1 /*
2  *	Handle firewalling
3  *	Linux ethernet bridge
4  *
5  *	Authors:
6  *	Lennert Buytenhek		<buytenh@gnu.org>
7  *	Bart De Schuymer		<bdschuym@pandora.be>
8  *
9  *	This program is free software; you can redistribute it and/or
10  *	modify it under the terms of the GNU General Public License
11  *	as published by the Free Software Foundation; either version
12  *	2 of the License, or (at your option) any later version.
13  *
14  *	Lennert dedicates this file to Kerstin Wurdinger.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34 
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/addrconf.h>
38 #include <net/route.h>
39 #include <net/netfilter/br_netfilter.h>
40 
41 #include <asm/uaccess.h>
42 #include "br_private.h"
43 #ifdef CONFIG_SYSCTL
44 #include <linux/sysctl.h>
45 #endif
46 
47 #ifdef CONFIG_SYSCTL
48 static struct ctl_table_header *brnf_sysctl_header;
49 static int brnf_call_iptables __read_mostly = 1;
50 static int brnf_call_ip6tables __read_mostly = 1;
51 static int brnf_call_arptables __read_mostly = 1;
52 static int brnf_filter_vlan_tagged __read_mostly;
53 static int brnf_filter_pppoe_tagged __read_mostly;
54 static int brnf_pass_vlan_indev __read_mostly;
55 #else
56 #define brnf_call_iptables 1
57 #define brnf_call_ip6tables 1
58 #define brnf_call_arptables 1
59 #define brnf_filter_vlan_tagged 0
60 #define brnf_filter_pppoe_tagged 0
61 #define brnf_pass_vlan_indev 0
62 #endif
63 
64 #define IS_IP(skb) \
65 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
66 
67 #define IS_IPV6(skb) \
68 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
69 
70 #define IS_ARP(skb) \
71 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
72 
vlan_proto(const struct sk_buff * skb)73 static inline __be16 vlan_proto(const struct sk_buff *skb)
74 {
75 	if (skb_vlan_tag_present(skb))
76 		return skb->protocol;
77 	else if (skb->protocol == htons(ETH_P_8021Q))
78 		return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
79 	else
80 		return 0;
81 }
82 
83 #define IS_VLAN_IP(skb) \
84 	(vlan_proto(skb) == htons(ETH_P_IP) && \
85 	 brnf_filter_vlan_tagged)
86 
87 #define IS_VLAN_IPV6(skb) \
88 	(vlan_proto(skb) == htons(ETH_P_IPV6) && \
89 	 brnf_filter_vlan_tagged)
90 
91 #define IS_VLAN_ARP(skb) \
92 	(vlan_proto(skb) == htons(ETH_P_ARP) &&	\
93 	 brnf_filter_vlan_tagged)
94 
pppoe_proto(const struct sk_buff * skb)95 static inline __be16 pppoe_proto(const struct sk_buff *skb)
96 {
97 	return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
98 			    sizeof(struct pppoe_hdr)));
99 }
100 
101 #define IS_PPPOE_IP(skb) \
102 	(skb->protocol == htons(ETH_P_PPP_SES) && \
103 	 pppoe_proto(skb) == htons(PPP_IP) && \
104 	 brnf_filter_pppoe_tagged)
105 
106 #define IS_PPPOE_IPV6(skb) \
107 	(skb->protocol == htons(ETH_P_PPP_SES) && \
108 	 pppoe_proto(skb) == htons(PPP_IPV6) && \
109 	 brnf_filter_pppoe_tagged)
110 
111 /* largest possible L2 header, see br_nf_dev_queue_xmit() */
112 #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN)
113 
114 struct brnf_frag_data {
115 	char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH];
116 	u8 encap_size;
117 	u8 size;
118 	u16 vlan_tci;
119 	__be16 vlan_proto;
120 };
121 
122 static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage);
123 
nf_bridge_info_free(struct sk_buff * skb)124 static void nf_bridge_info_free(struct sk_buff *skb)
125 {
126 	if (skb->nf_bridge) {
127 		nf_bridge_put(skb->nf_bridge);
128 		skb->nf_bridge = NULL;
129 	}
130 }
131 
bridge_parent(const struct net_device * dev)132 static inline struct net_device *bridge_parent(const struct net_device *dev)
133 {
134 	struct net_bridge_port *port;
135 
136 	port = br_port_get_rcu(dev);
137 	return port ? port->br->dev : NULL;
138 }
139 
nf_bridge_unshare(struct sk_buff * skb)140 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
141 {
142 	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
143 
144 	if (atomic_read(&nf_bridge->use) > 1) {
145 		struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
