1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55
56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
57
58 /* Module parameters */
59 #define TX_TIMEO 5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94
95 #define DEFAULT_BUFSIZE 1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
104 #define STMMAC_DEFAULT_LPI_TIMER 1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118
119 #ifdef CONFIG_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(struct net_device *dev);
122 #endif
123
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
126 /**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it checks the driver parameters and set a default in case of
129 * errors.
130 */
stmmac_verify_args(void)131 static void stmmac_verify_args(void)
132 {
133 if (unlikely(watchdog < 0))
134 watchdog = TX_TIMEO;
135 if (unlikely(dma_rxsize < 0))
136 dma_rxsize = DMA_RX_SIZE;
137 if (unlikely(dma_txsize < 0))
138 dma_txsize = DMA_TX_SIZE;
139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 buf_sz = DEFAULT_BUFSIZE;
141 if (unlikely(flow_ctrl > 1))
142 flow_ctrl = FLOW_AUTO;
143 else if (likely(flow_ctrl < 0))
144 flow_ctrl = FLOW_OFF;
145 if (unlikely((pause < 0) || (pause > 0xffff)))
146 pause = PAUSE_TIME;
147 if (eee_timer < 0)
148 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150
151 /**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 * If a specific clk_csr value is passed from the platform
158 * this means that the CSR Clock Range selection cannot be
159 * changed at run-time and it is fixed (as reported in the driver
160 * documentation). Viceversa the driver will try to set the MDC
161 * clock dynamically according to the actual clock input.
162 */
stmmac_clk_csr_set(struct stmmac_priv * priv)163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 u32 clk_rate;
166
167 clk_rate = clk_get_rate(priv->stmmac_clk);
168
169 /* Platform provided default clk_csr would be assumed valid
170 * for all other cases except for the below mentioned ones.
171 * For values higher than the IEEE 802.3 specified frequency
172 * we can not estimate the proper divider as it is not known
173 * the frequency of clk_csr_i. So we do not change the default
174 * divider.
175 */
176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 if (clk_rate < CSR_F_35M)
178 priv->clk_csr = STMMAC_CSR_20_35M;
179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 priv->clk_csr = STMMAC_CSR_35_60M;
181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 priv->clk_csr = STMMAC_CSR_60_100M;
183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 priv->clk_csr = STMMAC_CSR_100_150M;
185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 priv->clk_csr = STMMAC_CSR_150_250M;
187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 priv->clk_csr = STMMAC_CSR_250_300M;
189 }
190 }
191
print_pkt(unsigned char * buf,int len)192 static void print_pkt(unsigned char *buf, int len)
193 {
194 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
195 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
196 }
197
198 /* minimum number of free TX descriptors required to wake up TX process */
199 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
200
stmmac_tx_avail(struct stmmac_priv * priv)201 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
202 {
203 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
204 }
205
206 /**
207 * stmmac_hw_fix_mac_speed - callback for speed selection
208 * @priv: driver private structure
209 * Description: on some platforms (e.g. ST), some HW system configuraton
210 * registers have to be set according to the link speed negotiated.
211 */
stmmac_hw_fix_mac_speed(struct stmmac_priv * priv)212 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
213 {
214 struct phy_device *phydev = priv->phydev;
215
216 if (likely(priv->plat->fix_mac_speed))
217 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
218 }
219
220 /**
221 * stmmac_enable_eee_mode - check and enter in LPI mode
222 * @priv: driver private structure
223 * Description: this function is to verify and enter in LPI mode in case of
224 * EEE.
225 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)226 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
227 {
228 /* Check and enter in LPI mode */
229 if ((priv->dirty_tx == priv->cur_tx) &&
230 (priv->tx_path_in_lpi_mode == false))
231 priv->hw->mac->set_eee_mode(priv->hw);
232 }
233
234 /**
235 * stmmac_disable_eee_mode - disable and exit from LPI mode
236 * @priv: driver private structure
237 * Description: this function is to exit and disable EEE in case of
238 * LPI state is true. This is called by the xmit.
239 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)240 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
241 {
242 priv->hw->mac->reset_eee_mode(priv->hw);
243 del_timer_sync(&priv->eee_ctrl_timer);
244 priv->tx_path_in_lpi_mode = false;
245 }
246
247 /**
248 * stmmac_eee_ctrl_timer - EEE TX SW timer.
249 * @arg : data hook
250 * Description:
251 * if there is no data transfer and if we are not in LPI state,
252 * then MAC Transmitter can be moved to LPI state.
253 */
stmmac_eee_ctrl_timer(unsigned long arg)254 static void stmmac_eee_ctrl_timer(unsigned long arg)
255 {
256 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
257
258 stmmac_enable_eee_mode(priv);
259 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
260 }
261
262 /**
263 * stmmac_eee_init - init EEE
264 * @priv: driver private structure
265 * Description:
266 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
267 * can also manage EEE, this function enable the LPI state and start related
268 * timer.
269 */
stmmac_eee_init(struct stmmac_priv * priv)270 bool stmmac_eee_init(struct stmmac_priv *priv)
271 {
272 char *phy_bus_name = priv->plat->phy_bus_name;
273 unsigned long flags;
274 bool ret = false;
275
276 /* Using PCS we cannot dial with the phy registers at this stage
277 * so we do not support extra feature like EEE.
278 */
279 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
280 (priv->pcs == STMMAC_PCS_RTBI))
281 goto out;
282
283 /* Never init EEE in case of a switch is attached */
284 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
285 goto out;
286
287 /* MAC core supports the EEE feature. */
288 if (priv->dma_cap.eee) {
289 int tx_lpi_timer = priv->tx_lpi_timer;
290
291 /* Check if the PHY supports EEE */
292 if (phy_init_eee(priv->phydev, 1)) {
293 /* To manage at run-time if the EEE cannot be supported
294 * anymore (for example because the lp caps have been
295 * changed).
296 * In that case the driver disable own timers.
297 */
298 spin_lock_irqsave(&priv->lock, flags);
299 if (priv->eee_active) {
300 pr_debug("stmmac: disable EEE\n");
301 del_timer_sync(&priv->eee_ctrl_timer);
302 priv->hw->mac->set_eee_timer(priv->hw, 0,
303 tx_lpi_timer);
304 }
305 priv->eee_active = 0;
306 spin_unlock_irqrestore(&priv->lock, flags);
307 goto out;
308 }
309 /* Activate the EEE and start timers */
310 spin_lock_irqsave(&priv->lock, flags);
311 if (!priv->eee_active) {
312 priv->eee_active = 1;
313 setup_timer(&priv->eee_ctrl_timer,
314 stmmac_eee_ctrl_timer,
315 (unsigned long)priv);
316 mod_timer(&priv->eee_ctrl_timer,
317 STMMAC_LPI_T(eee_timer));
318
319 priv->hw->mac->set_eee_timer(priv->hw,
320 STMMAC_DEFAULT_LIT_LS,
321 tx_lpi_timer);
322 }
323 /* Set HW EEE according to the speed */
324 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
325
326 ret = true;
327 spin_unlock_irqrestore(&priv->lock, flags);
328
329 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
330 }
331 out:
332 return ret;
333 }
334
335 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
336 * @priv: driver private structure
337 * @entry : descriptor index to be used.
338 * @skb : the socket buffer
339 * Description :
340 * This function will read timestamp from the descriptor & pass it to stack.
341 * and also perform some sanity checks.
342 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,unsigned int entry,struct sk_buff * skb)343 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
344 unsigned int entry, struct sk_buff *skb)
345 {
346 struct skb_shared_hwtstamps shhwtstamp;
347 u64 ns;
348 void *desc = NULL;
349
350 if (!priv->hwts_tx_en)
351 return;
352
353 /* exit if skb doesn't support hw tstamp */
354 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
355 return;
356
357 if (priv->adv_ts)
358 desc = (priv->dma_etx + entry);
359 else
360 desc = (priv->dma_tx + entry);
361
362 /* check tx tstamp status */
363 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
364 return;
365
366 /* get the valid tstamp */
367 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
368
369 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370 shhwtstamp.hwtstamp = ns_to_ktime(ns);
371 /* pass tstamp to stack */
372 skb_tstamp_tx(skb, &shhwtstamp);
373
374 return;
375 }
376
377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
378 * @priv: driver private structure
379 * @entry : descriptor index to be used.
380 * @skb : the socket buffer
381 * Description :
382 * This function will read received packet's timestamp from the descriptor
383 * and pass it to stack. It also perform some sanity checks.
384 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,unsigned int entry,struct sk_buff * skb)385 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
386 unsigned int entry, struct sk_buff *skb)
387 {
388 struct skb_shared_hwtstamps *shhwtstamp = NULL;
389 u64 ns;
390 void *desc = NULL;
391
392 if (!priv->hwts_rx_en)
393 return;
394
395 if (priv->adv_ts)
396 desc = (priv->dma_erx + entry);
397 else
398 desc = (priv->dma_rx + entry);
399
400 /* exit if rx tstamp is not valid */
401 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
402 return;
403
404 /* get valid tstamp */
405 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
406 shhwtstamp = skb_hwtstamps(skb);
407 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
408 shhwtstamp->hwtstamp = ns_to_ktime(ns);
409 }
410
411 /**
412 * stmmac_hwtstamp_ioctl - control hardware timestamping.
413 * @dev: device pointer.
414 * @ifr: An IOCTL specefic structure, that can contain a pointer to
415 * a proprietary structure used to pass information to the driver.
416 * Description:
417 * This function configures the MAC to enable/disable both outgoing(TX)
418 * and incoming(RX) packets time stamping based on user input.
419 * Return Value:
420 * 0 on success and an appropriate -ve integer on failure.
421 */
stmmac_hwtstamp_ioctl(struct net_device * dev,struct ifreq * ifr)422 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
423 {
424 struct stmmac_priv *priv = netdev_priv(dev);
425 struct hwtstamp_config config;
426 struct timespec now;
427 u64 temp = 0;
428 u32 ptp_v2 = 0;
429 u32 tstamp_all = 0;
430 u32 ptp_over_ipv4_udp = 0;
431 u32 ptp_over_ipv6_udp = 0;
432 u32 ptp_over_ethernet = 0;
433 u32 snap_type_sel = 0;
434 u32 ts_master_en = 0;
435 u32 ts_event_en = 0;
436 u32 value = 0;
437
438 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
439 netdev_alert(priv->dev, "No support for HW time stamping\n");
440 priv->hwts_tx_en = 0;
441 priv->hwts_rx_en = 0;
442
443 return -EOPNOTSUPP;
444 }
445
446 if (copy_from_user(&config, ifr->ifr_data,
447 sizeof(struct hwtstamp_config)))
448 return -EFAULT;
449
450 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
451 __func__, config.flags, config.tx_type, config.rx_filter);
452
453 /* reserved for future extensions */
454 if (config.flags)
455 return -EINVAL;
456
457 if (config.tx_type != HWTSTAMP_TX_OFF &&
458 config.tx_type != HWTSTAMP_TX_ON)
459 return -ERANGE;
460
461 if (priv->adv_ts) {
462 switch (config.rx_filter) {
463 case HWTSTAMP_FILTER_NONE:
464 /* time stamp no incoming packet at all */
465 config.rx_filter = HWTSTAMP_FILTER_NONE;
466 break;
467
468 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
469 /* PTP v1, UDP, any kind of event packet */
470 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
471 /* take time stamp for all event messages */
472 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
473
474 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
475 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
476 break;
477
478 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
479 /* PTP v1, UDP, Sync packet */
480 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
481 /* take time stamp for SYNC messages only */
482 ts_event_en = PTP_TCR_TSEVNTENA;
483
484 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486 break;
487
488 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
489 /* PTP v1, UDP, Delay_req packet */
490 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
491 /* take time stamp for Delay_Req messages only */
492 ts_master_en = PTP_TCR_TSMSTRENA;
493 ts_event_en = PTP_TCR_TSEVNTENA;
494
495 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
496 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
497 break;
498
499 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500 /* PTP v2, UDP, any kind of event packet */
501 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
502 ptp_v2 = PTP_TCR_TSVER2ENA;
503 /* take time stamp for all event messages */
504 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
505
506 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
507 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
508 break;
509
510 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
511 /* PTP v2, UDP, Sync packet */
512 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
513 ptp_v2 = PTP_TCR_TSVER2ENA;
514 /* take time stamp for SYNC messages only */
515 ts_event_en = PTP_TCR_TSEVNTENA;
516
517 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519 break;
520
521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
522 /* PTP v2, UDP, Delay_req packet */
523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
524 ptp_v2 = PTP_TCR_TSVER2ENA;
525 /* take time stamp for Delay_Req messages only */
526 ts_master_en = PTP_TCR_TSMSTRENA;
527 ts_event_en = PTP_TCR_TSEVNTENA;
528
529 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
530 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
531 break;
532
533 case HWTSTAMP_FILTER_PTP_V2_EVENT:
534 /* PTP v2/802.AS1 any layer, any kind of event packet */
535 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
536 ptp_v2 = PTP_TCR_TSVER2ENA;
537 /* take time stamp for all event messages */
538 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
539
540 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542 ptp_over_ethernet = PTP_TCR_TSIPENA;
543 break;
544
545 case HWTSTAMP_FILTER_PTP_V2_SYNC:
546 /* PTP v2/802.AS1, any layer, Sync packet */
547 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
548 ptp_v2 = PTP_TCR_TSVER2ENA;
549 /* take time stamp for SYNC messages only */
550 ts_event_en = PTP_TCR_TSEVNTENA;
551
552 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
553 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
554 ptp_over_ethernet = PTP_TCR_TSIPENA;
555 break;
556
557 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
558 /* PTP v2/802.AS1, any layer, Delay_req packet */
559 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
560 ptp_v2 = PTP_TCR_TSVER2ENA;
561 /* take time stamp for Delay_Req messages only */
562 ts_master_en = PTP_TCR_TSMSTRENA;
563 ts_event_en = PTP_TCR_TSEVNTENA;
564
565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 ptp_over_ethernet = PTP_TCR_TSIPENA;
568 break;
569
570 case HWTSTAMP_FILTER_ALL:
571 /* time stamp any incoming packet */
572 config.rx_filter = HWTSTAMP_FILTER_ALL;
573 tstamp_all = PTP_TCR_TSENALL;
574 break;
575
576 default:
577 return -ERANGE;
578 }
579 } else {
580 switch (config.rx_filter) {
581 case HWTSTAMP_FILTER_NONE:
582 config.rx_filter = HWTSTAMP_FILTER_NONE;
583 break;
584 default:
585 /* PTP v1, UDP, any kind of event packet */
586 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
587 break;
588 }
589 }
590 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
591 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
592
593 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
594 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
595 else {
596 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
597 tstamp_all | ptp_v2 | ptp_over_ethernet |
598 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
599 ts_master_en | snap_type_sel);
600
601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
602
603 /* program Sub Second Increment reg */
604 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
605
606 /* calculate default added value:
607 * formula is :
608 * addend = (2^32)/freq_div_ratio;
609 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
610 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
611 * NOTE: clk_ptp_ref_i should be >= 50MHz to
612 * achieve 20ns accuracy.
