root/arch/x86/kernel/cpu/intel.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. forcempx_setup
  2. check_mpx_erratum
  3. check_memory_type_self_snoop_errata
  4. ring3mwait_disable
  5. probe_xeon_phi_r3mwait
  6. bad_spectre_microcode
  7. early_init_intel
  8. ppro_with_ram_bug
  9. intel_smp_check
  10. forcepae_setup
  11. intel_workarounds
  12. intel_workarounds
  13. srat_detect_node
  14. detect_vmx_virtcap
  15. detect_tme
  16. init_cpuid_fault
  17. init_intel_misc_features
  18. init_intel
  19. intel_size_cache
  20. intel_tlb_lookup
  21. intel_detect_tlb

   1 // SPDX-License-Identifier: GPL-2.0
   2 #include <linux/kernel.h>
   3 
   4 #include <linux/string.h>
   5 #include <linux/bitops.h>
   6 #include <linux/smp.h>
   7 #include <linux/sched.h>
   8 #include <linux/sched/clock.h>
   9 #include <linux/thread_info.h>
  10 #include <linux/init.h>
  11 #include <linux/uaccess.h>
  12 
  13 #include <asm/cpufeature.h>
  14 #include <asm/pgtable.h>
  15 #include <asm/msr.h>
  16 #include <asm/bugs.h>
  17 #include <asm/cpu.h>
  18 #include <asm/intel-family.h>
  19 #include <asm/microcode_intel.h>
  20 #include <asm/hwcap2.h>
  21 #include <asm/elf.h>
  22 
  23 #ifdef CONFIG_X86_64
  24 #include <linux/topology.h>
  25 #endif
  26 
  27 #include "cpu.h"
  28 
  29 #ifdef CONFIG_X86_LOCAL_APIC
  30 #include <asm/mpspec.h>
  31 #include <asm/apic.h>
  32 #endif
  33 
  34 /*
  35  * Just in case our CPU detection goes bad, or you have a weird system,
  36  * allow a way to override the automatic disabling of MPX.
  37  */
  38 static int forcempx;
  39 
  40 static int __init forcempx_setup(char *__unused)
  41 {
  42         forcempx = 1;
  43 
  44         return 1;
  45 }
  46 __setup("intel-skd-046-workaround=disable", forcempx_setup);
  47 
  48 void check_mpx_erratum(struct cpuinfo_x86 *c)
  49 {
  50         if (forcempx)
  51                 return;
  52         /*
  53          * Turn off the MPX feature on CPUs where SMEP is not
  54          * available or disabled.
  55          *
  56          * Works around Intel Erratum SKD046: "Branch Instructions
  57          * May Initialize MPX Bound Registers Incorrectly".
  58          *
  59          * This might falsely disable MPX on systems without
  60          * SMEP, like Atom processors without SMEP.  But there
  61          * is no such hardware known at the moment.
  62          */
  63         if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  64                 setup_clear_cpu_cap(X86_FEATURE_MPX);
  65                 pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  66         }
  67 }
  68 
  69 /*
  70  * Processors which have self-snooping capability can handle conflicting
  71  * memory type across CPUs by snooping its own cache. However, there exists
  72  * CPU models in which having conflicting memory types still leads to
  73  * unpredictable behavior, machine check errors, or hangs. Clear this
  74  * feature to prevent its use on machines with known erratas.
  75  */
  76 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
  77 {
  78         switch (c->x86_model) {
  79         case INTEL_FAM6_CORE_YONAH:
  80         case INTEL_FAM6_CORE2_MEROM:
  81         case INTEL_FAM6_CORE2_MEROM_L:
  82         case INTEL_FAM6_CORE2_PENRYN:
  83         case INTEL_FAM6_CORE2_DUNNINGTON:
  84         case INTEL_FAM6_NEHALEM:
  85         case INTEL_FAM6_NEHALEM_G:
  86         case INTEL_FAM6_NEHALEM_EP:
  87         case INTEL_FAM6_NEHALEM_EX:
  88         case INTEL_FAM6_WESTMERE:
  89         case INTEL_FAM6_WESTMERE_EP:
  90         case INTEL_FAM6_SANDYBRIDGE:
  91                 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
  92         }
  93 }
  94 
  95 static bool ring3mwait_disabled __read_mostly;
  96 
  97 static int __init ring3mwait_disable(char *__unused)
  98 {
  99         ring3mwait_disabled = true;
 100         return 0;
 101 }
 102 __setup("ring3mwait=disable", ring3mwait_disable);
 103 
 104 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
 105 {
 106         /*
 107          * Ring 3 MONITOR/MWAIT feature cannot be detected without
 108          * cpu model and family comparison.