146 
147 		if (tmp) {
148 			memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
149 			atomic_set(&tmp->use, 1);
150 		}
151 		nf_bridge_put(nf_bridge);
152 		nf_bridge = tmp;
153 	}
154 	return nf_bridge;
155 }
156 
nf_bridge_encap_header_len(const struct sk_buff * skb)157 unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb)
158 {
159 	switch (skb->protocol) {
160 	case __cpu_to_be16(ETH_P_8021Q):
161 		return VLAN_HLEN;
162 	case __cpu_to_be16(ETH_P_PPP_SES):
163 		return PPPOE_SES_HLEN;
164 	default:
165 		return 0;
166 	}
167 }
168 
nf_bridge_pull_encap_header(struct sk_buff * skb)169 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
170 {
171 	unsigned int len = nf_bridge_encap_header_len(skb);
172 
173 	skb_pull(skb, len);
174 	skb->network_header += len;
175 }
176 
nf_bridge_pull_encap_header_rcsum(struct sk_buff * skb)177 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
178 {
179 	unsigned int len = nf_bridge_encap_header_len(skb);
180 
181 	skb_pull_rcsum(skb, len);
182 	skb->network_header += len;
183 }
184 
185 /* When handing a packet over to the IP layer
186  * check whether we have a skb that is in the
187  * expected format
188  */
189 
br_validate_ipv4(struct net * net,struct sk_buff * skb)190 static int br_validate_ipv4(struct net *net, struct sk_buff *skb)
191 {
192 	const struct iphdr *iph;
193 	u32 len;
194 
195 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
196 		goto inhdr_error;
197 
198 	iph = ip_hdr(skb);
199 
200 	/* Basic sanity checks */
201 	if (iph->ihl < 5 || iph->version != 4)
202 		goto inhdr_error;
203 
204 	if (!pskb_may_pull(skb, iph->ihl*4))
205 		goto inhdr_error;
206 
207 	iph = ip_hdr(skb);
208 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
209 		goto inhdr_error;
210 
211 	len = ntohs(iph->tot_len);
212 	if (skb->len < len) {
213 		IP_INC_STATS_BH(net, IPSTATS_MIB_INTRUNCATEDPKTS);
214 		goto drop;
215 	} else if (len < (iph->ihl*4))
216 		goto inhdr_error;
217 
218 	if (pskb_trim_rcsum(skb, len)) {
219 		IP_INC_STATS_BH(net, IPSTATS_MIB_INDISCARDS);
220 		goto drop;
221 	}
222 
223 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
224 	/* We should really parse IP options here but until
225 	 * somebody who actually uses IP options complains to
226 	 * us we'll just silently ignore the options because
227 	 * we're lazy!
228 	 */
229 	return 0;
230 
231 inhdr_error:
232 	IP_INC_STATS_BH(net, IPSTATS_MIB_INHDRERRORS);
233 drop:
234 	return -1;
235 }
236 
nf_bridge_update_protocol(struct sk_buff * skb)237 void nf_bridge_update_protocol(struct sk_buff *skb)
238 {
239 	switch (skb->nf_bridge->orig_proto) {
240 	case BRNF_PROTO_8021Q:
241 		skb->protocol = htons(ETH_P_8021Q);
242 		break;
243 	case BRNF_PROTO_PPPOE:
244 		skb->protocol = htons(ETH_P_PPP_SES);
245 		break;
246 	case BRNF_PROTO_UNCHANGED:
247 		break;
248 	}
249 }
250 
251 /* Obtain the correct destination MAC address, while preserving the original
252  * source MAC address. If we already know this address, we just copy it. If we
253  * don't, we use the neighbour framework to find out. In both cases, we make
254  * sure that br_handle_frame_finish() is called afterwards.
255  */
br_nf_pre_routing_finish_bridge(struct net * net,struct sock * sk,struct sk_buff * skb)256 int br_nf_pre_routing_finish_bridge(struct net *net, struct sock *sk, struct sk_buff *skb)
257 {
258 	struct neighbour *neigh;
259 	struct dst_entry *dst;
260 
261 	skb->dev = bridge_parent(skb->dev);
262 	if (!skb->dev)
263 		goto free_skb;
264 	dst = skb_dst(skb);
265 	neigh = dst_neigh_lookup_skb(dst, skb);
266 	if (neigh) {
267 		struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
268 		int ret;
269 
270 		if (neigh->hh.hh_len) {
271 			neigh_hh_bridge(&neigh->hh, skb);
272 			skb->dev = nf_bridge->physindev;
273 			ret = br_handle_frame_finish(net, sk, skb);
274 		} else {
275 			/* the neighbour function below overwrites the complete
276 			 * MAC header, so we save the Ethernet source address and
277 			 * protocol number.