613 *
614 * 2^x * y == (y << x), hence
615 * 2^32 * 50000000 ==> (50000000 << 32)
616 */
617 temp = (u64) (50000000ULL << 32);
618 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
619 priv->hw->ptp->config_addend(priv->ioaddr,
620 priv->default_addend);
621
622 /* initialize system time */
623 getnstimeofday(&now);
624 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
625 now.tv_nsec);
626 }
627
628 return copy_to_user(ifr->ifr_data, &config,
629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631
632 /**
633 * stmmac_init_ptp - init PTP
634 * @priv: driver private structure
635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636 * This is done by looking at the HW cap. register.
637 * This function also registers the ptp driver.
638 */
stmmac_init_ptp(struct stmmac_priv * priv)639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642 return -EOPNOTSUPP;
643
644 /* Fall-back to main clock in case of no PTP ref is passed */
645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646 if (IS_ERR(priv->clk_ptp_ref)) {
647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648 priv->clk_ptp_ref = NULL;
649 } else {
650 clk_prepare_enable(priv->clk_ptp_ref);
651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652 }
653
654 priv->adv_ts = 0;
655 if (priv->dma_cap.atime_stamp && priv->extend_desc)
656 priv->adv_ts = 1;
657
658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660
661 if (netif_msg_hw(priv) && priv->adv_ts)
662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663
664 priv->hw->ptp = &stmmac_ptp;
665 priv->hwts_tx_en = 0;
666 priv->hwts_rx_en = 0;
667
668 return stmmac_ptp_register(priv);
669 }
670
stmmac_release_ptp(struct stmmac_priv * priv)671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673 if (priv->clk_ptp_ref)
674 clk_disable_unprepare(priv->clk_ptp_ref);
675 stmmac_ptp_unregister(priv);
676 }
677
678 /**
679 * stmmac_adjust_link - adjusts the link parameters
680 * @dev: net device structure
681 * Description: this is the helper called by the physical abstraction layer
682 * drivers to communicate the phy link status. According the speed and duplex
683 * this driver can invoke registered glue-logic as well.
684 * It also invoke the eee initialization because it could happen when switch
685 * on different networks (that are eee capable).
686 */
stmmac_adjust_link(struct net_device * dev)687 static void stmmac_adjust_link(struct net_device *dev)
688 {
689 struct stmmac_priv *priv = netdev_priv(dev);
690 struct phy_device *phydev = priv->phydev;
691 unsigned long flags;
692 int new_state = 0;
693 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694
695 if (phydev == NULL)
696 return;
697
698 spin_lock_irqsave(&priv->lock, flags);
699
700 if (phydev->link) {
701 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702
703 /* Now we make sure that we can be in full duplex mode.
704 * If not, we operate in half-duplex mode. */
705 if (phydev->duplex != priv->oldduplex) {
706 new_state = 1;
707 if (!(phydev->duplex))
708 ctrl &= ~priv->hw->link.duplex;
709 else
710 ctrl |= priv->hw->link.duplex;
711 priv->oldduplex = phydev->duplex;
712 }
713 /* Flow Control operation */
714 if (phydev->pause)
715 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716 fc, pause_time);
717
718 if (phydev->speed != priv->speed) {
719 new_state = 1;
720 switch (phydev->speed) {
721 case 1000:
722 if (likely(priv->plat->has_gmac))
723 ctrl &= ~priv->hw->link.port;
724 stmmac_hw_fix_mac_speed(priv);
725 break;
726 case 100:
727 case 10:
728 if (priv->plat->has_gmac) {
729 ctrl |= priv->hw->link.port;
730 if (phydev->speed == SPEED_100) {
731 ctrl |= priv->hw->link.speed;
732 } else {
733 ctrl &= ~(priv->hw->link.speed);
734 }
735 } else {
736 ctrl &= ~priv->hw->link.port;
737 }
738 stmmac_hw_fix_mac_speed(priv);
739 break;
740 default:
741 if (netif_msg_link(priv))
742 pr_warn("%s: Speed (%d) not 10/100\n",
743 dev->name, phydev->speed);
744 break;
745 }
746
747 priv->speed = phydev->speed;
748 }
749
750 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751
752 if (!priv->oldlink) {
753 new_state = 1;
754 priv->oldlink = 1;
755 }
756 } else if (priv->oldlink) {
757 new_state = 1;
758 priv->oldlink = 0;
759 priv->speed = 0;
760 priv->oldduplex = -1;
761 }
762
763 if (new_state && netif_msg_link(priv))
764 phy_print_status(phydev);
765
766 spin_unlock_irqrestore(&priv->lock, flags);
767
768 /* At this stage, it could be needed to setup the EEE or adjust some
769 * MAC related HW registers.
770 */
771 priv->eee_enabled = stmmac_eee_init(priv);
772 }
773
774 /**
775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776 * @priv: driver private structure
777 * Description: this is to verify if the HW supports the PCS.
778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779 * configured for the TBI, RTBI, or SGMII PHY interface.
780 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782 {
783 int interface = priv->plat->interface;
784
785 if (priv->dma_cap.pcs) {
786 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790 pr_debug("STMMAC: PCS RGMII support enable\n");
791 priv->pcs = STMMAC_PCS_RGMII;
792 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
793 pr_debug("STMMAC: PCS SGMII support enable\n");
794 priv->pcs = STMMAC_PCS_SGMII;
795 }
796 }
797 }
798
799 /**
800 * stmmac_init_phy - PHY initialization
801 * @dev: net device structure
802 * Description: it initializes the driver's PHY state, and attaches the PHY
803 * to the mac driver.
804 * Return value:
805 * 0 on success
806 */
stmmac_init_phy(struct net_device * dev)807 static int stmmac_init_phy(struct net_device *dev)
808 {
809 struct stmmac_priv *priv = netdev_priv(dev);
810 struct phy_device *phydev;
811 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812 char bus_id[MII_BUS_ID_SIZE];
813 int interface = priv->plat->interface;
814 int max_speed = priv->plat->max_speed;
815 priv->oldlink = 0;
816 priv->speed = 0;
817 priv->oldduplex = -1;
818
819 if (priv->plat->phy_bus_name)
820 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
821 priv->plat->phy_bus_name, priv->plat->bus_id);
822 else
823 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
824 priv->plat->bus_id);
825
826 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
827 priv->plat->phy_addr);
828 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
829
830 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
831
832 if (IS_ERR_OR_NULL(phydev)) {
833 pr_err("%s: Could not attach to PHY\n", dev->name);
834 if (!phydev)
835 return -ENODEV;
836
837 return PTR_ERR(phydev);
838 }
839
840 /* Stop Advertising 1000BASE Capability if interface is not GMII */
841 if ((interface == PHY_INTERFACE_MODE_MII) ||
842 (interface == PHY_INTERFACE_MODE_RMII) ||
843 (max_speed < 1000 && max_speed > 0))
844 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
845 SUPPORTED_1000baseT_Full);
846
847 /*
848 * Broken HW is sometimes missing the pull-up resistor on the
849 * MDIO line, which results in reads to non-existent devices returning
850 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
851 * device as well.
852 * Note: phydev->phy_id is the result of reading the UID PHY registers.
853 */
854 if (phydev->phy_id == 0) {
855 phy_disconnect(phydev);
856 return -ENODEV;
857 }
858 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
859 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
860
861 priv->phydev = phydev;
862
863 return 0;
864 }
865
866 /**
867 * stmmac_display_ring - display ring
868 * @head: pointer to the head of the ring passed.
869 * @size: size of the ring.
870 * @extend_desc: to verify if extended descriptors are used.
871 * Description: display the control/status and buffer descriptors.
872 */
stmmac_display_ring(void * head,int size,int extend_desc)873 static void stmmac_display_ring(void *head, int size, int extend_desc)
874 {
875 int i;
876 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
877 struct dma_desc *p = (struct dma_desc *)head;
878
879 for (i = 0; i < size; i++) {
880 u64 x;
881 if (extend_desc) {
882 x = *(u64 *) ep;
883 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
884 i, (unsigned int)virt_to_phys(ep),
885 (unsigned int)x, (unsigned int)(x >> 32),
886 ep->basic.des2, ep->basic.des3);
887 ep++;
888 } else {
889 x = *(u64 *) p;
890 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
891 i, (unsigned int)virt_to_phys(p),
892 (unsigned int)x, (unsigned int)(x >> 32),
893 p->des2, p->des3);
894 p++;
895 }
896 pr_info("\n");
897 }
898 }
899
stmmac_display_rings(struct stmmac_priv * priv)900 static void stmmac_display_rings(struct stmmac_priv *priv)
901 {
902 unsigned int txsize = priv->dma_tx_size;
903 unsigned int rxsize = priv->dma_rx_size;
904
905 if (priv->extend_desc) {
906 pr_info("Extended RX descriptor ring:\n");
907 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
908 pr_info("Extended TX descriptor ring:\n");
909 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
910 } else {
911 pr_info("RX descriptor ring:\n");
912 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
913 pr_info("TX descriptor ring:\n");
914 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
915 }
916 }
917
stmmac_set_bfsize(int mtu,int bufsize)918 static int stmmac_set_bfsize(int mtu, int bufsize)
919 {
920 int ret = bufsize;
921
922 if (mtu >= BUF_SIZE_4KiB)
923 ret = BUF_SIZE_8KiB;
924 else if (mtu >= BUF_SIZE_2KiB)
925 ret = BUF_SIZE_4KiB;
926 else if (mtu > DEFAULT_BUFSIZE)
927 ret = BUF_SIZE_2KiB;
928 else
929 ret = DEFAULT_BUFSIZE;
930
931 return ret;
932 }
933
934 /**
935 * stmmac_clear_descriptors - clear descriptors
936 * @priv: driver private structure
937 * Description: this function is called to clear the tx and rx descriptors
938 * in case of both basic and extended descriptors are used.