 109          */
 110         if (c->x86 != 6)
 111                 return;
 112         switch (c->x86_model) {
 113         case INTEL_FAM6_XEON_PHI_KNL:
 114         case INTEL_FAM6_XEON_PHI_KNM:
 115                 break;
 116         default:
 117                 return;
 118         }
 119 
 120         if (ring3mwait_disabled)
 121                 return;
 122 
 123         set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
 124         this_cpu_or(msr_misc_features_shadow,
 125                     1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
 126 
 127         if (c == &boot_cpu_data)
 128                 ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 129 }
 130 
 131 /*
 132  * Early microcode releases for the Spectre v2 mitigation were broken.
 133  * Information taken from;
 134  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
 135  * - https://kb.vmware.com/s/article/52345
 136  * - Microcode revisions observed in the wild
 137  * - Release note from 20180108 microcode release
 138  */
 139 struct sku_microcode {
 140         u8 model;
 141         u8 stepping;
 142         u32 microcode;
 143 };
 144 static const struct sku_microcode spectre_bad_microcodes[] = {
 145         { INTEL_FAM6_KABYLAKE,          0x0B,   0x80 },
 146         { INTEL_FAM6_KABYLAKE,          0x0A,   0x80 },
 147         { INTEL_FAM6_KABYLAKE,          0x09,   0x80 },
 148         { INTEL_FAM6_KABYLAKE_L,        0x0A,   0x80 },
 149         { INTEL_FAM6_KABYLAKE_L,        0x09,   0x80 },
 150         { INTEL_FAM6_SKYLAKE_X,         0x03,   0x0100013e },
 151         { INTEL_FAM6_SKYLAKE_X,         0x04,   0x0200003c },
 152         { INTEL_FAM6_BROADWELL,         0x04,   0x28 },
 153         { INTEL_FAM6_BROADWELL_G,       0x01,   0x1b },
 154         { INTEL_FAM6_BROADWELL_D,       0x02,   0x14 },
 155         { INTEL_FAM6_BROADWELL_D,       0x03,   0x07000011 },
 156         { INTEL_FAM6_BROADWELL_X,       0x01,   0x0b000025 },
 157         { INTEL_FAM6_HASWELL_L,         0x01,   0x21 },
 158         { INTEL_FAM6_HASWELL_G,         0x01,   0x18 },
 159         { INTEL_FAM6_HASWELL,           0x03,   0x23 },
 160         { INTEL_FAM6_HASWELL_X,         0x02,   0x3b },
 161         { INTEL_FAM6_HASWELL_X,         0x04,   0x10 },
 162         { INTEL_FAM6_IVYBRIDGE_X,       0x04,   0x42a },
 163         /* Observed in the wild */
 164         { INTEL_FAM6_SANDYBRIDGE_X,     0x06,   0x61b },
 165         { INTEL_FAM6_SANDYBRIDGE_X,     0x07,   0x712 },
 166 };
 167 
 168 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
 169 {
 170         int i;
 171 
 172         /*
 173          * We know that the hypervisor lie to us on the microcode version so
 174          * we may as well hope that it is running the correct version.
 175          */
 176         if (cpu_has(c, X86_FEATURE_HYPERVISOR))
 177                 return false;
 178 
 179         if (c->x86 != 6)
 180                 return false;
 181 
 182         for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
 183                 if (c->x86_model == spectre_bad_microcodes[i].model &&
 184                     c->x86_stepping == spectre_bad_microcodes[i].stepping)
 185                         return (c->microcode <= spectre_bad_microcodes[i].microcode);
 186         }
 187         return false;
 188 }
 189 
 190 static void early_init_intel(struct cpuinfo_x86 *c)
 191 {
 192         u64 misc_enable;
 193 
 194         /* Unmask CPUID levels if masked: */
 195         if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 196                 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 197                                   MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 198                         c->cpuid_level = cpuid_eax(0);
 199                         get_cpu_cap(c);
 200                 }
 201         }
 202 
 203         if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 204                 (c->x86 == 0x6 && c->x86_model >= 0x0e))
 205                 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 206 
 207         if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
 208                 c->microcode = intel_get_microcode_revision();
 209 
 210         /* Now if any of them are set, check the blacklist and clear the lot */
 211         if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
 212              cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
 213              cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
 214              cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
 215                 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
 216                 setup_clear_cpu_cap(X86_FEATURE_IBRS);
 217                 setup_clear_cpu_cap(X86_FEATURE_IBPB);
 218                 setup_clear_cpu_cap(X86_FEATURE_STIBP);
 219                 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
 220                 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
 221                 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
 222                 setup_clear_cpu_cap(X86_FEATURE_SSBD);
 223                 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
 224         }
 225 
 226         /*
 227          * Atom erratum AAE44/AAF40/AAG38/AAH41:
 228          *
 229          * A race condition between speculative fetches and invalidating
 230          * a large page.  This is worked around in microcode, but we
 231          * need the microcode to have already been loaded... so if it is
 232          * not, recommend a BIOS update and disable large pages.