278 			 */
279 			skb_copy_from_linear_data_offset(skb,
280 							 -(ETH_HLEN-ETH_ALEN),
281 							 nf_bridge->neigh_header,
282 							 ETH_HLEN-ETH_ALEN);
283 			/* tell br_dev_xmit to continue with forwarding */
284 			nf_bridge->bridged_dnat = 1;
285 			/* FIXME Need to refragment */
286 			ret = neigh->output(neigh, skb);
287 		}
288 		neigh_release(neigh);
289 		return ret;
290 	}
291 free_skb:
292 	kfree_skb(skb);
293 	return 0;
294 }
295 
296 static inline bool
br_nf_ipv4_daddr_was_changed(const struct sk_buff * skb,const struct nf_bridge_info * nf_bridge)297 br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb,
298 			     const struct nf_bridge_info *nf_bridge)
299 {
300 	return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr;
301 }
302 
303 /* This requires some explaining. If DNAT has taken place,
304  * we will need to fix up the destination Ethernet address.
305  * This is also true when SNAT takes place (for the reply direction).
306  *
307  * There are two cases to consider:
308  * 1. The packet was DNAT'ed to a device in the same bridge
309  *    port group as it was received on. We can still bridge
310  *    the packet.
311  * 2. The packet was DNAT'ed to a different device, either
312  *    a non-bridged device or another bridge port group.
313  *    The packet will need to be routed.
314  *
315  * The correct way of distinguishing between these two cases is to
316  * call ip_route_input() and to look at skb->dst->dev, which is
317  * changed to the destination device if ip_route_input() succeeds.
318  *
319  * Let's first consider the case that ip_route_input() succeeds:
320  *
321  * If the output device equals the logical bridge device the packet
322  * came in on, we can consider this bridging. The corresponding MAC
323  * address will be obtained in br_nf_pre_routing_finish_bridge.
324  * Otherwise, the packet is considered to be routed and we just
325  * change the destination MAC address so that the packet will
326  * later be passed up to the IP stack to be routed. For a redirected
327  * packet, ip_route_input() will give back the localhost as output device,
328  * which differs from the bridge device.
329  *
330  * Let's now consider the case that ip_route_input() fails:
331  *
332  * This can be because the destination address is martian, in which case
333  * the packet will be dropped.
334  * If IP forwarding is disabled, ip_route_input() will fail, while
335  * ip_route_output_key() can return success. The source
336  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
337  * thinks we're handling a locally generated packet and won't care
338  * if IP forwarding is enabled. If the output device equals the logical bridge
339  * device, we proceed as if ip_route_input() succeeded. If it differs from the
340  * logical bridge port or if ip_route_output_key() fails we drop the packet.
341  */
br_nf_pre_routing_finish(struct net * net,struct sock * sk,struct sk_buff * skb)342 static int br_nf_pre_routing_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
343 {
344 	struct net_device *dev = skb->dev;
345 	struct iphdr *iph = ip_hdr(skb);
346 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
347 	struct rtable *rt;
348 	int err;
349 
350 	nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
351 
352 	if (nf_bridge->pkt_otherhost) {
353 		skb->pkt_type = PACKET_OTHERHOST;
354 		nf_bridge->pkt_otherhost = false;
355 	}
356 	nf_bridge->in_prerouting = 0;
357 	if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) {
358 		if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
359 			struct in_device *in_dev = __in_dev_get_rcu(dev);
360 
361 			/* If err equals -EHOSTUNREACH the error is due to a
362 			 * martian destination or due to the fact that
363 			 * forwarding is disabled. For most martian packets,
364 			 * ip_route_output_key() will fail. It won't fail for 2 types of
365 			 * martian destinations: loopback destinations and destination
366 			 * 0.0.0.0. In both cases the packet will be dropped because the
367 			 * destination is the loopback device and not the bridge. */
368 			if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
369 				goto free_skb;
370 
371 			rt = ip_route_output(net, iph->daddr, 0,
372 					     RT_TOS(iph->tos), 0);
373 			if (!IS_ERR(rt)) {
374 				/* - Bridged-and-DNAT'ed traffic doesn't
375 				 *   require ip_forwarding. */
376 				if (rt->dst.dev == dev) {
377 					skb_dst_set(skb, &rt->dst);
378 					goto bridged_dnat;
379 				}
380 				ip_rt_put(rt);
381 			}
