1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 
56 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
57 
58 /* Module parameters */
59 #define TX_TIMEO	5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63 
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67 
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71 
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76 
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81 
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85 
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89 
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94 
95 #define	DEFAULT_BUFSIZE	1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99 
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103 
104 #define STMMAC_DEFAULT_LPI_TIMER	1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109 
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111  * but passing this value so user can force to use the chain instead of the ring
112  */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116 
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118 
119 #ifdef CONFIG_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(struct net_device *dev);
122 #endif
123 
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125 
126 /**
127  * stmmac_verify_args - verify the driver parameters.
128  * Description: it checks the driver parameters and set a default in case of
129  * errors.
130  */
stmmac_verify_args(void)131 static void stmmac_verify_args(void)
132 {
133 	if (unlikely(watchdog < 0))
134 		watchdog = TX_TIMEO;
135 	if (unlikely(dma_rxsize < 0))
136 		dma_rxsize = DMA_RX_SIZE;
137 	if (unlikely(dma_txsize < 0))
138 		dma_txsize = DMA_TX_SIZE;
139 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 		buf_sz = DEFAULT_BUFSIZE;
141 	if (unlikely(flow_ctrl > 1))
142 		flow_ctrl = FLOW_AUTO;
143 	else if (likely(flow_ctrl < 0))
144 		flow_ctrl = FLOW_OFF;
145 	if (unlikely((pause < 0) || (pause > 0xffff)))
146 		pause = PAUSE_TIME;
147 	if (eee_timer < 0)
148 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150 
151 /**
152  * stmmac_clk_csr_set - dynamically set the MDC clock
153  * @priv: driver private structure
154  * Description: this is to dynamically set the MDC clock according to the csr
155  * clock input.
156  * Note:
157  *	If a specific clk_csr value is passed from the platform
158  *	this means that the CSR Clock Range selection cannot be
159  *	changed at run-time and it is fixed (as reported in the driver
160  *	documentation). Viceversa the driver will try to set the MDC
161  *	clock dynamically according to the actual clock input.
162  */
stmmac_clk_csr_set(struct stmmac_priv * priv)163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 	u32 clk_rate;
166 
167 	clk_rate = clk_get_rate(priv->stmmac_clk);
168 
169 	/* Platform provided default clk_csr would be assumed valid
170 	 * for all other cases except for the below mentioned ones.
171 	 * For values higher than the IEEE 802.3 specified frequency
172 	 * we can not estimate the proper divider as it is not known
173 	 * the frequency of clk_csr_i. So we do not change the default
174 	 * divider.
175 	 */
176 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 		if (clk_rate < CSR_F_35M)
178 			priv->clk_csr = STMMAC_CSR_20_35M;
179 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 			priv->clk_csr = STMMAC_CSR_35_60M;
181 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 			priv->clk_csr = STMMAC_CSR_60_100M;
183 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 			priv->clk_csr = STMMAC_CSR_100_150M;
185 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 			priv->clk_csr = STMMAC_CSR_150_250M;
187 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 			priv->clk_csr = STMMAC_CSR_250_300M;
189 	}
190 }
191 
print_pkt(unsigned char * buf,int len)192 static void print_pkt(unsigned char *buf, int len)
193 {
194 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
195 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
196 }
197 
198 /* minimum number of free TX descriptors required to wake up TX process */
199 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
200 
stmmac_tx_avail(struct stmmac_priv * priv)201 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
202 {
203 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
204 }
205 
206 /**
207  * stmmac_hw_fix_mac_speed - callback for speed selection
208  * @priv: driver private structure
209  * Description: on some platforms (e.g. ST), some HW system configuraton
210  * registers have to be set according to the link speed negotiated.
211  */
stmmac_hw_fix_mac_speed(struct stmmac_priv * priv)212 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
213 {
214 	struct phy_device *phydev = priv->phydev;
215 
216 	if (likely(priv->plat->fix_mac_speed))
217 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
218 }
219 
220 /**
221  * stmmac_enable_eee_mode - check and enter in LPI mode
222  * @priv: driver private structure
223  * Description: this function is to verify and enter in LPI mode in case of
224  * EEE.
