx_basic_vmcs_revision_id(data))
1077                 return -EINVAL;
1078 
1079         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1080                 return -EINVAL;
1081 
1082         vmx->nested.msrs.basic = data;
1083         return 0;
1084 }
1085 
1086 static int
1087 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1088 {
1089         u64 supported;
1090         u32 *lowp, *highp;
1091 
1092         switch (msr_index) {
1093         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1094                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1095                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1096                 break;
1097         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1098                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1099                 highp = &vmx->nested.msrs.procbased_ctls_high;
1100                 break;
1101         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1102                 lowp = &vmx->nested.msrs.exit_ctls_low;
1103                 highp = &vmx->nested.msrs.exit_ctls_high;
1104                 break;
1105         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1106                 lowp = &vmx->nested.msrs.entry_ctls_low;
1107                 highp = &vmx->nested.msrs.entry_ctls_high;
1108                 break;
1109         case MSR_IA32_VMX_PROCBASED_CTLS2:
1110                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1111                 highp = &vmx->nested.msrs.secondary_ctls_high;
1112                 break;
1113         default:
1114                 BUG();
1115         }
1116 
1117         supported = vmx_control_msr(*lowp, *highp);
1118 
1119         /* Check must-be-1 bits are still 1. */
1120         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1121                 return -EINVAL;
1122 
1123         /* Check must-be-0 bits are still 0. */
1124         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1125                 return -EINVAL;
1126 
1127         *lowp = data;
1128         *highp = data >> 32;
1129         return 0;
1130 }
1131 
1132 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1133 {
1134         const u64 feature_and_reserved_bits =
1135                 /* feature */
1136                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1137                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1138                 /* reserved */
1139                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1140         u64 vmx_misc;
1141 
1142         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1143                                    vmx->nested.msrs.misc_high);
1144 
1145         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1146                 return -EINVAL;
1147 
1148         if ((vmx->nested.msrs.pinbased_ctls_high &
1149              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1150             vmx_misc_preemption_timer_rate(data) !=
1151             vmx_misc_preemption_timer_rate(vmx_misc))
1152                 return -EINVAL;
1153 
1154         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1155                 return -EINVAL;
1156 
1157         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1158                 return -EINVAL;
1159 
1160         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1161                 return -EINVAL;
1162 
1163         vmx->nested.msrs.misc_low = data;
1164         vmx->nested.msrs.misc_high = data >> 32;
1165 
1166         return 0;
1167 }
1168 
1169 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1170 {
1171         u64 vmx_ept_vpid_cap;
1172 
1173         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1174                                            vmx->nested.msrs.vpid_caps);
1175 
1176         /* Every bit is either reserved or a feature bit. */
1177         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1178                 return -EINVAL;
1179 
1180         vmx->nested.msrs.ept_caps = data;
1181         vmx->nested.msrs.vpid_caps = data >> 32;
1182         return 0;
1183 }
1184 
1185 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1186 {
1187         u64 *msr;
1188 
1189         switch (msr_index) {
1190         case MSR_IA32_VMX_CR0_FIXED0:
1191                 msr = &vmx->nested.msrs.cr0_fixed0;
1192                 break;
1193         case MSR_IA32_VMX_CR4_FIXED0:
1194                 msr = &vmx->nested.msrs.cr4_fixed0;
1195                 break;
1196         default:
1197                 BUG();
1198         }
1199 
1200         /*
1201          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1202          * must be 1 in the restored value.
1203          */
1204         if (!is_bitwise_subset(data, *msr, -1ULL))
1205                 return -EINVAL;
1206 
1207         *msr = data;
1208         return 0;
1209 }
1210 
1211 /*
1212  * Called when userspace is restoring VMX MSRs.
1213  *
1214  * Returns 0 on success, non-0 otherwise.
1215  */
1216 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1217 {
1218         struct vcpu_vmx *vmx = to_vmx(vcpu);
1219 
1220         /*
1221          * Don't allow changes to the VMX capability MSRs while the vCPU
1222          * is in VMX operation.
1223          */
1224         if (vmx->nested.vmxon)
1225                 return -EBUSY;
1226 
1227         switch (msr_index) {
1228         case MSR_IA32_VMX_BASIC:
1229                 return vmx_restore_vmx_basic(vmx, data);
1230         case MSR_IA32_VMX_PINBASED_CTLS:
1231         case MSR_IA32_VMX_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_EXIT_CTLS:
1233         case MSR_IA32_VMX_ENTRY_CTLS:
1234                 /*
1235                  * The "non-true" VMX capability MSRs are generated from the
1236                  * "true" MSRs, so we do not support restoring them directly.
1237                  *
1238                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1239                  * should restore the "true" MSRs with the must-be-1 bits
1240                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1241                  * DEFAULT SETTINGS".
1242                  */
1243                 return -EINVAL;
1244         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1245         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1246         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_PROCBASED_CTLS2:
1249                 return vmx_restore_control_msr(vmx, msr_index, data);
1250         case MSR_IA32_VMX_MISC:
1251                 return vmx_restore_vmx_misc(vmx, data);
1252         case MSR_IA32_VMX_CR0_FIXED0:
1253         case MSR_IA32_VMX_CR4_FIXED0:
1254                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1255         case MSR_IA32_VMX_CR0_FIXED1:
1256         case MSR_IA32_VMX_CR4_FIXED1:
1257                 /*
1258                  * These MSRs are generated based on the vCPU's CPUID, so we
1259                  * do not support restoring them directly.
1260                  */
1261                 return -EINVAL;
1262         case MSR_IA32_VMX_EPT_VPID_CAP:
1263                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1264         case MSR_IA32_VMX_VMCS_ENUM:
1265                 vmx->nested.msrs.vmcs_enum = data;
1266                 return 0;
1267         case MSR_IA32_VMX_VMFUNC:
1268                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1269                         return -EINVAL;
1270                 vmx->nested.msrs.vmfunc_controls = data;
1271                 return 0;
1272         default:
1273                 /*
1274                  * The rest of the VMX capability MSRs do not support restore.
1275                  */
1276                 return -EINVAL;
1277         }
1278 }
1279 
1280 /* Returns 0 on success, non-0 otherwise. */
1281 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1282 {
1283         switch (msr_index) {
1284         case MSR_IA32_VMX_BASIC:
1285                 *pdata = msrs->basic;
1286                 break;
1287         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1288         case MSR_IA32_VMX_PINBASED_CTLS:
1289                 *pdata = vmx_control_msr(
1290                         msrs->pinbased_ctls_low,
1291                         msrs->pinbased_ctls_high);
1292                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1293                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1294                 break;
1295         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1296         case MSR_IA32_VMX_PROCBASED_CTLS:
1297                 *pdata = vmx_control_msr(
1298                         msrs->procbased_ctls_low,
1299                         msrs->procbased_ctls_high);
1300                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1301                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1302                 break;
1303         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1304         case MSR_IA32_VMX_EXIT_CTLS:
1305                 *pdata = vmx_control_msr(
1306                         msrs->exit_ctls_low,
1307                         msrs->exit_ctls_high);
1308                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1309                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1310                 break;
1311         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1312         case MSR_IA32_VMX_ENTRY_CTLS:
1313                 *pdata = vmx_control_msr(
1314                         msrs->entry_ctls_low,
1315                         msrs->entry_ctls_high);
1316                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1317                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1318                 break;
1319         case MSR_IA32_VMX_MISC:
1320                 *pdata = vmx_control_msr(
1321                         msrs->misc_low,
1322                         msrs->misc_high);
1323                 break;
1324         case MSR_IA32_VMX_CR0_FIXED0:
1325                 *pdata = msrs->cr0_fixed0;
1326                 break;
1327         case MSR_IA32_VMX_CR0_FIXED1:
1328                 *pdata = msrs->cr0_fixed1;
1329                 break;
1330         case MSR_IA32_VMX_CR4_FIXED0:
1331                 *pdata = msrs->cr4_fixed0;
1332                 break;
1333         case MSR_IA32_VMX_CR4_FIXED1:
1334                 *pdata = msrs->cr4_fixed1;
1335                 break;
1336         case MSR_IA32_VMX_VMCS_ENUM:
1337                 *pdata = msrs->vmcs_enum;
1338                 break;
1339         case MSR_IA32_VMX_PROCBASED_CTLS2:
1340                 *pdata = vmx_control_msr(
1341                         msrs->secondary_ctls_low,
1342                         msrs->secondary_ctls_high);
1343                 break;
1344         case MSR_IA32_VMX_EPT_VPID_CAP:
1345                 *pdata = msrs->ept_caps |
1346                         ((u64)msrs->vpid_caps << 32);
1347                 break;
1348         case MSR_IA32_VMX_VMFUNC:
1349                 *pdata = msrs->vmfunc_controls;
1350                 break;
1351         default:
1352                 return 1;
1353         }
1354 
1355         return 0;
1356 }
1357 
1358 /*
1359  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1360  * been modified by the L1 guest.  Note, "writable" in this context means
1361  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1362  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1363  * VM-exit information fields (which are actually writable if the vCPU is
1364  * configured to support "VMWRITE to any supported field in the VMCS").
1365  */
1366 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1367 {
1368         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1369         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1370         struct shadow_vmcs_field field;
1371         unsigned long val;
1372         int i;
1373 
1374         if (WARN_ON(!shadow_vmcs))
1375                 return;
1376 
1377         preempt_disable();
1378 
1379         vmcs_load(shadow_vmcs);
1380 
1381         for (i = 0; i < max_shadow_read_write_fields; i++) {
1382                 field = shadow_read_write_fields[i];
1383                 val = __vmcs_readl(field.encoding);
1384                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1385         }
1386 
1387         vmcs_clear(shadow_vmcs);
1388         vmcs_load(vmx->loaded_vmcs->vmcs);
1389 
1390         preempt_enable();
1391 }
1392 
1393 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1394 {
1395         const struct shadow_vmcs_field *fields[] = {
1396                 shadow_read_write_fields,
1397                 shadow_read_only_fields
1398         };
1399         const int max_fields[] = {
1400                 max_shadow_read_write_fields,
1401                 max_shadow_read_only_fields
1402         };
1403         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1404         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1405         struct shadow_vmcs_field field;
1406         unsigned long val;
1407         int i, q;
1408 
1409         if (WARN_ON(!shadow_vmcs))
1410                 return;
1411 
1412         vmcs_load(shadow_vmcs);
1413 
1414         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1415                 for (i = 0; i < max_fields[q]; i++) {
1416                         field = fields[q][i];
1417                         val = vmcs12_read_any(vmcs12, field.encoding,
1418                                               field.offset);
1419                         __vmcs_writel(field.encoding, val);
1420                 }
1421         }
1422 
1423         vmcs_clear(shadow_vmcs);
1424         vmcs_load(vmx->loaded_vmcs->vmcs);
1425 }
1426 
1427 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1428 {
1429         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1430         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1431 
1432         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1433         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1434         vmcs12->guest_rip = evmcs->guest_rip;
1435 
1436         if (unlikely(!(evmcs->hv_clean_fields &
1437                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1438                 vmcs12->guest_rsp = evmcs->guest_rsp;
1439                 vmcs12->guest_rflags = evmcs->guest_rflags;
1440                 vmcs12->guest_interruptibility_info =
1441                         evmcs->guest_interruptibility_info;
1442         }
1443 
1444         if (unlikely(!(evmcs->hv_clean_fields &
1445                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1446                 vmcs12->cpu_based_vm_exec_control =
1447                         evmcs->cpu_based_vm_exec_control;
1448         }
1449 
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1452                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1453         }
1454 
1455         if (unlikely(!(evmcs->hv_clean_fields &
1456                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1457                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1458         }
1459 
1460         if (unlikely(!(evmcs->hv_clean_fields &
1461                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1462                 vmcs12->vm_entry_intr_info_field =
1463                         evmcs->vm_entry_intr_info_field;
1464                 vmcs12->vm_entry_exception_error_code =
1465                         evmcs->vm_entry_exception_error_code;
1466                 vmcs12->vm_entry_instruction_len =
1467                         evmcs->vm_entry_instruction_len;
1468         }
1469 
1470         if (unlikely(!(evmcs->hv_clean_fields &
1471                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1472                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1473                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1474                 vmcs12->host_cr0 = evmcs->host_cr0;
1475                 vmcs12->host_cr3 = evmcs->host_cr3;
1476                 vmcs12->host_cr4 = evmcs->host_cr4;
1477                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1478                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1479                 vmcs12->host_rip = evmcs->host_rip;
1480                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1481                 vmcs12->host_es_selector = evmcs->host_es_selector;
1482                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1483                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1484                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1485                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1486                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1487                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1488         }
1489 
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1492                 vmcs12->pin_based_vm_exec_control =
1493                         evmcs->pin_based_vm_exec_control;
1494                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1495                 vmcs12->secondary_vm_exec_control =
1496                         evmcs->secondary_vm_exec_control;
1497         }
1498 
1499         if (unlikely(!(evmcs->hv_clean_fields &
1500                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1501                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1502                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1503         }
1504 
1505         if (unlikely(!(evmcs->hv_clean_fields &
1506                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1507                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1508         }
1509 
1510         if (unlikely(!(evmcs->hv_clean_fields &
1511                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1512                 vmcs12->guest_es_base = evmcs->guest_es_base;
1513                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1514                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1515                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1516                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1517                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1518                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1519                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1520                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1521                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1522                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1523                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1524                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1525                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1526                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1527                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1528                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1529                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1530                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1531                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1532                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1533                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1534                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1535                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1536                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1537                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1538                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1539                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1540                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1541                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1542                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1543                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1544                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1545                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1546                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1547                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1548         }
1549 
1550         if (unlikely(!(evmcs->hv_clean_fields &
1551                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1552                 vmcs12->tsc_offset = evmcs->tsc_offset;
1553                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1554                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1555         }
1556 
1557         if (unlikely(!(evmcs->hv_clean_fields &
1558                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1559                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1560                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1561                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1562                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1563                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1564                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1565                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1566                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1567         }
1568 
1569         if (unlikely(!(evmcs->hv_clean_fields &
1570                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1571                 vmcs12->host_fs_base = evmcs->host_fs_base;
1572                 vmcs12->host_gs_base = evmcs->host_gs_base;
1573                 vmcs12->host_tr_base = evmcs->host_tr_base;
1574                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1575                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1576                 vmcs12->host_rsp = evmcs->host_rsp;
1577         }
1578 
1579         if (unlikely(!(evmcs->hv_clean_fields &
1580                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1581                 vmcs12->ept_pointer = evmcs->ept_pointer;
1582                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1583         }
1584 
1585         if (unlikely(!(evmcs->hv_clean_fields &
1586                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1587                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1588                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1589                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1590                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1591                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1592                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1593                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1594                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1595                 vmcs12->guest_pending_dbg_exceptions =
1596                         evmcs->guest_pending_dbg_exceptions;
1597                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1598                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1599                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1600                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1601                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1602         }
1603 
1604         /*
1605          * Not used?
1606          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1607          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1608          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1609          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1610          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1611          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1612          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1613          * vmcs12->page_fault_error_code_mask =
1614          *              evmcs->page_fault_error_code_mask;
1615          * vmcs12->page_fault_error_code_match =
1616          *              evmcs->page_fault_error_code_match;
1617          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1618          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1619          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1620          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1621          */
1622 
1623         /*
1624          * Read only fields:
1625          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1626          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1627          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1628          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1629          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1630          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1631          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1632          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1633          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1634          * vmcs12->exit_qualification = evmcs->exit_qualification;
1635          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1636          *
1637          * Not present in struct vmcs12:
1638          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1639          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1640          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1641          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1642          */
1643 
1644         return 0;
1645 }
1646 
1647 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1648 {
1649         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1650         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1651 
1652         /*
1653          * Should not be changed by KVM:
1654          *
1655          * evmcs->host_es_selector = vmcs12->host_es_selector;
1656          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1657          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1658          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1659          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1660          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1661          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1662          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1663          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1664          * evmcs->host_cr0 = vmcs12->host_cr0;
1665          * evmcs->host_cr3 = vmcs12->host_cr3;
1666          * evmcs->host_cr4 = vmcs12->host_cr4;
1667          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1668          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1669          * evmcs->host_rip = vmcs12->host_rip;
1670          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1671          * evmcs->host_fs_base = vmcs12->host_fs_base;
1672          * evmcs->host_gs_base = vmcs12->host_gs_base;
1673          * evmcs->host_tr_base = vmcs12->host_tr_base;
1674          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1675          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1676          * evmcs->host_rsp = vmcs12->host_rsp;
1677          * sync_vmcs02_to_vmcs12() doesn't read these:
1678          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1679          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1680          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1681          * evmcs->ept_pointer = vmcs12->ept_pointer;
1682          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1683          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1684          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1685          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1686          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1687          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1688          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1689          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1690          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1691          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1692          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1693          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1694          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1695          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1696          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1697          * evmcs->page_fault_error_code_mask =
1698          *              vmcs12->page_fault_error_code_mask;
1699          * evmcs->page_fault_error_code_match =
1700          *              vmcs12->page_fault_error_code_match;
1701          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1702          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1703          * evmcs->tsc_offset = vmcs12->tsc_offset;
1704          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1705          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1706          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1707          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1708          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1709          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1710          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1711          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1712          *
1713          * Not present in struct vmcs12:
1714          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1715          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1716          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1717          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1718          */
1719 
1720         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1721         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1722         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1723         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1724         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1725         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1726         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1727         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1728 
1729         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1730         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1731         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1732         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1733         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1734         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1735         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1736         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1737         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1738         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1739 
1740         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1741         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1742         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1743         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1744         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1745         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1746         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1747         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1748 
1749         evmcs->guest_es_base = vmcs12->guest_es_base;
1750         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1751         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1752         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1753         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1754         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1755         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1756         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1757         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1758         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1759 
1760         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1761         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1762 
1763         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1764         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1765         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1766         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1767 
1768         evmcs->guest_pending_dbg_exceptions =
1769                 vmcs12->guest_pending_dbg_exceptions;
1770         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1771         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1772 
1773         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1774         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1775 
1776         evmcs->guest_cr0 = vmcs12->guest_cr0;
1777         evmcs->guest_cr3 = vmcs12->guest_cr3;
1778         evmcs->guest_cr4 = vmcs12->guest_cr4;
1779         evmcs->guest_dr7 = vmcs12->guest_dr7;
1780 
1781         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1782 
1783         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1784         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1785         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1786         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1787         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1788         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1789         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1790         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1791 
1792         evmcs->exit_qualification = vmcs12->exit_qualification;
1793 
1794         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1795         evmcs->guest_rsp = vmcs12->guest_rsp;
1796         evmcs->guest_rflags = vmcs12->guest_rflags;
1797 
1798         evmcs->guest_interruptibility_info =
1799                 vmcs12->guest_interruptibility_info;
1800         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1801         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1802         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1803         evmcs->vm_entry_exception_error_code =
1804                 vmcs12->vm_entry_exception_error_code;
1805         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1806 
1807         evmcs->guest_rip = vmcs12->guest_rip;
1808 
1809         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1810 
1811         return 0;
1812 }
1813 
1814 /*
1815  * This is an equivalent of the nested hypervisor executing the vmptrld
1816  * instruction.