939 */
stmmac_clear_descriptors(struct stmmac_priv * priv)940 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
941 {
942 int i;
943 unsigned int txsize = priv->dma_tx_size;
944 unsigned int rxsize = priv->dma_rx_size;
945
946 /* Clear the Rx/Tx descriptors */
947 for (i = 0; i < rxsize; i++)
948 if (priv->extend_desc)
949 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
950 priv->use_riwt, priv->mode,
951 (i == rxsize - 1));
952 else
953 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
954 priv->use_riwt, priv->mode,
955 (i == rxsize - 1));
956 for (i = 0; i < txsize; i++)
957 if (priv->extend_desc)
958 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
959 priv->mode,
960 (i == txsize - 1));
961 else
962 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
963 priv->mode,
964 (i == txsize - 1));
965 }
966
967 /**
968 * stmmac_init_rx_buffers - init the RX descriptor buffer.
969 * @priv: driver private structure
970 * @p: descriptor pointer
971 * @i: descriptor index
972 * @flags: gfp flag.
973 * Description: this function is called to allocate a receive buffer, perform
974 * the DMA mapping and init the descriptor.
975 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags)976 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
977 int i, gfp_t flags)
978 {
979 struct sk_buff *skb;
980
981 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
982 flags);
983 if (!skb) {
984 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
985 return -ENOMEM;
986 }
987 skb_reserve(skb, NET_IP_ALIGN);
988 priv->rx_skbuff[i] = skb;
989 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
990 priv->dma_buf_sz,
991 DMA_FROM_DEVICE);
992 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
993 pr_err("%s: DMA mapping error\n", __func__);
994 dev_kfree_skb_any(skb);
995 return -EINVAL;
996 }
997
998 p->des2 = priv->rx_skbuff_dma[i];
999
1000 if ((priv->hw->mode->init_desc3) &&
1001 (priv->dma_buf_sz == BUF_SIZE_16KiB))
1002 priv->hw->mode->init_desc3(p);
1003
1004 return 0;
1005 }
1006
stmmac_free_rx_buffers(struct stmmac_priv * priv,int i)1007 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1008 {
1009 if (priv->rx_skbuff[i]) {
1010 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1011 priv->dma_buf_sz, DMA_FROM_DEVICE);
1012 dev_kfree_skb_any(priv->rx_skbuff[i]);
1013 }
1014 priv->rx_skbuff[i] = NULL;
1015 }
1016
1017 /**
1018 * init_dma_desc_rings - init the RX/TX descriptor rings
1019 * @dev: net device structure
1020 * @flags: gfp flag.
1021 * Description: this function initializes the DMA RX/TX descriptors
1022 * and allocates the socket buffers. It suppors the chained and ring
1023 * modes.
1024 */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1025 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1026 {
1027 int i;
1028 struct stmmac_priv *priv = netdev_priv(dev);
1029 unsigned int txsize = priv->dma_tx_size;
1030 unsigned int rxsize = priv->dma_rx_size;
1031 unsigned int bfsize = 0;
1032 int ret = -ENOMEM;
1033
1034 if (priv->hw->mode->set_16kib_bfsize)
1035 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1036
1037 if (bfsize < BUF_SIZE_16KiB)
1038 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1039
1040 priv->dma_buf_sz = bfsize;
1041
1042 if (netif_msg_probe(priv))
1043 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1044 txsize, rxsize, bfsize);
1045
1046 if (netif_msg_probe(priv)) {
1047 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1048 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1049
1050 /* RX INITIALIZATION */
1051 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1052 }
1053 for (i = 0; i < rxsize; i++) {
1054 struct dma_desc *p;
1055 if (priv->extend_desc)
1056 p = &((priv->dma_erx + i)->basic);
1057 else
1058 p = priv->dma_rx + i;
1059
1060 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1061 if (ret)
1062 goto err_init_rx_buffers;
1063
1064 if (netif_msg_probe(priv))
1065 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1066 priv->rx_skbuff[i]->data,
1067 (unsigned int)priv->rx_skbuff_dma[i]);
1068 }
1069 priv->cur_rx = 0;
1070 priv->dirty_rx = (unsigned int)(i - rxsize);
1071 buf_sz = bfsize;
1072
1073 /* Setup the chained descriptor addresses */
1074 if (priv->mode == STMMAC_CHAIN_MODE) {
1075 if (priv->extend_desc) {
1076 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1077 rxsize, 1);
1078 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1079 txsize, 1);
1080 } else {
1081 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1082 rxsize, 0);
1083 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1084 txsize, 0);
1085 }
1086 }
1087
1088 /* TX INITIALIZATION */
1089 for (i = 0; i < txsize; i++) {
1090 struct dma_desc *p;
1091 if (priv->extend_desc)
1092 p = &((priv->dma_etx + i)->basic);
1093 else
1094 p = priv->dma_tx + i;
1095 p->des2 = 0;
1096 priv->tx_skbuff_dma[i].buf = 0;
1097 priv->tx_skbuff_dma[i].map_as_page = false;
1098 priv->tx_skbuff[i] = NULL;
1099 }
1100
1101 priv->dirty_tx = 0;
1102 priv->cur_tx = 0;
1103 netdev_reset_queue(priv->dev);
1104
1105 stmmac_clear_descriptors(priv);
1106
1107 if (netif_msg_hw(priv))
1108 stmmac_display_rings(priv);
1109
1110 return 0;
1111 err_init_rx_buffers:
1112 while (--i >= 0)
1113 stmmac_free_rx_buffers(priv, i);
1114 return ret;
1115 }
1116
dma_free_rx_skbufs(struct stmmac_priv * priv)1117 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1118 {
1119 int i;
1120
1121 for (i = 0; i < priv->dma_rx_size; i++)
1122 stmmac_free_rx_buffers(priv, i);
1123 }
1124
dma_free_tx_skbufs(struct stmmac_priv * priv)1125 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1126 {
1127 int i;
1128
1129 for (i = 0; i < priv->dma_tx_size; i++) {
1130 struct dma_desc *p;
1131
1132 if (priv->extend_desc)
1133 p = &((priv->dma_etx + i)->basic);
1134 else
1135 p = priv->dma_tx + i;
1136
1137 if (priv->tx_skbuff_dma[i].buf) {
1138 if (priv->tx_skbuff_dma[i].map_as_page)
1139 dma_unmap_page(priv->device,
1140 priv->tx_skbuff_dma[i].buf,
1141 priv->hw->desc->get_tx_len(p),
1142 DMA_TO_DEVICE);
1143 else
1144 dma_unmap_single(priv->device,
1145 priv->tx_skbuff_dma[i].buf,
1146 priv->hw->desc->get_tx_len(p),
1147 DMA_TO_DEVICE);
1148 }
1149
1150 if (priv->tx_skbuff[i] != NULL) {
1151 dev_kfree_skb_any(priv->tx_skbuff[i]);
1152 priv->tx_skbuff[i] = NULL;
1153 priv->tx_skbuff_dma[i].buf = 0;
1154 priv->tx_skbuff_dma[i].map_as_page = false;
1155 }
1156 }
1157 }
1158
1159 /**
1160 * alloc_dma_desc_resources - alloc TX/RX resources.
1161 * @priv: private structure
1162 * Description: according to which descriptor can be used (extend or basic)
1163 * this function allocates the resources for TX and RX paths. In case of
1164 * reception, for example, it pre-allocated the RX socket buffer in order to
1165 * allow zero-copy mechanism.
1166 */
alloc_dma_desc_resources(struct stmmac_priv * priv)1167 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1168 {
1169 unsigned int txsize = priv->dma_tx_size;
1170 unsigned int rxsize = priv->dma_rx_size;
1171 int ret = -ENOMEM;
1172
1173 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1174 GFP_KERNEL);
1175 if (!priv->rx_skbuff_dma)
1176 return -ENOMEM;
1177
1178 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1179 GFP_KERNEL);
1180 if (!priv->rx_skbuff)
1181 goto err_rx_skbuff;
1182
1183 priv->tx_skbuff_dma = kmalloc_array(txsize,
1184 sizeof(*priv->tx_skbuff_dma),
1185 GFP_KERNEL);
1186 if (!priv->tx_skbuff_dma)
1187 goto err_tx_skbuff_dma;
1188
1189 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1190 GFP_KERNEL);
1191 if (!priv->tx_skbuff)
1192 goto err_tx_skbuff;
1193
1194 if (priv->extend_desc) {
1195 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1196 sizeof(struct
1197 dma_extended_desc),
1198 &priv->dma_rx_phy,
1199 GFP_KERNEL);
1200 if (!priv->dma_erx)
1201 goto err_dma;
1202
1203 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1204 sizeof(struct
1205 dma_extended_desc),
1206 &priv->dma_tx_phy,
1207 GFP_KERNEL);
1208 if (!priv->dma_etx) {
1209 dma_free_coherent(priv->device, priv->dma_rx_size *
1210 sizeof(struct dma_extended_desc),
1211 priv->dma_erx, priv->dma_rx_phy);
1212 goto err_dma;
1213 }
1214 } else {
1215 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1216 sizeof(struct dma_desc),
1217 &priv->dma_rx_phy,
1218 GFP_KERNEL);
1219 if (!priv->dma_rx)
1220 goto err_dma;
1221
1222 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1223 sizeof(struct dma_desc),
1224 &priv->dma_tx_phy,
1225 GFP_KERNEL);
1226 if (!priv->dma_tx) {
1227 dma_free_coherent(priv->device, priv->dma_rx_size *
1228 sizeof(struct dma_desc),
1229 priv->dma_rx, priv->dma_rx_phy);
1230 goto err_dma;
1231 }
1232 }
1233
1234 return 0;
1235
1236 err_dma:
1237 kfree(priv->tx_skbuff);
1238 err_tx_skbuff:
1239 kfree(priv->tx_skbuff_dma);
1240 err_tx_skbuff_dma:
1241 kfree(priv->rx_skbuff);
1242 err_rx_skbuff:
1243 kfree(priv->rx_skbuff_dma);
1244 return ret;
1245 }
1246
free_dma_desc_resources(struct stmmac_priv * priv)1247 static void free_dma_desc_resources(struct stmmac_priv *priv)
1248 {
1249 /* Release the DMA TX/RX socket buffers */
1250 dma_free_rx_skbufs(priv);
1251 dma_free_tx_skbufs(priv);
1252
1253 /* Free DMA regions of consistent memory previously allocated */
1254 if (!priv->extend_desc) {
1255 dma_free_coherent(priv->device,
1256 priv->dma_tx_size * sizeof(struct dma_desc),
1257 priv->dma_tx, priv->dma_tx_phy);
1258 dma_free_coherent(priv->device,
1259 priv->dma_rx_size * sizeof(struct dma_desc),
1260 priv->dma_rx, priv->dma_rx_phy);
1261 } else {
1262 dma_free_coherent(priv->device, priv->dma_tx_size *
1263 sizeof(struct dma_extended_desc),
1264 priv->dma_etx, priv->dma_tx_phy);
1265 dma_free_coherent(priv->device, priv->dma_rx_size *
1266 sizeof(struct dma_extended_desc),
1267 priv->dma_erx, priv->dma_rx_phy);
1268 }
1269 kfree(priv->rx_skbuff_dma);
1270 kfree(priv->rx_skbuff);
1271 kfree(priv->tx_skbuff_dma);
1272 kfree(priv->tx_skbuff);
1273 }
1274
1275 /**
1276 * stmmac_dma_operation_mode - HW DMA operation mode
1277 * @priv: driver private structure
1278 * Description: it is used for configuring the DMA operation mode register in
1279 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1280 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1281 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1282 {
1283 int rxfifosz = priv->plat->rx_fifo_size;
1284
1285 if (priv->plat->force_thresh_dma_mode)
1286 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1287 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1288 /*
1289 * In case of GMAC, SF mode can be enabled
1290 * to perform the TX COE in HW. This depends on:
1291 * 1) TX COE if actually supported
1292 * 2) There is no bugged Jumbo frame support
1293 * that needs to not insert csum in the TDES.
1294 */
1295 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1296 rxfifosz);
1297 priv->xstats.threshold = SF_DMA_MODE;
1298 } else
1299 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1300 rxfifosz);
1301 }
1302
1303 /**
1304 * stmmac_tx_clean - to manage the transmission completion
1305 * @priv: driver private structure
1306 * Description: it reclaims the transmit resources after transmission completes.