225  */
stmmac_enable_eee_mode(struct stmmac_priv * priv)226 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
227 {
228 	/* Check and enter in LPI mode */
229 	if ((priv->dirty_tx == priv->cur_tx) &&
230 	    (priv->tx_path_in_lpi_mode == false))
231 		priv->hw->mac->set_eee_mode(priv->hw);
232 }
233 
234 /**
235  * stmmac_disable_eee_mode - disable and exit from LPI mode
236  * @priv: driver private structure
237  * Description: this function is to exit and disable EEE in case of
238  * LPI state is true. This is called by the xmit.
239  */
stmmac_disable_eee_mode(struct stmmac_priv * priv)240 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
241 {
242 	priv->hw->mac->reset_eee_mode(priv->hw);
243 	del_timer_sync(&priv->eee_ctrl_timer);
244 	priv->tx_path_in_lpi_mode = false;
245 }
246 
247 /**
248  * stmmac_eee_ctrl_timer - EEE TX SW timer.
249  * @arg : data hook
250  * Description:
251  *  if there is no data transfer and if we are not in LPI state,
252  *  then MAC Transmitter can be moved to LPI state.
253  */
stmmac_eee_ctrl_timer(unsigned long arg)254 static void stmmac_eee_ctrl_timer(unsigned long arg)
255 {
256 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
257 
258 	stmmac_enable_eee_mode(priv);
259 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
260 }
261 
262 /**
263  * stmmac_eee_init - init EEE
264  * @priv: driver private structure
265  * Description:
266  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
267  *  can also manage EEE, this function enable the LPI state and start related
268  *  timer.
269  */
stmmac_eee_init(struct stmmac_priv * priv)270 bool stmmac_eee_init(struct stmmac_priv *priv)
271 {
272 	char *phy_bus_name = priv->plat->phy_bus_name;
273 	unsigned long flags;
274 	bool ret = false;
275 
276 	/* Using PCS we cannot dial with the phy registers at this stage
277 	 * so we do not support extra feature like EEE.
278 	 */
279 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
280 	    (priv->pcs == STMMAC_PCS_RTBI))
281 		goto out;
282 
283 	/* Never init EEE in case of a switch is attached */
284 	if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
285 		goto out;
286 
287 	/* MAC core supports the EEE feature. */
288 	if (priv->dma_cap.eee) {
289 		int tx_lpi_timer = priv->tx_lpi_timer;
290 
291 		/* Check if the PHY supports EEE */
292 		if (phy_init_eee(priv->phydev, 1)) {
293 			/* To manage at run-time if the EEE cannot be supported
294 			 * anymore (for example because the lp caps have been
295 			 * changed).
296 			 * In that case the driver disable own timers.
297 			 */
298 			spin_lock_irqsave(&priv->lock, flags);
299 			if (priv->eee_active) {
300 				pr_debug("stmmac: disable EEE\n");
301 				del_timer_sync(&priv->eee_ctrl_timer);
302 				priv->hw->mac->set_eee_timer(priv->hw, 0,
303 							     tx_lpi_timer);
304 			}
305 			priv->eee_active = 0;
306 			spin_unlock_irqrestore(&priv->lock, flags);
307 			goto out;
308 		}
309 		/* Activate the EEE and start timers */
310 		spin_lock_irqsave(&priv->lock, flags);
311 		if (!priv->eee_active) {
312 			priv->eee_active = 1;
313 			setup_timer(&priv->eee_ctrl_timer,
314 				    stmmac_eee_ctrl_timer,
315 				    (unsigned long)priv);
316 			mod_timer(&priv->eee_ctrl_timer,
317 				  STMMAC_LPI_T(eee_timer));
318 
319 			priv->hw->mac->set_eee_timer(priv->hw,
320 						     STMMAC_DEFAULT_LIT_LS,
321 						     tx_lpi_timer);
322 		}
323 		/* Set HW EEE according to the speed */
324 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
325 
326 		ret = true;
327 		spin_unlock_irqrestore(&priv->lock, flags);
328 
329 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
330 	}
331 out:
332 	return ret;
333 }
334 
335 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
336  * @priv: driver private structure
337  * @entry : descriptor index to be used.
338  * @skb : the socket buffer
339  * Description :
340  * This function will read timestamp from the descriptor & pass it to stack.
