root/arch/x86/mm/tlb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. clear_asid_other
  2. choose_new_asid
  3. load_new_mm_cr3
  4. leave_mm
  5. switch_mm
  6. sync_current_stack_to_mm
  7. mm_mangle_tif_spec_ib
  8. cond_ibpb
  9. switch_mm_irqs_off
  10. enter_lazy_tlb
  11. initialize_tlbstate_and_flush
  12. flush_tlb_func_common
  13. flush_tlb_func_local
  14. flush_tlb_func_remote
  15. tlb_is_not_lazy
  16. native_flush_tlb_others
  17. get_flush_tlb_info
  18. put_flush_tlb_info
  19. flush_tlb_mm_range
  20. do_flush_tlb_all
  21. flush_tlb_all
  22. do_kernel_range_flush
  23. flush_tlb_kernel_range
  24. arch_tlbbatch_flush
  25. tlbflush_read_file
  26. tlbflush_write_file
  27. create_tlb_single_page_flush_ceiling

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 #include <linux/init.h>
   3 
   4 #include <linux/mm.h>
   5 #include <linux/spinlock.h>
   6 #include <linux/smp.h>
   7 #include <linux/interrupt.h>
   8 #include <linux/export.h>
   9 #include <linux/cpu.h>
  10 #include <linux/debugfs.h>
  11 
  12 #include <asm/tlbflush.h>
  13 #include <asm/mmu_context.h>
  14 #include <asm/nospec-branch.h>
  15 #include <asm/cache.h>
  16 #include <asm/apic.h>
  17 #include <asm/uv/uv.h>
  18 
  19 #include "mm_internal.h"
  20 
  21 /*
  22  *      TLB flushing, formerly SMP-only
  23  *              c/o Linus Torvalds.
  24  *
  25  *      These mean you can really definitely utterly forget about
  26  *      writing to user space from interrupts. (Its not allowed anyway).
  27  *
  28  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  29  *
  30  *      More scalable flush, from Andi Kleen
  31  *
  32  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  33  */
  34 
  35 /*
  36  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
  37  * stored in cpu_tlb_state.last_user_mm_ibpb.
  38  */
  39 #define LAST_USER_MM_IBPB       0x1UL
  40 
  41 /*
  42  * We get here when we do something requiring a TLB invalidation
  43  * but could not go invalidate all of the contexts.  We do the
  44  * necessary invalidation by clearing out the 'ctx_id' which
  45  * forces a TLB flush when the context is loaded.
  46  */
  47 static void clear_asid_other(void)
  48 {
  49         u16 asid;
  50 
  51         /*
  52          * This is only expected to be set if we have disabled
  53          * kernel _PAGE_GLOBAL pages.
  54          */
  55         if (!static_cpu_has(X86_FEATURE_PTI)) {
  56                 WARN_ON_ONCE(1);
  57                 return;
  58         }
  59 
  60         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
  61                 /* Do not need to flush the current asid */
  62                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
  63                         continue;
  64                 /*
  65                  * Make sure the next time we go to switch to
  66                  * this asid, we do a flush:
  67                  */
  68                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
  69         }
  70         this_cpu_write(cpu_tlbstate.invalidate_other, false);
  71 }
  72 
  73 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
  74 
  75 
  76 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
  77                             u16 *new_asid, bool *need_flush)
  78 {
  79         u16 asid;
  80 
  81         if (!static_cpu_has(X86_FEATURE_PCID)) {
  82                 *new_asid = 0;
  83                 *need_flush = true;
  84                 return;
  85         }
  86 
  87         if (this_cpu_read(cpu_tlbstate.invalidate_other))
  88                 clear_asid_other();
  89 
  90         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
  91                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
  92                     next->context.ctx_id)
  93                         continue;
  94 
  95                 *new_asid = asid;
  96                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
  97                                next_tlb_gen);
  98                 return;
  99         }
 100 
 101         /*
 102          * We don't currently own an ASID slot on this CPU.