382 free_skb:
383 			kfree_skb(skb);
384 			return 0;
385 		} else {
386 			if (skb_dst(skb)->dev == dev) {
387 bridged_dnat:
388 				skb->dev = nf_bridge->physindev;
389 				nf_bridge_update_protocol(skb);
390 				nf_bridge_push_encap_header(skb);
391 				NF_HOOK_THRESH(NFPROTO_BRIDGE,
392 					       NF_BR_PRE_ROUTING,
393 					       net, sk, skb, skb->dev, NULL,
394 					       br_nf_pre_routing_finish_bridge,
395 					       1);
396 				return 0;
397 			}
398 			ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
399 			skb->pkt_type = PACKET_HOST;
400 		}
401 	} else {
402 		rt = bridge_parent_rtable(nf_bridge->physindev);
403 		if (!rt) {
404 			kfree_skb(skb);
405 			return 0;
406 		}
407 		skb_dst_set_noref(skb, &rt->dst);
408 	}
409 
410 	skb->dev = nf_bridge->physindev;
411 	nf_bridge_update_protocol(skb);
412 	nf_bridge_push_encap_header(skb);
413 	NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, net, sk, skb,
414 		       skb->dev, NULL,
415 		       br_handle_frame_finish, 1);
416 
417 	return 0;
418 }
419 
brnf_get_logical_dev(struct sk_buff * skb,const struct net_device * dev)420 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev)
421 {
422 	struct net_device *vlan, *br;
423 
424 	br = bridge_parent(dev);
425 	if (brnf_pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
426 		return br;
427 
428 	vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
429 				    skb_vlan_tag_get(skb) & VLAN_VID_MASK);
430 
431 	return vlan ? vlan : br;
432 }
433 
434 /* Some common code for IPv4/IPv6 */
setup_pre_routing(struct sk_buff * skb)435 struct net_device *setup_pre_routing(struct sk_buff *skb)
436 {
437 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
438 
439 	if (skb->pkt_type == PACKET_OTHERHOST) {
440 		skb->pkt_type = PACKET_HOST;
441 		nf_bridge->pkt_otherhost = true;
442 	}
443 
444 	nf_bridge->in_prerouting = 1;
445 	nf_bridge->physindev = skb->dev;
446 	skb->dev = brnf_get_logical_dev(skb, skb->dev);
447 
448 	if (skb->protocol == htons(ETH_P_8021Q))
449 		nf_bridge->orig_proto = BRNF_PROTO_8021Q;
450 	else if (skb->protocol == htons(ETH_P_PPP_SES))
451 		nf_bridge->orig_proto = BRNF_PROTO_PPPOE;
452 
453 	/* Must drop socket now because of tproxy. */
454 	skb_orphan(skb);
455 	return skb->dev;
456 }
457 
458 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
459  * Replicate the checks that IPv4 does on packet reception.
460  * Set skb->dev to the bridge device (i.e. parent of the
461  * receiving device) to make netfilter happy, the REDIRECT
462  * target in particular.  Save the original destination IP
463  * address to be able to detect DNAT afterwards. */
br_nf_pre_routing(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)464 static unsigned int br_nf_pre_routing(void *priv,
465 				      struct sk_buff *skb,
466 				      const struct nf_hook_state *state)
467 {
468 	struct nf_bridge_info *nf_bridge;
469 	struct net_bridge_port *p;
470 	struct net_bridge *br;
471 	__u32 len = nf_bridge_encap_header_len(skb);
472 
473 	if (unlikely(!pskb_may_pull(skb, len)))
474 		return NF_DROP;
475 
476 	p = br_port_get_rcu(state->in);
477 	if (p == NULL)
478 		return NF_DROP;
479 	br = p->br;
480 
481 	if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
482 		if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
483 			return NF_ACCEPT;
484 
485 		nf_bridge_pull_encap_header_rcsum(skb);
486 		return br_nf_pre_routing_ipv6(priv, skb, state);
487 	}
488 
489 	if (!brnf_call_iptables && !br->nf_call_iptables)
490 		return NF_ACCEPT;
491 
492 	if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
493 		return NF_ACCEPT;
494 
495 	nf_bridge_pull_encap_header_rcsum(skb);
496 
497 	if (br_validate_ipv4(state->net, skb))
498 		return NF_DROP;
499 
500 	nf_bridge_put(skb->nf_bridge);
501 	if (!nf_bridge_alloc(skb))
502 		return NF_DROP;
503 	if (!setup_pre_routing(skb))
504 		return NF_DROP;
505 
506 	nf_bridge = nf_bridge_info_get(skb);
507 	nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr;
508 
509 	skb->protocol = htons(ETH_P_IP);
510 
511 	NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->net, state->sk, skb,
512 		skb->dev, NULL,
513 		br_nf_pre_routing_finish);
514 
515 	return NF_STOLEN;
516 }
517 
518 
519 /* PF_BRIDGE/LOCAL_IN ************************************************/
520 /* The packet is locally destined, which requires a real
521  * dst_entry, so detach the fake one.  On the way up, the
522  * packet would pass through PRE_ROUTING again (which already
523  * took place when the packet entered the bridge), but we