1307 */
stmmac_tx_clean(struct stmmac_priv * priv)1308 static void stmmac_tx_clean(struct stmmac_priv *priv)
1309 {
1310 unsigned int txsize = priv->dma_tx_size;
1311 unsigned int bytes_compl = 0, pkts_compl = 0;
1312
1313 spin_lock(&priv->tx_lock);
1314
1315 priv->xstats.tx_clean++;
1316
1317 while (priv->dirty_tx != priv->cur_tx) {
1318 int last;
1319 unsigned int entry = priv->dirty_tx % txsize;
1320 struct sk_buff *skb = priv->tx_skbuff[entry];
1321 struct dma_desc *p;
1322
1323 if (priv->extend_desc)
1324 p = (struct dma_desc *)(priv->dma_etx + entry);
1325 else
1326 p = priv->dma_tx + entry;
1327
1328 /* Check if the descriptor is owned by the DMA. */
1329 if (priv->hw->desc->get_tx_owner(p))
1330 break;
1331
1332 /* Verify tx error by looking at the last segment. */
1333 last = priv->hw->desc->get_tx_ls(p);
1334 if (likely(last)) {
1335 int tx_error =
1336 priv->hw->desc->tx_status(&priv->dev->stats,
1337 &priv->xstats, p,
1338 priv->ioaddr);
1339 if (likely(tx_error == 0)) {
1340 priv->dev->stats.tx_packets++;
1341 priv->xstats.tx_pkt_n++;
1342 } else
1343 priv->dev->stats.tx_errors++;
1344
1345 stmmac_get_tx_hwtstamp(priv, entry, skb);
1346 }
1347 if (netif_msg_tx_done(priv))
1348 pr_debug("%s: curr %d, dirty %d\n", __func__,
1349 priv->cur_tx, priv->dirty_tx);
1350
1351 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1352 if (priv->tx_skbuff_dma[entry].map_as_page)
1353 dma_unmap_page(priv->device,
1354 priv->tx_skbuff_dma[entry].buf,
1355 priv->hw->desc->get_tx_len(p),
1356 DMA_TO_DEVICE);
1357 else
1358 dma_unmap_single(priv->device,
1359 priv->tx_skbuff_dma[entry].buf,
1360 priv->hw->desc->get_tx_len(p),
1361 DMA_TO_DEVICE);
1362 priv->tx_skbuff_dma[entry].buf = 0;
1363 priv->tx_skbuff_dma[entry].map_as_page = false;
1364 }
1365 priv->hw->mode->clean_desc3(priv, p);
1366
1367 if (likely(skb != NULL)) {
1368 pkts_compl++;
1369 bytes_compl += skb->len;
1370 dev_consume_skb_any(skb);
1371 priv->tx_skbuff[entry] = NULL;
1372 }
1373
1374 priv->hw->desc->release_tx_desc(p, priv->mode);
1375
1376 priv->dirty_tx++;
1377 }
1378
1379 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1380
1381 if (unlikely(netif_queue_stopped(priv->dev) &&
1382 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1383 netif_tx_lock(priv->dev);
1384 if (netif_queue_stopped(priv->dev) &&
1385 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1386 if (netif_msg_tx_done(priv))
1387 pr_debug("%s: restart transmit\n", __func__);
1388 netif_wake_queue(priv->dev);
1389 }
1390 netif_tx_unlock(priv->dev);
1391 }
1392
1393 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1394 stmmac_enable_eee_mode(priv);
1395 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1396 }
1397 spin_unlock(&priv->tx_lock);
1398 }
1399
stmmac_enable_dma_irq(struct stmmac_priv * priv)1400 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1401 {
1402 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1403 }
1404
stmmac_disable_dma_irq(struct stmmac_priv * priv)1405 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1406 {
1407 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1408 }
1409
1410 /**
1411 * stmmac_tx_err - to manage the tx error
1412 * @priv: driver private structure
1413 * Description: it cleans the descriptors and restarts the transmission
1414 * in case of transmission errors.
1415 */
stmmac_tx_err(struct stmmac_priv * priv)1416 static void stmmac_tx_err(struct stmmac_priv *priv)
1417 {
1418 int i;
1419 int txsize = priv->dma_tx_size;
1420 netif_stop_queue(priv->dev);
1421
1422 priv->hw->dma->stop_tx(priv->ioaddr);
1423 dma_free_tx_skbufs(priv);
1424 for (i = 0; i < txsize; i++)
1425 if (priv->extend_desc)
1426 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1427 priv->mode,
1428 (i == txsize - 1));
1429 else
1430 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1431 priv->mode,
1432 (i == txsize - 1));
1433 priv->dirty_tx = 0;
1434 priv->cur_tx = 0;
1435 netdev_reset_queue(priv->dev);
1436 priv->hw->dma->start_tx(priv->ioaddr);
1437
1438 priv->dev->stats.tx_errors++;
1439 netif_wake_queue(priv->dev);
1440 }
1441
1442 /**
1443 * stmmac_dma_interrupt - DMA ISR
1444 * @priv: driver private structure
1445 * Description: this is the DMA ISR. It is called by the main ISR.
1446 * It calls the dwmac dma routine and schedule poll method in case of some
1447 * work can be done.
1448 */
stmmac_dma_interrupt(struct stmmac_priv * priv)1449 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1450 {
1451 int status;
1452 int rxfifosz = priv->plat->rx_fifo_size;
1453
1454 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1455 if (likely((status & handle_rx)) || (status & handle_tx)) {
1456 if (likely(napi_schedule_prep(&priv->napi))) {
1457 stmmac_disable_dma_irq(priv);
1458 __napi_schedule(&priv->napi);
1459 }
1460 }
1461 if (unlikely(status & tx_hard_error_bump_tc)) {
1462 /* Try to bump up the dma threshold on this failure */
1463 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1464 (tc <= 256)) {
1465 tc += 64;
1466 if (priv->plat->force_thresh_dma_mode)
1467 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1468 rxfifosz);
1469 else
1470 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1471 SF_DMA_MODE, rxfifosz);
1472 priv->xstats.threshold = tc;
1473 }
1474 } else if (unlikely(status == tx_hard_error))
1475 stmmac_tx_err(priv);
1476 }
1477
1478 /**
1479 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1480 * @priv: driver private structure
1481 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1482 */
stmmac_mmc_setup(struct stmmac_priv * priv)1483 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1484 {
1485 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1486 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1487
1488 dwmac_mmc_intr_all_mask(priv->ioaddr);
1489
1490 if (priv->dma_cap.rmon) {
1491 dwmac_mmc_ctrl(priv->ioaddr, mode);
1492 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1493 } else
1494 pr_info(" No MAC Management Counters available\n");
1495 }
1496
1497 /**
1498 * stmmac_get_synopsys_id - return the SYINID.
1499 * @priv: driver private structure
1500 * Description: this simple function is to decode and return the SYINID
1501 * starting from the HW core register.
1502 */
stmmac_get_synopsys_id(struct stmmac_priv * priv)1503 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1504 {
1505 u32 hwid = priv->hw->synopsys_uid;
1506
1507 /* Check Synopsys Id (not available on old chips) */
1508 if (likely(hwid)) {
1509 u32 uid = ((hwid & 0x0000ff00) >> 8);
1510 u32 synid = (hwid & 0x000000ff);
1511
1512 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1513 uid, synid);
1514
1515 return synid;
1516 }
1517 return 0;
1518 }
1519
1520 /**
1521 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1522 * @priv: driver private structure
1523 * Description: select the Enhanced/Alternate or Normal descriptors.
1524 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1525 * supported by the HW capability register.
1526 */
stmmac_selec_desc_mode(struct stmmac_priv * priv)1527 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1528 {
1529 if (priv->plat->enh_desc) {
1530 pr_info(" Enhanced/Alternate descriptors\n");
1531
1532 /* GMAC older than 3.50 has no extended descriptors */
1533 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1534 pr_info("\tEnabled extended descriptors\n");
1535 priv->extend_desc = 1;
1536 } else
1537 pr_warn("Extended descriptors not supported\n");
1538
1539 priv->hw->desc = &enh_desc_ops;
1540 } else {
1541 pr_info(" Normal descriptors\n");
1542 priv->hw->desc = &ndesc_ops;
1543 }
1544 }
1545
1546 /**
1547 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1548 * @priv: driver private structure
1549 * Description:
1550 * new GMAC chip generations have a new register to indicate the
1551 * presence of the optional feature/functions.
1552 * This can be also used to override the value passed through the
1553 * platform and necessary for old MAC10/100 and GMAC chips.
1554 */
stmmac_get_hw_features(struct stmmac_priv * priv)1555 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1556 {
1557 u32 hw_cap = 0;
1558
1559 if (priv->hw->dma->get_hw_feature) {
1560 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1561
1562 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1563 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1564 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1565 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1566 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1567 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1568 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1569 priv->dma_cap.pmt_remote_wake_up =
1570 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1571 priv->dma_cap.pmt_magic_frame =
1572 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1573 /* MMC */
1574 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1575 /* IEEE 1588-2002 */
1576 priv->dma_cap.time_stamp =
1577 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1578 /* IEEE 1588-2008 */
1579 priv->dma_cap.atime_stamp =
1580 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1581 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1582 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1583 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1584 /* TX and RX csum */
1585 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1586 priv->dma_cap.rx_coe_type1 =
1587 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1588 priv->dma_cap.rx_coe_type2 =
1589 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1590 priv->dma_cap.rxfifo_over_2048 =
1591 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1592 /* TX and RX number of channels */
1593 priv->dma_cap.number_rx_channel =
1594 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1595 priv->dma_cap.number_tx_channel =
1596 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1597 /* Alternate (enhanced) DESC mode */
1598 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1599 }
1600
1601 return hw_cap;
1602 }
1603
1604 /**
1605 * stmmac_check_ether_addr - check if the MAC addr is valid
1606 * @priv: driver private structure
1607 * Description:
1608 * it is to verify if the MAC address is valid, in case of failures it
1609 * generates a random MAC address
1610 */
stmmac_check_ether_addr(struct stmmac_priv * priv)1611 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1612 {
1613 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1614 priv->hw->mac->get_umac_addr(priv->hw,
1615 priv->dev->dev_addr, 0);
1616 if (!is_valid_ether_addr(priv->dev->dev_addr))
1617 eth_hw_addr_random(priv->dev);
1618 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1619 priv->dev->dev_addr);
1620 }
1621 }
1622
1623 /**
1624 * stmmac_init_dma_engine - DMA init.
1625 * @priv: driver private structure
1626 * Description:
1627 * It inits the DMA invoking the specific MAC/GMAC callback.
1628 * Some DMA parameters can be passed from the platform;
1629 * in case of these are not passed a default is kept for the MAC or GMAC.
1630 */
stmmac_init_dma_engine(struct stmmac_priv * priv)1631 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1632 {
1633 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1634 int mixed_burst = 0;
1635 int atds = 0;
1636
1637 if (priv->plat->dma_cfg) {
1638 pbl = priv->plat->dma_cfg->pbl;
1639 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1640 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1641 burst_len = priv->plat->dma_cfg->burst_len;
1642 }
1643
1644 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1645 atds = 1;
1646
1647 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1648 burst_len, priv->dma_tx_phy,
1649 priv->dma_rx_phy, atds);
1650 }
1651
1652 /**
1653 * stmmac_tx_timer - mitigation sw timer for tx.
1654 * @data: data pointer
1655 * Description:
1656 * This is the timer handler to directly invoke the stmmac_tx_clean.
1657 */
stmmac_tx_timer(unsigned long data)1658 static void stmmac_tx_timer(unsigned long data)
1659 {
1660 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1661
1662 stmmac_tx_clean(priv);
1663 }
1664
1665 /**
1666 * stmmac_init_tx_coalesce - init tx mitigation options.
1667 * @priv: driver private structure
1668 * Description:
1669 * This inits the transmit coalesce parameters: i.e. timer rate,
1670 * timer handler and default threshold used for enabling the
1671 * interrupt on completion bit.
1672 */
stmmac_init_tx_coalesce(struct stmmac_priv * priv)1673 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1674 {
1675 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1676 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1677 init_timer(&priv->txtimer);
1678 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1679 priv->txtimer.data = (unsigned long)priv;
1680 priv->txtimer.function = stmmac_tx_timer;
1681 add_timer(&priv->txtimer);
1682 }
1683
1684 /**
1685 * stmmac_hw_setup - setup mac in a usable state.
1686 * @dev : pointer to the device structure.
1687 * Description:
1688 * this is the main function to setup the HW in a usable state because the
1689 * dma engine is reset, the core registers are configured (e.g. AXI,
1690 * Checksum features, timers). The DMA is ready to start receiving and
1691 * transmitting.