 103          * Allocate a slot.
 104          */
 105         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 106         if (*new_asid >= TLB_NR_DYN_ASIDS) {
 107                 *new_asid = 0;
 108                 this_cpu_write(cpu_tlbstate.next_asid, 1);
 109         }
 110         *need_flush = true;
 111 }
 112 
 113 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 114 {
 115         unsigned long new_mm_cr3;
 116 
 117         if (need_flush) {
 118                 invalidate_user_asid(new_asid);
 119                 new_mm_cr3 = build_cr3(pgdir, new_asid);
 120         } else {
 121                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
 122         }
 123 
 124         /*
 125          * Caution: many callers of this function expect
 126          * that load_cr3() is serializing and orders TLB
 127          * fills with respect to the mm_cpumask writes.
 128          */
 129         write_cr3(new_mm_cr3);
 130 }
 131 
 132 void leave_mm(int cpu)
 133 {
 134         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 135 
 136         /*
 137          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
 138          * If so, our callers still expect us to flush the TLB, but there
 139          * aren't any user TLB entries in init_mm to worry about.
 140          *
 141          * This needs to happen before any other sanity checks due to
 142          * intel_idle's shenanigans.
 143          */
 144         if (loaded_mm == &init_mm)
 145                 return;
 146 
 147         /* Warn if we're not lazy. */
 148         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
 149 
 150         switch_mm(NULL, &init_mm, NULL);
 151 }
 152 EXPORT_SYMBOL_GPL(leave_mm);
 153 
 154 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 155                struct task_struct *tsk)
 156 {
 157         unsigned long flags;
 158 
 159         local_irq_save(flags);
 160         switch_mm_irqs_off(prev, next, tsk);
 161         local_irq_restore(flags);
 162 }
 163 
 164 static void sync_current_stack_to_mm(struct mm_struct *mm)
 165 {
 166         unsigned long sp = current_stack_pointer;
 167         pgd_t *pgd = pgd_offset(mm, sp);
 168 
 169         if (pgtable_l5_enabled()) {
 170                 if (unlikely(pgd_none(*pgd))) {
 171                         pgd_t *pgd_ref = pgd_offset_k(sp);
 172 
 173                         set_pgd(pgd, *pgd_ref);
 174                 }
 175         } else {
 176                 /*
 177                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
 178                  * the p4d.  This compiles to approximately the same code as
 179                  * the 5-level case.
 180                  */
 181                 p4d_t *p4d = p4d_offset(pgd, sp);
 182 
 183                 if (unlikely(p4d_none(*p4d))) {
 184                         pgd_t *pgd_ref = pgd_offset_k(sp);
 185                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
 186 
 187                         set_p4d(p4d, *p4d_ref);
 188                 }
 189         }
 190 }
 191 
 192 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
 193 {
 194         unsigned long next_tif = task_thread_info(next)->flags;
 195         unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
 196 
 197         return (unsigned long)next->mm | ibpb;
 198 }
 199 
 200 static void cond_ibpb(struct task_struct *next)
 201 {
 202         if (!next || !next->mm)
 203                 return;
 204 
 205         /*
 206          * Both, the conditional and the always IBPB mode use the mm
 207          * pointer to avoid the IBPB when switching between tasks of the
 208          * same process. Using the mm pointer instead of mm->context.ctx_id
 209          * opens a hypothetical hole vs. mm_struct reuse, which is more or
 210          * less impossible to control by an attacker. Aside of that it
 211          * would only affect the first schedule so the theoretically
 212          * exposed data is not really interesting.
 213          */
 214         if (static_branch_likely(&switch_mm_cond_ibpb)) {
 215                 unsigned long prev_mm, next_mm;
 216 
 217                 /*
 218                  * This is a bit more complex than the always mode because
 219                  * it has to handle two cases:
 220                  *
 221                  * 1) Switch from a user space task (potential attacker)
 222                  *    which has TIF_SPEC_IB set to a user space task
 223                  *    (potential victim) which has TIF_SPEC_IB not set.