524  * register an IPv4 PRE_ROUTING 'sabotage' hook that will
525  * prevent this from happening. */
br_nf_local_in(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)526 static unsigned int br_nf_local_in(void *priv,
527 				   struct sk_buff *skb,
528 				   const struct nf_hook_state *state)
529 {
530 	br_drop_fake_rtable(skb);
531 	return NF_ACCEPT;
532 }
533 
534 /* PF_BRIDGE/FORWARD *************************************************/
br_nf_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)535 static int br_nf_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
536 {
537 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
538 	struct net_device *in;
539 
540 	if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
541 
542 		if (skb->protocol == htons(ETH_P_IP))
543 			nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
544 
545 		if (skb->protocol == htons(ETH_P_IPV6))
546 			nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size;
547 
548 		in = nf_bridge->physindev;
549 		if (nf_bridge->pkt_otherhost) {
550 			skb->pkt_type = PACKET_OTHERHOST;
551 			nf_bridge->pkt_otherhost = false;
552 		}
553 		nf_bridge_update_protocol(skb);
554 	} else {
555 		in = *((struct net_device **)(skb->cb));
556 	}
557 	nf_bridge_push_encap_header(skb);
558 
559 	NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, net, sk, skb,
560 		       in, skb->dev, br_forward_finish, 1);
561 	return 0;
562 }
563 
564 
565 /* This is the 'purely bridged' case.  For IP, we pass the packet to
566  * netfilter with indev and outdev set to the bridge device,
567  * but we are still able to filter on the 'real' indev/outdev
568  * because of the physdev module. For ARP, indev and outdev are the
569  * bridge ports. */
br_nf_forward_ip(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)570 static unsigned int br_nf_forward_ip(void *priv,
571 				     struct sk_buff *skb,
572 				     const struct nf_hook_state *state)
573 {
574 	struct nf_bridge_info *nf_bridge;
575 	struct net_device *parent;
576 	u_int8_t pf;
577 
578 	if (!skb->nf_bridge)
579 		return NF_ACCEPT;
580 
581 	/* Need exclusive nf_bridge_info since we might have multiple
582 	 * different physoutdevs. */
583 	if (!nf_bridge_unshare(skb))
584 		return NF_DROP;
585 
586 	nf_bridge = nf_bridge_info_get(skb);
587 	if (!nf_bridge)
588 		return NF_DROP;
589 
590 	parent = bridge_parent(state->out);
591 	if (!parent)
592 		return NF_DROP;
593 
594 	if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
595 		pf = NFPROTO_IPV4;
596 	else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
597 		pf = NFPROTO_IPV6;
598 	else
599 		return NF_ACCEPT;
600 
601 	nf_bridge_pull_encap_header(skb);
602 
603 	if (skb->pkt_type == PACKET_OTHERHOST) {
604 		skb->pkt_type = PACKET_HOST;
605 		nf_bridge->pkt_otherhost = true;
606 	}
607 
608 	if (pf == NFPROTO_IPV4) {
609 		if (br_validate_ipv4(state->net, skb))
610 			return NF_DROP;
611 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
612 	}
613 
614 	if (pf == NFPROTO_IPV6) {
615 		if (br_validate_ipv6(state->net, skb))
616 			return NF_DROP;
617 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
618 	}
619 
620 	nf_bridge->physoutdev = skb->dev;
621 	if (pf == NFPROTO_IPV4)
622 		skb->protocol = htons(ETH_P_IP);
623 	else
624 		skb->protocol = htons(ETH_P_IPV6);
625 
626 	NF_HOOK(pf, NF_INET_FORWARD, state->net, NULL, skb,
627 		brnf_get_logical_dev(skb, state->in),
628 		parent,	br_nf_forward_finish);
629 
630 	return NF_STOLEN;
631 }
632 
br_nf_forward_arp(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)633 static unsigned int br_nf_forward_arp(void *priv,
634 				      struct sk_buff *skb,
635 				      const struct nf_hook_state *state)
636 {
637 	struct net_bridge_port *p;
638 	struct net_bridge *br;
639 	struct net_device **d = (struct net_device **)(skb->cb);
640 
641 	p = br_port_get_rcu(state->out);
642 	if (p == NULL)
643 		return NF_ACCEPT;
644 	br = p->br;
645 
646 	if (!brnf_call_arptables && !br->nf_call_arptables)
647 		return NF_ACCEPT;
648 
649 	if (!IS_ARP(skb)) {
650 		if (!IS_VLAN_ARP(skb))
651 			return NF_ACCEPT;
652 		nf_bridge_pull_encap_header(skb);
653 	}
654 
655 	if (arp_hdr(skb)->ar_pln != 4) {
656 		if (IS_VLAN_ARP(skb))
657 			nf_bridge_push_encap_header(skb);
658 		return NF_ACCEPT;
659 	}
660 	*d = state->in;
661 	NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->net, state->sk, skb,
662 		state->in, state->out, br_nf_forward_finish);
663 
664 	return NF_STOLEN;
665 }
666 