1692 * Return value:
1693 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1694 * file on failure.
1695 */
stmmac_hw_setup(struct net_device * dev,bool init_ptp)1696 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1697 {
1698 struct stmmac_priv *priv = netdev_priv(dev);
1699 int ret;
1700
1701 /* DMA initialization and SW reset */
1702 ret = stmmac_init_dma_engine(priv);
1703 if (ret < 0) {
1704 pr_err("%s: DMA engine initialization failed\n", __func__);
1705 return ret;
1706 }
1707
1708 /* Copy the MAC addr into the HW */
1709 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1710
1711 /* If required, perform hw setup of the bus. */
1712 if (priv->plat->bus_setup)
1713 priv->plat->bus_setup(priv->ioaddr);
1714
1715 /* Initialize the MAC Core */
1716 priv->hw->mac->core_init(priv->hw, dev->mtu);
1717
1718 ret = priv->hw->mac->rx_ipc(priv->hw);
1719 if (!ret) {
1720 pr_warn(" RX IPC Checksum Offload disabled\n");
1721 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1722 priv->hw->rx_csum = 0;
1723 }
1724
1725 /* Enable the MAC Rx/Tx */
1726 stmmac_set_mac(priv->ioaddr, true);
1727
1728 /* Set the HW DMA mode and the COE */
1729 stmmac_dma_operation_mode(priv);
1730
1731 stmmac_mmc_setup(priv);
1732
1733 if (init_ptp) {
1734 ret = stmmac_init_ptp(priv);
1735 if (ret && ret != -EOPNOTSUPP)
1736 pr_warn("%s: failed PTP initialisation\n", __func__);
1737 }
1738
1739 #ifdef CONFIG_DEBUG_FS
1740 ret = stmmac_init_fs(dev);
1741 if (ret < 0)
1742 pr_warn("%s: failed debugFS registration\n", __func__);
1743 #endif
1744 /* Start the ball rolling... */
1745 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1746 priv->hw->dma->start_tx(priv->ioaddr);
1747 priv->hw->dma->start_rx(priv->ioaddr);
1748
1749 /* Dump DMA/MAC registers */
1750 if (netif_msg_hw(priv)) {
1751 priv->hw->mac->dump_regs(priv->hw);
1752 priv->hw->dma->dump_regs(priv->ioaddr);
1753 }
1754 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1755
1756 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1757 priv->rx_riwt = MAX_DMA_RIWT;
1758 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1759 }
1760
1761 if (priv->pcs && priv->hw->mac->ctrl_ane)
1762 priv->hw->mac->ctrl_ane(priv->hw, 0);
1763
1764 return 0;
1765 }
1766
1767 /**
1768 * stmmac_open - open entry point of the driver
1769 * @dev : pointer to the device structure.
1770 * Description:
1771 * This function is the open entry point of the driver.
1772 * Return value:
1773 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1774 * file on failure.
1775 */
stmmac_open(struct net_device * dev)1776 static int stmmac_open(struct net_device *dev)
1777 {
1778 struct stmmac_priv *priv = netdev_priv(dev);
1779 int ret;
1780
1781 stmmac_check_ether_addr(priv);
1782
1783 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1784 priv->pcs != STMMAC_PCS_RTBI) {
1785 ret = stmmac_init_phy(dev);
1786 if (ret) {
1787 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1788 __func__, ret);
1789 return ret;
1790 }
1791 }
1792
1793 /* Extra statistics */
1794 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1795 priv->xstats.threshold = tc;
1796
1797 /* Create and initialize the TX/RX descriptors chains. */
1798 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1799 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1800 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1801
1802 ret = alloc_dma_desc_resources(priv);
1803 if (ret < 0) {
1804 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1805 goto dma_desc_error;
1806 }
1807
1808 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1809 if (ret < 0) {
1810 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1811 goto init_error;
1812 }
1813
1814 ret = stmmac_hw_setup(dev, true);
1815 if (ret < 0) {
1816 pr_err("%s: Hw setup failed\n", __func__);
1817 goto init_error;
1818 }
1819
1820 stmmac_init_tx_coalesce(priv);
1821
1822 if (priv->phydev)
1823 phy_start(priv->phydev);
1824
1825 /* Request the IRQ lines */
1826 ret = request_irq(dev->irq, stmmac_interrupt,
1827 IRQF_SHARED, dev->name, dev);
1828 if (unlikely(ret < 0)) {
1829 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1830 __func__, dev->irq, ret);
1831 goto init_error;
1832 }
1833
1834 /* Request the Wake IRQ in case of another line is used for WoL */
1835 if (priv->wol_irq != dev->irq) {
1836 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1837 IRQF_SHARED, dev->name, dev);
1838 if (unlikely(ret < 0)) {
1839 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1840 __func__, priv->wol_irq, ret);
1841 goto wolirq_error;
1842 }
1843 }
1844
1845 /* Request the IRQ lines */
1846 if (priv->lpi_irq > 0) {
1847 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1848 dev->name, dev);
1849 if (unlikely(ret < 0)) {
1850 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1851 __func__, priv->lpi_irq, ret);
1852 goto lpiirq_error;
1853 }
1854 }
1855
1856 napi_enable(&priv->napi);
1857 netif_start_queue(dev);
1858
1859 return 0;
1860
1861 lpiirq_error:
1862 if (priv->wol_irq != dev->irq)
1863 free_irq(priv->wol_irq, dev);
1864 wolirq_error:
1865 free_irq(dev->irq, dev);
1866
1867 init_error:
1868 free_dma_desc_resources(priv);
1869 dma_desc_error:
1870 if (priv->phydev)
1871 phy_disconnect(priv->phydev);
1872
1873 return ret;
1874 }
1875
1876 /**
1877 * stmmac_release - close entry point of the driver
1878 * @dev : device pointer.
1879 * Description:
1880 * This is the stop entry point of the driver.
1881 */
stmmac_release(struct net_device * dev)1882 static int stmmac_release(struct net_device *dev)
1883 {
1884 struct stmmac_priv *priv = netdev_priv(dev);
1885
1886 if (priv->eee_enabled)
1887 del_timer_sync(&priv->eee_ctrl_timer);
1888
1889 /* Stop and disconnect the PHY */
1890 if (priv->phydev) {
1891 phy_stop(priv->phydev);
1892 phy_disconnect(priv->phydev);
1893 priv->phydev = NULL;
1894 }
1895
1896 netif_stop_queue(dev);
1897
1898 napi_disable(&priv->napi);
1899
1900 del_timer_sync(&priv->txtimer);
1901
1902 /* Free the IRQ lines */
1903 free_irq(dev->irq, dev);
1904 if (priv->wol_irq != dev->irq)
1905 free_irq(priv->wol_irq, dev);
1906 if (priv->lpi_irq > 0)
1907 free_irq(priv->lpi_irq, dev);
1908
1909 /* Stop TX/RX DMA and clear the descriptors */
1910 priv->hw->dma->stop_tx(priv->ioaddr);
1911 priv->hw->dma->stop_rx(priv->ioaddr);
1912
1913 /* Release and free the Rx/Tx resources */
1914 free_dma_desc_resources(priv);
1915
1916 /* Disable the MAC Rx/Tx */
1917 stmmac_set_mac(priv->ioaddr, false);
1918
1919 netif_carrier_off(dev);
1920
1921 #ifdef CONFIG_DEBUG_FS
1922 stmmac_exit_fs(dev);
1923 #endif
1924
1925 stmmac_release_ptp(priv);
1926
1927 return 0;
1928 }
1929
1930 /**
1931 * stmmac_xmit - Tx entry point of the driver
1932 * @skb : the socket buffer
1933 * @dev : device pointer
1934 * Description : this is the tx entry point of the driver.
1935 * It programs the chain or the ring and supports oversized frames
1936 * and SG feature.
1937 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)1938 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1939 {
1940 struct stmmac_priv *priv = netdev_priv(dev);
1941 unsigned int txsize = priv->dma_tx_size;
1942 unsigned int entry;
1943 int i, csum_insertion = 0, is_jumbo = 0;
1944 int nfrags = skb_shinfo(skb)->nr_frags;
1945 struct dma_desc *desc, *first;
1946 unsigned int nopaged_len = skb_headlen(skb);
1947 unsigned int enh_desc = priv->plat->enh_desc;
1948
1949 spin_lock(&priv->tx_lock);
1950
1951 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1952 spin_unlock(&priv->tx_lock);
1953 if (!netif_queue_stopped(dev)) {
1954 netif_stop_queue(dev);
1955 /* This is a hard error, log it. */
1956 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1957 }
1958 return NETDEV_TX_BUSY;
1959 }
1960
1961 if (priv->tx_path_in_lpi_mode)
1962 stmmac_disable_eee_mode(priv);
1963
1964 entry = priv->cur_tx % txsize;
1965
1966 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1967
1968 if (priv->extend_desc)
1969 desc = (struct dma_desc *)(priv->dma_etx + entry);
1970 else
1971 desc = priv->dma_tx + entry;
1972
1973 first = desc;
1974
1975 /* To program the descriptors according to the size of the frame */
1976 if (enh_desc)
1977 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1978
1979 if (likely(!is_jumbo)) {
1980 desc->des2 = dma_map_single(priv->device, skb->data,
1981 nopaged_len, DMA_TO_DEVICE);
1982 if (dma_mapping_error(priv->device, desc->des2))
1983 goto dma_map_err;
1984 priv->tx_skbuff_dma[entry].buf = desc->des2;
1985 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1986 csum_insertion, priv->mode);
1987 } else {
1988 desc = first;
1989 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1990 if (unlikely(entry < 0))
1991 goto dma_map_err;
1992 }
1993
1994 for (i = 0; i < nfrags; i++) {
1995 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1996 int len = skb_frag_size(frag);
1997
1998 priv->tx_skbuff[entry] = NULL;
1999 entry = (++priv->cur_tx) % txsize;
2000 if (priv->extend_desc)
2001 desc = (struct dma_desc *)(priv->dma_etx + entry);
2002 else
2003 desc = priv->dma_tx + entry;
2004
2005 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2006 DMA_TO_DEVICE);
2007 if (dma_mapping_error(priv->device, desc->des2))
2008 goto dma_map_err; /* should reuse desc w/o issues */
2009
2010 priv->tx_skbuff_dma[entry].buf = desc->des2;
2011 priv->tx_skbuff_dma[entry].map_as_page = true;
2012 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2013 priv->mode);
2014 wmb();
2015 priv->hw->desc->set_tx_owner(desc);
2016 wmb();
2017 }
2018
2019 priv->tx_skbuff[entry] = skb;
2020
2021 /* Finalize the latest segment. */
2022 priv->hw->desc->close_tx_desc(desc);
2023
2024 wmb();
2025 /* According to the coalesce parameter the IC bit for the latest
2026 * segment could be reset and the timer re-started to invoke the
2027 * stmmac_tx function. This approach takes care about the fragments.
2028 */
2029 priv->tx_count_frames += nfrags + 1;
2030 if (priv->tx_coal_frames > priv->tx_count_frames) {
2031 priv->hw->desc->clear_tx_ic(desc);
2032 priv->xstats.tx_reset_ic_bit++;
2033 mod_timer(&priv->txtimer,
2034 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2035 } else
2036 priv->tx_count_frames = 0;
2037
2038 /* To avoid raise condition */
2039 priv->hw->desc->set_tx_owner(first);
2040 wmb();
2041
2042 priv->cur_tx++;
2043
2044 if (netif_msg_pktdata(priv)) {
2045 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2046 __func__, (priv->cur_tx % txsize),
2047 (priv->dirty_tx % txsize), entry, first, nfrags);
2048
2049 if (priv->extend_desc)
2050 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2051 else
2052 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2053
2054 pr_debug(">>> frame to be transmitted: ");
2055 print_pkt(skb->data, skb->len);
2056 }
2057 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2058 if (netif_msg_hw(priv))
2059 pr_debug("%s: stop transmitted packets\n", __func__);
2060 netif_stop_queue(dev);
2061 }
2062
2063 dev->stats.tx_bytes += skb->len;
2064
2065 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2066 priv->hwts_tx_en)) {
2067 /* declare that device is doing timestamping */
2068 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2069 priv->hw->desc->enable_tx_timestamp(first);
2070 }
2071
2072 if (!priv->hwts_tx_en)
2073 skb_tx_timestamp(skb);
2074
2075 netdev_sent_queue(dev, skb->len);
2076 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2077
2078 spin_unlock(&priv->tx_lock);
2079 return NETDEV_TX_OK;
2080
2081 dma_map_err:
2082 spin_unlock(&priv->tx_lock);
2083 dev_err(priv->device, "Tx dma map failed\n");
2084 dev_kfree_skb(skb);
2085 priv->dev->stats.tx_dropped++;
2086 return NETDEV_TX_OK;
2087 }
2088
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)2089 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2090 {
2091 struct ethhdr *ehdr;
2092 u16 vlanid;
2093
2094 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2095 NETIF_F_HW_VLAN_CTAG_RX &&
2096 !__vlan_get_tag(skb, &vlanid)) {
2097 /* pop the vlan tag */
2098 ehdr = (struct ethhdr *)skb->data;
2099 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2100 skb_pull(skb, VLAN_HLEN);
2101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2102 }
2103 }
2104
2105
2106 /**
2107 * stmmac_rx_refill - refill used skb preallocated buffers
2108 * @priv: driver private structure
2109 * Description : this is to reallocate the skb for the reception process
2110 * that is based on zero-copy.