1817  */
1818 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1819                                                  bool from_launch)
1820 {
1821         struct vcpu_vmx *vmx = to_vmx(vcpu);
1822         bool evmcs_gpa_changed = false;
1823         u64 evmcs_gpa;
1824 
1825         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1826                 return 1;
1827 
1828         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1829                 return 1;
1830 
1831         if (unlikely(!vmx->nested.hv_evmcs ||
1832                      evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1833                 if (!vmx->nested.hv_evmcs)
1834                         vmx->nested.current_vmptr = -1ull;
1835 
1836                 nested_release_evmcs(vcpu);
1837 
1838                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1839                                  &vmx->nested.hv_evmcs_map))
1840                         return 0;
1841 
1842                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1843 
1844                 /*
1845                  * Currently, KVM only supports eVMCS version 1
1846                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1847                  * value to first u32 field of eVMCS which should specify eVMCS
1848                  * VersionNumber.
1849                  *
1850                  * Guest should be aware of supported eVMCS versions by host by
1851                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1852                  * expected to set this CPUID leaf according to the value
1853                  * returned in vmcs_version from nested_enable_evmcs().
1854                  *
1855                  * However, it turns out that Microsoft Hyper-V fails to comply
1856                  * to their own invented interface: When Hyper-V use eVMCS, it
1857                  * just sets first u32 field of eVMCS to revision_id specified
1858                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1859                  * which is one of the supported versions specified in
1860                  * CPUID.0x4000000A.EAX[0:15].
1861                  *
1862                  * To overcome Hyper-V bug, we accept here either a supported
1863                  * eVMCS version or VMCS12 revision_id as valid values for first
1864                  * u32 field of eVMCS.
1865                  */
1866                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1867                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1868                         nested_release_evmcs(vcpu);
1869                         return 0;
1870                 }
1871 
1872                 vmx->nested.dirty_vmcs12 = true;
1873                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1874 
1875                 evmcs_gpa_changed = true;
1876                 /*
1877                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1878                  * reloaded from guest's memory (read only fields, fields not
1879                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1880                  * are no leftovers.
1881                  */
1882                 if (from_launch) {
1883                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1884                         memset(vmcs12, 0, sizeof(*vmcs12));
1885                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1886                 }
1887 
1888         }
1889 
1890         /*
1891          * Clean fields data can't de used on VMLAUNCH and when we switch
1892          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1893          */
1894         if (from_launch || evmcs_gpa_changed)
1895                 vmx->nested.hv_evmcs->hv_clean_fields &=
1896                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1897 
1898         return 1;
1899 }
1900 
1901 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1902 {
1903         struct vcpu_vmx *vmx = to_vmx(vcpu);
1904 
1905         /*
1906          * hv_evmcs may end up being not mapped after migration (when
1907          * L2 was running), map it here to make sure vmcs12 changes are
1908          * properly reflected.
1909          */
1910         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1911                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1912 
1913         if (vmx->nested.hv_evmcs) {
1914                 copy_vmcs12_to_enlightened(vmx);
1915                 /* All fields are clean */
1916                 vmx->nested.hv_evmcs->hv_clean_fields |=
1917                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1918         } else {
1919                 copy_vmcs12_to_shadow(vmx);
1920         }
1921 
1922         vmx->nested.need_vmcs12_to_shadow_sync = false;
1923 }
1924 
1925 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1926 {
1927         struct vcpu_vmx *vmx =
1928                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1929 
1930         vmx->nested.preemption_timer_expired = true;
1931         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1932         kvm_vcpu_kick(&vmx->vcpu);
1933 
1934         return HRTIMER_NORESTART;
1935 }
1936 
1937 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1938 {
1939         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1940         struct vcpu_vmx *vmx = to_vmx(vcpu);
1941 
1942         /*
1943          * A timer value of zero is architecturally guaranteed to cause
1944          * a VMExit prior to executing any instructions in the guest.
1945          */
1946         if (preemption_timeout == 0) {
1947                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1948                 return;
1949         }
1950 
1951         if (vcpu->arch.virtual_tsc_khz == 0)
1952                 return;
1953 
1954         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1955         preemption_timeout *= 1000000;
1956         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1957         hrtimer_start(&vmx->nested.preemption_timer,
1958                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1959 }
1960 
1961 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1962 {
1963         if (vmx->nested.nested_run_pending &&
1964             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1965                 return vmcs12->guest_ia32_efer;
1966         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1967                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1968         else
1969                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1970 }
1971 
1972 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1973 {
1974         /*
1975          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1976          * according to L0's settings (vmcs12 is irrelevant here).  Host
1977          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1978          * will be set as needed prior to VMLAUNCH/VMRESUME.
1979          */
1980         if (vmx->nested.vmcs02_initialized)
1981                 return;
1982         vmx->nested.vmcs02_initialized = true;
1983 
1984         /*
1985          * We don't care what the EPTP value is we just need to guarantee
1986          * it's valid so we don't get a false positive when doing early
1987          * consistency checks.
1988          */
1989         if (enable_ept && nested_early_check)
1990                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1991 
1992         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1993         if (cpu_has_vmx_vmfunc())
1994                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1995 
1996         if (cpu_has_vmx_posted_intr())
1997                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1998 
1999         if (cpu_has_vmx_msr_bitmap())
2000                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2001 
2002         /*
2003          * The PML address never changes, so it is constant in vmcs02.
2004          * Conceptually we want to copy the PML index from vmcs01 here,
2005          * and then back to vmcs01 on nested vmexit.  But since we flush
2006          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2007          * index is also effectively constant in vmcs02.
2008          */
2009         if (enable_pml) {
2010                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2011                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2012         }
2013 
2014         if (cpu_has_vmx_encls_vmexit())
2015                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2016 
2017         /*
2018          * Set the MSR load/store lists to match L0's settings.  Only the
2019          * addresses are constant (for vmcs02), the counts can change based
2020          * on L2's behavior, e.g. switching to/from long mode.
2021          */
2022         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2023         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2024         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2025 
2026         vmx_set_constant_host_state(vmx);
2027 }
2028 
2029 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2030                                       struct vmcs12 *vmcs12)
2031 {
2032         prepare_vmcs02_constant_state(vmx);
2033 
2034         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2035 
2036         if (enable_vpid) {
2037                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2038                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2039                 else
2040                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2041         }
2042 }
2043 
2044 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2045 {
2046         u32 exec_control, vmcs12_exec_ctrl;
2047         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2048 
2049         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2050                 prepare_vmcs02_early_rare(vmx, vmcs12);
2051 
2052         /*
2053          * PIN CONTROLS
2054          */
2055         exec_control = vmx_pin_based_exec_ctrl(vmx);
2056         exec_control |= (vmcs12->pin_based_vm_exec_control &
2057                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2058 
2059         /* Posted interrupts setting is only taken from vmcs12.  */
2060         if (nested_cpu_has_posted_intr(vmcs12)) {
2061                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2062                 vmx->nested.pi_pending = false;
2063         } else {
2064                 exec_control &= ~PIN_BASED_POSTED_INTR;
2065         }
2066         pin_controls_set(vmx, exec_control);
2067 
2068         /*
2069          * EXEC CONTROLS
2070          */
2071         exec_control = vmx_exec_control(vmx); /* L0's desires */
2072         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2073         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2074         exec_control &= ~CPU_BASED_TPR_SHADOW;
2075         exec_control |= vmcs12->cpu_based_vm_exec_control;
2076 
2077         if (exec_control & CPU_BASED_TPR_SHADOW)
2078                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2079 #ifdef CONFIG_X86_64
2080         else
2081                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2082                                 CPU_BASED_CR8_STORE_EXITING;
2083 #endif
2084 
2085         /*
2086          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2087          * for I/O port accesses.
2088          */
2089         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2090         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2091 
2092         /*
2093          * This bit will be computed in nested_get_vmcs12_pages, because
2094          * we do not have access to L1's MSR bitmap yet.  For now, keep
2095          * the same bit as before, hoping to avoid multiple VMWRITEs that
2096          * only set/clear this bit.
2097          */
2098         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2099         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2100 
2101         exec_controls_set(vmx, exec_control);
2102 
2103         /*
2104          * SECONDARY EXEC CONTROLS
2105          */
2106         if (cpu_has_secondary_exec_ctrls()) {
2107                 exec_control = vmx->secondary_exec_control;
2108 
2109                 /* Take the following fields only from vmcs12 */
2110                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2111                                   SECONDARY_EXEC_ENABLE_INVPCID |
2112                                   SECONDARY_EXEC_RDTSCP |
2113                                   SECONDARY_EXEC_XSAVES |
2114                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2115                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2116                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2117                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2118                 if (nested_cpu_has(vmcs12,
2119                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2120                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2121                                 ~SECONDARY_EXEC_ENABLE_PML;
2122                         exec_control |= vmcs12_exec_ctrl;
2123                 }
2124 
2125                 /* VMCS shadowing for L2 is emulated for now */
2126                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2127 
2128                 /*
2129                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2130                  * will not have to rewrite the controls just for this bit.
2131                  */
2132                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2133                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2134                         exec_control |= SECONDARY_EXEC_DESC;
2135 
2136                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2137                         vmcs_write16(GUEST_INTR_STATUS,
2138                                 vmcs12->guest_intr_status);
2139 
2140                 secondary_exec_controls_set(vmx, exec_control);
2141         }
2142 
2143         /*
2144          * ENTRY CONTROLS
2145          *
2146          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2147          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2148          * on the related bits (if supported by the CPU) in the hope that
2149          * we can avoid VMWrites during vmx_set_efer().
2150          */
2151         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2152                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2153         if (cpu_has_load_ia32_efer()) {
2154                 if (guest_efer & EFER_LMA)
2155                         exec_control |= VM_ENTRY_IA32E_MODE;
2156                 if (guest_efer != host_efer)
2157                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2158         }
2159         vm_entry_controls_set(vmx, exec_control);
2160 
2161         /*
2162          * EXIT CONTROLS
2163          *
2164          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2165          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2166          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2167          */
2168         exec_control = vmx_vmexit_ctrl();
2169         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2170                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2171         vm_exit_controls_set(vmx, exec_control);
2172 
2173         /*
2174          * Interrupt/Exception Fields
2175          */
2176         if (vmx->nested.nested_run_pending) {
2177                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2178                              vmcs12->vm_entry_intr_info_field);
2179                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2180                              vmcs12->vm_entry_exception_error_code);
2181                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2182                              vmcs12->vm_entry_instruction_len);
2183                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2184                              vmcs12->guest_interruptibility_info);
2185                 vmx->loaded_vmcs->nmi_known_unmasked =
2186                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2187         } else {
2188                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2189         }
2190 }
2191 
2192 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2193 {
2194         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2195 
2196         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2197                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2198                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2199                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2200                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2201                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2202                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2203                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2204                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2205                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2206                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2207                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2208                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2209                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2210                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2211                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2212                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2213                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2214                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2215                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2216                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2217                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2218                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2219                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2220                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2221                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2222                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2223                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2224                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2225                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2226                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2227                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2228                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2229                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2230                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2231                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2232                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2233                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2234         }
2235 
2236         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2237                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2238                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2239                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2240                             vmcs12->guest_pending_dbg_exceptions);
2241                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2242                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2243 
2244                 /*
2245                  * L1 may access the L2's PDPTR, so save them to construct
2246                  * vmcs12
2247                  */
2248                 if (enable_ept) {
2249                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2250                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2251                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2252                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2253                 }
2254 
2255                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2256                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2257                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2258         }
2259 
2260         if (nested_cpu_has_xsaves(vmcs12))
2261                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2262 
2263         /*
2264          * Whether page-faults are trapped is determined by a combination of
2265          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2266          * If enable_ept, L0 doesn't care about page faults and we should
2267          * set all of these to L1's desires. However, if !enable_ept, L0 does
2268          * care about (at least some) page faults, and because it is not easy
2269          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2270          * to exit on each and every L2 page fault. This is done by setting
2271          * MASK=MATCH=0 and (see below) EB.PF=1.
2272          * Note that below we don't need special code to set EB.PF beyond the
2273          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2274          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2275          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2276          */
2277         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2278                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2279         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2280                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2281 
2282         if (cpu_has_vmx_apicv()) {
2283                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2284                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2285                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2286                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2287         }
2288 
2289         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2290         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2291 
2292         set_cr4_guest_host_mask(vmx);
2293 }
2294 
2295 /*
2296  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2297  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2298  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2299  * guest in a way that will both be appropriate to L1's requests, and our
2300  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2301  * function also has additional necessary side-effects, like setting various
2302  * vcpu->arch fields.
2303  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2304  * is assigned to entry_failure_code on failure.
2305  */
2306 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2307                           u32 *entry_failure_code)
2308 {
2309         struct vcpu_vmx *vmx = to_vmx(vcpu);
2310         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2311         bool load_guest_pdptrs_vmcs12 = false;
2312 
2313         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2314                 prepare_vmcs02_rare(vmx, vmcs12);
2315                 vmx->nested.dirty_vmcs12 = false;
2316 
2317                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2318                         !(hv_evmcs->hv_clean_fields &
2319                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2320         }
2321 
2322         if (vmx->nested.nested_run_pending &&
2323             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2324                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2325                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2326         } else {
2327                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2328                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2329         }
2330         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2331             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2332                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2333         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2334 
2335         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2336          * bitwise-or of what L1 wants to trap for L2, and what we want to
2337          * trap. Note that CR0.TS also needs updating - we do this later.
2338          */
2339         update_exception_bitmap(vcpu);
2340         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2341         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2342 
2343         if (vmx->nested.nested_run_pending &&
2344             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2345                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2346                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2347         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2348                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2349         }
2350 
2351         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2352 
2353         if (kvm_has_tsc_control)
2354                 decache_tsc_multiplier(vmx);
2355 
2356         if (enable_vpid) {
2357                 /*
2358                  * There is no direct mapping between vpid02 and vpid12, the
2359                  * vpid02 is per-vCPU for L0 and reused while the value of
2360                  * vpid12 is changed w/ one invvpid during nested vmentry.
2361                  * The vpid12 is allocated by L1 for L2, so it will not
2362                  * influence global bitmap(for vpid01 and vpid02 allocation)
2363                  * even if spawn a lot of nested vCPUs.
2364                  */
2365                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2366                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2367                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2368                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2369                         }
2370                 } else {
2371                         /*
2372                          * If L1 use EPT, then L0 needs to execute INVEPT on
2373                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2374                          * flush until vmcs02->eptp is fully updated by
2375                          * KVM_REQ_LOAD_CR3. Note that this assumes
2376                          * KVM_REQ_TLB_FLUSH is evaluated after
2377                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2378                          */
2379                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2380                 }
2381         }
2382 
2383         if (nested_cpu_has_ept(vmcs12))
2384                 nested_ept_init_mmu_context(vcpu);
2385         else if (nested_cpu_has2(vmcs12,
2386                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2387                 vmx_flush_tlb(vcpu, true);
2388 
2389         /*
2390          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2391          * bits which we consider mandatory enabled.