br_nf_push_frag_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)667 static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
668 {
669 	struct brnf_frag_data *data;
670 	int err;
671 
672 	data = this_cpu_ptr(&brnf_frag_data_storage);
673 	err = skb_cow_head(skb, data->size);
674 
675 	if (err) {
676 		kfree_skb(skb);
677 		return 0;
678 	}
679 
680 	if (data->vlan_tci) {
681 		skb->vlan_tci = data->vlan_tci;
682 		skb->vlan_proto = data->vlan_proto;
683 	}
684 
685 	skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size);
686 	__skb_push(skb, data->encap_size);
687 
688 	nf_bridge_info_free(skb);
689 	return br_dev_queue_push_xmit(net, sk, skb);
690 }
691 
692 static int
br_nf_ip_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,int (* output)(struct net *,struct sock *,struct sk_buff *))693 br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
694 		  int (*output)(struct net *, struct sock *, struct sk_buff *))
695 {
696 	unsigned int mtu = ip_skb_dst_mtu(skb);
697 	struct iphdr *iph = ip_hdr(skb);
698 
699 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
700 		     (IPCB(skb)->frag_max_size &&
701 		      IPCB(skb)->frag_max_size > mtu))) {
702 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
703 		kfree_skb(skb);
704 		return -EMSGSIZE;
705 	}
706 
707 	return ip_do_fragment(net, sk, skb, output);
708 }
709 
nf_bridge_mtu_reduction(const struct sk_buff * skb)710 static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb)
711 {
712 	if (skb->nf_bridge->orig_proto == BRNF_PROTO_PPPOE)
713 		return PPPOE_SES_HLEN;
714 	return 0;
715 }
716 
br_nf_dev_queue_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)717 static int br_nf_dev_queue_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
718 {
719 	struct nf_bridge_info *nf_bridge;
720 	unsigned int mtu_reserved;
721 
722 	mtu_reserved = nf_bridge_mtu_reduction(skb);
723 
724 	if (skb_is_gso(skb) || skb->len + mtu_reserved <= skb->dev->mtu) {
725 		nf_bridge_info_free(skb);
726 		return br_dev_queue_push_xmit(net, sk, skb);
727 	}
728 
729 	nf_bridge = nf_bridge_info_get(skb);
730 
731 	/* This is wrong! We should preserve the original fragment
732 	 * boundaries by preserving frag_list rather than refragmenting.
733 	 */
734 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) &&
735 	    skb->protocol == htons(ETH_P_IP)) {
736 		struct brnf_frag_data *data;
737 
738 		if (br_validate_ipv4(net, skb))
739 			goto drop;
740 
741 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
742 
743 		nf_bridge_update_protocol(skb);
744 
745 		data = this_cpu_ptr(&brnf_frag_data_storage);
746 
747 		data->vlan_tci = skb->vlan_tci;
748 		data->vlan_proto = skb->vlan_proto;
749 		data->encap_size = nf_bridge_encap_header_len(skb);
750 		data->size = ETH_HLEN + data->encap_size;
751 
752 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
753 						 data->size);
754 
755 		return br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit);
756 	}
757 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) &&
758 	    skb->protocol == htons(ETH_P_IPV6)) {
759 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
760 		struct brnf_frag_data *data;
761 
762 		if (br_validate_ipv6(net, skb))
763 			goto drop;
764 
765 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
766 
767 		nf_bridge_update_protocol(skb);
768 
769 		data = this_cpu_ptr(&brnf_frag_data_storage);
770 		data->encap_size = nf_bridge_encap_header_len(skb);
771 		data->size = ETH_HLEN + data->encap_size;
772 
773 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
774 						 data->size);
775 
776 		if (v6ops)
777 			return v6ops->fragment(net, sk, skb, br_nf_push_frag_xmit);
778 
779 		kfree_skb(skb);
780 		return -EMSGSIZE;
781 	}
782 	nf_bridge_info_free(skb);
783 	return br_dev_queue_push_xmit(net, sk, skb);
784  drop:
785 	kfree_skb(skb);
786 	return 0;
787 }
788 
789 /* PF_BRIDGE/POST_ROUTING ********************************************/
br_nf_post_routing(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)790 static unsigned int br_nf_post_routing(void *priv,
791 				       struct sk_buff *skb,
792 				       const struct nf_hook_state *state)
793 {
794 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
795 	struct net_device *realoutdev = bridge_parent(skb->dev);
796 	u_int8_t pf;
797 
798 	/* if nf_bridge is set, but ->physoutdev is NULL, this packet came in
799 	 * on a bridge, but was delivered locally and is now being routed:
800 	 *
801 	 * POST_ROUTING was already invoked from the ip stack.