 224                  *
 225                  * 2) Switch from a user space task (potential attacker)
 226                  *    which has TIF_SPEC_IB not set to a user space task
 227                  *    (potential victim) which has TIF_SPEC_IB set.
 228                  *
 229                  * This could be done by unconditionally issuing IBPB when
 230                  * a task which has TIF_SPEC_IB set is either scheduled in
 231                  * or out. Though that results in two flushes when:
 232                  *
 233                  * - the same user space task is scheduled out and later
 234                  *   scheduled in again and only a kernel thread ran in
 235                  *   between.
 236                  *
 237                  * - a user space task belonging to the same process is
 238                  *   scheduled in after a kernel thread ran in between
 239                  *
 240                  * - a user space task belonging to the same process is
 241                  *   scheduled in immediately.
 242                  *
 243                  * Optimize this with reasonably small overhead for the
 244                  * above cases. Mangle the TIF_SPEC_IB bit into the mm
 245                  * pointer of the incoming task which is stored in
 246                  * cpu_tlbstate.last_user_mm_ibpb for comparison.
 247                  */
 248                 next_mm = mm_mangle_tif_spec_ib(next);
 249                 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
 250 
 251                 /*
 252                  * Issue IBPB only if the mm's are different and one or
 253                  * both have the IBPB bit set.
 254                  */
 255                 if (next_mm != prev_mm &&
 256                     (next_mm | prev_mm) & LAST_USER_MM_IBPB)
 257                         indirect_branch_prediction_barrier();
 258 
 259                 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
 260         }
 261 
 262         if (static_branch_unlikely(&switch_mm_always_ibpb)) {
 263                 /*
 264                  * Only flush when switching to a user space task with a
 265                  * different context than the user space task which ran
 266                  * last on this CPU.
 267                  */
 268                 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
 269                         indirect_branch_prediction_barrier();
 270                         this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
 271                 }
 272         }
 273 }
 274 
 275 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 276                         struct task_struct *tsk)
 277 {
 278         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 279         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 280         bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
 281         unsigned cpu = smp_processor_id();
 282         u64 next_tlb_gen;
 283         bool need_flush;
 284         u16 new_asid;
 285 
 286         /*
 287          * NB: The scheduler will call us with prev == next when switching
 288          * from lazy TLB mode to normal mode if active_mm isn't changing.
 289          * When this happens, we don't assume that CR3 (and hence
 290          * cpu_tlbstate.loaded_mm) matches next.
 291          *
 292          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 293          */
 294 
 295         /* We don't want flush_tlb_func_* to run concurrently with us. */
 296         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 297                 WARN_ON_ONCE(!irqs_disabled());
 298 
 299         /*
 300          * Verify that CR3 is what we think it is.  This will catch
 301          * hypothetical buggy code that directly switches to swapper_pg_dir
 302          * without going through leave_mm() / switch_mm_irqs_off() or that
 303          * does something like write_cr3(read_cr3_pa()).
 304          *
 305          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 306          * isn't free.
 307          */
 308 #ifdef CONFIG_DEBUG_VM
 309         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
 310                 /*
 311                  * If we were to BUG here, we'd be very likely to kill
 312                  * the system so hard that we don't see the call trace.
 313                  * Try to recover instead by ignoring the error and doing
 314                  * a global flush to minimize the chance of corruption.
 315                  *
 316                  * (This is far from being a fully correct recovery.
 317                  *  Architecturally, the CPU could prefetch something
 318                  *  back into an incorrect ASID slot and leave it there
 319                  *  to cause trouble down the road.  It's better than
 320                  *  nothing, though.)