 233          */
 234         if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
 235             c->microcode < 0x20e) {
 236                 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
 237                 clear_cpu_cap(c, X86_FEATURE_PSE);
 238         }
 239 
 240 #ifdef CONFIG_X86_64
 241         set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 242 #else
 243         /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 244         if (c->x86 == 15 && c->x86_cache_alignment == 64)
 245                 c->x86_cache_alignment = 128;
 246 #endif
 247 
 248         /* CPUID workaround for 0F33/0F34 CPU */
 249         if (c->x86 == 0xF && c->x86_model == 0x3
 250             && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
 251                 c->x86_phys_bits = 36;
 252 
 253         /*
 254          * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 255          * with P/T states and does not stop in deep C-states.
 256          *
 257          * It is also reliable across cores and sockets. (but not across
 258          * cabinets - we turn it off in that case explicitly.)
 259          */
 260         if (c->x86_power & (1 << 8)) {
 261                 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 262                 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 263         }
 264 
 265         /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 266         if (c->x86 == 6) {
 267                 switch (c->x86_model) {
 268                 case INTEL_FAM6_ATOM_SALTWELL_MID:
 269                 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
 270                 case INTEL_FAM6_ATOM_SILVERMONT_MID:
 271                 case INTEL_FAM6_ATOM_AIRMONT_NP:
 272                         set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
 273                         break;
 274                 default:
 275                         break;
 276                 }
 277         }
 278 
 279         /*
 280          * There is a known erratum on Pentium III and Core Solo
 281          * and Core Duo CPUs.
 282          * " Page with PAT set to WC while associated MTRR is UC
 283          *   may consolidate to UC "
 284          * Because of this erratum, it is better to stick with
 285          * setting WC in MTRR rather than using PAT on these CPUs.
 286          *
 287          * Enable PAT WC only on P4, Core 2 or later CPUs.
 288          */
 289         if (c->x86 == 6 && c->x86_model < 15)
 290                 clear_cpu_cap(c, X86_FEATURE_PAT);
 291 
 292         /*
 293          * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
 294          * clear the fast string and enhanced fast string CPU capabilities.
 295          */
 296         if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 297                 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 298                 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
 299                         pr_info("Disabled fast string operations\n");
 300                         setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
 301                         setup_clear_cpu_cap(X86_FEATURE_ERMS);
 302                 }
 303         }
 304 
 305         /*
 306          * Intel Quark Core DevMan_001.pdf section 6.4.11
 307          * "The operating system also is required to invalidate (i.e., flush)
 308          *  the TLB when any changes are made to any of the page table entries.
 309          *  The operating system must reload CR3 to cause the TLB to be flushed"
 310          *
 311          * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
 312          * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
 313          * to be modified.
 314          */
 315         if (c->x86 == 5 && c->x86_model == 9) {
 316                 pr_info("Disabling PGE capability bit\n");
 317                 setup_clear_cpu_cap(X86_FEATURE_PGE);
 318         }
 319 
 320         if (c->cpuid_level >= 0x00000001) {
 321                 u32 eax, ebx, ecx, edx;
 322 
 323                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 324                 /*
 325                  * If HTT (EDX[28]) is set EBX[16:23] contain the number of
 326                  * apicids which are reserved per package. Store the resulting
 327                  * shift value for the package management code.
 328                  */
 329                 if (edx & (1U << 28))
 330                         c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
 331         }
 332 
 333         check_mpx_erratum(c);
 334         check_memory_type_self_snoop_errata(c);
 335 
 336         /*
 337          * Get the number of SMT siblings early from the extended topology
 338          * leaf, if available. Otherwise try the legacy SMT detection.
 339          */
 340         if (detect_extended_topology_early(c) < 0)
 341                 detect_ht_early(c);
 342 }
 343 
 344 #ifdef CONFIG_X86_32
 345 /*
 346  *      Early probe support logic for ppro memory erratum #50
 347  *
 348  *      This is called before we do cpu ident work
 349  */
 350 
 351 int ppro_with_ram_bug(void)
 352 {
 353         /* Uses data from early_cpu_detect now */
 354         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
 355             boot_cpu_data.x86 == 6 &&
 356             boot_cpu_data.x86_model == 1 &&
 357             boot_cpu_data.x86_stepping < 8) {
 358                 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
 359                 return 1;
 360         }
 361         return 0;
 362 }
 363 
 364 static void intel_smp_check(struct cpuinfo_x86 *c)
 365 {
 366         /* calling is from identify_secondary_cpu() ? */
 367         if (!c->cpu_index)
 368                 return;
 369 
 370         /*
 371          * Mask B, Pentium, but not Pentium MMX
 372          */
 373         if (c->x86 == 5 &&
 374             c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
 375             c->x86_model <= 3) {
 376                 /*
 377                  * Remember we have B step Pentia with bugs
 378                  */
 379                 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
 380                                     "with B stepping processors.\n");
 381         }
 382 }
 383 
 384 static int forcepae;
 385 static int __init forcepae_setup(char *__unused)
 386 {
 387         forcepae = 1;
 388         return 1;
 389 }
 390 __setup("forcepae", forcepae_setup);
 391 
 392 static void intel_workarounds(struct cpuinfo_x86 *c)
 393 {
 394 #ifdef CONFIG_X86_F00F_BUG
 395         /*
 396          * All models of Pentium and Pentium with MMX technology CPUs
 397          * have the F0 0F bug, which lets nonprivileged users lock up the
 398          * system. Announce that the fault handler will be checking for it.