2111 */
stmmac_rx_refill(struct stmmac_priv * priv)2112 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2113 {
2114 unsigned int rxsize = priv->dma_rx_size;
2115 int bfsize = priv->dma_buf_sz;
2116
2117 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2118 unsigned int entry = priv->dirty_rx % rxsize;
2119 struct dma_desc *p;
2120
2121 if (priv->extend_desc)
2122 p = (struct dma_desc *)(priv->dma_erx + entry);
2123 else
2124 p = priv->dma_rx + entry;
2125
2126 if (likely(priv->rx_skbuff[entry] == NULL)) {
2127 struct sk_buff *skb;
2128
2129 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2130
2131 if (unlikely(skb == NULL))
2132 break;
2133
2134 priv->rx_skbuff[entry] = skb;
2135 priv->rx_skbuff_dma[entry] =
2136 dma_map_single(priv->device, skb->data, bfsize,
2137 DMA_FROM_DEVICE);
2138 if (dma_mapping_error(priv->device,
2139 priv->rx_skbuff_dma[entry])) {
2140 dev_err(priv->device, "Rx dma map failed\n");
2141 dev_kfree_skb(skb);
2142 break;
2143 }
2144 p->des2 = priv->rx_skbuff_dma[entry];
2145
2146 priv->hw->mode->refill_desc3(priv, p);
2147
2148 if (netif_msg_rx_status(priv))
2149 pr_debug("\trefill entry #%d\n", entry);
2150 }
2151 wmb();
2152 priv->hw->desc->set_rx_owner(p);
2153 wmb();
2154 }
2155 }
2156
2157 /**
2158 * stmmac_rx - manage the receive process
2159 * @priv: driver private structure
2160 * @limit: napi bugget.
2161 * Description : this the function called by the napi poll method.
2162 * It gets all the frames inside the ring.
2163 */
stmmac_rx(struct stmmac_priv * priv,int limit)2164 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2165 {
2166 unsigned int rxsize = priv->dma_rx_size;
2167 unsigned int entry = priv->cur_rx % rxsize;
2168 unsigned int next_entry;
2169 unsigned int count = 0;
2170 int coe = priv->hw->rx_csum;
2171
2172 if (netif_msg_rx_status(priv)) {
2173 pr_debug("%s: descriptor ring:\n", __func__);
2174 if (priv->extend_desc)
2175 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2176 else
2177 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2178 }
2179 while (count < limit) {
2180 int status;
2181 struct dma_desc *p;
2182
2183 if (priv->extend_desc)
2184 p = (struct dma_desc *)(priv->dma_erx + entry);
2185 else
2186 p = priv->dma_rx + entry;
2187
2188 if (priv->hw->desc->get_rx_owner(p))
2189 break;
2190
2191 count++;
2192
2193 next_entry = (++priv->cur_rx) % rxsize;
2194 if (priv->extend_desc)
2195 prefetch(priv->dma_erx + next_entry);
2196 else
2197 prefetch(priv->dma_rx + next_entry);
2198
2199 /* read the status of the incoming frame */
2200 status = priv->hw->desc->rx_status(&priv->dev->stats,
2201 &priv->xstats, p);
2202 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2203 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2204 &priv->xstats,
2205 priv->dma_erx +
2206 entry);
2207 if (unlikely(status == discard_frame)) {
2208 priv->dev->stats.rx_errors++;
2209 if (priv->hwts_rx_en && !priv->extend_desc) {
2210 /* DESC2 & DESC3 will be overwitten by device
2211 * with timestamp value, hence reinitialize
2212 * them in stmmac_rx_refill() function so that
2213 * device can reuse it.
2214 */
2215 priv->rx_skbuff[entry] = NULL;
2216 dma_unmap_single(priv->device,
2217 priv->rx_skbuff_dma[entry],
2218 priv->dma_buf_sz,
2219 DMA_FROM_DEVICE);
2220 }
2221 } else {
2222 struct sk_buff *skb;
2223 int frame_len;
2224
2225 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2226
2227 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2228 * Type frames (LLC/LLC-SNAP)
2229 */
2230 if (unlikely(status != llc_snap))
2231 frame_len -= ETH_FCS_LEN;
2232
2233 if (netif_msg_rx_status(priv)) {
2234 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2235 p, entry, p->des2);
2236 if (frame_len > ETH_FRAME_LEN)
2237 pr_debug("\tframe size %d, COE: %d\n",
2238 frame_len, status);
2239 }
2240 skb = priv->rx_skbuff[entry];
2241 if (unlikely(!skb)) {
2242 pr_err("%s: Inconsistent Rx descriptor chain\n",
2243 priv->dev->name);
2244 priv->dev->stats.rx_dropped++;
2245 break;
2246 }
2247 prefetch(skb->data - NET_IP_ALIGN);
2248 priv->rx_skbuff[entry] = NULL;
2249
2250 stmmac_get_rx_hwtstamp(priv, entry, skb);
2251
2252 skb_put(skb, frame_len);
2253 dma_unmap_single(priv->device,
2254 priv->rx_skbuff_dma[entry],
2255 priv->dma_buf_sz, DMA_FROM_DEVICE);
2256
2257 if (netif_msg_pktdata(priv)) {
2258 pr_debug("frame received (%dbytes)", frame_len);
2259 print_pkt(skb->data, frame_len);
2260 }
2261
2262 stmmac_rx_vlan(priv->dev, skb);
2263
2264 skb->protocol = eth_type_trans(skb, priv->dev);
2265
2266 if (unlikely(!coe))
2267 skb_checksum_none_assert(skb);
2268 else
2269 skb->ip_summed = CHECKSUM_UNNECESSARY;
2270
2271 napi_gro_receive(&priv->napi, skb);
2272
2273 priv->dev->stats.rx_packets++;
2274 priv->dev->stats.rx_bytes += frame_len;
2275 }
2276 entry = next_entry;
2277 }
2278
2279 stmmac_rx_refill(priv);
2280
2281 priv->xstats.rx_pkt_n += count;
2282
2283 return count;
2284 }
2285
2286 /**
2287 * stmmac_poll - stmmac poll method (NAPI)
2288 * @napi : pointer to the napi structure.
2289 * @budget : maximum number of packets that the current CPU can receive from
2290 * all interfaces.
2291 * Description :
2292 * To look at the incoming frames and clear the tx resources.
2293 */
stmmac_poll(struct napi_struct * napi,int budget)2294 static int stmmac_poll(struct napi_struct *napi, int budget)
2295 {
2296 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2297 int work_done = 0;
2298
2299 priv->xstats.napi_poll++;
2300 stmmac_tx_clean(priv);
2301
2302 work_done = stmmac_rx(priv, budget);
2303 if (work_done < budget) {
2304 napi_complete(napi);
2305 stmmac_enable_dma_irq(priv);
2306 }
2307 return work_done;
2308 }
2309
2310 /**
2311 * stmmac_tx_timeout
2312 * @dev : Pointer to net device structure
2313 * Description: this function is called when a packet transmission fails to
2314 * complete within a reasonable time. The driver will mark the error in the
2315 * netdev structure and arrange for the device to be reset to a sane state
2316 * in order to transmit a new packet.
2317 */
stmmac_tx_timeout(struct net_device * dev)2318 static void stmmac_tx_timeout(struct net_device *dev)
2319 {
2320 struct stmmac_priv *priv = netdev_priv(dev);
2321
2322 /* Clear Tx resources and restart transmitting again */
2323 stmmac_tx_err(priv);
2324 }
2325
2326 /**
2327 * stmmac_set_rx_mode - entry point for multicast addressing
2328 * @dev : pointer to the device structure
2329 * Description:
2330 * This function is a driver entry point which gets called by the kernel
2331 * whenever multicast addresses must be enabled/disabled.
2332 * Return value:
2333 * void.
2334 */
stmmac_set_rx_mode(struct net_device * dev)2335 static void stmmac_set_rx_mode(struct net_device *dev)
2336 {
2337 struct stmmac_priv *priv = netdev_priv(dev);
2338
2339 priv->hw->mac->set_filter(priv->hw, dev);
2340 }
2341
2342 /**
2343 * stmmac_change_mtu - entry point to change MTU size for the device.
2344 * @dev : device pointer.
2345 * @new_mtu : the new MTU size for the device.
2346 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2347 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2348 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2349 * Return value:
2350 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2351 * file on failure.
2352 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)2353 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2354 {
2355 struct stmmac_priv *priv = netdev_priv(dev);
2356 int max_mtu;
2357
2358 if (netif_running(dev)) {
2359 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2360 return -EBUSY;
2361 }
2362
2363 if (priv->plat->enh_desc)
2364 max_mtu = JUMBO_LEN;
2365 else
2366 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2367
2368 if (priv->plat->maxmtu < max_mtu)
2369 max_mtu = priv->plat->maxmtu;
2370
2371 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2372 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2373 return -EINVAL;
2374 }
2375
2376 dev->mtu = new_mtu;
2377 netdev_update_features(dev);
2378
2379 return 0;
2380 }
2381
stmmac_fix_features(struct net_device * dev,netdev_features_t features)2382 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2383 netdev_features_t features)
2384 {
2385 struct stmmac_priv *priv = netdev_priv(dev);
2386
2387 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2388 features &= ~NETIF_F_RXCSUM;
2389
2390 if (!priv->plat->tx_coe)
2391 features &= ~NETIF_F_ALL_CSUM;
2392
2393 /* Some GMAC devices have a bugged Jumbo frame support that
2394 * needs to have the Tx COE disabled for oversized frames
2395 * (due to limited buffer sizes). In this case we disable
2396 * the TX csum insertionin the TDES and not use SF.
2397 */
2398 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2399 features &= ~NETIF_F_ALL_CSUM;
2400
2401 return features;
2402 }
2403
stmmac_set_features(struct net_device * netdev,netdev_features_t features)2404 static int stmmac_set_features(struct net_device *netdev,
2405 netdev_features_t features)
2406 {
2407 struct stmmac_priv *priv = netdev_priv(netdev);
2408
2409 /* Keep the COE Type in case of csum is supporting */
2410 if (features & NETIF_F_RXCSUM)
2411 priv->hw->rx_csum = priv->plat->rx_coe;
2412 else
2413 priv->hw->rx_csum = 0;
2414 /* No check needed because rx_coe has been set before and it will be
2415 * fixed in case of issue.
2416 */
2417 priv->hw->mac->rx_ipc(priv->hw);
2418
2419 return 0;
2420 }
2421
2422 /**
2423 * stmmac_interrupt - main ISR
2424 * @irq: interrupt number.
2425 * @dev_id: to pass the net device pointer.
2426 * Description: this is the main driver interrupt service routine.
2427 * It can call:
2428 * o DMA service routine (to manage incoming frame reception and transmission
2429 * status)
2430 * o Core interrupts to manage: remote wake-up, management counter, LPI
2431 * interrupts.
2432 */
stmmac_interrupt(int irq,void * dev_id)2433 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2434 {
2435 struct net_device *dev = (struct net_device *)dev_id;
2436 struct stmmac_priv *priv = netdev_priv(dev);
2437
2438 if (priv->irq_wake)
2439 pm_wakeup_event(priv->device, 0);
2440
2441 if (unlikely(!dev)) {
2442 pr_err("%s: invalid dev pointer\n", __func__);
2443 return IRQ_NONE;
2444 }
2445
2446 /* To handle GMAC own interrupts */
2447 if (priv->plat->has_gmac) {
2448 int status = priv->hw->mac->host_irq_status(priv->hw,
2449 &priv->xstats);
2450 if (unlikely(status)) {
2451 /* For LPI we need to save the tx status */
2452 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2453 priv->tx_path_in_lpi_mode = true;
2454 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2455 priv->tx_path_in_lpi_mode = false;
2456 }
2457 }
2458
2459 /* To handle DMA interrupts */
2460 stmmac_dma_interrupt(priv);
2461
2462 return IRQ_HANDLED;
2463 }
2464
2465 #ifdef CONFIG_NET_POLL_CONTROLLER
2466 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2467 * to allow network I/O with interrupts disabled.