2392          * The CR0_READ_SHADOW is what L2 should have expected to read given
2393          * the specifications by L1; It's not enough to take
2394          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2395          * have more bits than L1 expected.
2396          */
2397         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2398         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2399 
2400         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2401         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2402 
2403         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2404         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2405         vmx_set_efer(vcpu, vcpu->arch.efer);
2406 
2407         /*
2408          * Guest state is invalid and unrestricted guest is disabled,
2409          * which means L1 attempted VMEntry to L2 with invalid state.
2410          * Fail the VMEntry.
2411          */
2412         if (vmx->emulation_required) {
2413                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2414                 return -EINVAL;
2415         }
2416 
2417         /* Shadow page tables on either EPT or shadow page tables. */
2418         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2419                                 entry_failure_code))
2420                 return -EINVAL;
2421 
2422         /*
2423          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2424          * on nested VM-Exit, which can occur without actually running L2 and
2425          * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2426          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2427          * transition to HLT instead of running L2.
2428          */
2429         if (enable_ept)
2430                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2431 
2432         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2433         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2434             is_pae_paging(vcpu)) {
2435                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2436                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2437                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2438                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2439         }
2440 
2441         if (!enable_ept)
2442                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2443 
2444         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2445         kvm_rip_write(vcpu, vmcs12->guest_rip);
2446         return 0;
2447 }
2448 
2449 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2450 {
2451         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2452                nested_cpu_has_virtual_nmis(vmcs12)))
2453                 return -EINVAL;
2454 
2455         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2456                nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
2457                 return -EINVAL;
2458 
2459         return 0;
2460 }
2461 
2462 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2463 {
2464         struct vcpu_vmx *vmx = to_vmx(vcpu);
2465         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2466 
2467         /* Check for memory type validity */
2468         switch (address & VMX_EPTP_MT_MASK) {
2469         case VMX_EPTP_MT_UC:
2470                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2471                         return false;
2472                 break;
2473         case VMX_EPTP_MT_WB:
2474                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2475                         return false;
2476                 break;
2477         default:
2478                 return false;
2479         }
2480 
2481         /* only 4 levels page-walk length are valid */
2482         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2483                 return false;
2484 
2485         /* Reserved bits should not be set */
2486         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2487                 return false;
2488 
2489         /* AD, if set, should be supported */
2490         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2491                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2492                         return false;
2493         }
2494 
2495         return true;
2496 }
2497 
2498 /*
2499  * Checks related to VM-Execution Control Fields
2500  */
2501 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2502                                               struct vmcs12 *vmcs12)
2503 {
2504         struct vcpu_vmx *vmx = to_vmx(vcpu);
2505 
2506         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2507                                    vmx->nested.msrs.pinbased_ctls_low,
2508                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2509             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2510                                    vmx->nested.msrs.procbased_ctls_low,
2511                                    vmx->nested.msrs.procbased_ctls_high)))
2512                 return -EINVAL;
2513 
2514         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2515             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2516                                    vmx->nested.msrs.secondary_ctls_low,
2517                                    vmx->nested.msrs.secondary_ctls_high)))
2518                 return -EINVAL;
2519 
2520         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2521             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2522             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2523             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2524             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2525             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2526             nested_vmx_check_nmi_controls(vmcs12) ||
2527             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2528             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2529             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2530             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2531             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2532                 return -EINVAL;
2533 
2534         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2535             nested_cpu_has_save_preemption_timer(vmcs12))
2536                 return -EINVAL;
2537 
2538         if (nested_cpu_has_ept(vmcs12) &&
2539             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2540                 return -EINVAL;
2541 
2542         if (nested_cpu_has_vmfunc(vmcs12)) {
2543                 if (CC(vmcs12->vm_function_control &
2544                        ~vmx->nested.msrs.vmfunc_controls))
2545                         return -EINVAL;
2546 
2547                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2548                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2549                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2550                                 return -EINVAL;
2551                 }
2552         }
2553 
2554         return 0;
2555 }
2556 
2557 /*
2558  * Checks related to VM-Exit Control Fields
2559  */
2560 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2561                                          struct vmcs12 *vmcs12)
2562 {
2563         struct vcpu_vmx *vmx = to_vmx(vcpu);
2564 
2565         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2566                                     vmx->nested.msrs.exit_ctls_low,
2567                                     vmx->nested.msrs.exit_ctls_high)) ||
2568             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2569                 return -EINVAL;
2570 
2571         return 0;
2572 }
2573 
2574 /*
2575  * Checks related to VM-Entry Control Fields
2576  */
2577 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2578                                           struct vmcs12 *vmcs12)
2579 {
2580         struct vcpu_vmx *vmx = to_vmx(vcpu);
2581 
2582         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2583                                     vmx->nested.msrs.entry_ctls_low,
2584                                     vmx->nested.msrs.entry_ctls_high)))
2585                 return -EINVAL;
2586 
2587         /*
2588          * From the Intel SDM, volume 3:
2589          * Fields relevant to VM-entry event injection must be set properly.
2590          * These fields are the VM-entry interruption-information field, the
2591          * VM-entry exception error code, and the VM-entry instruction length.
2592          */
2593         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2594                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2595                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2596                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2597                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2598                 bool should_have_error_code;
2599                 bool urg = nested_cpu_has2(vmcs12,
2600                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2601                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2602 
2603                 /* VM-entry interruption-info field: interruption type */
2604                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2605                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2606                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2607                         return -EINVAL;
2608 
2609                 /* VM-entry interruption-info field: vector */
2610                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2611                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2612                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2613                         return -EINVAL;
2614 
2615                 /* VM-entry interruption-info field: deliver error code */
2616                 should_have_error_code =
2617                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2618                         x86_exception_has_error_code(vector);
2619                 if (CC(has_error_code != should_have_error_code))
2620                         return -EINVAL;
2621 
2622                 /* VM-entry exception error code */
2623                 if (CC(has_error_code &&
2624                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2625                         return -EINVAL;
2626 
2627                 /* VM-entry interruption-info field: reserved bits */
2628                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2629                         return -EINVAL;
2630 
2631                 /* VM-entry instruction length */
2632                 switch (intr_type) {
2633                 case INTR_TYPE_SOFT_EXCEPTION:
2634                 case INTR_TYPE_SOFT_INTR:
2635                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2636                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2637                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2638                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2639                                 return -EINVAL;
2640                 }
2641         }
2642 
2643         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2644                 return -EINVAL;
2645 
2646         return 0;
2647 }
2648 
2649 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2650                                      struct vmcs12 *vmcs12)
2651 {
2652         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2653             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2654             nested_check_vm_entry_controls(vcpu, vmcs12))
2655                 return -EINVAL;
2656 
2657         return 0;
2658 }
2659 
2660 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2661                                        struct vmcs12 *vmcs12)
2662 {
2663         bool ia32e;
2664 
2665         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2666             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2667             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2668                 return -EINVAL;
2669 
2670         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2671             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2672                 return -EINVAL;
2673 
2674         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2675             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2676                 return -EINVAL;
2677 
2678 #ifdef CONFIG_X86_64
2679         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2680 #else
2681         ia32e = false;
2682 #endif
2683 
2684         if (ia32e) {
2685                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2686                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2687                         return -EINVAL;
2688         } else {
2689                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2690                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2691                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2692                     CC((vmcs12->host_rip) >> 32))
2693                         return -EINVAL;
2694         }
2695 
2696         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2697             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2698             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2699             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2700             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2701             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2702             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2703             CC(vmcs12->host_cs_selector == 0) ||
2704             CC(vmcs12->host_tr_selector == 0) ||
2705             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2706                 return -EINVAL;
2707 
2708 #ifdef CONFIG_X86_64
2709         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2710             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2711             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2712             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2713             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2714             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2715                 return -EINVAL;
2716 #endif
2717 
2718         /*
2719          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2720          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2721          * the values of the LMA and LME bits in the field must each be that of
2722          * the host address-space size VM-exit control.
2723          */
2724         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2725                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2726                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2727                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2728                         return -EINVAL;
2729         }
2730 
2731         return 0;
2732 }
2733 
2734 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2735                                           struct vmcs12 *vmcs12)
2736 {
2737         int r = 0;
2738         struct vmcs12 *shadow;
2739         struct kvm_host_map map;
2740 
2741         if (vmcs12->vmcs_link_pointer == -1ull)
2742                 return 0;
2743 
2744         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2745                 return -EINVAL;
2746 
2747         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2748                 return -EINVAL;
2749 
2750         shadow = map.hva;
2751 
2752         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2753             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2754                 r = -EINVAL;
2755 
2756         kvm_vcpu_unmap(vcpu, &map, false);
2757         return r;
2758 }
2759 
2760 /*
2761  * Checks related to Guest Non-register State
2762  */
2763 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2764 {
2765         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2766                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2767                 return -EINVAL;
2768 
2769         return 0;
2770 }
2771 
2772 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2773                                         struct vmcs12 *vmcs12,
2774                                         u32 *exit_qual)
2775 {
2776         bool ia32e;
2777 
2778         *exit_qual = ENTRY_FAIL_DEFAULT;
2779 
2780         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2781             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2782                 return -EINVAL;
2783 
2784         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2785             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2786                 return -EINVAL;
2787 
2788         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2789                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2790                 return -EINVAL;
2791         }
2792 
2793         /*
2794          * If the load IA32_EFER VM-entry control is 1, the following checks
2795          * are performed on the field for the IA32_EFER MSR:
2796          * - Bits reserved in the IA32_EFER MSR must be 0.
2797          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2798          *   the IA-32e mode guest VM-exit control. It must also be identical
2799          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2800          *   CR0.PG) is 1.
2801          */
2802         if (to_vmx(vcpu)->nested.nested_run_pending &&
2803             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2804                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2805                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2806                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2807                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2808                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2809                         return -EINVAL;
2810         }
2811 
2812         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2813             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2814              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2815                 return -EINVAL;
2816 
2817         if (nested_check_guest_non_reg_state(vmcs12))
2818                 return -EINVAL;
2819 
2820         return 0;
2821 }
2822 
2823 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2824 {
2825         struct vcpu_vmx *vmx = to_vmx(vcpu);
2826         unsigned long cr3, cr4;
2827         bool vm_fail;
2828 
2829         if (!nested_early_check)
2830                 return 0;
2831 
2832         if (vmx->msr_autoload.host.nr)
2833                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2834         if (vmx->msr_autoload.guest.nr)
2835                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2836 
2837         preempt_disable();
2838 
2839         vmx_prepare_switch_to_guest(vcpu);
2840 
2841         /*
2842          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2843          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2844          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2845          * there is no need to preserve other bits or save/restore the field.
2846          */
2847         vmcs_writel(GUEST_RFLAGS, 0);
2848 
2849         cr3 = __get_current_cr3_fast();
2850         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2851                 vmcs_writel(HOST_CR3, cr3);
2852                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2853         }
2854 
2855         cr4 = cr4_read_shadow();
2856         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2857                 vmcs_writel(HOST_CR4, cr4);
2858                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2859         }
2860 
2861         asm(
2862                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2863                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2864                 "je 1f \n\t"
2865                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2866                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2867                 "1: \n\t"
2868                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2869 
2870                 /* Check if vmlaunch or vmresume is needed */
2871                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2872 
2873                 /*
2874                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2875                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2876                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2877                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2878                  */
2879                 "call vmx_vmenter\n\t"
2880 
2881                 CC_SET(be)
2882               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2883               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2884                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2885                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2886                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2887                 [wordsize]"i"(sizeof(ulong))
2888               : "memory"
2889         );
2890 
2891         if (vmx->msr_autoload.host.nr)
2892                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2893         if (vmx->msr_autoload.guest.nr)
2894                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2895 
2896         if (vm_fail) {
2897                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2898 
2899                 preempt_enable();
2900 
2901                 trace_kvm_nested_vmenter_failed(
2902                         "early hardware check VM-instruction error: ", error);
2903                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2904                 return 1;
2905         }
2906 
2907         /*
2908          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2909          */
2910         local_irq_enable();
2911         if (hw_breakpoint_active())
2912                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2913         preempt_enable();
2914 
2915         /*
2916          * A non-failing VMEntry means we somehow entered guest mode with
2917          * an illegal RIP, and that's just the tip of the iceberg.  There
2918          * is no telling what memory has been modified or what state has
2919          * been exposed to unknown code.  Hitting this all but guarantees
2920          * a (very critical) hardware issue.
2921          */
2922         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2923                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2924 
2925         return 0;
2926 }
2927 
2928 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2929                                                  struct vmcs12 *vmcs12);
2930 
2931 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2932 {
2933         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2934         struct vcpu_vmx *vmx = to_vmx(vcpu);
2935         struct kvm_host_map *map;
2936         struct page *page;
2937         u64 hpa;
2938 
2939         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2940                 /*
2941                  * Translate L1 physical address to host physical
2942                  * address for vmcs02. Keep the page pinned, so this
2943                  * physical address remains valid. We keep a reference
2944                  * to it so we can release it later.
2945                  */
2946                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2947                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2948                         vmx->nested.apic_access_page = NULL;
2949                 }
2950                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2951                 if (!is_error_page(page)) {
2952                         vmx->nested.apic_access_page = page;
2953                         hpa = page_to_phys(vmx->nested.apic_access_page);
2954                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2955                 } else {
2956                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
2957                                              __func__);
2958                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2959                         vcpu->run->internal.suberror =
2960                                 KVM_INTERNAL_ERROR_EMULATION;
2961                         vcpu->run->internal.ndata = 0;
2962                         return false;
2963                 }
2964         }
2965 
2966         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2967                 map = &vmx->nested.virtual_apic_map;
2968 
2969                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2970                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2971                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2972                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2973                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2974                         /*
2975                          * The processor will never use the TPR shadow, simply
2976                          * clear the bit from the execution control.  Such a
2977                          * configuration is useless, but it happens in tests.
2978                          * For any other configuration, failing the vm entry is
2979                          * _not_ what the processor does but it's basically the
2980                          * only possibility we have.
2981                          */
2982                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2983                 } else {
2984                         /*
2985                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2986                          * force VM-Entry to fail.
2987                          */
2988                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2989                 }
2990         }
2991 
2992         if (nested_cpu_has_posted_intr(vmcs12)) {
2993                 map = &vmx->nested.pi_desc_map;
2994 
2995                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2996                         vmx->nested.pi_desc =
2997                                 (struct pi_desc *)(((void *)map->hva) +
2998                                 offset_in_page(vmcs12->posted_intr_desc_addr));
2999                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3000                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3001                 }
3002         }
3003         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3004                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3005         else
3006                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3007         return true;
3008 }
3009 
3010 /*
3011  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3012  * for running VMX instructions (except VMXON, whose prerequisites are
3013  * slightly different). It also specifies what exception to inject otherwise.
3014  * Note that many of these exceptions have priority over VM exits, so they
3015  * don't have to be checked again here.
3016  */
3017 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3018 {
3019         if (!to_vmx(vcpu)->nested.vmxon) {
3020                 kvm_queue_exception(vcpu, UD_VECTOR);
3021                 return 0;
3022         }
3023 
3024         if (vmx_get_cpl(vcpu)) {
3025                 kvm_inject_gp(vcpu, 0);
3026                 return 0;
3027         }
3028 
3029         return 1;
3030 }
3031 
3032 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3033 {
3034         u8 rvi = vmx_get_rvi();
3035         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3036 
3037         return ((rvi & 0xf0) > (vppr & 0xf0));
3038 }
3039 
3040 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3041                                    struct vmcs12 *vmcs12);
3042 
3043 /*
3044  * If from_vmentry is false, this is being called from state restore (either RSM
3045  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3046  *
3047  * Returns:
3048  *      NVMX_ENTRY_SUCCESS: Entered VMX non-root mode
3049  *      NVMX_ENTRY_VMFAIL:  Consistency check VMFail
3050  *      NVMX_ENTRY_VMEXIT:  Consistency check VMExit
3051  *      NVMX_ENTRY_KVM_INTERNAL_ERROR: KVM internal error
3052  */
3053 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3054                                                         bool from_vmentry)
3055 {
3056         struct vcpu_vmx *vmx = to_vmx(vcpu);
3057         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3058         bool evaluate_pending_interrupts;
3059         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3060         u32 exit_qual;
3061 
3062         evaluate_pending_interrupts = exec_controls_get(vmx) &
3063                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3064         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3065                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3066 
3067         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3068                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3069         if (kvm_mpx_supported() &&
3070                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3071                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3072 
3073         /*
3074          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3075          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3076          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3077          * software model to the pre-VMEntry host state.  When EPT is disabled,
3078          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3079          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3080          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3081          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3082          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3083          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3084          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3085          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3086          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3087          * path would need to manually save/restore vmcs01.GUEST_CR3.