802 	 */
803 	if (!nf_bridge || !nf_bridge->physoutdev)
804 		return NF_ACCEPT;
805 
806 	if (!realoutdev)
807 		return NF_DROP;
808 
809 	if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
810 		pf = NFPROTO_IPV4;
811 	else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
812 		pf = NFPROTO_IPV6;
813 	else
814 		return NF_ACCEPT;
815 
816 	/* We assume any code from br_dev_queue_push_xmit onwards doesn't care
817 	 * about the value of skb->pkt_type. */
818 	if (skb->pkt_type == PACKET_OTHERHOST) {
819 		skb->pkt_type = PACKET_HOST;
820 		nf_bridge->pkt_otherhost = true;
821 	}
822 
823 	nf_bridge_pull_encap_header(skb);
824 	if (pf == NFPROTO_IPV4)
825 		skb->protocol = htons(ETH_P_IP);
826 	else
827 		skb->protocol = htons(ETH_P_IPV6);
828 
829 	NF_HOOK(pf, NF_INET_POST_ROUTING, state->net, state->sk, skb,
830 		NULL, realoutdev,
831 		br_nf_dev_queue_xmit);
832 
833 	return NF_STOLEN;
834 }
835 
836 /* IP/SABOTAGE *****************************************************/
837 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
838  * for the second time. */
ip_sabotage_in(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)839 static unsigned int ip_sabotage_in(void *priv,
840 				   struct sk_buff *skb,
841 				   const struct nf_hook_state *state)
842 {
843 	if (skb->nf_bridge && !skb->nf_bridge->in_prerouting)
844 		return NF_STOP;
845 
846 	return NF_ACCEPT;
847 }
848 
849 /* This is called when br_netfilter has called into iptables/netfilter,
850  * and DNAT has taken place on a bridge-forwarded packet.
851  *
852  * neigh->output has created a new MAC header, with local br0 MAC
853  * as saddr.
854  *
855  * This restores the original MAC saddr of the bridged packet
856  * before invoking bridge forward logic to transmit the packet.
857  */
br_nf_pre_routing_finish_bridge_slow(struct sk_buff * skb)858 static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb)
859 {
860 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
861 
862 	skb_pull(skb, ETH_HLEN);
863 	nf_bridge->bridged_dnat = 0;
864 
865 	BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN));
866 
867 	skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN),
868 				       nf_bridge->neigh_header,
869 				       ETH_HLEN - ETH_ALEN);
870 	skb->dev = nf_bridge->physindev;
871 
872 	nf_bridge->physoutdev = NULL;
873 	br_handle_frame_finish(dev_net(skb->dev), NULL, skb);
874 }
875 
br_nf_dev_xmit(struct sk_buff * skb)876 static int br_nf_dev_xmit(struct sk_buff *skb)
877 {
878 	if (skb->nf_bridge && skb->nf_bridge->bridged_dnat) {
879 		br_nf_pre_routing_finish_bridge_slow(skb);
880 		return 1;
881 	}
882 	return 0;
883 }
884 
885 static const struct nf_br_ops br_ops = {
886 	.br_dev_xmit_hook =	br_nf_dev_xmit,
887 };
888 
br_netfilter_enable(void)889 void br_netfilter_enable(void)
890 {
891 }
892 EXPORT_SYMBOL_GPL(br_netfilter_enable);
893 
894 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
895  * br_dev_queue_push_xmit is called afterwards */
896 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
897 	{
898 		.hook = br_nf_pre_routing,
899 		.pf = NFPROTO_BRIDGE,
900 		.hooknum = NF_BR_PRE_ROUTING,
901 		.priority = NF_BR_PRI_BRNF,
902 	},
903 	{
904 		.hook = br_nf_local_in,
905 		.pf = NFPROTO_BRIDGE,
906 		.hooknum = NF_BR_LOCAL_IN,
907 		.priority = NF_BR_PRI_BRNF,
908 	},
909 	{
910 		.hook = br_nf_forward_ip,
911 		.pf = NFPROTO_BRIDGE,
912 		.hooknum = NF_BR_FORWARD,
913 		.priority = NF_BR_PRI_BRNF - 1,
914 	},
915 	{
916 		.hook = br_nf_forward_arp,