 399          * The Quark is also family 5, but does not have the same bug.
 400          */
 401         clear_cpu_bug(c, X86_BUG_F00F);
 402         if (c->x86 == 5 && c->x86_model < 9) {
 403                 static int f00f_workaround_enabled;
 404 
 405                 set_cpu_bug(c, X86_BUG_F00F);
 406                 if (!f00f_workaround_enabled) {
 407                         pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
 408                         f00f_workaround_enabled = 1;
 409                 }
 410         }
 411 #endif
 412 
 413         /*
 414          * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
 415          * model 3 mask 3
 416          */
 417         if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
 418                 clear_cpu_cap(c, X86_FEATURE_SEP);
 419 
 420         /*
 421          * PAE CPUID issue: many Pentium M report no PAE but may have a
 422          * functionally usable PAE implementation.
 423          * Forcefully enable PAE if kernel parameter "forcepae" is present.
 424          */
 425         if (forcepae) {
 426                 pr_warn("PAE forced!\n");
 427                 set_cpu_cap(c, X86_FEATURE_PAE);
 428                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
 429         }
 430 
 431         /*
 432          * P4 Xeon erratum 037 workaround.
 433          * Hardware prefetcher may cause stale data to be loaded into the cache.
 434          */
 435         if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
 436                 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
 437                                 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
 438                         pr_info("CPU: C0 stepping P4 Xeon detected.\n");
 439                         pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
 440                 }
 441         }
 442 
 443         /*
 444          * See if we have a good local APIC by checking for buggy Pentia,
 445          * i.e. all B steppings and the C2 stepping of P54C when using their
 446          * integrated APIC (see 11AP erratum in "Pentium Processor
 447          * Specification Update").
 448          */
 449         if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
 450             (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
 451                 set_cpu_bug(c, X86_BUG_11AP);
 452 
 453 
 454 #ifdef CONFIG_X86_INTEL_USERCOPY
 455         /*
 456          * Set up the preferred alignment for movsl bulk memory moves
 457          */
 458         switch (c->x86) {
 459         case 4:         /* 486: untested */
 460                 break;
 461         case 5:         /* Old Pentia: untested */
 462                 break;
 463         case 6:         /* PII/PIII only like movsl with 8-byte alignment */
 464                 movsl_mask.mask = 7;
 465                 break;
 466         case 15:        /* P4 is OK down to 8-byte alignment */
 467                 movsl_mask.mask = 7;
 468                 break;
 469         }
 470 #endif
 471 
 472         intel_smp_check(c);
 473 }
 474 #else
 475 static void intel_workarounds(struct cpuinfo_x86 *c)
 476 {
 477 }
 478 #endif
 479 
 480 static void srat_detect_node(struct cpuinfo_x86 *c)
 481 {
 482 #ifdef CONFIG_NUMA
 483         unsigned node;
 484         int cpu = smp_processor_id();
 485 
 486         /* Don't do the funky fallback heuristics the AMD version employs
 487            for now. */
 488         node = numa_cpu_node(cpu);
 489         if (node == NUMA_NO_NODE || !node_online(node)) {
 490                 /* reuse the value from init_cpu_to_node() */
 491                 node = cpu_to_node(cpu);
 492         }
 493         numa_set_node(cpu, node);
 494 #endif
 495 }
 496 
 497 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
 498 {
 499         /* Intel VMX MSR indicated features */
 500 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW    0x00200000
 501 #define X86_VMX_FEATURE_PROC_CTLS_VNMI          0x00400000
 502 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS      0x80000000
 503 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC    0x00000001
 504 #define X86_VMX_FEATURE_PROC_CTLS2_EPT          0x00000002
 505 #define X86_VMX_FEATURE_PROC_CTLS2_VPID         0x00000020
 506 #define x86_VMX_FEATURE_EPT_CAP_AD              0x00200000
 507 
 508         u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
 509         u32 msr_vpid_cap, msr_ept_cap;
 510 
 511         clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 512         clear_cpu_cap(c, X86_FEATURE_VNMI);
 513         clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 514         clear_cpu_cap(c, X86_FEATURE_EPT);
 515         clear_cpu_cap(c, X86_FEATURE_VPID);
 516         clear_cpu_cap(c, X86_FEATURE_EPT_AD);
 517 
 518         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
 519         msr_ctl = vmx_msr_high | vmx_msr_low;
 520         if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
 521                 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 522         if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
 523                 set_cpu_cap(c, X86_FEATURE_VNMI);
 524         if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
 525                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
 526                       vmx_msr_low, vmx_msr_high);
 527                 msr_ctl2 = vmx_msr_high | vmx_msr_low;
 528                 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
 529                     (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
 530                         set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 531                 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT) {