3088          */
3089         if (!enable_ept && !nested_early_check)
3090                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3091 
3092         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3093 
3094         prepare_vmcs02_early(vmx, vmcs12);
3095 
3096         if (from_vmentry) {
3097                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3098                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3099 
3100                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3101                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3102                         return NVMX_VMENTRY_VMFAIL;
3103                 }
3104 
3105                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3106                         goto vmentry_fail_vmexit;
3107         }
3108 
3109         enter_guest_mode(vcpu);
3110         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3111                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3112 
3113         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3114                 goto vmentry_fail_vmexit_guest_mode;
3115 
3116         if (from_vmentry) {
3117                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3118                 exit_qual = nested_vmx_load_msr(vcpu,
3119                                                 vmcs12->vm_entry_msr_load_addr,
3120                                                 vmcs12->vm_entry_msr_load_count);
3121                 if (exit_qual)
3122                         goto vmentry_fail_vmexit_guest_mode;
3123         } else {
3124                 /*
3125                  * The MMU is not initialized to point at the right entities yet and
3126                  * "get pages" would need to read data from the guest (i.e. we will
3127                  * need to perform gpa to hpa translation). Request a call
3128                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3129                  * have already been set at vmentry time and should not be reset.
3130                  */
3131                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3132         }
3133 
3134         /*
3135          * If L1 had a pending IRQ/NMI until it executed
3136          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3137          * disallowed (e.g. interrupts disabled), L0 needs to
3138          * evaluate if this pending event should cause an exit from L2
3139          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3140          * intercept EXTERNAL_INTERRUPT).
3141          *
3142          * Usually this would be handled by the processor noticing an
3143          * IRQ/NMI window request, or checking RVI during evaluation of
3144          * pending virtual interrupts.  However, this setting was done
3145          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3146          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3147          */
3148         if (unlikely(evaluate_pending_interrupts))
3149                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3150 
3151         /*
3152          * Do not start the preemption timer hrtimer until after we know
3153          * we are successful, so that only nested_vmx_vmexit needs to cancel
3154          * the timer.
3155          */
3156         vmx->nested.preemption_timer_expired = false;
3157         if (nested_cpu_has_preemption_timer(vmcs12))
3158                 vmx_start_preemption_timer(vcpu);
3159 
3160         /*
3161          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3162          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3163          * returned as far as L1 is concerned. It will only return (and set
3164          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3165          */
3166         return NVMX_VMENTRY_SUCCESS;
3167 
3168         /*
3169          * A failed consistency check that leads to a VMExit during L1's
3170          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3171          * 26.7 "VM-entry failures during or after loading guest state".
3172          */
3173 vmentry_fail_vmexit_guest_mode:
3174         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3175                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3176         leave_guest_mode(vcpu);
3177 
3178 vmentry_fail_vmexit:
3179         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3180 
3181         if (!from_vmentry)
3182                 return NVMX_VMENTRY_VMEXIT;
3183 
3184         load_vmcs12_host_state(vcpu, vmcs12);
3185         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3186         vmcs12->exit_qualification = exit_qual;
3187         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3188                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3189         return NVMX_VMENTRY_VMEXIT;
3190 }
3191 
3192 /*
3193  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3194  * for running an L2 nested guest.
3195  */
3196 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3197 {
3198         struct vmcs12 *vmcs12;
3199         enum nvmx_vmentry_status status;
3200         struct vcpu_vmx *vmx = to_vmx(vcpu);
3201         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3202 
3203         if (!nested_vmx_check_permission(vcpu))
3204                 return 1;
3205 
3206         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3207                 return 1;
3208 
3209         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3210                 return nested_vmx_failInvalid(vcpu);
3211 
3212         vmcs12 = get_vmcs12(vcpu);
3213 
3214         /*
3215          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3216          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3217          * rather than RFLAGS.ZF, and no error number is stored to the
3218          * VM-instruction error field.
3219          */
3220         if (vmcs12->hdr.shadow_vmcs)
3221                 return nested_vmx_failInvalid(vcpu);
3222 
3223         if (vmx->nested.hv_evmcs) {
3224                 copy_enlightened_to_vmcs12(vmx);
3225                 /* Enlightened VMCS doesn't have launch state */
3226                 vmcs12->launch_state = !launch;
3227         } else if (enable_shadow_vmcs) {
3228                 copy_shadow_to_vmcs12(vmx);
3229         }
3230 
3231         /*
3232          * The nested entry process starts with enforcing various prerequisites
3233          * on vmcs12 as required by the Intel SDM, and act appropriately when
3234          * they fail: As the SDM explains, some conditions should cause the
3235          * instruction to fail, while others will cause the instruction to seem
3236          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3237          * To speed up the normal (success) code path, we should avoid checking
3238          * for misconfigurations which will anyway be caught by the processor
3239          * when using the merged vmcs02.
3240          */
3241         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3242                 return nested_vmx_failValid(vcpu,
3243                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3244 
3245         if (vmcs12->launch_state == launch)
3246                 return nested_vmx_failValid(vcpu,
3247                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3248                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3249 
3250         if (nested_vmx_check_controls(vcpu, vmcs12))
3251                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3252 
3253         if (nested_vmx_check_host_state(vcpu, vmcs12))
3254                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3255 
3256         /*
3257          * We're finally done with prerequisite checking, and can start with
3258          * the nested entry.
3259          */
3260         vmx->nested.nested_run_pending = 1;
3261         status = nested_vmx_enter_non_root_mode(vcpu, true);
3262         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3263                 goto vmentry_failed;
3264 
3265         /* Hide L1D cache contents from the nested guest.  */
3266         vmx->vcpu.arch.l1tf_flush_l1d = true;
3267 
3268         /*
3269          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3270          * also be used as part of restoring nVMX state for
3271          * snapshot restore (migration).
3272          *
3273          * In this flow, it is assumed that vmcs12 cache was
3274          * trasferred as part of captured nVMX state and should
3275          * therefore not be read from guest memory (which may not
3276          * exist on destination host yet).
3277          */
3278         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3279 
3280         /*
3281          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3282          * awakened by event injection or by an NMI-window VM-exit or
3283          * by an interrupt-window VM-exit, halt the vcpu.
3284          */
3285         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3286             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3287             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3288             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3289               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3290                 vmx->nested.nested_run_pending = 0;
3291                 return kvm_vcpu_halt(vcpu);
3292         }
3293         return 1;
3294 
3295 vmentry_failed:
3296         vmx->nested.nested_run_pending = 0;
3297         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3298                 return 0;
3299         if (status == NVMX_VMENTRY_VMEXIT)
3300                 return 1;
3301         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3302         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3303 }
3304 
3305 /*
3306  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3307  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3308  * This function returns the new value we should put in vmcs12.guest_cr0.
3309  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3310  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3311  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3312  *     didn't trap the bit, because if L1 did, so would L0).
3313  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3314  *     been modified by L2, and L1 knows it. So just leave the old value of
3315  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3316  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3317  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3318  *     changed these bits, and therefore they need to be updated, but L0
3319  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3320  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3321  */
3322 static inline unsigned long
3323 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3324 {
3325         return
3326         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3327         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3328         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3329                         vcpu->arch.cr0_guest_owned_bits));
3330 }
3331 
3332 static inline unsigned long
3333 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3334 {
3335         return
3336         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3337         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3338         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3339                         vcpu->arch.cr4_guest_owned_bits));
3340 }
3341 
3342 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3343                                       struct vmcs12 *vmcs12)
3344 {
3345         u32 idt_vectoring;
3346         unsigned int nr;
3347 
3348         if (vcpu->arch.exception.injected) {
3349                 nr = vcpu->arch.exception.nr;
3350                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3351 
3352                 if (kvm_exception_is_soft(nr)) {
3353                         vmcs12->vm_exit_instruction_len =
3354                                 vcpu->arch.event_exit_inst_len;
3355                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3356                 } else
3357                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3358 
3359                 if (vcpu->arch.exception.has_error_code) {
3360                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3361                         vmcs12->idt_vectoring_error_code =
3362                                 vcpu->arch.exception.error_code;
3363                 }
3364 
3365                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3366         } else if (vcpu->arch.nmi_injected) {
3367                 vmcs12->idt_vectoring_info_field =
3368                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3369         } else if (vcpu->arch.interrupt.injected) {
3370                 nr = vcpu->arch.interrupt.nr;
3371                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3372 
3373                 if (vcpu->arch.interrupt.soft) {
3374                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3375                         vmcs12->vm_entry_instruction_len =
3376                                 vcpu->arch.event_exit_inst_len;
3377                 } else
3378                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3379 
3380                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3381         }
3382 }
3383 
3384 
3385 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3386 {
3387         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3388         gfn_t gfn;
3389 
3390         /*
3391          * Don't need to mark the APIC access page dirty; it is never
3392          * written to by the CPU during APIC virtualization.
3393          */
3394 
3395         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3396                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3397                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3398         }
3399 
3400         if (nested_cpu_has_posted_intr(vmcs12)) {
3401                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3402                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3403         }
3404 }
3405 
3406 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3407 {
3408         struct vcpu_vmx *vmx = to_vmx(vcpu);
3409         int max_irr;
3410         void *vapic_page;
3411         u16 status;
3412 
3413         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3414                 return;
3415 
3416         vmx->nested.pi_pending = false;
3417         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3418                 return;
3419 
3420         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3421         if (max_irr != 256) {
3422                 vapic_page = vmx->nested.virtual_apic_map.hva;
3423                 if (!vapic_page)
3424                         return;
3425 
3426                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3427                         vapic_page, &max_irr);
3428                 status = vmcs_read16(GUEST_INTR_STATUS);
3429                 if ((u8)max_irr > ((u8)status & 0xff)) {
3430                         status &= ~0xff;
3431                         status |= (u8)max_irr;
3432                         vmcs_write16(GUEST_INTR_STATUS, status);
3433                 }
3434         }
3435 
3436         nested_mark_vmcs12_pages_dirty(vcpu);
3437 }
3438 
3439 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3440                                                unsigned long exit_qual)
3441 {
3442         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3443         unsigned int nr = vcpu->arch.exception.nr;
3444         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3445 
3446         if (vcpu->arch.exception.has_error_code) {
3447                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3448                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3449         }
3450 
3451         if (kvm_exception_is_soft(nr))
3452                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3453         else
3454                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3455 
3456         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3457             vmx_get_nmi_mask(vcpu))
3458                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3459 
3460         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3461 }
3462 
3463 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3464 {
3465         struct vcpu_vmx *vmx = to_vmx(vcpu);
3466         unsigned long exit_qual;
3467         bool block_nested_events =
3468             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3469         struct kvm_lapic *apic = vcpu->arch.apic;
3470 
3471         if (lapic_in_kernel(vcpu) &&
3472                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3473                 if (block_nested_events)
3474                         return -EBUSY;
3475                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3476                 return 0;
3477         }
3478 
3479         if (vcpu->arch.exception.pending &&
3480                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3481                 if (block_nested_events)
3482                         return -EBUSY;
3483                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3484                 return 0;
3485         }
3486 
3487         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3488             vmx->nested.preemption_timer_expired) {
3489                 if (block_nested_events)
3490                         return -EBUSY;
3491                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3492                 return 0;
3493         }
3494 
3495         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3496                 if (block_nested_events)
3497                         return -EBUSY;
3498                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3499                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3500                                   INTR_INFO_VALID_MASK, 0);
3501                 /*
3502                  * The NMI-triggered VM exit counts as injection:
3503                  * clear this one and block further NMIs.
3504                  */
3505                 vcpu->arch.nmi_pending = 0;
3506                 vmx_set_nmi_mask(vcpu, true);
3507                 return 0;
3508         }
3509 
3510         if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) {
3511                 if (block_nested_events)
3512                         return -EBUSY;
3513                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3514                 return 0;
3515         }
3516 
3517         vmx_complete_nested_posted_interrupt(vcpu);
3518         return 0;
3519 }
3520 
3521 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3522 {
3523         ktime_t remaining =
3524                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3525         u64 value;
3526 
3527         if (ktime_to_ns(remaining) <= 0)
3528                 return 0;
3529 
3530         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3531         do_div(value, 1000000);
3532         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3533 }
3534 
3535 static bool is_vmcs12_ext_field(unsigned long field)
3536 {
3537         switch (field) {
3538         case GUEST_ES_SELECTOR:
3539         case GUEST_CS_SELECTOR:
3540         case GUEST_SS_SELECTOR:
3541         case GUEST_DS_SELECTOR:
3542         case GUEST_FS_SELECTOR:
3543         case GUEST_GS_SELECTOR:
3544         case GUEST_LDTR_SELECTOR:
3545         case GUEST_TR_SELECTOR:
3546         case GUEST_ES_LIMIT:
3547         case GUEST_CS_LIMIT:
3548         case GUEST_SS_LIMIT:
3549         case GUEST_DS_LIMIT:
3550         case GUEST_FS_LIMIT:
3551         case GUEST_GS_LIMIT:
3552         case GUEST_LDTR_LIMIT:
3553         case GUEST_TR_LIMIT:
3554         case GUEST_GDTR_LIMIT:
3555         case GUEST_IDTR_LIMIT:
3556         case GUEST_ES_AR_BYTES:
3557         case GUEST_DS_AR_BYTES:
3558         case GUEST_FS_AR_BYTES:
3559         case GUEST_GS_AR_BYTES:
3560         case GUEST_LDTR_AR_BYTES:
3561         case GUEST_TR_AR_BYTES:
3562         case GUEST_ES_BASE:
3563         case GUEST_CS_BASE:
3564         case GUEST_SS_BASE:
3565         case GUEST_DS_BASE:
3566         case GUEST_FS_BASE:
3567         case GUEST_GS_BASE:
3568         case GUEST_LDTR_BASE:
3569         case GUEST_TR_BASE:
3570         case GUEST_GDTR_BASE:
3571         case GUEST_IDTR_BASE:
3572         case GUEST_PENDING_DBG_EXCEPTIONS:
3573         case GUEST_BNDCFGS:
3574                 return true;
3575         default:
3576                 break;
3577         }
3578 
3579         return false;
3580 }
3581 
3582 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3583                                        struct vmcs12 *vmcs12)
3584 {
3585         struct vcpu_vmx *vmx = to_vmx(vcpu);
3586 
3587         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3588         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3589         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3590         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3591         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3592         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3593         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3594         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3595         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3596         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3597         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3598         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3599         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3600         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3601         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3602         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3603         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3604         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3605         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3606         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3607         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3608         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3609         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3610         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3611         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3612         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3613         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3614         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3615         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3616         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3617         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3618         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3619         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3620         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3621         vmcs12->guest_pending_dbg_exceptions =
3622                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3623         if (kvm_mpx_supported())
3624                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3625 
3626         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3627 }
3628 
3629 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3630                                        struct vmcs12 *vmcs12)
3631 {
3632         struct vcpu_vmx *vmx = to_vmx(vcpu);
3633         int cpu;
3634 
3635         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3636                 return;
3637 
3638 
3639         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3640 
3641         cpu = get_cpu();
3642         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3643         vmx_vcpu_load(&vmx->vcpu, cpu);
3644 
3645         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3646 
3647         vmx->loaded_vmcs = &vmx->vmcs01;
3648         vmx_vcpu_load(&vmx->vcpu, cpu);
3649         put_cpu();
3650 }
3651 
3652 /*
3653  * Update the guest state fields of vmcs12 to reflect changes that
3654  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3655  * VM-entry controls is also updated, since this is really a guest
3656  * state bit.)
3657  */
3658 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3659 {
3660         struct vcpu_vmx *vmx = to_vmx(vcpu);
3661 
3662         if (vmx->nested.hv_evmcs)
3663                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3664 
3665         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3666 
3667         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3668         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3669 
3670         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3671         vmcs12->guest_rip = kvm_rip_read(vcpu);
3672         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3673 
3674         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3675         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3676 
3677         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3678         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3679         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3680 
3681         vmcs12->guest_interruptibility_info =
3682                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3683 
3684         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3685                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3686         else
3687                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3688 
3689         if (nested_cpu_has_preemption_timer(vmcs12) &&
3690             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3691                         vmcs12->vmx_preemption_timer_value =
3692                                 vmx_get_preemption_timer_value(vcpu);
3693 
3694         /*
3695          * In some cases (usually, nested EPT), L2 is allowed to change its
3696          * own CR3 without exiting. If it has changed it, we must keep it.
3697          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3698          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3699          *
3700          * Additionally, restore L2's PDPTR to vmcs12.
3701          */
3702         if (enable_ept) {
3703                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3704                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3705                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3706                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3707                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3708                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3709                 }
3710         }
3711 
3712         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3713 
3714         if (nested_cpu_has_vid(vmcs12))
3715                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3716 
3717         vmcs12->vm_entry_controls =
3718                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3719                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3720 
3721         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3722                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3723 
3724         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3725                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3726 }
3727 
3728 /*
3729  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3730  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3731  * and this function updates it to reflect the changes to the guest state while
3732  * L2 was running (and perhaps made some exits which were handled directly by L0
3733  * without going back to L1), and to reflect the exit reason.
3734  * Note that we do not have to copy here all VMCS fields, just those that
3735  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3736  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3737  * which already writes to vmcs12 directly.
3738  */
3739 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3740                            u32 exit_reason, u32 exit_intr_info,
3741                            unsigned long exit_qualification)
3742 {
3743         /* update exit information fields: */
3744         vmcs12->vm_exit_reason = exit_reason;
3745         vmcs12->exit_qualification = exit_qualification;
3746         vmcs12->vm_exit_intr_info = exit_intr_info;
3747 
3748         vmcs12->idt_vectoring_info_field = 0;
3749         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3750         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3751 
3752         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3753                 vmcs12->launch_state = 1;
3754 
3755                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3756                  * instead of reading the real value. */
3757                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3758 
3759                 /*
3760                  * Transfer the event that L0 or L1 may wanted to inject into
3761                  * L2 to IDT_VECTORING_INFO_FIELD.