2468 */
stmmac_poll_controller(struct net_device * dev)2469 static void stmmac_poll_controller(struct net_device *dev)
2470 {
2471 disable_irq(dev->irq);
2472 stmmac_interrupt(dev->irq, dev);
2473 enable_irq(dev->irq);
2474 }
2475 #endif
2476
2477 /**
2478 * stmmac_ioctl - Entry point for the Ioctl
2479 * @dev: Device pointer.
2480 * @rq: An IOCTL specefic structure, that can contain a pointer to
2481 * a proprietary structure used to pass information to the driver.
2482 * @cmd: IOCTL command
2483 * Description:
2484 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2485 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2486 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2487 {
2488 struct stmmac_priv *priv = netdev_priv(dev);
2489 int ret = -EOPNOTSUPP;
2490
2491 if (!netif_running(dev))
2492 return -EINVAL;
2493
2494 switch (cmd) {
2495 case SIOCGMIIPHY:
2496 case SIOCGMIIREG:
2497 case SIOCSMIIREG:
2498 if (!priv->phydev)
2499 return -EINVAL;
2500 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2501 break;
2502 case SIOCSHWTSTAMP:
2503 ret = stmmac_hwtstamp_ioctl(dev, rq);
2504 break;
2505 default:
2506 break;
2507 }
2508
2509 return ret;
2510 }
2511
2512 #ifdef CONFIG_DEBUG_FS
2513 static struct dentry *stmmac_fs_dir;
2514
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq)2515 static void sysfs_display_ring(void *head, int size, int extend_desc,
2516 struct seq_file *seq)
2517 {
2518 int i;
2519 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2520 struct dma_desc *p = (struct dma_desc *)head;
2521
2522 for (i = 0; i < size; i++) {
2523 u64 x;
2524 if (extend_desc) {
2525 x = *(u64 *) ep;
2526 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2527 i, (unsigned int)virt_to_phys(ep),
2528 (unsigned int)x, (unsigned int)(x >> 32),
2529 ep->basic.des2, ep->basic.des3);
2530 ep++;
2531 } else {
2532 x = *(u64 *) p;
2533 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2534 i, (unsigned int)virt_to_phys(ep),
2535 (unsigned int)x, (unsigned int)(x >> 32),
2536 p->des2, p->des3);
2537 p++;
2538 }
2539 seq_printf(seq, "\n");
2540 }
2541 }
2542
stmmac_sysfs_ring_read(struct seq_file * seq,void * v)2543 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2544 {
2545 struct net_device *dev = seq->private;
2546 struct stmmac_priv *priv = netdev_priv(dev);
2547 unsigned int txsize = priv->dma_tx_size;
2548 unsigned int rxsize = priv->dma_rx_size;
2549
2550 if (priv->extend_desc) {
2551 seq_printf(seq, "Extended RX descriptor ring:\n");
2552 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2553 seq_printf(seq, "Extended TX descriptor ring:\n");
2554 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2555 } else {
2556 seq_printf(seq, "RX descriptor ring:\n");
2557 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2558 seq_printf(seq, "TX descriptor ring:\n");
2559 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2560 }
2561
2562 return 0;
2563 }
2564
stmmac_sysfs_ring_open(struct inode * inode,struct file * file)2565 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2566 {
2567 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2568 }
2569
2570 static const struct file_operations stmmac_rings_status_fops = {
2571 .owner = THIS_MODULE,
2572 .open = stmmac_sysfs_ring_open,
2573 .read = seq_read,
2574 .llseek = seq_lseek,
2575 .release = single_release,
2576 };
2577
stmmac_sysfs_dma_cap_read(struct seq_file * seq,void * v)2578 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2579 {
2580 struct net_device *dev = seq->private;
2581 struct stmmac_priv *priv = netdev_priv(dev);
2582
2583 if (!priv->hw_cap_support) {
2584 seq_printf(seq, "DMA HW features not supported\n");
2585 return 0;
2586 }
2587
2588 seq_printf(seq, "==============================\n");
2589 seq_printf(seq, "\tDMA HW features\n");
2590 seq_printf(seq, "==============================\n");
2591
2592 seq_printf(seq, "\t10/100 Mbps %s\n",
2593 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2594 seq_printf(seq, "\t1000 Mbps %s\n",
2595 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2596 seq_printf(seq, "\tHalf duple %s\n",
2597 (priv->dma_cap.half_duplex) ? "Y" : "N");
2598 seq_printf(seq, "\tHash Filter: %s\n",
2599 (priv->dma_cap.hash_filter) ? "Y" : "N");
2600 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2601 (priv->dma_cap.multi_addr) ? "Y" : "N");
2602 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2603 (priv->dma_cap.pcs) ? "Y" : "N");
2604 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2605 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2606 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2607 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2608 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2609 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2610 seq_printf(seq, "\tRMON module: %s\n",
2611 (priv->dma_cap.rmon) ? "Y" : "N");
2612 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2613 (priv->dma_cap.time_stamp) ? "Y" : "N");
2614 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2615 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2616 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2617 (priv->dma_cap.eee) ? "Y" : "N");
2618 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2619 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2620 (priv->dma_cap.tx_coe) ? "Y" : "N");
2621 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2622 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2623 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2624 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2625 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2626 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2627 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2628 priv->dma_cap.number_rx_channel);
2629 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2630 priv->dma_cap.number_tx_channel);
2631 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2632 (priv->dma_cap.enh_desc) ? "Y" : "N");
2633
2634 return 0;
2635 }
2636
stmmac_sysfs_dma_cap_open(struct inode * inode,struct file * file)2637 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2638 {
2639 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2640 }
2641
2642 static const struct file_operations stmmac_dma_cap_fops = {
2643 .owner = THIS_MODULE,
2644 .open = stmmac_sysfs_dma_cap_open,
2645 .read = seq_read,
2646 .llseek = seq_lseek,
2647 .release = single_release,
2648 };
2649
stmmac_init_fs(struct net_device * dev)2650 static int stmmac_init_fs(struct net_device *dev)
2651 {
2652 struct stmmac_priv *priv = netdev_priv(dev);
2653
2654 /* Create per netdev entries */
2655 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2656
2657 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2658 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2659 STMMAC_RESOURCE_NAME, dev->name);
2660
2661 return -ENOMEM;
2662 }
2663
2664 /* Entry to report DMA RX/TX rings */
2665 priv->dbgfs_rings_status =
2666 debugfs_create_file("descriptors_status", S_IRUGO,
2667 priv->dbgfs_dir, dev,
2668 &stmmac_rings_status_fops);
2669
2670 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2671 pr_info("ERROR creating stmmac ring debugfs file\n");
2672 debugfs_remove_recursive(priv->dbgfs_dir);
2673
2674 return -ENOMEM;
2675 }
2676
2677 /* Entry to report the DMA HW features */
2678 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2679 priv->dbgfs_dir,
2680 dev, &stmmac_dma_cap_fops);
2681
2682 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2683 pr_info("ERROR creating stmmac MMC debugfs file\n");
2684 debugfs_remove_recursive(priv->dbgfs_dir);
2685
2686 return -ENOMEM;
2687 }
2688
2689 return 0;
2690 }
2691
stmmac_exit_fs(struct net_device * dev)2692 static void stmmac_exit_fs(struct net_device *dev)
2693 {
2694 struct stmmac_priv *priv = netdev_priv(dev);
2695
2696 debugfs_remove_recursive(priv->dbgfs_dir);
2697 }
2698 #endif /* CONFIG_DEBUG_FS */
2699
2700 static const struct net_device_ops stmmac_netdev_ops = {
2701 .ndo_open = stmmac_open,
2702 .ndo_start_xmit = stmmac_xmit,
2703 .ndo_stop = stmmac_release,
2704 .ndo_change_mtu = stmmac_change_mtu,
2705 .ndo_fix_features = stmmac_fix_features,
2706 .ndo_set_features = stmmac_set_features,
2707 .ndo_set_rx_mode = stmmac_set_rx_mode,
2708 .ndo_tx_timeout = stmmac_tx_timeout,
2709 .ndo_do_ioctl = stmmac_ioctl,
2710 #ifdef CONFIG_NET_POLL_CONTROLLER
2711 .ndo_poll_controller = stmmac_poll_controller,
2712 #endif
2713 .ndo_set_mac_address = eth_mac_addr,
2714 };
2715
2716 /**
2717 * stmmac_hw_init - Init the MAC device
2718 * @priv: driver private structure
2719 * Description: this function is to configure the MAC device according to
2720 * some platform parameters or the HW capability register. It prepares the
2721 * driver to use either ring or chain modes and to setup either enhanced or
2722 * normal descriptors.
2723 */
stmmac_hw_init(struct stmmac_priv * priv)2724 static int stmmac_hw_init(struct stmmac_priv *priv)
2725 {
2726 struct mac_device_info *mac;
2727
2728 /* Identify the MAC HW device */
2729 if (priv->plat->has_gmac) {
2730 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2731 mac = dwmac1000_setup(priv->ioaddr,
2732 priv->plat->multicast_filter_bins,
2733 priv->plat->unicast_filter_entries);
2734 } else {
2735 mac = dwmac100_setup(priv->ioaddr);
2736 }
2737 if (!mac)
2738 return -ENOMEM;
2739
2740 priv->hw = mac;
2741
2742 /* Get and dump the chip ID */
2743 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2744
2745 /* To use the chained or ring mode */
2746 if (chain_mode) {
2747 priv->hw->mode = &chain_mode_ops;
2748 pr_info(" Chain mode enabled\n");
2749 priv->mode = STMMAC_CHAIN_MODE;
2750 } else {
2751 priv->hw->mode = &ring_mode_ops;
2752 pr_info(" Ring mode enabled\n");
2753 priv->mode = STMMAC_RING_MODE;
2754 }
2755
2756 /* Get the HW capability (new GMAC newer than 3.50a) */
2757 priv->hw_cap_support = stmmac_get_hw_features(priv);
2758 if (priv->hw_cap_support) {
2759 pr_info(" DMA HW capability register supported");
2760
2761 /* We can override some gmac/dma configuration fields: e.g.
2762 * enh_desc, tx_coe (e.g. that are passed through the
2763 * platform) with the values from the HW capability
2764 * register (if supported).
2765 */
2766 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2767 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2768
2769 /* TXCOE doesn't work in thresh DMA mode */
2770 if (priv->plat->force_thresh_dma_mode)
2771 priv->plat->tx_coe = 0;
2772 else
2773 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2774
2775 if (priv->dma_cap.rx_coe_type2)
2776 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2777 else if (priv->dma_cap.rx_coe_type1)
2778 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2779
2780 } else
2781 pr_info(" No HW DMA feature register supported");
2782
2783 /* To use alternate (extended) or normal descriptor structures */
2784 stmmac_selec_desc_mode(priv);
2785
2786 if (priv->plat->rx_coe) {
2787 priv->hw->rx_csum = priv->plat->rx_coe;
2788 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2789 priv->plat->rx_coe);
2790 }
2791 if (priv->plat->tx_coe)
2792 pr_info(" TX Checksum insertion supported\n");
2793
2794 if (priv->plat->pmt) {
2795 pr_info(" Wake-Up On Lan supported\n");
2796 device_set_wakeup_capable(priv->device, 1);
2797 }
2798
2799 return 0;
2800 }
2801
2802 /**
2803 * stmmac_dvr_probe
2804 * @device: device pointer
2805 * @plat_dat: platform data pointer
2806 * @addr: iobase memory address
2807 * Description: this is the main probe function used to
2808 * call the alloc_etherdev, allocate the priv structure.
2809 * Return:
2810 * on success the new private structure is returned, otherwise the error
2811 * pointer.
