1 /*
2  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3  *
4  * Copyright (C) 2013 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/hash.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22 #include <crypto/scatterwalk.h>
23 
24 #include "ccp-crypto.h"
25 
ccp_sha_complete(struct crypto_async_request * async_req,int ret)26 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
27 {
28 	struct ahash_request *req = ahash_request_cast(async_req);
29 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
30 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
31 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
32 
33 	if (ret)
34 		goto e_free;
35 
36 	if (rctx->hash_rem) {
37 		/* Save remaining data to buffer */
38 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
39 
40 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
41 					 offset, rctx->hash_rem, 0);
42 		rctx->buf_count = rctx->hash_rem;
43 	} else {
44 		rctx->buf_count = 0;
45 	}
46 
47 	/* Update result area if supplied */
48 	if (req->result)
49 		memcpy(req->result, rctx->ctx, digest_size);
50 
51 e_free:
52 	sg_free_table(&rctx->data_sg);
53 
54 	return ret;
55 }
56 
ccp_do_sha_update(struct ahash_request * req,unsigned int nbytes,unsigned int final)57 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
58 			     unsigned int final)
59 {
60 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
61 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
62 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
63 	struct scatterlist *sg;
64 	unsigned int block_size =
65 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
66 	unsigned int sg_count;
67 	gfp_t gfp;
68 	u64 len;
69 	int ret;
70 
71 	len = (u64)rctx->buf_count + (u64)nbytes;
72 
73 	if (!final && (len <= block_size)) {
74 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
75 					 0, nbytes, 0);
76 		rctx->buf_count += nbytes;
77 
78 		return 0;
79 	}
80 
81 	rctx->src = req->src;
82 	rctx->nbytes = nbytes;
83 
84 	rctx->final = final;
85 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
86 	rctx->hash_cnt = len - rctx->hash_rem;
87 	if (!final && !rctx->hash_rem) {
88 		/* CCP can't do zero length final, so keep some data around */
89 		rctx->hash_cnt -= block_size;
90 		rctx->hash_rem = block_size;
91 	}
92 
93 	/* Initialize the context scatterlist */
94 	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
95 
96 	sg = NULL;
97 	if (rctx->buf_count && nbytes) {
98 		/* Build the data scatterlist table - allocate enough entries
99 		 * for both data pieces (buffer and input data)
100 		 */
101 		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
102 			GFP_KERNEL : GFP_ATOMIC;
103 		sg_count = sg_nents(req->src) + 1;
104 		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
105 		if (ret)
106 			return ret;
107 
108 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
109 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
110 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
111 		sg_mark_end(sg);
112 
113 		sg = rctx->data_sg.sgl;
114 	} else if (rctx->buf_count) {
115 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
116 
117 		sg = &rctx->buf_sg;
118 	} else if (nbytes) {
119 		sg = req->src;
120 	}
121 
122 	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
123 
124 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
125 	INIT_LIST_HEAD(&rctx->cmd.entry);
126 	rctx->cmd.engine = CCP_ENGINE_SHA;
127 	rctx->cmd.u.sha.type = rctx->type;
128 	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
129 	rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
130 	rctx->cmd.u.sha.src = sg;
131 	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
132 	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
133 		&ctx->u.sha.opad_sg : NULL;
134 	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
135 		ctx->u.sha.opad_count : 0;
136 	rctx->cmd.u.sha.first = rctx->first;
137 	rctx->cmd.u.sha.final = rctx->final;
138 	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
139 
140 	rctx->first = 0;
141 
142 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
143 
144 	return ret;
145 }
146 
ccp_sha_init(struct ahash_request * req)147 static int ccp_sha_init(struct ahash_request *req)
148 {
149 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
150 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
151 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
152 	struct ccp_crypto_ahash_alg *alg =
153 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
154 	unsigned int block_size =
155 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
156 
157 	memset(rctx, 0, sizeof(*rctx));
158 
159 	rctx->type = alg->type;
160 	rctx->first = 1;
161 
162 	if (ctx->u.sha.key_len) {