3762                  */
3763                 vmcs12_save_pending_event(vcpu, vmcs12);
3764 
3765                 /*
3766                  * According to spec, there's no need to store the guest's
3767                  * MSRs if the exit is due to a VM-entry failure that occurs
3768                  * during or after loading the guest state. Since this exit
3769                  * does not fall in that category, we need to save the MSRs.
3770                  */
3771                 if (nested_vmx_store_msr(vcpu,
3772                                          vmcs12->vm_exit_msr_store_addr,
3773                                          vmcs12->vm_exit_msr_store_count))
3774                         nested_vmx_abort(vcpu,
3775                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3776         }
3777 
3778         /*
3779          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3780          * preserved above and would only end up incorrectly in L1.
3781          */
3782         vcpu->arch.nmi_injected = false;
3783         kvm_clear_exception_queue(vcpu);
3784         kvm_clear_interrupt_queue(vcpu);
3785 }
3786 
3787 /*
3788  * A part of what we need to when the nested L2 guest exits and we want to
3789  * run its L1 parent, is to reset L1's guest state to the host state specified
3790  * in vmcs12.
3791  * This function is to be called not only on normal nested exit, but also on
3792  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3793  * Failures During or After Loading Guest State").
3794  * This function should be called when the active VMCS is L1's (vmcs01).
3795  */
3796 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3797                                    struct vmcs12 *vmcs12)
3798 {
3799         struct kvm_segment seg;
3800         u32 entry_failure_code;
3801 
3802         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3803                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3804         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3805                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3806         else
3807                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3808         vmx_set_efer(vcpu, vcpu->arch.efer);
3809 
3810         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3811         kvm_rip_write(vcpu, vmcs12->host_rip);
3812         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3813         vmx_set_interrupt_shadow(vcpu, 0);
3814 
3815         /*
3816          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3817          * actually changed, because vmx_set_cr0 refers to efer set above.
3818          *
3819          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3820          * (KVM doesn't change it);
3821          */
3822         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3823         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3824 
3825         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3826         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3827         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3828 
3829         nested_ept_uninit_mmu_context(vcpu);
3830 
3831         /*
3832          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3833          * couldn't have changed.
3834          */
3835         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3836                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3837 
3838         if (!enable_ept)
3839                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3840 
3841         /*
3842          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3843          * VMEntry/VMExit. Thus, no need to flush TLB.
3844          *
3845          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3846          * flushed on every VMEntry/VMExit.
3847          *
3848          * Otherwise, we can preserve TLB entries as long as we are
3849          * able to tag L1 TLB entries differently than L2 TLB entries.
3850          *
3851          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3852          * and therefore we request the TLB flush to happen only after VMCS EPTP
3853          * has been set by KVM_REQ_LOAD_CR3.
3854          */
3855         if (enable_vpid &&
3856             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3857                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3858         }
3859 
3860         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3861         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3862         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3863         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3864         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3865         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3866         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3867 
3868         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3869         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3870                 vmcs_write64(GUEST_BNDCFGS, 0);
3871 
3872         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3873                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3874                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3875         }
3876         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3877                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3878                         vmcs12->host_ia32_perf_global_ctrl);
3879 
3880         /* Set L1 segment info according to Intel SDM
3881             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3882         seg = (struct kvm_segment) {
3883                 .base = 0,
3884                 .limit = 0xFFFFFFFF,
3885                 .selector = vmcs12->host_cs_selector,
3886                 .type = 11,
3887                 .present = 1,
3888                 .s = 1,
3889                 .g = 1
3890         };
3891         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3892                 seg.l = 1;
3893         else
3894                 seg.db = 1;
3895         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3896         seg = (struct kvm_segment) {
3897                 .base = 0,
3898                 .limit = 0xFFFFFFFF,
3899                 .type = 3,
3900                 .present = 1,
3901                 .s = 1,
3902                 .db = 1,
3903                 .g = 1
3904         };
3905         seg.selector = vmcs12->host_ds_selector;
3906         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3907         seg.selector = vmcs12->host_es_selector;
3908         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3909         seg.selector = vmcs12->host_ss_selector;
3910         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3911         seg.selector = vmcs12->host_fs_selector;
3912         seg.base = vmcs12->host_fs_base;
3913         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3914         seg.selector = vmcs12->host_gs_selector;
3915         seg.base = vmcs12->host_gs_base;
3916         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3917         seg = (struct kvm_segment) {
3918                 .base = vmcs12->host_tr_base,
3919                 .limit = 0x67,
3920                 .selector = vmcs12->host_tr_selector,
3921                 .type = 11,
3922                 .present = 1
3923         };
3924         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3925 
3926         kvm_set_dr(vcpu, 7, 0x400);
3927         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3928 
3929         if (cpu_has_vmx_msr_bitmap())
3930                 vmx_update_msr_bitmap(vcpu);
3931 
3932         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3933                                 vmcs12->vm_exit_msr_load_count))
3934                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3935 }
3936 
3937 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3938 {
3939         struct shared_msr_entry *efer_msr;
3940         unsigned int i;
3941 
3942         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3943                 return vmcs_read64(GUEST_IA32_EFER);
3944 
3945         if (cpu_has_load_ia32_efer())
3946                 return host_efer;
3947 
3948         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3949                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3950                         return vmx->msr_autoload.guest.val[i].value;
3951         }
3952 
3953         efer_msr = find_msr_entry(vmx, MSR_EFER);
3954         if (efer_msr)
3955                 return efer_msr->data;
3956 
3957         return host_efer;
3958 }
3959 
3960 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3961 {
3962         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3963         struct vcpu_vmx *vmx = to_vmx(vcpu);
3964         struct vmx_msr_entry g, h;
3965         gpa_t gpa;
3966         u32 i, j;
3967 
3968         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3969 
3970         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3971                 /*
3972                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3973                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3974                  * and vcpu->arch.dr7 is not squirreled away before the
3975                  * nested VMENTER (not worth adding a variable in nested_vmx).
3976                  */
3977                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3978                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3979                 else
3980                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3981         }
3982 
3983         /*
3984          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3985          * handle a variety of side effects to KVM's software model.
3986          */
3987         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3988 
3989         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3990         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3991 
3992         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3993         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3994 
3995         nested_ept_uninit_mmu_context(vcpu);
3996         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3997         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3998 
3999         /*
4000          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4001          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4002          * VMFail, like everything else we just need to ensure our
4003          * software model is up-to-date.
4004          */
4005         if (enable_ept)
4006                 ept_save_pdptrs(vcpu);
4007 
4008         kvm_mmu_reset_context(vcpu);
4009 
4010         if (cpu_has_vmx_msr_bitmap())
4011                 vmx_update_msr_bitmap(vcpu);
4012 
4013         /*
4014          * This nasty bit of open coding is a compromise between blindly
4015          * loading L1's MSRs using the exit load lists (incorrect emulation
4016          * of VMFail), leaving the nested VM's MSRs in the software model
4017          * (incorrect behavior) and snapshotting the modified MSRs (too
4018          * expensive since the lists are unbound by hardware).  For each
4019          * MSR that was (prematurely) loaded from the nested VMEntry load
4020          * list, reload it from the exit load list if it exists and differs
4021          * from the guest value.  The intent is to stuff host state as
4022          * silently as possible, not to fully process the exit load list.
4023          */
4024         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4025                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4026                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4027                         pr_debug_ratelimited(
4028                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4029                                 __func__, i, gpa);
4030                         goto vmabort;
4031                 }
4032 
4033                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4034                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4035                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4036                                 pr_debug_ratelimited(
4037                                         "%s read MSR failed (%u, 0x%08llx)\n",
4038                                         __func__, j, gpa);
4039                                 goto vmabort;
4040                         }
4041                         if (h.index != g.index)
4042                                 continue;
4043                         if (h.value == g.value)
4044                                 break;
4045 
4046                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4047                                 pr_debug_ratelimited(
4048                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4049                                         __func__, j, h.index, h.reserved);
4050                                 goto vmabort;
4051                         }
4052 
4053                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4054                                 pr_debug_ratelimited(
4055                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4056                                         __func__, j, h.index, h.value);
4057                                 goto vmabort;
4058                         }
4059                 }
4060         }
4061 
4062         return;
4063 
4064 vmabort:
4065         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4066 }
4067 
4068 /*
4069  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4070  * and modify vmcs12 to make it see what it would expect to see there if
4071  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4072  */
4073 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4074                        u32 exit_intr_info, unsigned long exit_qualification)
4075 {
4076         struct vcpu_vmx *vmx = to_vmx(vcpu);
4077         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4078 
4079         /* trying to cancel vmlaunch/vmresume is a bug */
4080         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4081 
4082         leave_guest_mode(vcpu);
4083 
4084         if (nested_cpu_has_preemption_timer(vmcs12))
4085                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4086 
4087         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4088                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4089 
4090         if (likely(!vmx->fail)) {
4091                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4092 
4093                 if (exit_reason != -1)
4094                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4095                                        exit_qualification);
4096 
4097                 /*
4098                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4099                  * also be used to capture vmcs12 cache as part of
4100                  * capturing nVMX state for snapshot (migration).
4101                  *
4102                  * Otherwise, this flush will dirty guest memory at a
4103                  * point it is already assumed by user-space to be
4104                  * immutable.
4105                  */
4106                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4107         } else {
4108                 /*
4109                  * The only expected VM-instruction error is "VM entry with
4110                  * invalid control field(s)." Anything else indicates a
4111                  * problem with L0.  And we should never get here with a
4112                  * VMFail of any type if early consistency checks are enabled.
4113                  */
4114                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4115                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4116                 WARN_ON_ONCE(nested_early_check);
4117         }
4118 
4119         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4120 
4121         /* Update any VMCS fields that might have changed while L2 ran */
4122         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4123         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4124         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4125 
4126         if (kvm_has_tsc_control)
4127                 decache_tsc_multiplier(vmx);
4128 
4129         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4130                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4131                 vmx_set_virtual_apic_mode(vcpu);
4132         } else if (!nested_cpu_has_ept(vmcs12) &&
4133                    nested_cpu_has2(vmcs12,
4134                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4135                 vmx_flush_tlb(vcpu, true);
4136         }
4137 
4138         /* Unpin physical memory we referred to in vmcs02 */
4139         if (vmx->nested.apic_access_page) {
4140                 kvm_release_page_dirty(vmx->nested.apic_access_page);
4141                 vmx->nested.apic_access_page = NULL;
4142         }
4143         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4144         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4145         vmx->nested.pi_desc = NULL;
4146 
4147         /*
4148          * We are now running in L2, mmu_notifier will force to reload the
4149          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4150          */
4151         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4152 
4153         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4154                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4155 
4156         /* in case we halted in L2 */
4157         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4158 
4159         if (likely(!vmx->fail)) {
4160                 if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4161                     nested_exit_intr_ack_set(vcpu)) {
4162                         int irq = kvm_cpu_get_interrupt(vcpu);
4163                         WARN_ON(irq < 0);
4164                         vmcs12->vm_exit_intr_info = irq |
4165                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4166                 }
4167 
4168                 if (exit_reason != -1)
4169                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4170                                                        vmcs12->exit_qualification,
4171                                                        vmcs12->idt_vectoring_info_field,
4172                                                        vmcs12->vm_exit_intr_info,
4173                                                        vmcs12->vm_exit_intr_error_code,
4174                                                        KVM_ISA_VMX);
4175 
4176                 load_vmcs12_host_state(vcpu, vmcs12);
4177 
4178                 return;
4179         }
4180 
4181         /*
4182          * After an early L2 VM-entry failure, we're now back
4183          * in L1 which thinks it just finished a VMLAUNCH or
4184          * VMRESUME instruction, so we need to set the failure
4185          * flag and the VM-instruction error field of the VMCS
4186          * accordingly, and skip the emulated instruction.
4187          */
4188         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4189 
4190         /*
4191          * Restore L1's host state to KVM's software model.  We're here
4192          * because a consistency check was caught by hardware, which
4193          * means some amount of guest state has been propagated to KVM's
4194          * model and needs to be unwound to the host's state.
4195          */
4196         nested_vmx_restore_host_state(vcpu);
4197 
4198         vmx->fail = 0;
4199 }
4200 
4201 /*
4202  * Decode the memory-address operand of a vmx instruction, as recorded on an
4203  * exit caused by such an instruction (run by a guest hypervisor).
4204  * On success, returns 0. When the operand is invalid, returns 1 and throws
4205  * #UD or #GP.
4206  */
4207 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4208                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4209 {
4210         gva_t off;
4211         bool exn;
4212         struct kvm_segment s;
4213 
4214         /*
4215          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4216          * Execution", on an exit, vmx_instruction_info holds most of the
4217          * addressing components of the operand. Only the displacement part
4218          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4219          * For how an actual address is calculated from all these components,
4220          * refer to Vol. 1, "Operand Addressing".
4221          */
4222         int  scaling = vmx_instruction_info & 3;
4223         int  addr_size = (vmx_instruction_info >> 7) & 7;
4224         bool is_reg = vmx_instruction_info & (1u << 10);
4225         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4226         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4227         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4228         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4229         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4230 
4231         if (is_reg) {
4232                 kvm_queue_exception(vcpu, UD_VECTOR);
4233                 return 1;
4234         }
4235 
4236         /* Addr = segment_base + offset */
4237         /* offset = base + [index * scale] + displacement */
4238         off = exit_qualification; /* holds the displacement */
4239         if (addr_size == 1)
4240                 off = (gva_t)sign_extend64(off, 31);
4241         else if (addr_size == 0)
4242                 off = (gva_t)sign_extend64(off, 15);
4243         if (base_is_valid)
4244                 off += kvm_register_read(vcpu, base_reg);
4245         if (index_is_valid)
4246                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4247         vmx_get_segment(vcpu, &s, seg_reg);
4248 
4249         /*
4250          * The effective address, i.e. @off, of a memory operand is truncated
4251          * based on the address size of the instruction.  Note that this is
4252          * the *effective address*, i.e. the address prior to accounting for
4253          * the segment's base.
4254          */
4255         if (addr_size == 1) /* 32 bit */
4256                 off &= 0xffffffff;
4257         else if (addr_size == 0) /* 16 bit */
4258                 off &= 0xffff;
4259 
4260         /* Checks for #GP/#SS exceptions. */
4261         exn = false;
4262         if (is_long_mode(vcpu)) {
4263                 /*
4264                  * The virtual/linear address is never truncated in 64-bit
4265                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4266                  * address when using FS/GS with a non-zero base.
4267                  */
4268                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4269                         *ret = s.base + off;
4270                 else
4271                         *ret = off;
4272 
4273                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4274                  * non-canonical form. This is the only check on the memory
4275                  * destination for long mode!
4276                  */
4277                 exn = is_noncanonical_address(*ret, vcpu);
4278         } else {
4279                 /*
4280                  * When not in long mode, the virtual/linear address is
4281                  * unconditionally truncated to 32 bits regardless of the
4282                  * address size.
4283                  */
4284                 *ret = (s.base + off) & 0xffffffff;
4285 
4286                 /* Protected mode: apply checks for segment validity in the
4287                  * following order:
4288                  * - segment type check (#GP(0) may be thrown)
4289                  * - usability check (#GP(0)/#SS(0))
4290                  * - limit check (#GP(0)/#SS(0))
4291                  */
4292                 if (wr)
4293                         /* #GP(0) if the destination operand is located in a
4294                          * read-only data segment or any code segment.
4295                          */
4296                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4297                 else
4298                         /* #GP(0) if the source operand is located in an
4299                          * execute-only code segment
4300                          */
4301                         exn = ((s.type & 0xa) == 8);
4302                 if (exn) {
4303                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4304                         return 1;
4305                 }
4306                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4307                  */
4308                 exn = (s.unusable != 0);
4309 
4310                 /*
4311                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4312                  * outside the segment limit.  All CPUs that support VMX ignore
4313                  * limit checks for flat segments, i.e. segments with base==0,
4314                  * limit==0xffffffff and of type expand-up data or code.
4315                  */
4316                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4317                      ((s.type & 8) || !(s.type & 4))))
4318                         exn = exn || ((u64)off + len - 1 > s.limit);
4319         }
4320         if (exn) {
4321                 kvm_queue_exception_e(vcpu,
4322                                       seg_reg == VCPU_SREG_SS ?
4323                                                 SS_VECTOR : GP_VECTOR,
4324                                       0);
4325                 return 1;
4326         }
4327 
4328         return 0;
4329 }
4330 
4331 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4332 {
4333         gva_t gva;
4334         struct x86_exception e;
4335 
4336         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4337                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4338                                 sizeof(*vmpointer), &gva))
4339                 return 1;
4340 
4341         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4342                 kvm_inject_page_fault(vcpu, &e);
4343                 return 1;
4344         }
4345 
4346         return 0;
4347 }
4348 
4349 /*
4350  * Allocate a shadow VMCS and associate it with the currently loaded
4351  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4352  * VMCS is also VMCLEARed, so that it is ready for use.