 321                  */
 322                 __flush_tlb_all();
 323         }
 324 #endif
 325         this_cpu_write(cpu_tlbstate.is_lazy, false);
 326 
 327         /*
 328          * The membarrier system call requires a full memory barrier and
 329          * core serialization before returning to user-space, after
 330          * storing to rq->curr. Writing to CR3 provides that full
 331          * memory barrier and core serializing instruction.
 332          */
 333         if (real_prev == next) {
 334                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 335                            next->context.ctx_id);
 336 
 337                 /*
 338                  * Even in lazy TLB mode, the CPU should stay set in the
 339                  * mm_cpumask. The TLB shootdown code can figure out from
 340                  * from cpu_tlbstate.is_lazy whether or not to send an IPI.
 341                  */
 342                 if (WARN_ON_ONCE(real_prev != &init_mm &&
 343                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
 344                         cpumask_set_cpu(cpu, mm_cpumask(next));
 345 
 346                 /*
 347                  * If the CPU is not in lazy TLB mode, we are just switching
 348                  * from one thread in a process to another thread in the same
 349                  * process. No TLB flush required.
 350                  */
 351                 if (!was_lazy)
 352                         return;
 353 
 354                 /*
 355                  * Read the tlb_gen to check whether a flush is needed.
 356                  * If the TLB is up to date, just use it.
 357                  * The barrier synchronizes with the tlb_gen increment in
 358                  * the TLB shootdown code.
 359                  */
 360                 smp_mb();
 361                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 362                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
 363                                 next_tlb_gen)
 364                         return;
 365 
 366                 /*
 367                  * TLB contents went out of date while we were in lazy
 368                  * mode. Fall through to the TLB switching code below.
 369                  */
 370                 new_asid = prev_asid;
 371                 need_flush = true;
 372         } else {
 373                 /*
 374                  * Avoid user/user BTB poisoning by flushing the branch
 375                  * predictor when switching between processes. This stops
 376                  * one process from doing Spectre-v2 attacks on another.
 377                  */
 378                 cond_ibpb(tsk);
 379 
 380                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 381                         /*
 382                          * If our current stack is in vmalloc space and isn't
 383                          * mapped in the new pgd, we'll double-fault.  Forcibly
 384                          * map it.
 385                          */
 386                         sync_current_stack_to_mm(next);
 387                 }
 388 
 389                 /*
 390                  * Stop remote flushes for the previous mm.
 391                  * Skip kernel threads; we never send init_mm TLB flushing IPIs,
 392                  * but the bitmap manipulation can cause cache line contention.
 393                  */
 394                 if (real_prev != &init_mm) {
 395                         VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
 396                                                 mm_cpumask(real_prev)));
 397                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 398                 }
 399 
 400                 /*
 401                  * Start remote flushes and then read tlb_gen.
 402                  */
 403                 if (next != &init_mm)
 404                         cpumask_set_cpu(cpu, mm_cpumask(next));
 405                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 406 
 407                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 408 
 409                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
 410                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 411                 barrier();
 412         }
 413 
 414         if (need_flush) {
 415                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 416                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 417                 load_new_mm_cr3(next->pgd, new_asid, true);
 418 
 419                 /*
 420                  * NB: This gets called via leave_mm() in the idle path
 421                  * where RCU functions differently.  Tracing normally
 422                  * uses RCU, so we need to use the _rcuidle variant.
 423                  *
 424                  * (There is no good reason for this.  The idle code should
 425                  *  be rearranged to call this before rcu_idle_enter().)
 426                  */
 427                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 428         } else {
 429                 /* The new ASID is already up to date. */
 430                 load_new_mm_cr3(next->pgd, new_asid, false);
 431 
 432                 /* See above wrt _rcuidle. */
 433                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
 434         }
 435 
 436         /* Make sure we write CR3 before loaded_mm. */
 437         barrier();
 438 
 439         this_cpu_write(cpu_tlbstate.loaded_mm, next);
 440         this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 441 
 442         if (next != real_prev) {
 443                 load_mm_cr4_irqsoff(next);
 444                 switch_ldt(real_prev, next);
 445         }
 446 }
 447 
 448 /*
 449  * Please ignore the name of this function.  It should be called
 450  * switch_to_kernel_thread().
