1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3 
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 
8 #include <trace/events/tlb.h>
9 
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
paravirt_activate_mm(struct mm_struct * prev,struct mm_struct * next)15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 					struct mm_struct *next)
17 {
18 }
19 #endif	/* !CONFIG_PARAVIRT */
20 
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
23 
load_mm_cr4(struct mm_struct * mm)24 static inline void load_mm_cr4(struct mm_struct *mm)
25 {
26 	if (static_key_false(&rdpmc_always_available) ||
27 	    atomic_read(&mm->context.perf_rdpmc_allowed))
28 		cr4_set_bits(X86_CR4_PCE);
29 	else
30 		cr4_clear_bits(X86_CR4_PCE);
31 }
32 #else
load_mm_cr4(struct mm_struct * mm)33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
35 
36 /*
37  * ldt_structs can be allocated, used, and freed, but they are never
38  * modified while live.
39  */
40 struct ldt_struct {
41 	/*
42 	 * Xen requires page-aligned LDTs with special permissions.  This is
43 	 * needed to prevent us from installing evil descriptors such as
44 	 * call gates.  On native, we could merge the ldt_struct and LDT
45 	 * allocations, but it's not worth trying to optimize.
46 	 */
47 	struct desc_struct *entries;
48 	int size;
49 };
50 
load_mm_ldt(struct mm_struct * mm)51 static inline void load_mm_ldt(struct mm_struct *mm)
52 {
53 	struct ldt_struct *ldt;
54 
55 	/* lockless_dereference synchronizes with smp_store_release */
56 	ldt = lockless_dereference(mm->context.ldt);
57 
58 	/*
59 	 * Any change to mm->context.ldt is followed by an IPI to all
60 	 * CPUs with the mm active.  The LDT will not be freed until
61 	 * after the IPI is handled by all such CPUs.  This means that,
62 	 * if the ldt_struct changes before we return, the values we see
63 	 * will be safe, and the new values will be loaded before we run
64 	 * any user code.
65 	 *
66 	 * NB: don't try to convert this to use RCU without extreme care.
67 	 * We would still need IRQs off, because we don't want to change
68 	 * the local LDT after an IPI loaded a newer value than the one
69 	 * that we can see.
70 	 */
71 
72 	if (unlikely(ldt))
73 		set_ldt(ldt->entries, ldt->size);
74 	else
75 		clear_LDT();
76 
77 	DEBUG_LOCKS_WARN_ON(preemptible());
78 }
79 
80 /*
81  * Used for LDT copy/destruction.
82  */
83 int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
84 void destroy_context(struct mm_struct *mm);
85 
86 
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)87 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
88 {
89 #ifdef CONFIG_SMP
90 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
91 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
92 #endif
93 }
94 
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)95 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
96 			     struct task_struct *tsk)
97 {
98 	unsigned cpu = smp_processor_id();
99 
100 	if (likely(prev != next)) {
101 #ifdef CONFIG_SMP
102 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
103 		this_cpu_write(cpu_tlbstate.active_mm, next);
104 #endif
105 		cpumask_set_cpu(cpu, mm_cpumask(next));
106 
107 		/*
108 		 * Re-load page tables.
109 		 *
110 		 * This logic has an ordering constraint:
111 		 *
112 		 *  CPU 0: Write to a PTE for 'next'
113 		 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
114 		 *  CPU 1: set bit 1 in next's mm_cpumask
115 		 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
116 		 *
117 		 * We need to prevent an outcome in which CPU 1 observes
118 		 * the new PTE value and CPU 0 observes bit 1 clear in
119 		 * mm_cpumask.  (If that occurs, then the IPI will never
120 		 * be sent, and CPU 0's TLB will contain a stale entry.)
121 		 *
122 		 * The bad outcome can occur if either CPU's load is
123 		 * reordered before that CPU's store, so both CPUs must
124 		 * execute full barriers to prevent this from happening.
125 		 *
126 		 * Thus, switch_mm needs a full barrier between the
127 		 * store to mm_cpumask and any operation that could load
128 		 * from next->pgd.  TLB fills are special and can happen
129 		 * due to instruction fetches or for no reason at all,
130 		 * and neither LOCK nor MFENCE orders them.
131 		 * Fortunately, load_cr3() is serializing and gives the
132 		 * ordering guarantee we need.