917 		.pf = NFPROTO_BRIDGE,
918 		.hooknum = NF_BR_FORWARD,
919 		.priority = NF_BR_PRI_BRNF,
920 	},
921 	{
922 		.hook = br_nf_post_routing,
923 		.pf = NFPROTO_BRIDGE,
924 		.hooknum = NF_BR_POST_ROUTING,
925 		.priority = NF_BR_PRI_LAST,
926 	},
927 	{
928 		.hook = ip_sabotage_in,
929 		.pf = NFPROTO_IPV4,
930 		.hooknum = NF_INET_PRE_ROUTING,
931 		.priority = NF_IP_PRI_FIRST,
932 	},
933 	{
934 		.hook = ip_sabotage_in,
935 		.pf = NFPROTO_IPV6,
936 		.hooknum = NF_INET_PRE_ROUTING,
937 		.priority = NF_IP6_PRI_FIRST,
938 	},
939 };
940 
941 #ifdef CONFIG_SYSCTL
942 static
brnf_sysctl_call_tables(struct ctl_table * ctl,int write,void __user * buffer,size_t * lenp,loff_t * ppos)943 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
944 			    void __user *buffer, size_t *lenp, loff_t *ppos)
945 {
946 	int ret;
947 
948 	ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
949 
950 	if (write && *(int *)(ctl->data))
951 		*(int *)(ctl->data) = 1;
952 	return ret;
953 }
954 
955 static struct ctl_table brnf_table[] = {
956 	{
957 		.procname	= "bridge-nf-call-arptables",
958 		.data		= &brnf_call_arptables,
959 		.maxlen		= sizeof(int),
960 		.mode		= 0644,
961 		.proc_handler	= brnf_sysctl_call_tables,
962 	},
963 	{
964 		.procname	= "bridge-nf-call-iptables",
965 		.data		= &brnf_call_iptables,
966 		.maxlen		= sizeof(int),
967 		.mode		= 0644,
968 		.proc_handler	= brnf_sysctl_call_tables,
969 	},
970 	{
971 		.procname	= "bridge-nf-call-ip6tables",
972 		.data		= &brnf_call_ip6tables,
973 		.maxlen		= sizeof(int),
974 		.mode		= 0644,
975 		.proc_handler	= brnf_sysctl_call_tables,
976 	},
977 	{
978 		.procname	= "bridge-nf-filter-vlan-tagged",
979 		.data		= &brnf_filter_vlan_tagged,
980 		.maxlen		= sizeof(int),
981 		.mode		= 0644,
982 		.proc_handler	= brnf_sysctl_call_tables,
983 	},
984 	{
985 		.procname	= "bridge-nf-filter-pppoe-tagged",
986 		.data		= &brnf_filter_pppoe_tagged,
987 		.maxlen		= sizeof(int),
988 		.mode		= 0644,
989 		.proc_handler	= brnf_sysctl_call_tables,
990 	},
991 	{
992 		.procname	= "bridge-nf-pass-vlan-input-dev",
993 		.data		= &brnf_pass_vlan_indev,
994 		.maxlen		= sizeof(int),
995 		.mode		= 0644,
996 		.proc_handler	= brnf_sysctl_call_tables,
997 	},
998 	{ }
999 };
1000 #endif
1001 
br_netfilter_init(void)1002 static int __init br_netfilter_init(void)
1003 {
1004 	int ret;
1005 
1006 	ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1007 	if (ret < 0)
1008 		return ret;
1009 
1010 #ifdef CONFIG_SYSCTL
1011 	brnf_sysctl_header = register_net_sysctl(&init_net, "net/bridge", brnf_table);
1012 	if (brnf_sysctl_header == NULL) {
1013 		printk(KERN_WARNING
1014 		       "br_netfilter: can't register to sysctl.\n");
1015 		nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1016 		return -ENOMEM;
1017 	}
1018 #endif
1019 	RCU_INIT_POINTER(nf_br_ops, &br_ops);
1020 	printk(KERN_NOTICE "Bridge firewalling registered\n");
1021 	return 0;
1022 }
1023 
br_netfilter_fini(void)1024 static void __exit br_netfilter_fini(void)
1025 {
1026 	RCU_INIT_POINTER(nf_br_ops, NULL);
1027 	nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1028 #ifdef CONFIG_SYSCTL
1029 	unregister_net_sysctl_table(brnf_sysctl_header);
1030 #endif
1031 }
1032 
1033 module_init(br_netfilter_init);
1034 module_exit(br_netfilter_fini);
1035 
1036 MODULE_LICENSE("GPL");
1037 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1038 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1039 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");
1040