 451  *
 452  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 453  * kernel thread or other context without an mm.  Acceptable implementations
 454  * include doing nothing whatsoever, switching to init_mm, or various clever
 455  * lazy tricks to try to minimize TLB flushes.
 456  *
 457  * The scheduler reserves the right to call enter_lazy_tlb() several times
 458  * in a row.  It will notify us that we're going back to a real mm by
 459  * calling switch_mm_irqs_off().
 460  */
 461 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 462 {
 463         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 464                 return;
 465 
 466         this_cpu_write(cpu_tlbstate.is_lazy, true);
 467 }
 468 
 469 /*
 470  * Call this when reinitializing a CPU.  It fixes the following potential
 471  * problems:
 472  *
 473  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 474  *   because the CPU was taken down and came back up with CR3's PCID
 475  *   bits clear.  CPU hotplug can do this.
 476  *
 477  * - The TLB contains junk in slots corresponding to inactive ASIDs.
 478  *
 479  * - The CPU went so far out to lunch that it may have missed a TLB
 480  *   flush.
 481  */
 482 void initialize_tlbstate_and_flush(void)
 483 {
 484         int i;
 485         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 486         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 487         unsigned long cr3 = __read_cr3();
 488 
 489         /* Assert that CR3 already references the right mm. */
 490         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 491 
 492         /*
 493          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 494          * doesn't work like other CR4 bits because it can only be set from
 495          * long mode.)
 496          */
 497         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 498                 !(cr4_read_shadow() & X86_CR4_PCIDE));
 499 
 500         /* Force ASID 0 and force a TLB flush. */
 501         write_cr3(build_cr3(mm->pgd, 0));
 502 
 503         /* Reinitialize tlbstate. */
 504         this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
 505         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 506         this_cpu_write(cpu_tlbstate.next_asid, 1);
 507         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 508         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 509 
 510         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 511                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 512 }
 513 
 514 /*
 515  * flush_tlb_func_common()'s memory ordering requirement is that any
 516  * TLB fills that happen after we flush the TLB are ordered after we
 517  * read active_mm's tlb_gen.  We don't need any explicit barriers
 518  * because all x86 flush operations are serializing and the
 519  * atomic64_read operation won't be reordered by the compiler.
 520  */
 521 static void flush_tlb_func_common(const struct flush_tlb_info *f,
 522                                   bool local, enum tlb_flush_reason reason)
 523 {
 524         /*
 525          * We have three different tlb_gen values in here.  They are:
 526          *
 527          * - mm_tlb_gen:     the latest generation.
 528          * - local_tlb_gen:  the generation that this CPU has already caught
 529          *                   up to.
 530          * - f->new_tlb_gen: the generation that the requester of the flush
 531          *                   wants us to catch up to.
 532          */
 533         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 534         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 535         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 536         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 537 
 538         /* This code cannot presently handle being reentered. */
 539         VM_WARN_ON(!irqs_disabled());
 540 
 541         if (unlikely(loaded_mm == &init_mm))
 542                 return;
 543 
 544         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 545                    loaded_mm->context.ctx_id);
 546 
 547         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
 548                 /*
 549                  * We're in lazy mode.  We need to at least flush our
 550                  * paging-structure cache to avoid speculatively reading
 551                  * garbage into our TLB.  Since switching to init_mm is barely
 552                  * slower than a minimal flush, just switch to init_mm.
 553                  *
 554                  * This should be rare, with native_flush_tlb_others skipping
 555                  * IPIs to lazy TLB mode CPUs.