 532                         set_cpu_cap(c, X86_FEATURE_EPT);
 533                         rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
 534                               msr_ept_cap, msr_vpid_cap);
 535                         if (msr_ept_cap & x86_VMX_FEATURE_EPT_CAP_AD)
 536                                 set_cpu_cap(c, X86_FEATURE_EPT_AD);
 537                 }
 538                 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
 539                         set_cpu_cap(c, X86_FEATURE_VPID);
 540         }
 541 }
 542 
 543 #define MSR_IA32_TME_ACTIVATE           0x982
 544 
 545 /* Helpers to access TME_ACTIVATE MSR */
 546 #define TME_ACTIVATE_LOCKED(x)          (x & 0x1)
 547 #define TME_ACTIVATE_ENABLED(x)         (x & 0x2)
 548 
 549 #define TME_ACTIVATE_POLICY(x)          ((x >> 4) & 0xf)        /* Bits 7:4 */
 550 #define TME_ACTIVATE_POLICY_AES_XTS_128 0
 551 
 552 #define TME_ACTIVATE_KEYID_BITS(x)      ((x >> 32) & 0xf)       /* Bits 35:32 */
 553 
 554 #define TME_ACTIVATE_CRYPTO_ALGS(x)     ((x >> 48) & 0xffff)    /* Bits 63:48 */
 555 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
 556 
 557 /* Values for mktme_status (SW only construct) */
 558 #define MKTME_ENABLED                   0
 559 #define MKTME_DISABLED                  1
 560 #define MKTME_UNINITIALIZED             2
 561 static int mktme_status = MKTME_UNINITIALIZED;
 562 
 563 static void detect_tme(struct cpuinfo_x86 *c)
 564 {
 565         u64 tme_activate, tme_policy, tme_crypto_algs;
 566         int keyid_bits = 0, nr_keyids = 0;
 567         static u64 tme_activate_cpu0 = 0;
 568 
 569         rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
 570 
 571         if (mktme_status != MKTME_UNINITIALIZED) {
 572                 if (tme_activate != tme_activate_cpu0) {
 573                         /* Broken BIOS? */
 574                         pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
 575                         pr_err_once("x86/tme: MKTME is not usable\n");
 576                         mktme_status = MKTME_DISABLED;
 577 
 578                         /* Proceed. We may need to exclude bits from x86_phys_bits. */
 579                 }
 580         } else {
 581                 tme_activate_cpu0 = tme_activate;
 582         }
 583 
 584         if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
 585                 pr_info_once("x86/tme: not enabled by BIOS\n");
 586                 mktme_status = MKTME_DISABLED;
 587                 return;
 588         }
 589 
 590         if (mktme_status != MKTME_UNINITIALIZED)
 591                 goto detect_keyid_bits;
 592 
 593         pr_info("x86/tme: enabled by BIOS\n");
 594 
 595         tme_policy = TME_ACTIVATE_POLICY(tme_activate);
 596         if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
 597                 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
 598 
 599         tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
 600         if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
 601                 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
 602                                 tme_crypto_algs);
 603                 mktme_status = MKTME_DISABLED;
 604         }
 605 detect_keyid_bits:
 606         keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
 607         nr_keyids = (1UL << keyid_bits) - 1;
 608         if (nr_keyids) {
 609                 pr_info_once("x86/mktme: enabled by BIOS\n");
 610                 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
 611         } else {
 612                 pr_info_once("x86/mktme: disabled by BIOS\n");
 613         }
 614 
 615         if (mktme_status == MKTME_UNINITIALIZED) {
 616                 /* MKTME is usable */
 617                 mktme_status = MKTME_ENABLED;
 618         }
 619 
 620         /*
 621          * KeyID bits effectively lower the number of physical address
 622          * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
 623          */
 624         c->x86_phys_bits -= keyid_bits;
 625 }
 626 
 627 static void init_cpuid_fault(struct cpuinfo_x86 *c)
 628 {
 629         u64 msr;
 630 
 631         if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
 632                 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
 633                         set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
 634         }
 635 }
 636 
 637 static void init_intel_misc_features(struct cpuinfo_x86 *c)
 638 {
 639         u64 msr;
 640 
 641         if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
 642                 return;
 643 
 644         /* Clear all MISC features */
 645         this_cpu_write(msr_misc_features_shadow, 0);
 646 
 647         /* Check features and update capabilities and shadow control bits */
 648         init_cpuid_fault(c);
 649         probe_xeon_phi_r3mwait(c);
 650 
 651         msr = this_cpu_read(msr_misc_features_shadow);
 652         wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
 653 }
 654 
 655 static void init_intel(struct cpuinfo_x86 *c)
 656 {
 657         early_init_intel(c);
 658 
 659         intel_workarounds(c);
 660 
 661         /*
 662          * Detect the extended topology information if available. This
 663          * will reinitialise the initial_apicid which will be used
 664          * in init_intel_cacheinfo()
 665          */
 666         detect_extended_topology(c);
 667 
 668         if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
 669                 /*
 670                  * let's use the legacy cpuid vector 0x1 and 0x4 for topology
 671                  * detection.