4353  */
4354 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4355 {
4356         struct vcpu_vmx *vmx = to_vmx(vcpu);
4357         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4358 
4359         /*
4360          * We should allocate a shadow vmcs for vmcs01 only when L1
4361          * executes VMXON and free it when L1 executes VMXOFF.
4362          * As it is invalid to execute VMXON twice, we shouldn't reach
4363          * here when vmcs01 already have an allocated shadow vmcs.
4364          */
4365         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4366 
4367         if (!loaded_vmcs->shadow_vmcs) {
4368                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4369                 if (loaded_vmcs->shadow_vmcs)
4370                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4371         }
4372         return loaded_vmcs->shadow_vmcs;
4373 }
4374 
4375 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4376 {
4377         struct vcpu_vmx *vmx = to_vmx(vcpu);
4378         int r;
4379 
4380         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4381         if (r < 0)
4382                 goto out_vmcs02;
4383 
4384         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4385         if (!vmx->nested.cached_vmcs12)
4386                 goto out_cached_vmcs12;
4387 
4388         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4389         if (!vmx->nested.cached_shadow_vmcs12)
4390                 goto out_cached_shadow_vmcs12;
4391 
4392         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4393                 goto out_shadow_vmcs;
4394 
4395         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4396                      HRTIMER_MODE_REL_PINNED);
4397         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4398 
4399         vmx->nested.vpid02 = allocate_vpid();
4400 
4401         vmx->nested.vmcs02_initialized = false;
4402         vmx->nested.vmxon = true;
4403 
4404         if (pt_mode == PT_MODE_HOST_GUEST) {
4405                 vmx->pt_desc.guest.ctl = 0;
4406                 pt_update_intercept_for_msr(vmx);
4407         }
4408 
4409         return 0;
4410 
4411 out_shadow_vmcs:
4412         kfree(vmx->nested.cached_shadow_vmcs12);
4413 
4414 out_cached_shadow_vmcs12:
4415         kfree(vmx->nested.cached_vmcs12);
4416 
4417 out_cached_vmcs12:
4418         free_loaded_vmcs(&vmx->nested.vmcs02);
4419 
4420 out_vmcs02:
4421         return -ENOMEM;
4422 }
4423 
4424 /*
4425  * Emulate the VMXON instruction.
4426  * Currently, we just remember that VMX is active, and do not save or even
4427  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4428  * do not currently need to store anything in that guest-allocated memory
4429  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4430  * argument is different from the VMXON pointer (which the spec says they do).
4431  */
4432 static int handle_vmon(struct kvm_vcpu *vcpu)
4433 {
4434         int ret;
4435         gpa_t vmptr;
4436         uint32_t revision;
4437         struct vcpu_vmx *vmx = to_vmx(vcpu);
4438         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4439                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4440 
4441         /*
4442          * The Intel VMX Instruction Reference lists a bunch of bits that are
4443          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4444          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4445          * Otherwise, we should fail with #UD.  But most faulting conditions
4446          * have already been checked by hardware, prior to the VM-exit for
4447          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4448          * that bit set to 1 in non-root mode.
4449          */
4450         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4451                 kvm_queue_exception(vcpu, UD_VECTOR);
4452                 return 1;
4453         }
4454 
4455         /* CPL=0 must be checked manually. */
4456         if (vmx_get_cpl(vcpu)) {
4457                 kvm_inject_gp(vcpu, 0);
4458                 return 1;
4459         }
4460 
4461         if (vmx->nested.vmxon)
4462                 return nested_vmx_failValid(vcpu,
4463                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4464 
4465         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4466                         != VMXON_NEEDED_FEATURES) {
4467                 kvm_inject_gp(vcpu, 0);
4468                 return 1;
4469         }
4470 
4471         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4472                 return 1;
4473 
4474         /*
4475          * SDM 3: 24.11.5
4476          * The first 4 bytes of VMXON region contain the supported
4477          * VMCS revision identifier
4478          *
4479          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4480          * which replaces physical address width with 32
4481          */
4482         if (!page_address_valid(vcpu, vmptr))
4483                 return nested_vmx_failInvalid(vcpu);
4484 
4485         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4486             revision != VMCS12_REVISION)
4487                 return nested_vmx_failInvalid(vcpu);
4488 
4489         vmx->nested.vmxon_ptr = vmptr;
4490         ret = enter_vmx_operation(vcpu);
4491         if (ret)
4492                 return ret;
4493 
4494         return nested_vmx_succeed(vcpu);
4495 }
4496 
4497 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4498 {
4499         struct vcpu_vmx *vmx = to_vmx(vcpu);
4500 
4501         if (vmx->nested.current_vmptr == -1ull)
4502                 return;
4503 
4504         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4505 
4506         if (enable_shadow_vmcs) {
4507                 /* copy to memory all shadowed fields in case
4508                    they were modified */
4509                 copy_shadow_to_vmcs12(vmx);
4510                 vmx_disable_shadow_vmcs(vmx);
4511         }
4512         vmx->nested.posted_intr_nv = -1;
4513 
4514         /* Flush VMCS12 to guest memory */
4515         kvm_vcpu_write_guest_page(vcpu,
4516                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4517                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4518 
4519         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4520 
4521         vmx->nested.current_vmptr = -1ull;
4522 }
4523 
4524 /* Emulate the VMXOFF instruction */
4525 static int handle_vmoff(struct kvm_vcpu *vcpu)
4526 {
4527         if (!nested_vmx_check_permission(vcpu))
4528                 return 1;
4529 
4530         free_nested(vcpu);
4531 
4532         /* Process a latched INIT during time CPU was in VMX operation */
4533         kvm_make_request(KVM_REQ_EVENT, vcpu);
4534 
4535         return nested_vmx_succeed(vcpu);
4536 }
4537 
4538 /* Emulate the VMCLEAR instruction */
4539 static int handle_vmclear(struct kvm_vcpu *vcpu)
4540 {
4541         struct vcpu_vmx *vmx = to_vmx(vcpu);
4542         u32 zero = 0;
4543         gpa_t vmptr;
4544         u64 evmcs_gpa;
4545 
4546         if (!nested_vmx_check_permission(vcpu))
4547                 return 1;
4548 
4549         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4550                 return 1;
4551 
4552         if (!page_address_valid(vcpu, vmptr))
4553                 return nested_vmx_failValid(vcpu,
4554                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4555 
4556         if (vmptr == vmx->nested.vmxon_ptr)
4557                 return nested_vmx_failValid(vcpu,
4558                         VMXERR_VMCLEAR_VMXON_POINTER);
4559 
4560         /*
4561          * When Enlightened VMEntry is enabled on the calling CPU we treat
4562          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4563          * way to distinguish it from VMCS12) and we must not corrupt it by
4564          * writing to the non-existent 'launch_state' field. The area doesn't
4565          * have to be the currently active EVMCS on the calling CPU and there's
4566          * nothing KVM has to do to transition it from 'active' to 'non-active'
4567          * state. It is possible that the area will stay mapped as
4568          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4569          */
4570         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4571                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4572                 if (vmptr == vmx->nested.current_vmptr)
4573                         nested_release_vmcs12(vcpu);
4574 
4575                 kvm_vcpu_write_guest(vcpu,
4576                                      vmptr + offsetof(struct vmcs12,
4577                                                       launch_state),
4578                                      &zero, sizeof(zero));
4579         }
4580 
4581         return nested_vmx_succeed(vcpu);
4582 }
4583 
4584 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4585 
4586 /* Emulate the VMLAUNCH instruction */
4587 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4588 {
4589         return nested_vmx_run(vcpu, true);
4590 }
4591 
4592 /* Emulate the VMRESUME instruction */
4593 static int handle_vmresume(struct kvm_vcpu *vcpu)
4594 {
4595 
4596         return nested_vmx_run(vcpu, false);
4597 }
4598 
4599 static int handle_vmread(struct kvm_vcpu *vcpu)
4600 {
4601         unsigned long field;
4602         u64 field_value;
4603         struct vcpu_vmx *vmx = to_vmx(vcpu);
4604         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4605         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4606         int len;
4607         gva_t gva = 0;
4608         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4609                                                     : get_vmcs12(vcpu);
4610         struct x86_exception e;
4611         short offset;
4612 
4613         if (!nested_vmx_check_permission(vcpu))
4614                 return 1;
4615 
4616         /*
4617          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4618          * any VMREAD sets the ALU flags for VMfailInvalid.
4619          */
4620         if (vmx->nested.current_vmptr == -1ull ||
4621             (is_guest_mode(vcpu) &&
4622              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4623                 return nested_vmx_failInvalid(vcpu);
4624 
4625         /* Decode instruction info and find the field to read */
4626         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4627 
4628         offset = vmcs_field_to_offset(field);
4629         if (offset < 0)
4630                 return nested_vmx_failValid(vcpu,
4631                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4632 
4633         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4634                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4635 
4636         /* Read the field, zero-extended to a u64 field_value */
4637         field_value = vmcs12_read_any(vmcs12, field, offset);
4638 
4639         /*
4640          * Now copy part of this value to register or memory, as requested.
4641          * Note that the number of bits actually copied is 32 or 64 depending
4642          * on the guest's mode (32 or 64 bit), not on the given field's length.
4643          */
4644         if (vmx_instruction_info & (1u << 10)) {
4645                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4646                         field_value);
4647         } else {
4648                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4649                 if (get_vmx_mem_address(vcpu, exit_qualification,
4650                                 vmx_instruction_info, true, len, &gva))
4651                         return 1;
4652                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4653                 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e)) {
4654                         kvm_inject_page_fault(vcpu, &e);
4655                         return 1;
4656                 }
4657         }
4658 
4659         return nested_vmx_succeed(vcpu);
4660 }
4661 
4662 static bool is_shadow_field_rw(unsigned long field)
4663 {
4664         switch (field) {
4665 #define SHADOW_FIELD_RW(x, y) case x:
4666 #include "vmcs_shadow_fields.h"
4667                 return true;
4668         default:
4669                 break;
4670         }
4671         return false;
4672 }
4673 
4674 static bool is_shadow_field_ro(unsigned long field)
4675 {
4676         switch (field) {
4677 #define SHADOW_FIELD_RO(x, y) case x:
4678 #include "vmcs_shadow_fields.h"
4679                 return true;
4680         default:
4681                 break;
4682         }
4683         return false;
4684 }
4685 
4686 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4687 {
4688         unsigned long field;
4689         int len;
4690         gva_t gva;
4691         struct vcpu_vmx *vmx = to_vmx(vcpu);
4692         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4693         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4694 
4695         /* The value to write might be 32 or 64 bits, depending on L1's long
4696          * mode, and eventually we need to write that into a field of several
4697          * possible lengths. The code below first zero-extends the value to 64
4698          * bit (field_value), and then copies only the appropriate number of
4699          * bits into the vmcs12 field.
4700          */
4701         u64 field_value = 0;
4702         struct x86_exception e;
4703         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4704                                                     : get_vmcs12(vcpu);
4705         short offset;
4706 
4707         if (!nested_vmx_check_permission(vcpu))
4708                 return 1;
4709 
4710         /*
4711          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4712          * any VMWRITE sets the ALU flags for VMfailInvalid.
4713          */
4714         if (vmx->nested.current_vmptr == -1ull ||
4715             (is_guest_mode(vcpu) &&
4716              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4717                 return nested_vmx_failInvalid(vcpu);
4718 
4719         if (vmx_instruction_info & (1u << 10))
4720                 field_value = kvm_register_readl(vcpu,
4721                         (((vmx_instruction_info) >> 3) & 0xf));
4722         else {
4723                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4724                 if (get_vmx_mem_address(vcpu, exit_qualification,
4725                                 vmx_instruction_info, false, len, &gva))
4726                         return 1;
4727                 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4728                         kvm_inject_page_fault(vcpu, &e);
4729                         return 1;
4730                 }
4731         }
4732 
4733 
4734         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4735 
4736         offset = vmcs_field_to_offset(field);
4737         if (offset < 0)
4738                 return nested_vmx_failValid(vcpu,
4739                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4740 
4741         /*
4742          * If the vCPU supports "VMWRITE to any supported field in the
4743          * VMCS," then the "read-only" fields are actually read/write.
4744          */
4745         if (vmcs_field_readonly(field) &&
4746             !nested_cpu_has_vmwrite_any_field(vcpu))
4747                 return nested_vmx_failValid(vcpu,
4748                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4749 
4750         /*
4751          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4752          * vmcs12, else we may crush a field or consume a stale value.
4753          */
4754         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
4755                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4756 
4757         /*
4758          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4759          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4760          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4761          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4762          * from L1 will return a different value than VMREAD from L2 (L1 sees
4763          * the stripped down value, L2 sees the full value as stored by KVM).
4764          */
4765         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4766                 field_value &= 0x1f0ff;
4767 
4768         vmcs12_write_any(vmcs12, field, offset, field_value);
4769 
4770         /*
4771          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4772          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4773          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4774          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4775          */
4776         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4777                 /*
4778                  * L1 can read these fields without exiting, ensure the
4779                  * shadow VMCS is up-to-date.
4780                  */
4781                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4782                         preempt_disable();
4783                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4784 
4785                         __vmcs_writel(field, field_value);
4786 
4787                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4788                         vmcs_load(vmx->loaded_vmcs->vmcs);
4789                         preempt_enable();
4790                 }
4791                 vmx->nested.dirty_vmcs12 = true;
4792         }
4793 
4794         return nested_vmx_succeed(vcpu);
4795 }
4796 
4797 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4798 {
4799         vmx->nested.current_vmptr = vmptr;
4800         if (enable_shadow_vmcs) {
4801                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4802                 vmcs_write64(VMCS_LINK_POINTER,
4803                              __pa(vmx->vmcs01.shadow_vmcs));
4804                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4805         }
4806         vmx->nested.dirty_vmcs12 = true;
4807 }
4808 
4809 /* Emulate the VMPTRLD instruction */
4810 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4811 {
4812         struct vcpu_vmx *vmx = to_vmx(vcpu);
4813         gpa_t vmptr;
4814 
4815         if (!nested_vmx_check_permission(vcpu))
4816                 return 1;
4817 
4818         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4819                 return 1;
4820 
4821         if (!page_address_valid(vcpu, vmptr))
4822                 return nested_vmx_failValid(vcpu,
4823                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4824 
4825         if (vmptr == vmx->nested.vmxon_ptr)
4826                 return nested_vmx_failValid(vcpu,
4827                         VMXERR_VMPTRLD_VMXON_POINTER);
4828 
4829         /* Forbid normal VMPTRLD if Enlightened version was used */
4830         if (vmx->nested.hv_evmcs)
4831                 return 1;
4832 
4833         if (vmx->nested.current_vmptr != vmptr) {
4834                 struct kvm_host_map map;
4835                 struct vmcs12 *new_vmcs12;
4836 
4837                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4838                         /*
4839                          * Reads from an unbacked page return all 1s,
4840                          * which means that the 32 bits located at the
4841                          * given physical address won't match the required
4842                          * VMCS12_REVISION identifier.
4843                          */
4844                         return nested_vmx_failValid(vcpu,
4845                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4846                 }
4847 
4848                 new_vmcs12 = map.hva;
4849 
4850                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4851                     (new_vmcs12->hdr.shadow_vmcs &&
4852                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4853                         kvm_vcpu_unmap(vcpu, &map, false);
4854                         return nested_vmx_failValid(vcpu,
4855                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4856                 }
4857 
4858                 nested_release_vmcs12(vcpu);
4859 
4860                 /*
4861                  * Load VMCS12 from guest memory since it is not already
4862                  * cached.
4863                  */
4864                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4865                 kvm_vcpu_unmap(vcpu, &map, false);
4866 
4867                 set_current_vmptr(vmx, vmptr);
4868         }
4869 
4870         return nested_vmx_succeed(vcpu);
4871 }
4872 
4873 /* Emulate the VMPTRST instruction */
4874 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4875 {
4876         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4877         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4878         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4879         struct x86_exception e;
4880         gva_t gva;
4881 
4882         if (!nested_vmx_check_permission(vcpu))
4883                 return 1;
4884 
4885         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4886                 return 1;
4887 
4888         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4889                                 true, sizeof(gpa_t), &gva))
4890                 return 1;
4891         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4892         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4893                                         sizeof(gpa_t), &e)) {
4894                 kvm_inject_page_fault(vcpu, &e);
4895                 return 1;
4896         }
4897         return nested_vmx_succeed(vcpu);
4898 }
4899 
4900 /* Emulate the INVEPT instruction */
4901 static int handle_invept(struct kvm_vcpu *vcpu)
4902 {
4903         struct vcpu_vmx *vmx = to_vmx(vcpu);
4904         u32 vmx_instruction_info, types;
4905         unsigned long type;
4906         gva_t gva;
4907         struct x86_exception e;
4908         struct {
4909                 u64 eptp, gpa;
4910         } operand;
4911 
4912         if (!(vmx->nested.msrs.secondary_ctls_high &
4913               SECONDARY_EXEC_ENABLE_EPT) ||
4914             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4915                 kvm_queue_exception(vcpu, UD_VECTOR);
4916                 return 1;
4917         }
4918 
4919         if (!nested_vmx_check_permission(vcpu))
4920                 return 1;
4921 
4922         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4923         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4924 
4925         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4926 
4927         if (type >= 32 || !(types & (1 << type)))
4928                 return nested_vmx_failValid(vcpu,
4929                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4930 
4931         /* According to the Intel VMX instruction reference, the memory
4932          * operand is read even if it isn't needed (e.g., for type==global)
4933          */
4934         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4935                         vmx_instruction_info, false, sizeof(operand), &gva))
4936                 return 1;
4937         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4938                 kvm_inject_page_fault(vcpu, &e);
4939                 return 1;
4940         }
4941 
4942         switch (type) {
4943         case VMX_EPT_EXTENT_GLOBAL:
4944         case VMX_EPT_EXTENT_CONTEXT:
4945         /*
4946          * TODO: Sync the necessary shadow EPT roots here, rather than
4947          * at the next emulated VM-entry.