133 		 *
134 		 */
135 		load_cr3(next->pgd);
136 
137 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
138 
139 		/* Stop flush ipis for the previous mm */
140 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
141 
142 		/* Load per-mm CR4 state */
143 		load_mm_cr4(next);
144 
145 		/*
146 		 * Load the LDT, if the LDT is different.
147 		 *
148 		 * It's possible that prev->context.ldt doesn't match
149 		 * the LDT register.  This can happen if leave_mm(prev)
150 		 * was called and then modify_ldt changed
151 		 * prev->context.ldt but suppressed an IPI to this CPU.
152 		 * In this case, prev->context.ldt != NULL, because we
153 		 * never set context.ldt to NULL while the mm still
154 		 * exists.  That means that next->context.ldt !=
155 		 * prev->context.ldt, because mms never share an LDT.
156 		 */
157 		if (unlikely(prev->context.ldt != next->context.ldt))
158 			load_mm_ldt(next);
159 	}
160 #ifdef CONFIG_SMP
161 	  else {
162 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
163 		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
164 
165 		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
166 			/*
167 			 * On established mms, the mm_cpumask is only changed
168 			 * from irq context, from ptep_clear_flush() while in
169 			 * lazy tlb mode, and here. Irqs are blocked during
170 			 * schedule, protecting us from simultaneous changes.
171 			 */
172 			cpumask_set_cpu(cpu, mm_cpumask(next));
173 
174 			/*
175 			 * We were in lazy tlb mode and leave_mm disabled
176 			 * tlb flush IPI delivery. We must reload CR3
177 			 * to make sure to use no freed page tables.
178 			 *
179 			 * As above, load_cr3() is serializing and orders TLB
180 			 * fills with respect to the mm_cpumask write.
181 			 */
182 			load_cr3(next->pgd);
183 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
184 			load_mm_cr4(next);
185 			load_mm_ldt(next);
186 		}
187 	}
188 #endif
189 }
190 
191 #define activate_mm(prev, next)			\
192 do {						\
193 	paravirt_activate_mm((prev), (next));	\
194 	switch_mm((prev), (next), NULL);	\
195 } while (0);
196 
197 #ifdef CONFIG_X86_32
198 #define deactivate_mm(tsk, mm)			\
199 do {						\
200 	lazy_load_gs(0);			\
201 } while (0)
202 #else
203 #define deactivate_mm(tsk, mm)			\
204 do {						\
205 	load_gs_index(0);			\
206 	loadsegment(fs, 0);			\
207 } while (0)
208 #endif
209 
arch_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)210 static inline void arch_dup_mmap(struct mm_struct *oldmm,
211 				 struct mm_struct *mm)
212 {
213 	paravirt_arch_dup_mmap(oldmm, mm);
214 }
215 
arch_exit_mmap(struct mm_struct * mm)216 static inline void arch_exit_mmap(struct mm_struct *mm)
217 {
218 	paravirt_arch_exit_mmap(mm);
219 }
220 
arch_bprm_mm_init(struct mm_struct * mm,struct vm_area_struct * vma)221 static inline void arch_bprm_mm_init(struct mm_struct *mm,
222 		struct vm_area_struct *vma)
223 {
224 	mpx_mm_init(mm);
225 }
226 
arch_unmap(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start,unsigned long end)227 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
228 			      unsigned long start, unsigned long end)
229 {
230 	/*
231 	 * mpx_notify_unmap() goes and reads a rarely-hot
232 	 * cacheline in the mm_struct.  That can be expensive
233 	 * enough to be seen in profiles.
234 	 *
235 	 * The mpx_notify_unmap() call and its contents have been
236 	 * observed to affect munmap() performance on hardware
237 	 * where MPX is not present.
238 	 *
239 	 * The unlikely() optimizes for the fast case: no MPX
240 	 * in the CPU, or no MPX use in the process.  Even if
241 	 * we get this wrong (in the unlikely event that MPX
242 	 * is widely enabled on some system) the overhead of
243 	 * MPX itself (reading bounds tables) is expected to
244 	 * overwhelm the overhead of getting this unlikely()
245 	 * consistently wrong.
246 	 */
247 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
248 		mpx_notify_unmap(mm, vma, start, end);
249 }
250 
251 #endif /* _ASM_X86_MMU_CONTEXT_H */
252