 672                  */
 673                 detect_num_cpu_cores(c);
 674 #ifdef CONFIG_X86_32
 675                 detect_ht(c);
 676 #endif
 677         }
 678 
 679         init_intel_cacheinfo(c);
 680 
 681         if (c->cpuid_level > 9) {
 682                 unsigned eax = cpuid_eax(10);
 683                 /* Check for version and the number of counters */
 684                 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
 685                         set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
 686         }
 687 
 688         if (cpu_has(c, X86_FEATURE_XMM2))
 689                 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
 690 
 691         if (boot_cpu_has(X86_FEATURE_DS)) {
 692                 unsigned int l1, l2;
 693 
 694                 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
 695                 if (!(l1 & (1<<11)))
 696                         set_cpu_cap(c, X86_FEATURE_BTS);
 697                 if (!(l1 & (1<<12)))
 698                         set_cpu_cap(c, X86_FEATURE_PEBS);
 699         }
 700 
 701         if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
 702             (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
 703                 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
 704 
 705         if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
 706                 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
 707                 set_cpu_bug(c, X86_BUG_MONITOR);
 708 
 709 #ifdef CONFIG_X86_64
 710         if (c->x86 == 15)
 711                 c->x86_cache_alignment = c->x86_clflush_size * 2;
 712         if (c->x86 == 6)
 713                 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 714 #else
 715         /*
 716          * Names for the Pentium II/Celeron processors
 717          * detectable only by also checking the cache size.
 718          * Dixon is NOT a Celeron.
 719          */
 720         if (c->x86 == 6) {
 721                 unsigned int l2 = c->x86_cache_size;
 722                 char *p = NULL;
 723 
 724                 switch (c->x86_model) {
 725                 case 5:
 726                         if (l2 == 0)
 727                                 p = "Celeron (Covington)";
 728                         else if (l2 == 256)
 729                                 p = "Mobile Pentium II (Dixon)";
 730                         break;
 731 
 732                 case 6:
 733                         if (l2 == 128)
 734                                 p = "Celeron (Mendocino)";
 735                         else if (c->x86_stepping == 0 || c->x86_stepping == 5)
 736                                 p = "Celeron-A";
 737                         break;
 738 
 739                 case 8:
 740                         if (l2 == 128)
 741                                 p = "Celeron (Coppermine)";
 742                         break;
 743                 }
 744 
 745                 if (p)
 746                         strcpy(c->x86_model_id, p);
 747         }
 748 
 749         if (c->x86 == 15)
 750                 set_cpu_cap(c, X86_FEATURE_P4);
 751         if (c->x86 == 6)
 752                 set_cpu_cap(c, X86_FEATURE_P3);
 753 #endif
 754 
 755         /* Work around errata */
 756         srat_detect_node(c);
 757 
 758         if (cpu_has(c, X86_FEATURE_VMX))
 759                 detect_vmx_virtcap(c);
 760 
 761         if (cpu_has(c, X86_FEATURE_TME))
 762                 detect_tme(c);
 763 
 764         init_intel_misc_features(c);
 765 
 766         if (tsx_ctrl_state == TSX_CTRL_ENABLE)
 767                 tsx_enable();
 768         if (tsx_ctrl_state == TSX_CTRL_DISABLE)
 769                 tsx_disable();
 770 }
 771 
 772 #ifdef CONFIG_X86_32
 773 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
 774 {
 775         /*
 776          * Intel PIII Tualatin. This comes in two flavours.
 777          * One has 256kb of cache, the other 512. We have no way
 778          * to determine which, so we use a boottime override
 779          * for the 512kb model, and assume 256 otherwise.