163 		/* Buffer the HMAC key for first update */
164 		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
165 		rctx->buf_count = block_size;
166 	}
167 
168 	return 0;
169 }
170 
ccp_sha_update(struct ahash_request * req)171 static int ccp_sha_update(struct ahash_request *req)
172 {
173 	return ccp_do_sha_update(req, req->nbytes, 0);
174 }
175 
ccp_sha_final(struct ahash_request * req)176 static int ccp_sha_final(struct ahash_request *req)
177 {
178 	return ccp_do_sha_update(req, 0, 1);
179 }
180 
ccp_sha_finup(struct ahash_request * req)181 static int ccp_sha_finup(struct ahash_request *req)
182 {
183 	return ccp_do_sha_update(req, req->nbytes, 1);
184 }
185 
ccp_sha_digest(struct ahash_request * req)186 static int ccp_sha_digest(struct ahash_request *req)
187 {
188 	int ret;
189 
190 	ret = ccp_sha_init(req);
191 	if (ret)
192 		return ret;
193 
194 	return ccp_sha_finup(req);
195 }
196 
ccp_sha_export(struct ahash_request * req,void * out)197 static int ccp_sha_export(struct ahash_request *req, void *out)
198 {
199 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
200 	struct ccp_sha_exp_ctx state;
201 
202 	/* Don't let anything leak to 'out' */
203 	memset(&state, 0, sizeof(state));
204 
205 	state.type = rctx->type;
206 	state.msg_bits = rctx->msg_bits;
207 	state.first = rctx->first;
208 	memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
209 	state.buf_count = rctx->buf_count;
210 	memcpy(state.buf, rctx->buf, sizeof(state.buf));
211 
212 	/* 'out' may not be aligned so memcpy from local variable */
213 	memcpy(out, &state, sizeof(state));
214 
215 	return 0;
216 }
217 
ccp_sha_import(struct ahash_request * req,const void * in)218 static int ccp_sha_import(struct ahash_request *req, const void *in)
219 {
220 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
221 	struct ccp_sha_exp_ctx state;
222 
223 	/* 'in' may not be aligned so memcpy to local variable */
224 	memcpy(&state, in, sizeof(state));
225 
226 	memset(rctx, 0, sizeof(*rctx));
227 	rctx->type = state.type;
228 	rctx->msg_bits = state.msg_bits;
229 	rctx->first = state.first;
230 	memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
231 	rctx->buf_count = state.buf_count;
232 	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
233 
234 	return 0;
235 }
236 
ccp_sha_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int key_len)237 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
238 			  unsigned int key_len)
239 {
240 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
241 	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
242 
243 	SHASH_DESC_ON_STACK(sdesc, shash);
244 
245 	unsigned int block_size = crypto_shash_blocksize(shash);
246 	unsigned int digest_size = crypto_shash_digestsize(shash);
247 	int i, ret;
248 
249 	/* Set to zero until complete */
250 	ctx->u.sha.key_len = 0;
251 
252 	/* Clear key area to provide zero padding for keys smaller
253 	 * than the block size
254 	 */
255 	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
256 
257 	if (key_len > block_size) {
258 		/* Must hash the input key */
259 		sdesc->tfm = shash;
260 		sdesc->flags = crypto_ahash_get_flags(tfm) &
261 			CRYPTO_TFM_REQ_MAY_SLEEP;
262 
263 		ret = crypto_shash_digest(sdesc, key, key_len,
264 					  ctx->u.sha.key);
265 		if (ret) {
266 			crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
267 			return -EINVAL;
268 		}
269 
270 		key_len = digest_size;
271 	} else {
272 		memcpy(ctx->u.sha.key, key, key_len);
273 	}
274 
275 	for (i = 0; i < block_size; i++) {
276 		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
277 		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
278 	}
279 
280 	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
281 	ctx->u.sha.opad_count = block_size;
282 
283 	ctx->u.sha.key_len = key_len;
284 
285 	return 0;
286 }
287 
ccp_sha_cra_init(struct crypto_tfm * tfm)288 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
289 {
290 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
291 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
292 
293 	ctx->complete = ccp_sha_complete;
294 	ctx->u.sha.key_len = 0;
295 
296 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
297 
298 	return 0;
299 }
300 
ccp_sha_cra_exit(struct crypto_tfm * tfm)301 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
302 {
303 }
304 
ccp_hmac_sha_cra_init(struct crypto_tfm * tfm)305 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
306 {
307 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
308 	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
309 	struct crypto_shash *hmac_tfm;
310 
311 	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
312 	if (IS_ERR(hmac_tfm)) {
313 		pr_warn("could not load driver %s need for HMAC support\n",