 556                  */
 557                 switch_mm_irqs_off(NULL, &init_mm, NULL);
 558                 return;
 559         }
 560 
 561         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 562                 /*
 563                  * There's nothing to do: we're already up to date.  This can
 564                  * happen if two concurrent flushes happen -- the first flush to
 565                  * be handled can catch us all the way up, leaving no work for
 566                  * the second flush.
 567                  */
 568                 trace_tlb_flush(reason, 0);
 569                 return;
 570         }
 571 
 572         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 573         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 574 
 575         /*
 576          * If we get to this point, we know that our TLB is out of date.
 577          * This does not strictly imply that we need to flush (it's
 578          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 579          * going to need to flush in the very near future, so we might
 580          * as well get it over with.
 581          *
 582          * The only question is whether to do a full or partial flush.
 583          *
 584          * We do a partial flush if requested and two extra conditions
 585          * are met:
 586          *
 587          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 588          *    we've always done all needed flushes to catch up to
 589          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 590          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 591          *    us up to date for tlb_gen 3 is the partial flush we're
 592          *    processing.
 593          *
 594          *    As an example of why this check is needed, suppose that there
 595          *    are two concurrent flushes.  The first is a full flush that
 596          *    changes context.tlb_gen from 1 to 2.  The second is a partial
 597          *    flush that changes context.tlb_gen from 2 to 3.  If they get
 598          *    processed on this CPU in reverse order, we'll see
 599          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 600          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
 601          *    3, we'd be break the invariant: we'd update local_tlb_gen above
 602          *    1 without the full flush that's needed for tlb_gen 2.
 603          *
 604          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
 605          *    Partial TLB flushes are not all that much cheaper than full TLB
 606          *    flushes, so it seems unlikely that it would be a performance win
 607          *    to do a partial flush if that won't bring our TLB fully up to
 608          *    date.  By doing a full flush instead, we can increase
 609          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 610          *    avoid another flush in the very near future.
 611          */
 612         if (f->end != TLB_FLUSH_ALL &&
 613             f->new_tlb_gen == local_tlb_gen + 1 &&
 614             f->new_tlb_gen == mm_tlb_gen) {
 615                 /* Partial flush */
 616                 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
 617                 unsigned long addr = f->start;
 618 
 619                 while (addr < f->end) {
 620                         __flush_tlb_one_user(addr);
 621                         addr += 1UL << f->stride_shift;
 622                 }
 623                 if (local)
 624                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
 625                 trace_tlb_flush(reason, nr_invalidate);
 626         } else {
 627                 /* Full flush. */
 628                 local_flush_tlb();
 629                 if (local)
 630                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 631                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
 632         }
 633 
 634         /* Both paths above update our state to mm_tlb_gen. */
 635         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 636 }
 637 
 638 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
 639 {
 640         const struct flush_tlb_info *f = info;
 641 
 642         flush_tlb_func_common(f, true, reason);
 643 }
 644 
 645 static void flush_tlb_func_remote(void *info)
 646 {
 647         const struct flush_tlb_info *f = info;
 648 
 649         inc_irq_stat(irq_tlb_count);
 650 
 651         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
 652                 return;
 653 
 654         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 655         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
 656 }
 657 
 658 static bool tlb_is_not_lazy(int cpu, void *data)
 659 {
 660         return !per_cpu(cpu_tlbstate.is_lazy, cpu);
 661 }
 662 
 663 void native_flush_tlb_others(const struct cpumask *cpumask,
 664                              const struct flush_tlb_info *info)
 665 {
 666         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 667         if (info->end == TLB_FLUSH_ALL)
 668                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 669         else
 670                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 671                                 (info->end - info->start) >> PAGE_SHIFT);
 672 
 673         if (is_uv_system()) {
 674                 /*
 675                  * This whole special case is confused.  UV has a "Broadcast
 676                  * Assist Unit", which seems to be a fancy way to send IPIs.