341  * and also perform some sanity checks.
342  */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,unsigned int entry,struct sk_buff * skb)343 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
344 				   unsigned int entry, struct sk_buff *skb)
345 {
346 	struct skb_shared_hwtstamps shhwtstamp;
347 	u64 ns;
348 	void *desc = NULL;
349 
350 	if (!priv->hwts_tx_en)
351 		return;
352 
353 	/* exit if skb doesn't support hw tstamp */
354 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
355 		return;
356 
357 	if (priv->adv_ts)
358 		desc = (priv->dma_etx + entry);
359 	else
360 		desc = (priv->dma_tx + entry);
361 
362 	/* check tx tstamp status */
363 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
364 		return;
365 
366 	/* get the valid tstamp */
367 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
368 
369 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
371 	/* pass tstamp to stack */
372 	skb_tstamp_tx(skb, &shhwtstamp);
373 
374 	return;
375 }
376 
377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
378  * @priv: driver private structure
379  * @entry : descriptor index to be used.
380  * @skb : the socket buffer
381  * Description :
382  * This function will read received packet's timestamp from the descriptor
383  * and pass it to stack. It also perform some sanity checks.
384  */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,unsigned int entry,struct sk_buff * skb)385 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
386 				   unsigned int entry, struct sk_buff *skb)
387 {
388 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
389 	u64 ns;
390 	void *desc = NULL;
391 
392 	if (!priv->hwts_rx_en)
393 		return;
394 
395 	if (priv->adv_ts)
396 		desc = (priv->dma_erx + entry);
397 	else
398 		desc = (priv->dma_rx + entry);
399 
400 	/* exit if rx tstamp is not valid */
401 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
402 		return;
403 
404 	/* get valid tstamp */
405 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
406 	shhwtstamp = skb_hwtstamps(skb);
407 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
408 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
409 }
410 
411 /**
412  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
413  *  @dev: device pointer.
414  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
415  *  a proprietary structure used to pass information to the driver.
416  *  Description:
417  *  This function configures the MAC to enable/disable both outgoing(TX)
418  *  and incoming(RX) packets time stamping based on user input.
419  *  Return Value:
420  *  0 on success and an appropriate -ve integer on failure.
421  */
stmmac_hwtstamp_ioctl(struct net_device * dev,struct ifreq * ifr)422 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
423 {
424 	struct stmmac_priv *priv = netdev_priv(dev);
425 	struct hwtstamp_config config;
426 	struct timespec now;
427 	u64 temp = 0;
428 	u32 ptp_v2 = 0;
429 	u32 tstamp_all = 0;
430 	u32 ptp_over_ipv4_udp = 0;
431 	u32 ptp_over_ipv6_udp = 0;
432 	u32 ptp_over_ethernet = 0;
433 	u32 snap_type_sel = 0;
434 	u32 ts_master_en = 0;
435 	u32 ts_event_en = 0;
436 	u32 value = 0;
437 
438 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
439 		netdev_alert(priv->dev, "No support for HW time stamping\n");
440 		priv->hwts_tx_en = 0;
441 		priv->hwts_rx_en = 0;
442 
443 		return -EOPNOTSUPP;
444 	}
445 
446 	if (copy_from_user(&config, ifr->ifr_data,
447 			   sizeof(struct hwtstamp_config)))
448 		return -EFAULT;
449 
450 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
451 		 __func__, config.flags, config.tx_type, config.rx_filter);
452 
453 	/* reserved for future extensions */
454 	if (config.flags)
455 		return -EINVAL;
456 
457 	if (config.tx_type != HWTSTAMP_TX_OFF &&
458 	    config.tx_type != HWTSTAMP_TX_ON)
459 		return -ERANGE;
460 
461 	if (priv->adv_ts) {
462 		switch (config.rx_filter) {
463 		case HWTSTAMP_FILTER_NONE:
464 			/* time stamp no incoming packet at all */
465 			config.rx_filter = HWTSTAMP_FILTER_NONE;
466 			break;
467 
468 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
469 			/* PTP v1, UDP, any kind of event packet */
470 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
471 			/* take time stamp for all event messages */
472 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
473 
474 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
475 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
476 			break;
477 
478 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
479 			/* PTP v1, UDP, Sync packet */
480 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
481 			/* take time stamp for SYNC messages only */
482 			ts_event_en = PTP_TCR_TSEVNTENA;
483 
484 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486 			break;
487 
488 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