314 			alg->child_alg);
315 		return PTR_ERR(hmac_tfm);
316 	}
317 
318 	ctx->u.sha.hmac_tfm = hmac_tfm;
319 
320 	return ccp_sha_cra_init(tfm);
321 }
322 
ccp_hmac_sha_cra_exit(struct crypto_tfm * tfm)323 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
324 {
325 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
326 
327 	if (ctx->u.sha.hmac_tfm)
328 		crypto_free_shash(ctx->u.sha.hmac_tfm);
329 
330 	ccp_sha_cra_exit(tfm);
331 }
332 
333 struct ccp_sha_def {
334 	const char *name;
335 	const char *drv_name;
336 	enum ccp_sha_type type;
337 	u32 digest_size;
338 	u32 block_size;
339 };
340 
341 static struct ccp_sha_def sha_algs[] = {
342 	{
343 		.name		= "sha1",
344 		.drv_name	= "sha1-ccp",
345 		.type		= CCP_SHA_TYPE_1,
346 		.digest_size	= SHA1_DIGEST_SIZE,
347 		.block_size	= SHA1_BLOCK_SIZE,
348 	},
349 	{
350 		.name		= "sha224",
351 		.drv_name	= "sha224-ccp",
352 		.type		= CCP_SHA_TYPE_224,
353 		.digest_size	= SHA224_DIGEST_SIZE,
354 		.block_size	= SHA224_BLOCK_SIZE,
355 	},
356 	{
357 		.name		= "sha256",
358 		.drv_name	= "sha256-ccp",
359 		.type		= CCP_SHA_TYPE_256,
360 		.digest_size	= SHA256_DIGEST_SIZE,
361 		.block_size	= SHA256_BLOCK_SIZE,
362 	},
363 };
364 
ccp_register_hmac_alg(struct list_head * head,const struct ccp_sha_def * def,const struct ccp_crypto_ahash_alg * base_alg)365 static int ccp_register_hmac_alg(struct list_head *head,
366 				 const struct ccp_sha_def *def,
367 				 const struct ccp_crypto_ahash_alg *base_alg)
368 {
369 	struct ccp_crypto_ahash_alg *ccp_alg;
370 	struct ahash_alg *alg;
371 	struct hash_alg_common *halg;
372 	struct crypto_alg *base;
373 	int ret;
374 
375 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
376 	if (!ccp_alg)
377 		return -ENOMEM;
378 
379 	/* Copy the base algorithm and only change what's necessary */
380 	*ccp_alg = *base_alg;
381 	INIT_LIST_HEAD(&ccp_alg->entry);
382 
383 	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
384 
385 	alg = &ccp_alg->alg;
386 	alg->setkey = ccp_sha_setkey;
387 
388 	halg = &alg->halg;
389 
390 	base = &halg->base;
391 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
392 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
393 		 def->drv_name);
394 	base->cra_init = ccp_hmac_sha_cra_init;
395 	base->cra_exit = ccp_hmac_sha_cra_exit;
396 
397 	ret = crypto_register_ahash(alg);
398 	if (ret) {
399 		pr_err("%s ahash algorithm registration error (%d)\n",
400 		       base->cra_name, ret);
401 		kfree(ccp_alg);
402 		return ret;
403 	}
404 
405 	list_add(&ccp_alg->entry, head);
406 
407 	return ret;
408 }
409 
ccp_register_sha_alg(struct list_head * head,const struct ccp_sha_def * def)410 static int ccp_register_sha_alg(struct list_head *head,
411 				const struct ccp_sha_def *def)
412 {
413 	struct ccp_crypto_ahash_alg *ccp_alg;
414 	struct ahash_alg *alg;
415 	struct hash_alg_common *halg;
416 	struct crypto_alg *base;
417 	int ret;
418 
419 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
420 	if (!ccp_alg)
421 		return -ENOMEM;
422 
423 	INIT_LIST_HEAD(&ccp_alg->entry);
424 
425 	ccp_alg->type = def->type;
426 
427 	alg = &ccp_alg->alg;
428 	alg->init = ccp_sha_init;
429 	alg->update = ccp_sha_update;
430 	alg->final = ccp_sha_final;
431 	alg->finup = ccp_sha_finup;
432 	alg->digest = ccp_sha_digest;
433 	alg->export = ccp_sha_export;
434 	alg->import = ccp_sha_import;
435 
436 	halg = &alg->halg;
437 	halg->digestsize = def->digest_size;
438 	halg->statesize = sizeof(struct ccp_sha_exp_ctx);
439 
440 	base = &halg->base;
441 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
442 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
443 		 def->drv_name);
444 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
445 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
446 			  CRYPTO_ALG_NEED_FALLBACK;
447 	base->cra_blocksize = def->block_size;
448 	base->cra_ctxsize = sizeof(struct ccp_ctx);
449 	base->cra_priority = CCP_CRA_PRIORITY;
450 	base->cra_type = &crypto_ahash_type;
451 	base->cra_init = ccp_sha_cra_init;
452 	base->cra_exit = ccp_sha_cra_exit;
453 	base->cra_module = THIS_MODULE;
454 
455 	ret = crypto_register_ahash(alg);
456 	if (ret) {
457 		pr_err("%s ahash algorithm registration error (%d)\n",
458 		       base->cra_name, ret);
459 		kfree(ccp_alg);
460 		return ret;
461 	}
462 
463 	list_add(&ccp_alg->entry, head);
464 
465 	ret = ccp_register_hmac_alg(head, def, ccp_alg);
466 
467 	return ret;
468 }
469 
ccp_register_sha_algs(struct list_head * head)470 int ccp_register_sha_algs(struct list_head *head)
471 {
472 	int i, ret;
473 
474 	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
475 		ret = ccp_register_sha_alg(head, &sha_algs[i]);
476 		if (ret)
477 			return ret;
478 	}
479 
480 	return 0;
481 }
482