 677                  * Back when x86 used an explicit TLB flush IPI, UV was
 678                  * optimized to use its own mechanism.  These days, x86 uses
 679                  * smp_call_function_many(), but UV still uses a manual IPI,
 680                  * and that IPI's action is out of date -- it does a manual
 681                  * flush instead of calling flush_tlb_func_remote().  This
 682                  * means that the percpu tlb_gen variables won't be updated
 683                  * and we'll do pointless flushes on future context switches.
 684                  *
 685                  * Rather than hooking native_flush_tlb_others() here, I think
 686                  * that UV should be updated so that smp_call_function_many(),
 687                  * etc, are optimal on UV.
 688                  */
 689                 cpumask = uv_flush_tlb_others(cpumask, info);
 690                 if (cpumask)
 691                         smp_call_function_many(cpumask, flush_tlb_func_remote,
 692                                                (void *)info, 1);
 693                 return;
 694         }
 695 
 696         /*
 697          * If no page tables were freed, we can skip sending IPIs to
 698          * CPUs in lazy TLB mode. They will flush the CPU themselves
 699          * at the next context switch.
 700          *
 701          * However, if page tables are getting freed, we need to send the
 702          * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
 703          * up on the new contents of what used to be page tables, while
 704          * doing a speculative memory access.
 705          */
 706         if (info->freed_tables)
 707                 smp_call_function_many(cpumask, flush_tlb_func_remote,
 708                                (void *)info, 1);
 709         else
 710                 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
 711                                 (void *)info, 1, GFP_ATOMIC, cpumask);
 712 }
 713 
 714 /*
 715  * See Documentation/x86/tlb.rst for details.  We choose 33
 716  * because it is large enough to cover the vast majority (at
 717  * least 95%) of allocations, and is small enough that we are
 718  * confident it will not cause too much overhead.  Each single
 719  * flush is about 100 ns, so this caps the maximum overhead at
 720  * _about_ 3,000 ns.
 721  *
 722  * This is in units of pages.
 723  */
 724 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 725 
 726 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
 727 
 728 #ifdef CONFIG_DEBUG_VM
 729 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
 730 #endif
 731 
 732 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
 733                         unsigned long start, unsigned long end,
 734                         unsigned int stride_shift, bool freed_tables,
 735                         u64 new_tlb_gen)
 736 {
 737         struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
 738 
 739 #ifdef CONFIG_DEBUG_VM
 740         /*
 741          * Ensure that the following code is non-reentrant and flush_tlb_info
 742          * is not overwritten. This means no TLB flushing is initiated by
 743          * interrupt handlers and machine-check exception handlers.
 744          */
 745         BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
 746 #endif
 747 
 748         info->start             = start;
 749         info->end               = end;
 750         info->mm                = mm;
 751         info->stride_shift      = stride_shift;
 752         info->freed_tables      = freed_tables;
 753         info->new_tlb_gen       = new_tlb_gen;
 754 
 755         return info;
 756 }
 757 
 758 static inline void put_flush_tlb_info(void)
 759 {
 760 #ifdef CONFIG_DEBUG_VM
 761         /* Complete reentrency prevention checks */
 762         barrier();
 763         this_cpu_dec(flush_tlb_info_idx);
 764 #endif
 765 }
 766 
 767 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 768                                 unsigned long end, unsigned int stride_shift,
 769                                 bool freed_tables)
 770 {
 771         struct flush_tlb_info *info;
 772         u64 new_tlb_gen;
 773         int cpu;
 774 
 775         cpu = get_cpu();
 776 
 777         /* Should we flush just the requested range? */
 778         if ((end == TLB_FLUSH_ALL) ||
 779             ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
 780                 start = 0;
 781                 end = TLB_FLUSH_ALL;
 782         }
 783 
 784         /* This is also a barrier that synchronizes with switch_mm(). */