4948          */
4949                 break;
4950         default:
4951                 BUG_ON(1);
4952                 break;
4953         }
4954 
4955         return nested_vmx_succeed(vcpu);
4956 }
4957 
4958 static int handle_invvpid(struct kvm_vcpu *vcpu)
4959 {
4960         struct vcpu_vmx *vmx = to_vmx(vcpu);
4961         u32 vmx_instruction_info;
4962         unsigned long type, types;
4963         gva_t gva;
4964         struct x86_exception e;
4965         struct {
4966                 u64 vpid;
4967                 u64 gla;
4968         } operand;
4969         u16 vpid02;
4970 
4971         if (!(vmx->nested.msrs.secondary_ctls_high &
4972               SECONDARY_EXEC_ENABLE_VPID) ||
4973                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4974                 kvm_queue_exception(vcpu, UD_VECTOR);
4975                 return 1;
4976         }
4977 
4978         if (!nested_vmx_check_permission(vcpu))
4979                 return 1;
4980 
4981         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4982         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4983 
4984         types = (vmx->nested.msrs.vpid_caps &
4985                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4986 
4987         if (type >= 32 || !(types & (1 << type)))
4988                 return nested_vmx_failValid(vcpu,
4989                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4990 
4991         /* according to the intel vmx instruction reference, the memory
4992          * operand is read even if it isn't needed (e.g., for type==global)
4993          */
4994         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4995                         vmx_instruction_info, false, sizeof(operand), &gva))
4996                 return 1;
4997         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4998                 kvm_inject_page_fault(vcpu, &e);
4999                 return 1;
5000         }
5001         if (operand.vpid >> 16)
5002                 return nested_vmx_failValid(vcpu,
5003                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5004 
5005         vpid02 = nested_get_vpid02(vcpu);
5006         switch (type) {
5007         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5008                 if (!operand.vpid ||
5009                     is_noncanonical_address(operand.gla, vcpu))
5010                         return nested_vmx_failValid(vcpu,
5011                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5012                 if (cpu_has_vmx_invvpid_individual_addr()) {
5013                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5014                                 vpid02, operand.gla);
5015                 } else
5016                         __vmx_flush_tlb(vcpu, vpid02, false);
5017                 break;
5018         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5019         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5020                 if (!operand.vpid)
5021                         return nested_vmx_failValid(vcpu,
5022                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5023                 __vmx_flush_tlb(vcpu, vpid02, false);
5024                 break;
5025         case VMX_VPID_EXTENT_ALL_CONTEXT:
5026                 __vmx_flush_tlb(vcpu, vpid02, false);
5027                 break;
5028         default:
5029                 WARN_ON_ONCE(1);
5030                 return kvm_skip_emulated_instruction(vcpu);
5031         }
5032 
5033         return nested_vmx_succeed(vcpu);
5034 }
5035 
5036 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5037                                      struct vmcs12 *vmcs12)
5038 {
5039         u32 index = kvm_rcx_read(vcpu);
5040         u64 address;
5041         bool accessed_dirty;
5042         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5043 
5044         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5045             !nested_cpu_has_ept(vmcs12))
5046                 return 1;
5047 
5048         if (index >= VMFUNC_EPTP_ENTRIES)
5049                 return 1;
5050 
5051 
5052         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5053                                      &address, index * 8, 8))
5054                 return 1;
5055 
5056         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5057 
5058         /*
5059          * If the (L2) guest does a vmfunc to the currently
5060          * active ept pointer, we don't have to do anything else
5061          */
5062         if (vmcs12->ept_pointer != address) {
5063                 if (!valid_ept_address(vcpu, address))
5064                         return 1;
5065 
5066                 kvm_mmu_unload(vcpu);
5067                 mmu->ept_ad = accessed_dirty;
5068                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5069                 vmcs12->ept_pointer = address;
5070                 /*
5071                  * TODO: Check what's the correct approach in case
5072                  * mmu reload fails. Currently, we just let the next
5073                  * reload potentially fail
5074                  */
5075                 kvm_mmu_reload(vcpu);
5076         }
5077 
5078         return 0;
5079 }
5080 
5081 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5082 {
5083         struct vcpu_vmx *vmx = to_vmx(vcpu);
5084         struct vmcs12 *vmcs12;
5085         u32 function = kvm_rax_read(vcpu);
5086 
5087         /*
5088          * VMFUNC is only supported for nested guests, but we always enable the
5089          * secondary control for simplicity; for non-nested mode, fake that we
5090          * didn't by injecting #UD.
5091          */
5092         if (!is_guest_mode(vcpu)) {
5093                 kvm_queue_exception(vcpu, UD_VECTOR);
5094                 return 1;
5095         }
5096 
5097         vmcs12 = get_vmcs12(vcpu);
5098         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5099                 goto fail;
5100 
5101         switch (function) {
5102         case 0:
5103                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5104                         goto fail;
5105                 break;
5106         default:
5107                 goto fail;
5108         }
5109         return kvm_skip_emulated_instruction(vcpu);
5110 
5111 fail:
5112         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5113                           vmcs_read32(VM_EXIT_INTR_INFO),
5114                           vmcs_readl(EXIT_QUALIFICATION));
5115         return 1;
5116 }
5117 
5118 /*
5119  * Return true if an IO instruction with the specified port and size should cause
5120  * a VM-exit into L1.
5121  */
5122 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5123                                  int size)
5124 {
5125         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5126         gpa_t bitmap, last_bitmap;
5127         u8 b;
5128 
5129         last_bitmap = (gpa_t)-1;
5130         b = -1;
5131 
5132         while (size > 0) {
5133                 if (port < 0x8000)
5134                         bitmap = vmcs12->io_bitmap_a;
5135                 else if (port < 0x10000)
5136                         bitmap = vmcs12->io_bitmap_b;
5137                 else
5138                         return true;
5139                 bitmap += (port & 0x7fff) / 8;
5140 
5141                 if (last_bitmap != bitmap)
5142                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5143                                 return true;
5144                 if (b & (1 << (port & 7)))
5145                         return true;
5146 
5147                 port++;
5148                 size--;
5149                 last_bitmap = bitmap;
5150         }
5151 
5152         return false;
5153 }
5154 
5155 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5156                                        struct vmcs12 *vmcs12)
5157 {
5158         unsigned long exit_qualification;
5159         unsigned short port;
5160         int size;
5161 
5162         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5163                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5164 
5165         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5166 
5167         port = exit_qualification >> 16;
5168         size = (exit_qualification & 7) + 1;
5169 
5170         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5171 }
5172 
5173 /*
5174  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5175  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5176  * disinterest in the current event (read or write a specific MSR) by using an
5177  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5178  */
5179 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5180         struct vmcs12 *vmcs12, u32 exit_reason)
5181 {
5182         u32 msr_index = kvm_rcx_read(vcpu);
5183         gpa_t bitmap;
5184 
5185         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5186                 return true;
5187 
5188         /*
5189          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5190          * for the four combinations of read/write and low/high MSR numbers.
5191          * First we need to figure out which of the four to use:
5192          */
5193         bitmap = vmcs12->msr_bitmap;
5194         if (exit_reason == EXIT_REASON_MSR_WRITE)
5195                 bitmap += 2048;
5196         if (msr_index >= 0xc0000000) {
5197                 msr_index -= 0xc0000000;
5198                 bitmap += 1024;
5199         }
5200 
5201         /* Then read the msr_index'th bit from this bitmap: */
5202         if (msr_index < 1024*8) {
5203                 unsigned char b;
5204                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5205                         return true;
5206                 return 1 & (b >> (msr_index & 7));
5207         } else
5208                 return true; /* let L1 handle the wrong parameter */
5209 }
5210 
5211 /*
5212  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5213  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5214  * intercept (via guest_host_mask etc.) the current event.
5215  */
5216 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5217         struct vmcs12 *vmcs12)
5218 {
5219         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5220         int cr = exit_qualification & 15;
5221         int reg;
5222         unsigned long val;
5223 
5224         switch ((exit_qualification >> 4) & 3) {
5225         case 0: /* mov to cr */
5226                 reg = (exit_qualification >> 8) & 15;
5227                 val = kvm_register_readl(vcpu, reg);
5228                 switch (cr) {
5229                 case 0:
5230                         if (vmcs12->cr0_guest_host_mask &
5231                             (val ^ vmcs12->cr0_read_shadow))
5232                                 return true;
5233                         break;
5234                 case 3:
5235                         if ((vmcs12->cr3_target_count >= 1 &&
5236                                         vmcs12->cr3_target_value0 == val) ||
5237                                 (vmcs12->cr3_target_count >= 2 &&
5238                                         vmcs12->cr3_target_value1 == val) ||
5239                                 (vmcs12->cr3_target_count >= 3 &&
5240                                         vmcs12->cr3_target_value2 == val) ||
5241                                 (vmcs12->cr3_target_count >= 4 &&
5242                                         vmcs12->cr3_target_value3 == val))
5243                                 return false;
5244                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5245                                 return true;
5246                         break;
5247                 case 4:
5248                         if (vmcs12->cr4_guest_host_mask &
5249                             (vmcs12->cr4_read_shadow ^ val))
5250                                 return true;
5251                         break;
5252                 case 8:
5253                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5254                                 return true;
5255                         break;
5256                 }
5257                 break;
5258         case 2: /* clts */
5259                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5260                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5261                         return true;
5262                 break;
5263         case 1: /* mov from cr */
5264                 switch (cr) {
5265                 case 3:
5266                         if (vmcs12->cpu_based_vm_exec_control &
5267                             CPU_BASED_CR3_STORE_EXITING)
5268                                 return true;
5269                         break;
5270                 case 8:
5271                         if (vmcs12->cpu_based_vm_exec_control &
5272                             CPU_BASED_CR8_STORE_EXITING)
5273                                 return true;
5274                         break;
5275                 }
5276                 break;
5277         case 3: /* lmsw */
5278                 /*
5279                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5280                  * cr0. Other attempted changes are ignored, with no exit.
5281                  */
5282                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5283                 if (vmcs12->cr0_guest_host_mask & 0xe &
5284                     (val ^ vmcs12->cr0_read_shadow))
5285                         return true;
5286                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5287                     !(vmcs12->cr0_read_shadow & 0x1) &&
5288                     (val & 0x1))
5289                         return true;
5290                 break;
5291         }
5292         return false;
5293 }
5294 
5295 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5296         struct vmcs12 *vmcs12, gpa_t bitmap)
5297 {
5298         u32 vmx_instruction_info;
5299         unsigned long field;
5300         u8 b;
5301 
5302         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5303                 return true;
5304 
5305         /* Decode instruction info and find the field to access */
5306         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5307         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5308 
5309         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5310         if (field >> 15)
5311                 return true;
5312 
5313         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5314                 return true;
5315 
5316         return 1 & (b >> (field & 7));
5317 }
5318 
5319 /*
5320  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5321  * should handle it ourselves in L0 (and then continue L2). Only call this
5322  * when in is_guest_mode (L2).
5323  */
5324 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5325 {
5326         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5327         struct vcpu_vmx *vmx = to_vmx(vcpu);
5328         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5329 
5330         if (vmx->nested.nested_run_pending)
5331                 return false;
5332 
5333         if (unlikely(vmx->fail)) {
5334                 trace_kvm_nested_vmenter_failed(
5335                         "hardware VM-instruction error: ",
5336                         vmcs_read32(VM_INSTRUCTION_ERROR));
5337                 return true;
5338         }
5339 
5340         /*
5341          * The host physical addresses of some pages of guest memory
5342          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5343          * Page). The CPU may write to these pages via their host
5344          * physical address while L2 is running, bypassing any
5345          * address-translation-based dirty tracking (e.g. EPT write
5346          * protection).
5347          *
5348          * Mark them dirty on every exit from L2 to prevent them from
5349          * getting out of sync with dirty tracking.
5350          */
5351         nested_mark_vmcs12_pages_dirty(vcpu);
5352 
5353         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5354                                 vmcs_readl(EXIT_QUALIFICATION),
5355                                 vmx->idt_vectoring_info,
5356                                 intr_info,
5357                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5358                                 KVM_ISA_VMX);
5359 
5360         switch ((u16)exit_reason) {
5361         case EXIT_REASON_EXCEPTION_NMI:
5362                 if (is_nmi(intr_info))
5363                         return false;
5364                 else if (is_page_fault(intr_info))
5365                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5366                 else if (is_debug(intr_info) &&
5367                          vcpu->guest_debug &
5368                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5369                         return false;
5370                 else if (is_breakpoint(intr_info) &&
5371                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5372                         return false;
5373                 return vmcs12->exception_bitmap &
5374                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5375         case EXIT_REASON_EXTERNAL_INTERRUPT:
5376                 return false;
5377         case EXIT_REASON_TRIPLE_FAULT:
5378                 return true;
5379         case EXIT_REASON_PENDING_INTERRUPT:
5380                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5381         case EXIT_REASON_NMI_WINDOW:
5382                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5383         case EXIT_REASON_TASK_SWITCH:
5384                 return true;
5385         case EXIT_REASON_CPUID:
5386                 return true;
5387         case EXIT_REASON_HLT:
5388                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5389         case EXIT_REASON_INVD:
5390                 return true;
5391         case EXIT_REASON_INVLPG:
5392                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5393         case EXIT_REASON_RDPMC:
5394                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5395         case EXIT_REASON_RDRAND:
5396                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5397         case EXIT_REASON_RDSEED:
5398                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5399         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5400                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5401         case EXIT_REASON_VMREAD:
5402                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5403                         vmcs12->vmread_bitmap);
5404         case EXIT_REASON_VMWRITE:
5405                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5406                         vmcs12->vmwrite_bitmap);
5407         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5408         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5409         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5410         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5411         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5412                 /*
5413                  * VMX instructions trap unconditionally. This allows L1 to
5414                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5415                  */
5416                 return true;
5417         case EXIT_REASON_CR_ACCESS:
5418                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5419         case EXIT_REASON_DR_ACCESS:
5420                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5421         case EXIT_REASON_IO_INSTRUCTION:
5422                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5423         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5424                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5425         case EXIT_REASON_MSR_READ:
5426         case EXIT_REASON_MSR_WRITE:
5427                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5428         case EXIT_REASON_INVALID_STATE:
5429                 return true;
5430         case EXIT_REASON_MWAIT_INSTRUCTION:
5431                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5432         case EXIT_REASON_MONITOR_TRAP_FLAG:
5433                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5434         case EXIT_REASON_MONITOR_INSTRUCTION:
5435                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5436         case EXIT_REASON_PAUSE_INSTRUCTION:
5437                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5438                         nested_cpu_has2(vmcs12,
5439                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5440         case EXIT_REASON_MCE_DURING_VMENTRY:
5441                 return false;
5442         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5443                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5444         case EXIT_REASON_APIC_ACCESS:
5445         case EXIT_REASON_APIC_WRITE:
5446         case EXIT_REASON_EOI_INDUCED:
5447                 /*
5448                  * The controls for "virtualize APIC accesses," "APIC-
5449                  * register virtualization," and "virtual-interrupt
5450                  * delivery" only come from vmcs12.
5451                  */
5452                 return true;
5453         case EXIT_REASON_EPT_VIOLATION:
5454                 /*
5455                  * L0 always deals with the EPT violation. If nested EPT is
5456                  * used, and the nested mmu code discovers that the address is
5457                  * missing in the guest EPT table (EPT12), the EPT violation
5458                  * will be injected with nested_ept_inject_page_fault()
5459                  */
5460                 return false;
5461         case EXIT_REASON_EPT_MISCONFIG:
5462                 /*
5463                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5464                  * table (shadow on EPT) or a merged EPT table that L0 built
5465                  * (EPT on EPT). So any problems with the structure of the
5466                  * table is L0's fault.
5467                  */
5468                 return false;
5469         case EXIT_REASON_INVPCID:
5470                 return
5471                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5472                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5473         case EXIT_REASON_WBINVD:
5474                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5475         case EXIT_REASON_XSETBV:
5476                 return true;
5477         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5478                 /*
5479                  * This should never happen, since it is not possible to
5480                  * set XSS to a non-zero value---neither in L1 nor in L2.