 780          */
 781         if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
 782                 size = 256;
 783 
 784         /*
 785          * Intel Quark SoC X1000 contains a 4-way set associative
 786          * 16K cache with a 16 byte cache line and 256 lines per tag
 787          */
 788         if ((c->x86 == 5) && (c->x86_model == 9))
 789                 size = 16;
 790         return size;
 791 }
 792 #endif
 793 
 794 #define TLB_INST_4K     0x01
 795 #define TLB_INST_4M     0x02
 796 #define TLB_INST_2M_4M  0x03
 797 
 798 #define TLB_INST_ALL    0x05
 799 #define TLB_INST_1G     0x06
 800 
 801 #define TLB_DATA_4K     0x11
 802 #define TLB_DATA_4M     0x12
 803 #define TLB_DATA_2M_4M  0x13
 804 #define TLB_DATA_4K_4M  0x14
 805 
 806 #define TLB_DATA_1G     0x16
 807 
 808 #define TLB_DATA0_4K    0x21
 809 #define TLB_DATA0_4M    0x22
 810 #define TLB_DATA0_2M_4M 0x23
 811 
 812 #define STLB_4K         0x41
 813 #define STLB_4K_2M      0x42
 814 
 815 static const struct _tlb_table intel_tlb_table[] = {
 816         { 0x01, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages, 4-way set associative" },
 817         { 0x02, TLB_INST_4M,            2,      " TLB_INST 4 MByte pages, full associative" },
 818         { 0x03, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way set associative" },
 819         { 0x04, TLB_DATA_4M,            8,      " TLB_DATA 4 MByte pages, 4-way set associative" },
 820         { 0x05, TLB_DATA_4M,            32,     " TLB_DATA 4 MByte pages, 4-way set associative" },
 821         { 0x0b, TLB_INST_4M,            4,      " TLB_INST 4 MByte pages, 4-way set associative" },
 822         { 0x4f, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages */" },
 823         { 0x50, TLB_INST_ALL,           64,     " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 824         { 0x51, TLB_INST_ALL,           128,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 825         { 0x52, TLB_INST_ALL,           256,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 826         { 0x55, TLB_INST_2M_4M,         7,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 827         { 0x56, TLB_DATA0_4M,           16,     " TLB_DATA0 4 MByte pages, 4-way set associative" },
 828         { 0x57, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, 4-way associative" },
 829         { 0x59, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, fully associative" },
 830         { 0x5a, TLB_DATA0_2M_4M,        32,     " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
 831         { 0x5b, TLB_DATA_4K_4M,         64,     " TLB_DATA 4 KByte and 4 MByte pages" },
 832         { 0x5c, TLB_DATA_4K_4M,         128,    " TLB_DATA 4 KByte and 4 MByte pages" },
 833         { 0x5d, TLB_DATA_4K_4M,         256,    " TLB_DATA 4 KByte and 4 MByte pages" },
 834         { 0x61, TLB_INST_4K,            48,     " TLB_INST 4 KByte pages, full associative" },
 835         { 0x63, TLB_DATA_1G,            4,      " TLB_DATA 1 GByte pages, 4-way set associative" },
 836         { 0x6b, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 8-way associative" },
 837         { 0x6c, TLB_DATA_2M_4M,         128,    " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
 838         { 0x6d, TLB_DATA_1G,            16,     " TLB_DATA 1 GByte pages, fully associative" },
 839         { 0x76, TLB_INST_2M_4M,         8,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 840         { 0xb0, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 4-way set associative" },
 841         { 0xb1, TLB_INST_2M_4M,         4,      " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
 842         { 0xb2, TLB_INST_4K,            64,     " TLB_INST 4KByte pages, 4-way set associative" },
 843         { 0xb3, TLB_DATA_4K,            128,    " TLB_DATA 4 KByte pages, 4-way set associative" },
 844         { 0xb4, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 4-way associative" },
 845         { 0xb5, TLB_INST_4K,            64,     " TLB_INST 4 KByte pages, 8-way set associative" },
 846         { 0xb6, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 8-way set associative" },
 847         { 0xba, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way associative" },
 848         { 0xc0, TLB_DATA_4K_4M,         8,      " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
 849         { 0xc1, STLB_4K_2M,             1024,   " STLB 4 KByte and 2 MByte pages, 8-way associative" },
 850         { 0xc2, TLB_DATA_2M_4M,         16,     " DTLB 2 MByte/4MByte pages, 4-way associative" },
 851         { 0xca, STLB_4K,                512,    " STLB 4 KByte pages, 4-way associative" },
 852         { 0x00, 0, 0 }
 853 };
 854 
 855 static void intel_tlb_lookup(const unsigned char desc)
 856 {
 857         unsigned char k;
 858         if (desc == 0)
 859                 return;
 860 
 861         /* look up this descriptor in the table */
 862         for (k = 0; intel_tlb_table[k].descriptor != desc && \
 863                         intel_tlb_table[k].descriptor != 0; k++)
 864                 ;
 865 
 866         if (intel_tlb_table[k].tlb_type == 0)
 867                 return;
 868 
 869         switch (intel_tlb_table[k].tlb_type) {
 870         case STLB_4K:
 871                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 872                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 873                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 874                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 875                 break;
 876         case STLB_4K_2M:
 877                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 878                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 879                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 880                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 881                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 882                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 883                 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 884                         tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 885                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 886                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 887                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 888                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 889                 break;
 890         case TLB_INST_ALL:
 891                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 892                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 893                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 894                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 895                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 896                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 897                 break;
 898         case TLB_INST_4K:
 899                 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 900                         tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 901                 break;
 902         case TLB_INST_4M:
 903                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 904                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 905                 break;
 906         case TLB_INST_2M_4M:
 907                 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 908                         tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 909                 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 910                         tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 911                 break;
 912         case TLB_DATA_4K:
 913         case TLB_DATA0_4K:
 914                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 915                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 916                 break;
 917         case TLB_DATA_4M:
 918         case TLB_DATA0_4M:
 919                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 920                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 921                 break;
 922         case TLB_DATA_2M_4M:
 923         case TLB_DATA0_2M_4M:
 924                 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 925                         tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 926                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 927                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 928                 break;
 929         case TLB_DATA_4K_4M:
 930                 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 931                         tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 932                 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 933                         tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 934                 break;
 935         case TLB_DATA_1G:
 936                 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
 937                         tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
 938                 break;
 939         }
 940 }
 941 
 942 static void intel_detect_tlb(struct cpuinfo_x86 *c)
 943 {
 944         int i, j, n;
 945         unsigned int regs[4];
 946         unsigned char *desc = (unsigned char *)regs;
 947 
 948         if (c->cpuid_level < 2)
 949                 return;
 950 
 951         /* Number of times to iterate */
 952         n = cpuid_eax(2) & 0xFF;
 953 
 954         for (i = 0 ; i < n ; i++) {
 955                 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
 956 
 957                 /* If bit 31 is set, this is an unknown format */
 958                 for (j = 0 ; j < 3 ; j++)
 959                         if (regs[j] & (1 << 31))
 960                                 regs[j] = 0;
 961 
 962                 /* Byte 0 is level count, not a descriptor */
 963                 for (j = 1 ; j < 16 ; j++)
 964                         intel_tlb_lookup(desc[j]);
 965         }
 966 }
 967 
 968 static const struct cpu_dev intel_cpu_dev = {
 969         .c_vendor       = "Intel",
 970         .c_ident        = { "GenuineIntel" },
 971 #ifdef CONFIG_X86_32
 972         .legacy_models = {
 973                 { .family = 4, .model_names =
 974                   {
 975                           [0] = "486 DX-25/33",
 976                           [1] = "486 DX-50",
 977                           [2] = "486 SX",
 978                           [3] = "486 DX/2",
 979                           [4] = "486 SL",
 980                           [5] = "486 SX/2",
 981                           [7] = "486 DX/2-WB",
 982                           [8] = "486 DX/4",
 983                           [9] = "486 DX/4-WB"
 984                   }
 985                 },
 986                 { .family = 5, .model_names =
 987                   {
 988                           [0] = "Pentium 60/66 A-step",
 989                           [1] = "Pentium 60/66",
 990                           [2] = "Pentium 75 - 200",
 991                           [3] = "OverDrive PODP5V83",
 992                           [4] = "Pentium MMX",
 993                           [7] = "Mobile Pentium 75 - 200",
 994                           [8] = "Mobile Pentium MMX",
 995                           [9] = "Quark SoC X1000",
 996                   }
 997                 },
 998                 { .family = 6, .model_names =
 999                   {
1000                           [0] = "Pentium Pro A-step",
1001                           [1] = "Pentium Pro",
1002                           [3] = "Pentium II (Klamath)",
1003                           [4] = "Pentium II (Deschutes)",
1004                           [5] = "Pentium II (Deschutes)",
1005                           [6] = "Mobile Pentium II",
1006                           [7] = "Pentium III (Katmai)",
1007                           [8] = "Pentium III (Coppermine)",
1008                           [10] = "Pentium III (Cascades)",
1009                           [11] = "Pentium III (Tualatin)",
1010                   }
1011                 },
1012                 { .family = 15, .model_names =
1013                   {
1014                           [0] = "Pentium 4 (Unknown)",
1015                           [1] = "Pentium 4 (Willamette)",
1016                           [2] = "Pentium 4 (Northwood)",
1017                           [4] = "Pentium 4 (Foster)",
1018                           [5] = "Pentium 4 (Foster)",
1019                   }
1020                 },
1021         },
1022         .legacy_cache_size = intel_size_cache,
1023 #endif
1024         .c_detect_tlb   = intel_detect_tlb,
1025         .c_early_init   = early_init_intel,
1026         .c_init         = init_intel,
1027         .c_x86_vendor   = X86_VENDOR_INTEL,
1028 };
1029 
1030 cpu_dev_register(intel_cpu_dev);

/* [<][>][^][v][top][bottom][index][help] */