 785         new_tlb_gen = inc_mm_tlb_gen(mm);
 786 
 787         info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
 788                                   new_tlb_gen);
 789 
 790         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
 791                 lockdep_assert_irqs_enabled();
 792                 local_irq_disable();
 793                 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
 794                 local_irq_enable();
 795         }
 796 
 797         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
 798                 flush_tlb_others(mm_cpumask(mm), info);
 799 
 800         put_flush_tlb_info();
 801         put_cpu();
 802 }
 803 
 804 
 805 static void do_flush_tlb_all(void *info)
 806 {
 807         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 808         __flush_tlb_all();
 809 }
 810 
 811 void flush_tlb_all(void)
 812 {
 813         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 814         on_each_cpu(do_flush_tlb_all, NULL, 1);
 815 }
 816 
 817 static void do_kernel_range_flush(void *info)
 818 {
 819         struct flush_tlb_info *f = info;
 820         unsigned long addr;
 821 
 822         /* flush range by one by one 'invlpg' */
 823         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
 824                 __flush_tlb_one_kernel(addr);
 825 }
 826 
 827 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 828 {
 829         /* Balance as user space task's flush, a bit conservative */
 830         if (end == TLB_FLUSH_ALL ||
 831             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
 832                 on_each_cpu(do_flush_tlb_all, NULL, 1);
 833         } else {
 834                 struct flush_tlb_info *info;
 835 
 836                 preempt_disable();
 837                 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
 838 
 839                 on_each_cpu(do_kernel_range_flush, info, 1);
 840 
 841                 put_flush_tlb_info();
 842                 preempt_enable();
 843         }
 844 }
 845 
 846 /*
 847  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
 848  * This means that the 'struct flush_tlb_info' that describes which mappings to
 849  * flush is actually fixed. We therefore set a single fixed struct and use it in
 850  * arch_tlbbatch_flush().
 851  */
 852 static const struct flush_tlb_info full_flush_tlb_info = {
 853         .mm = NULL,
 854         .start = 0,
 855         .end = TLB_FLUSH_ALL,
 856 };
 857 
 858 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
 859 {
 860         int cpu = get_cpu();
 861 
 862         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
 863                 lockdep_assert_irqs_enabled();
 864                 local_irq_disable();
 865                 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
 866                 local_irq_enable();
 867         }
 868 
 869         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
 870                 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
 871 
 872         cpumask_clear(&batch->cpumask);
 873 
 874         put_cpu();
 875 }
 876 
 877 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
 878                              size_t count, loff_t *ppos)
 879 {
 880         char buf[32];
 881         unsigned int len;
 882 
 883         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
 884         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
 885 }
 886 
 887 static ssize_t tlbflush_write_file(struct file *file,
 888                  const char __user *user_buf, size_t count, loff_t *ppos)
 889 {
 890         char buf[32];
 891         ssize_t len;
 892         int ceiling;
 893 
 894         len = min(count, sizeof(buf) - 1);
 895         if (copy_from_user(buf, user_buf, len))
 896                 return -EFAULT;
 897 
 898         buf[len] = '\0';
 899         if (kstrtoint(buf, 0, &ceiling))
 900                 return -EINVAL;
 901 
 902         if (ceiling < 0)
 903                 return -EINVAL;
 904 
 905         tlb_single_page_flush_ceiling = ceiling;
 906         return count;
 907 }
 908 
 909 static const struct file_operations fops_tlbflush = {
 910         .read = tlbflush_read_file,
 911         .write = tlbflush_write_file,
 912         .llseek = default_llseek,
 913 };
 914 
 915 static int __init create_tlb_single_page_flush_ceiling(void)
 916 {
 917         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
 918                             arch_debugfs_dir, NULL, &fops_tlbflush);
 919         return 0;
 920 }
 921 late_initcall(create_tlb_single_page_flush_ceiling);

/* [<][>][^][v][top][bottom][index][help] */