5481                  * If if it were, XSS would have to be checked against
5482                  * the XSS exit bitmap in vmcs12.
5483                  */
5484                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5485         case EXIT_REASON_PREEMPTION_TIMER:
5486                 return false;
5487         case EXIT_REASON_PML_FULL:
5488                 /* We emulate PML support to L1. */
5489                 return false;
5490         case EXIT_REASON_VMFUNC:
5491                 /* VM functions are emulated through L2->L0 vmexits. */
5492                 return false;
5493         case EXIT_REASON_ENCLS:
5494                 /* SGX is never exposed to L1 */
5495                 return false;
5496         case EXIT_REASON_UMWAIT:
5497         case EXIT_REASON_TPAUSE:
5498                 return nested_cpu_has2(vmcs12,
5499                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5500         default:
5501                 return true;
5502         }
5503 }
5504 
5505 
5506 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5507                                 struct kvm_nested_state __user *user_kvm_nested_state,
5508                                 u32 user_data_size)
5509 {
5510         struct vcpu_vmx *vmx;
5511         struct vmcs12 *vmcs12;
5512         struct kvm_nested_state kvm_state = {
5513                 .flags = 0,
5514                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5515                 .size = sizeof(kvm_state),
5516                 .hdr.vmx.vmxon_pa = -1ull,
5517                 .hdr.vmx.vmcs12_pa = -1ull,
5518         };
5519         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5520                 &user_kvm_nested_state->data.vmx[0];
5521 
5522         if (!vcpu)
5523                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5524 
5525         vmx = to_vmx(vcpu);
5526         vmcs12 = get_vmcs12(vcpu);
5527 
5528         if (nested_vmx_allowed(vcpu) &&
5529             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5530                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5531                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5532 
5533                 if (vmx_has_valid_vmcs12(vcpu)) {
5534                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5535 
5536                         if (vmx->nested.hv_evmcs)
5537                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5538 
5539                         if (is_guest_mode(vcpu) &&
5540                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5541                             vmcs12->vmcs_link_pointer != -1ull)
5542                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5543                 }
5544 
5545                 if (vmx->nested.smm.vmxon)
5546                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5547 
5548                 if (vmx->nested.smm.guest_mode)
5549                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5550 
5551                 if (is_guest_mode(vcpu)) {
5552                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5553 
5554                         if (vmx->nested.nested_run_pending)
5555                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5556                 }
5557         }
5558 
5559         if (user_data_size < kvm_state.size)
5560                 goto out;
5561 
5562         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5563                 return -EFAULT;
5564 
5565         if (!vmx_has_valid_vmcs12(vcpu))
5566                 goto out;
5567 
5568         /*
5569          * When running L2, the authoritative vmcs12 state is in the
5570          * vmcs02. When running L1, the authoritative vmcs12 state is
5571          * in the shadow or enlightened vmcs linked to vmcs01, unless
5572          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5573          * vmcs12 state is in the vmcs12 already.
5574          */
5575         if (is_guest_mode(vcpu)) {
5576                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5577                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5578         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5579                 if (vmx->nested.hv_evmcs)
5580                         copy_enlightened_to_vmcs12(vmx);
5581                 else if (enable_shadow_vmcs)
5582                         copy_shadow_to_vmcs12(vmx);
5583         }
5584 
5585         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5586         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5587 
5588         /*
5589          * Copy over the full allocated size of vmcs12 rather than just the size
5590          * of the struct.
5591          */
5592         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5593                 return -EFAULT;
5594 
5595         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5596             vmcs12->vmcs_link_pointer != -1ull) {
5597                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5598                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5599                         return -EFAULT;
5600         }
5601 
5602 out:
5603         return kvm_state.size;
5604 }
5605 
5606 /*
5607  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5608  */
5609 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5610 {
5611         if (is_guest_mode(vcpu)) {
5612                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5613                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5614         }
5615         free_nested(vcpu);
5616 }
5617 
5618 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5619                                 struct kvm_nested_state __user *user_kvm_nested_state,
5620                                 struct kvm_nested_state *kvm_state)
5621 {
5622         struct vcpu_vmx *vmx = to_vmx(vcpu);
5623         struct vmcs12 *vmcs12;
5624         u32 exit_qual;
5625         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5626                 &user_kvm_nested_state->data.vmx[0];
5627         int ret;
5628 
5629         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5630                 return -EINVAL;
5631 
5632         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5633                 if (kvm_state->hdr.vmx.smm.flags)
5634                         return -EINVAL;
5635 
5636                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5637                         return -EINVAL;
5638 
5639                 /*
5640                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5641                  * enable eVMCS capability on vCPU. However, since then
5642                  * code was changed such that flag signals vmcs12 should
5643                  * be copied into eVMCS in guest memory.
5644                  *
5645                  * To preserve backwards compatability, allow user
5646                  * to set this flag even when there is no VMXON region.
5647                  */
5648                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5649                         return -EINVAL;
5650         } else {
5651                 if (!nested_vmx_allowed(vcpu))
5652                         return -EINVAL;
5653 
5654                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5655                         return -EINVAL;
5656         }
5657 
5658         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5659             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5660                 return -EINVAL;
5661 
5662         if (kvm_state->hdr.vmx.smm.flags &
5663             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5664                 return -EINVAL;
5665 
5666         /*
5667          * SMM temporarily disables VMX, so we cannot be in guest mode,
5668          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5669          * must be zero.
5670          */
5671         if (is_smm(vcpu) ?
5672                 (kvm_state->flags &
5673                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5674                 : kvm_state->hdr.vmx.smm.flags)
5675                 return -EINVAL;
5676 
5677         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5678             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5679                 return -EINVAL;
5680 
5681         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5682                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5683                         return -EINVAL;
5684 
5685         vmx_leave_nested(vcpu);
5686 
5687         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5688                 return 0;
5689 
5690         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5691         ret = enter_vmx_operation(vcpu);
5692         if (ret)
5693                 return ret;
5694 
5695         /* Empty 'VMXON' state is permitted */
5696         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5697                 return 0;
5698 
5699         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5700                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5701                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5702                         return -EINVAL;
5703 
5704                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5705         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5706                 /*
5707                  * Sync eVMCS upon entry as we may not have
5708                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5709                  */
5710                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5711         } else {
5712                 return -EINVAL;
5713         }
5714 
5715         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5716                 vmx->nested.smm.vmxon = true;
5717                 vmx->nested.vmxon = false;
5718 
5719                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5720                         vmx->nested.smm.guest_mode = true;
5721         }
5722 
5723         vmcs12 = get_vmcs12(vcpu);
5724         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5725                 return -EFAULT;
5726 
5727         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5728                 return -EINVAL;
5729 
5730         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5731                 return 0;
5732 
5733         vmx->nested.nested_run_pending =
5734                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5735 
5736         ret = -EINVAL;
5737         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5738             vmcs12->vmcs_link_pointer != -1ull) {
5739                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5740 
5741                 if (kvm_state->size <
5742                     sizeof(*kvm_state) +
5743                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5744                         goto error_guest_mode;
5745 
5746                 if (copy_from_user(shadow_vmcs12,
5747                                    user_vmx_nested_state->shadow_vmcs12,
5748                                    sizeof(*shadow_vmcs12))) {
5749                         ret = -EFAULT;
5750                         goto error_guest_mode;
5751                 }
5752 
5753                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5754                     !shadow_vmcs12->hdr.shadow_vmcs)
5755                         goto error_guest_mode;
5756         }
5757 
5758         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5759             nested_vmx_check_host_state(vcpu, vmcs12) ||
5760             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5761                 goto error_guest_mode;
5762 
5763         vmx->nested.dirty_vmcs12 = true;
5764         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5765         if (ret)
5766                 goto error_guest_mode;
5767 
5768         return 0;
5769 
5770 error_guest_mode:
5771         vmx->nested.nested_run_pending = 0;
5772         return ret;
5773 }
5774 
5775 void nested_vmx_vcpu_setup(void)
5776 {
5777         if (enable_shadow_vmcs) {
5778                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5779                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5780         }
5781 }
5782 
5783 /*
5784  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5785  * returned for the various VMX controls MSRs when nested VMX is enabled.
5786  * The same values should also be used to verify that vmcs12 control fields are
5787  * valid during nested entry from L1 to L2.
5788  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5789  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5790  * bit in the high half is on if the corresponding bit in the control field
5791  * may be on. See also vmx_control_verify().
5792  */
5793 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
5794 {
5795         /*
5796          * Note that as a general rule, the high half of the MSRs (bits in
5797          * the control fields which may be 1) should be initialized by the
5798          * intersection of the underlying hardware's MSR (i.e., features which
5799          * can be supported) and the list of features we want to expose -
5800          * because they are known to be properly supported in our code.
5801          * Also, usually, the low half of the MSRs (bits which must be 1) can
5802          * be set to 0, meaning that L1 may turn off any of these bits. The
5803          * reason is that if one of these bits is necessary, it will appear
5804          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5805          * fields of vmcs01 and vmcs02, will turn these bits off - and
5806          * nested_vmx_exit_reflected() will not pass related exits to L1.
5807          * These rules have exceptions below.
5808          */
5809 
5810         /* pin-based controls */
5811         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5812                 msrs->pinbased_ctls_low,
5813                 msrs->pinbased_ctls_high);
5814         msrs->pinbased_ctls_low |=
5815                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5816         msrs->pinbased_ctls_high &=
5817                 PIN_BASED_EXT_INTR_MASK |
5818                 PIN_BASED_NMI_EXITING |
5819                 PIN_BASED_VIRTUAL_NMIS |
5820                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
5821         msrs->pinbased_ctls_high |=
5822                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5823                 PIN_BASED_VMX_PREEMPTION_TIMER;
5824 
5825         /* exit controls */
5826         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5827                 msrs->exit_ctls_low,
5828                 msrs->exit_ctls_high);
5829         msrs->exit_ctls_low =
5830                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5831 
5832         msrs->exit_ctls_high &=
5833 #ifdef CONFIG_X86_64
5834                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5835 #endif
5836                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5837         msrs->exit_ctls_high |=
5838                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5839                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5840                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5841 
5842         /* We support free control of debug control saving. */
5843         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5844 
5845         /* entry controls */
5846         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5847                 msrs->entry_ctls_low,
5848                 msrs->entry_ctls_high);
5849         msrs->entry_ctls_low =
5850                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5851         msrs->entry_ctls_high &=
5852 #ifdef CONFIG_X86_64
5853                 VM_ENTRY_IA32E_MODE |
5854 #endif
5855                 VM_ENTRY_LOAD_IA32_PAT;
5856         msrs->entry_ctls_high |=
5857                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5858 
5859         /* We support free control of debug control loading. */
5860         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5861 
5862         /* cpu-based controls */
5863         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5864                 msrs->procbased_ctls_low,
5865                 msrs->procbased_ctls_high);
5866         msrs->procbased_ctls_low =
5867                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5868         msrs->procbased_ctls_high &=
5869                 CPU_BASED_VIRTUAL_INTR_PENDING |
5870                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5871                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5872                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5873                 CPU_BASED_CR3_STORE_EXITING |
5874 #ifdef CONFIG_X86_64
5875                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5876 #endif
5877                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5878                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5879                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5880                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5881                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5882         /*
5883          * We can allow some features even when not supported by the
5884          * hardware. For example, L1 can specify an MSR bitmap - and we
5885          * can use it to avoid exits to L1 - even when L0 runs L2
5886          * without MSR bitmaps.
5887          */
5888         msrs->procbased_ctls_high |=
5889                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5890                 CPU_BASED_USE_MSR_BITMAPS;
5891 
5892         /* We support free control of CR3 access interception. */
5893         msrs->procbased_ctls_low &=
5894                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5895 
5896         /*
5897          * secondary cpu-based controls.  Do not include those that
5898          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5899          */
5900         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5901                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5902                       msrs->secondary_ctls_low,
5903                       msrs->secondary_ctls_high);
5904 
5905         msrs->secondary_ctls_low = 0;
5906         msrs->secondary_ctls_high &=
5907                 SECONDARY_EXEC_DESC |
5908                 SECONDARY_EXEC_RDTSCP |
5909                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5910                 SECONDARY_EXEC_WBINVD_EXITING |
5911                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5912                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5913                 SECONDARY_EXEC_RDRAND_EXITING |
5914                 SECONDARY_EXEC_ENABLE_INVPCID |
5915                 SECONDARY_EXEC_RDSEED_EXITING |
5916                 SECONDARY_EXEC_XSAVES;
5917 
5918         /*
5919          * We can emulate "VMCS shadowing," even if the hardware
5920          * doesn't support it.
5921          */
5922         msrs->secondary_ctls_high |=
5923                 SECONDARY_EXEC_SHADOW_VMCS;
5924 
5925         if (enable_ept) {
5926                 /* nested EPT: emulate EPT also to L1 */
5927                 msrs->secondary_ctls_high |=
5928                         SECONDARY_EXEC_ENABLE_EPT;
5929                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5930                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5931                 if (cpu_has_vmx_ept_execute_only())
5932                         msrs->ept_caps |=
5933                                 VMX_EPT_EXECUTE_ONLY_BIT;
5934                 msrs->ept_caps &= ept_caps;
5935                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5936                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5937                         VMX_EPT_1GB_PAGE_BIT;
5938                 if (enable_ept_ad_bits) {
5939                         msrs->secondary_ctls_high |=
5940                                 SECONDARY_EXEC_ENABLE_PML;
5941                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5942                 }
5943         }
5944 
5945         if (cpu_has_vmx_vmfunc()) {
5946                 msrs->secondary_ctls_high |=
5947                         SECONDARY_EXEC_ENABLE_VMFUNC;
5948                 /*
5949                  * Advertise EPTP switching unconditionally
5950                  * since we emulate it
5951                  */
5952                 if (enable_ept)
5953                         msrs->vmfunc_controls =
5954                                 VMX_VMFUNC_EPTP_SWITCHING;
5955         }
5956 
5957         /*
5958          * Old versions of KVM use the single-context version without
5959          * checking for support, so declare that it is supported even
5960          * though it is treated as global context.  The alternative is
5961          * not failing the single-context invvpid, and it is worse.
5962          */
5963         if (enable_vpid) {
5964                 msrs->secondary_ctls_high |=
5965                         SECONDARY_EXEC_ENABLE_VPID;
5966                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5967                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5968         }
5969 
5970         if (enable_unrestricted_guest)
5971                 msrs->secondary_ctls_high |=
5972                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5973 
5974         if (flexpriority_enabled)
5975                 msrs->secondary_ctls_high |=
5976                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5977 
5978         /* miscellaneous data */
5979         rdmsr(MSR_IA32_VMX_MISC,
5980                 msrs->misc_low,
5981                 msrs->misc_high);
5982         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5983         msrs->misc_low |=
5984                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5985                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5986                 VMX_MISC_ACTIVITY_HLT;
5987         msrs->misc_high = 0;
5988 
5989         /*
5990          * This MSR reports some information about VMX support. We
5991          * should return information about the VMX we emulate for the
5992          * guest, and the VMCS structure we give it - not about the
5993          * VMX support of the underlying hardware.
5994          */
5995         msrs->basic =
5996                 VMCS12_REVISION |
5997                 VMX_BASIC_TRUE_CTLS |
5998                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5999                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6000 
6001         if (cpu_has_vmx_basic_inout())
6002                 msrs->basic |= VMX_BASIC_INOUT;
6003 
6004         /*
6005          * These MSRs specify bits which the guest must keep fixed on
6006          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6007          * We picked the standard core2 setting.
6008          */
6009 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6010 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6011         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6012         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6013 
6014         /* These MSRs specify bits which the guest must keep fixed off. */
6015         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6016         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6017 
6018         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6019         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6020 }
6021 
6022 void nested_vmx_hardware_unsetup(void)
6023 {
6024         int i;
6025 
6026         if (enable_shadow_vmcs) {
6027                 for (i = 0; i < VMX_BITMAP_NR; i++)
6028                         free_page((unsigned long)vmx_bitmap[i]);
6029         }
6030 }
6031 
6032 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6033 {
6034         int i;
6035 
6036         if (!cpu_has_vmx_shadow_vmcs())
6037                 enable_shadow_vmcs = 0;
6038         if (enable_shadow_vmcs) {
6039                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6040                         /*
6041                          * The vmx_bitmap is not tied to a VM and so should
6042                          * not be charged to a memcg.
6043                          */
6044                         vmx_bitmap[i] = (unsigned long *)
6045                                 __get_free_page(GFP_KERNEL);
6046                         if (!vmx_bitmap[i]) {
6047                                 nested_vmx_hardware_unsetup();
6048                                 return -ENOMEM;
6049                         }
6050                 }
6051 
6052                 init_vmcs_shadow_fields();
6053         }
6054 
6055         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
6056         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
6057         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
6058         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
6059         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
6060         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
6061         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
6062         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
6063         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
6064         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
6065         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
6066         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
6067 
6068         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6069         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6070         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6071         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6072         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6073         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6074 
6075         return 0;
6076 }

/* [<][>][^][v][top][bottom][index][help] */