2812 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,void __iomem * addr)2813 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2814 struct plat_stmmacenet_data *plat_dat,
2815 void __iomem *addr)
2816 {
2817 int ret = 0;
2818 struct net_device *ndev = NULL;
2819 struct stmmac_priv *priv;
2820
2821 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2822 if (!ndev)
2823 return ERR_PTR(-ENOMEM);
2824
2825 SET_NETDEV_DEV(ndev, device);
2826
2827 priv = netdev_priv(ndev);
2828 priv->device = device;
2829 priv->dev = ndev;
2830
2831 stmmac_set_ethtool_ops(ndev);
2832 priv->pause = pause;
2833 priv->plat = plat_dat;
2834 priv->ioaddr = addr;
2835 priv->dev->base_addr = (unsigned long)addr;
2836
2837 /* Verify driver arguments */
2838 stmmac_verify_args();
2839
2840 /* Override with kernel parameters if supplied XXX CRS XXX
2841 * this needs to have multiple instances
2842 */
2843 if ((phyaddr >= 0) && (phyaddr <= 31))
2844 priv->plat->phy_addr = phyaddr;
2845
2846 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2847 if (IS_ERR(priv->stmmac_clk)) {
2848 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2849 __func__);
2850 /* If failed to obtain stmmac_clk and specific clk_csr value
2851 * is NOT passed from the platform, probe fail.
2852 */
2853 if (!priv->plat->clk_csr) {
2854 ret = PTR_ERR(priv->stmmac_clk);
2855 goto error_clk_get;
2856 } else {
2857 priv->stmmac_clk = NULL;
2858 }
2859 }
2860 clk_prepare_enable(priv->stmmac_clk);
2861
2862 priv->pclk = devm_clk_get(priv->device, "pclk");
2863 if (IS_ERR(priv->pclk)) {
2864 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2865 ret = -EPROBE_DEFER;
2866 goto error_pclk_get;
2867 }
2868 priv->pclk = NULL;
2869 }
2870 clk_prepare_enable(priv->pclk);
2871
2872 priv->stmmac_rst = devm_reset_control_get(priv->device,
2873 STMMAC_RESOURCE_NAME);
2874 if (IS_ERR(priv->stmmac_rst)) {
2875 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2876 ret = -EPROBE_DEFER;
2877 goto error_hw_init;
2878 }
2879 dev_info(priv->device, "no reset control found\n");
2880 priv->stmmac_rst = NULL;
2881 }
2882 if (priv->stmmac_rst)
2883 reset_control_deassert(priv->stmmac_rst);
2884
2885 /* Init MAC and get the capabilities */
2886 ret = stmmac_hw_init(priv);
2887 if (ret)
2888 goto error_hw_init;
2889
2890 ndev->netdev_ops = &stmmac_netdev_ops;
2891
2892 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2893 NETIF_F_RXCSUM;
2894 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2895 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2896 #ifdef STMMAC_VLAN_TAG_USED
2897 /* Both mac100 and gmac support receive VLAN tag detection */
2898 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2899 #endif
2900 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2901
2902 if (flow_ctrl)
2903 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2904
2905 /* Rx Watchdog is available in the COREs newer than the 3.40.
2906 * In some case, for example on bugged HW this feature
2907 * has to be disable and this can be done by passing the
2908 * riwt_off field from the platform.
2909 */
2910 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2911 priv->use_riwt = 1;
2912 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2913 }
2914
2915 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2916
2917 spin_lock_init(&priv->lock);
2918 spin_lock_init(&priv->tx_lock);
2919
2920 ret = register_netdev(ndev);
2921 if (ret) {
2922 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2923 goto error_netdev_register;
2924 }
2925
2926 /* If a specific clk_csr value is passed from the platform
2927 * this means that the CSR Clock Range selection cannot be
2928 * changed at run-time and it is fixed. Viceversa the driver'll try to
2929 * set the MDC clock dynamically according to the csr actual
2930 * clock input.
2931 */
2932 if (!priv->plat->clk_csr)
2933 stmmac_clk_csr_set(priv);
2934 else
2935 priv->clk_csr = priv->plat->clk_csr;
2936
2937 stmmac_check_pcs_mode(priv);
2938
2939 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2940 priv->pcs != STMMAC_PCS_RTBI) {
2941 /* MDIO bus Registration */
2942 ret = stmmac_mdio_register(ndev);
2943 if (ret < 0) {
2944 pr_debug("%s: MDIO bus (id: %d) registration failed",
2945 __func__, priv->plat->bus_id);
2946 goto error_mdio_register;
2947 }
2948 }
2949
2950 return priv;
2951
2952 error_mdio_register:
2953 unregister_netdev(ndev);
2954 error_netdev_register:
2955 netif_napi_del(&priv->napi);
2956 error_hw_init:
2957 clk_disable_unprepare(priv->pclk);
2958 error_pclk_get:
2959 clk_disable_unprepare(priv->stmmac_clk);
2960 error_clk_get:
2961 free_netdev(ndev);
2962
2963 return ERR_PTR(ret);
2964 }
2965 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2966
2967 /**
2968 * stmmac_dvr_remove
2969 * @ndev: net device pointer
2970 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2971 * changes the link status, releases the DMA descriptor rings.
2972 */
stmmac_dvr_remove(struct net_device * ndev)2973 int stmmac_dvr_remove(struct net_device *ndev)
2974 {
2975 struct stmmac_priv *priv = netdev_priv(ndev);
2976
2977 pr_info("%s:\n\tremoving driver", __func__);
2978
2979 priv->hw->dma->stop_rx(priv->ioaddr);
2980 priv->hw->dma->stop_tx(priv->ioaddr);
2981
2982 stmmac_set_mac(priv->ioaddr, false);
2983 netif_carrier_off(ndev);
2984 unregister_netdev(ndev);
2985 if (priv->stmmac_rst)
2986 reset_control_assert(priv->stmmac_rst);
2987 clk_disable_unprepare(priv->pclk);
2988 clk_disable_unprepare(priv->stmmac_clk);
2989 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2990 priv->pcs != STMMAC_PCS_RTBI)
2991 stmmac_mdio_unregister(ndev);
2992 free_netdev(ndev);
2993
2994 return 0;
2995 }
2996 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
2997
2998 /**
2999 * stmmac_suspend - suspend callback
3000 * @ndev: net device pointer
3001 * Description: this is the function to suspend the device and it is called
3002 * by the platform driver to stop the network queue, release the resources,
3003 * program the PMT register (for WoL), clean and release driver resources.
3004 */
stmmac_suspend(struct net_device * ndev)3005 int stmmac_suspend(struct net_device *ndev)
3006 {
3007 struct stmmac_priv *priv = netdev_priv(ndev);
3008 unsigned long flags;
3009
3010 if (!ndev || !netif_running(ndev))
3011 return 0;
3012
3013 if (priv->phydev)
3014 phy_stop(priv->phydev);
3015
3016 spin_lock_irqsave(&priv->lock, flags);
3017
3018 netif_device_detach(ndev);
3019 netif_stop_queue(ndev);
3020
3021 napi_disable(&priv->napi);
3022
3023 /* Stop TX/RX DMA */
3024 priv->hw->dma->stop_tx(priv->ioaddr);
3025 priv->hw->dma->stop_rx(priv->ioaddr);
3026
3027 stmmac_clear_descriptors(priv);
3028
3029 /* Enable Power down mode by programming the PMT regs */
3030 if (device_may_wakeup(priv->device)) {
3031 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3032 priv->irq_wake = 1;
3033 } else {
3034 stmmac_set_mac(priv->ioaddr, false);
3035 pinctrl_pm_select_sleep_state(priv->device);
3036 /* Disable clock in case of PWM is off */
3037 clk_disable(priv->pclk);
3038 clk_disable(priv->stmmac_clk);
3039 }
3040 spin_unlock_irqrestore(&priv->lock, flags);
3041
3042 priv->oldlink = 0;
3043 priv->speed = 0;
3044 priv->oldduplex = -1;
3045 return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(stmmac_suspend);
3048
3049 /**
3050 * stmmac_resume - resume callback
3051 * @ndev: net device pointer
3052 * Description: when resume this function is invoked to setup the DMA and CORE
3053 * in a usable state.
3054 */
stmmac_resume(struct net_device * ndev)3055 int stmmac_resume(struct net_device *ndev)
3056 {
3057 struct stmmac_priv *priv = netdev_priv(ndev);
3058 unsigned long flags;
3059
3060 if (!netif_running(ndev))
3061 return 0;
3062
3063 spin_lock_irqsave(&priv->lock, flags);
3064
3065 /* Power Down bit, into the PM register, is cleared
3066 * automatically as soon as a magic packet or a Wake-up frame
3067 * is received. Anyway, it's better to manually clear
3068 * this bit because it can generate problems while resuming
3069 * from another devices (e.g. serial console).
3070 */
3071 if (device_may_wakeup(priv->device)) {
3072 priv->hw->mac->pmt(priv->hw, 0);
3073 priv->irq_wake = 0;
3074 } else {
3075 pinctrl_pm_select_default_state(priv->device);
3076 /* enable the clk prevously disabled */
3077 clk_enable(priv->stmmac_clk);
3078 clk_enable(priv->pclk);
3079 /* reset the phy so that it's ready */
3080 if (priv->mii)
3081 stmmac_mdio_reset(priv->mii);
3082 }
3083
3084 netif_device_attach(ndev);
3085
3086 init_dma_desc_rings(ndev, GFP_ATOMIC);
3087 stmmac_hw_setup(ndev, false);
3088 stmmac_init_tx_coalesce(priv);
3089
3090 napi_enable(&priv->napi);
3091
3092 netif_start_queue(ndev);
3093
3094 spin_unlock_irqrestore(&priv->lock, flags);
3095
3096 if (priv->phydev)
3097 phy_start(priv->phydev);
3098
3099 return 0;
3100 }
3101 EXPORT_SYMBOL_GPL(stmmac_resume);
3102
3103 #ifndef MODULE
stmmac_cmdline_opt(char * str)3104 static int __init stmmac_cmdline_opt(char *str)
3105 {
3106 char *opt;
3107
3108 if (!str || !*str)
3109 return -EINVAL;
3110 while ((opt = strsep(&str, ",")) != NULL) {
3111 if (!strncmp(opt, "debug:", 6)) {
3112 if (kstrtoint(opt + 6, 0, &debug))
3113 goto err;
3114 } else if (!strncmp(opt, "phyaddr:", 8)) {
3115 if (kstrtoint(opt + 8, 0, &phyaddr))
3116 goto err;
3117 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3118 if (kstrtoint(opt + 11, 0, &dma_txsize))
3119 goto err;
3120 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3121 if (kstrtoint(opt + 11, 0, &dma_rxsize))
3122 goto err;
3123 } else if (!strncmp(opt, "buf_sz:", 7)) {
3124 if (kstrtoint(opt + 7, 0, &buf_sz))
3125 goto err;
3126 } else if (!strncmp(opt, "tc:", 3)) {
3127 if (kstrtoint(opt + 3, 0, &tc))
3128 goto err;
3129 } else if (!strncmp(opt, "watchdog:", 9)) {
3130 if (kstrtoint(opt + 9, 0, &watchdog))
3131 goto err;
3132 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3133 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3134 goto err;
3135 } else if (!strncmp(opt, "pause:", 6)) {
3136 if (kstrtoint(opt + 6, 0, &pause))
3137 goto err;
3138 } else if (!strncmp(opt, "eee_timer:", 10)) {
3139 if (kstrtoint(opt + 10, 0, &eee_timer))
3140 goto err;
3141 } else if (!strncmp(opt, "chain_mode:", 11)) {
3142 if (kstrtoint(opt + 11, 0, &chain_mode))
3143 goto err;
3144 }
3145 }
3146 return 0;
3147
3148 err:
3149 pr_err("%s: ERROR broken module parameter conversion", __func__);
3150 return -EINVAL;
3151 }
3152
3153 __setup("stmmaceth=", stmmac_cmdline_opt);
3154 #endif /* MODULE */
3155
stmmac_init(void)3156 static int __init stmmac_init(void)
3157 {
3158 #ifdef CONFIG_DEBUG_FS
3159 /* Create debugfs main directory if it doesn't exist yet */
3160 if (!stmmac_fs_dir) {
3161 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3162
3163 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3164 pr_err("ERROR %s, debugfs create directory failed\n",
3165 STMMAC_RESOURCE_NAME);
3166
3167 return -ENOMEM;
3168 }
3169 }
3170 #endif
3171
3172 return 0;
3173 }
3174
stmmac_exit(void)3175 static void __exit stmmac_exit(void)
3176 {
3177 #ifdef CONFIG_DEBUG_FS
3178 debugfs_remove_recursive(stmmac_fs_dir);
3179 #endif
3180 }
3181
3182 module_init(stmmac_init)
3183 module_exit(stmmac_exit)
3184
3185 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3186 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3187 MODULE_LICENSE("GPL");
3188