489 			/* PTP v1, UDP, Delay_req packet */
490 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
491 			/* take time stamp for Delay_Req messages only */
492 			ts_master_en = PTP_TCR_TSMSTRENA;
493 			ts_event_en = PTP_TCR_TSEVNTENA;
494 
495 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
496 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
497 			break;
498 
499 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500 			/* PTP v2, UDP, any kind of event packet */
501 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
502 			ptp_v2 = PTP_TCR_TSVER2ENA;
503 			/* take time stamp for all event messages */
504 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
505 
506 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
507 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
508 			break;
509 
510 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
511 			/* PTP v2, UDP, Sync packet */
512 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
513 			ptp_v2 = PTP_TCR_TSVER2ENA;
514 			/* take time stamp for SYNC messages only */
515 			ts_event_en = PTP_TCR_TSEVNTENA;
516 
517 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519 			break;
520 
521 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
522 			/* PTP v2, UDP, Delay_req packet */
523 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
524 			ptp_v2 = PTP_TCR_TSVER2ENA;
525 			/* take time stamp for Delay_Req messages only */
526 			ts_master_en = PTP_TCR_TSMSTRENA;
527 			ts_event_en = PTP_TCR_TSEVNTENA;
528 
529 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
530 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
531 			break;
532 
533 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
534 			/* PTP v2/802.AS1 any layer, any kind of event packet */
535 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
536 			ptp_v2 = PTP_TCR_TSVER2ENA;
537 			/* take time stamp for all event messages */
538 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
539 
540 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542 			ptp_over_ethernet = PTP_TCR_TSIPENA;
543 			break;
544 
545 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
546 			/* PTP v2/802.AS1, any layer, Sync packet */
547 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
548 			ptp_v2 = PTP_TCR_TSVER2ENA;
549 			/* take time stamp for SYNC messages only */
550 			ts_event_en = PTP_TCR_TSEVNTENA;
551 
552 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
553 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
554 			ptp_over_ethernet = PTP_TCR_TSIPENA;
555 			break;
556 
557 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
558 			/* PTP v2/802.AS1, any layer, Delay_req packet */
559 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
560 			ptp_v2 = PTP_TCR_TSVER2ENA;
561 			/* take time stamp for Delay_Req messages only */
562 			ts_master_en = PTP_TCR_TSMSTRENA;
563 			ts_event_en = PTP_TCR_TSEVNTENA;
564 
565 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 			ptp_over_ethernet = PTP_TCR_TSIPENA;
568 			break;
569 
570 		case HWTSTAMP_FILTER_ALL:
571 			/* time stamp any incoming packet */
572 			config.rx_filter = HWTSTAMP_FILTER_ALL;
573 			tstamp_all = PTP_TCR_TSENALL;
574 			break;
575 
576 		default:
577 			return -ERANGE;
578 		}
579 	} else {
580 		switch (config.rx_filter) {
581 		case HWTSTAMP_FILTER_NONE:
582 			config.rx_filter = HWTSTAMP_FILTER_NONE;
583 			break;
584 		default:
585 			/* PTP v1, UDP, any kind of event packet */
586 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
587 			break;
588 		}
589 	}
590 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
591 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
592 
593 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
594 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
595 	else {
596 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
597 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
598 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
599 			 ts_master_en | snap_type_sel);
600 
601 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
602 
603 		/* program Sub Second Increment reg */
604 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
605 
606 		/* calculate default added value:
607 		 * formula is :
608 		 * addend = (2^32)/freq_div_ratio;
609 		 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
610 		 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
611 		 * NOTE: clk_ptp_ref_i should be >= 50MHz to
612 		 *       achieve 20ns accuracy.
613 		 *
614 		 * 2^x * y == (y << x), hence
615 		 * 2^32 * 50000000 ==> (50000000 << 32)
616 		 */
617 		temp = (u64) (50000000ULL << 32);
618 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
619 		priv->hw->ptp->config_addend(priv->ioaddr,
620 					     priv->default_addend);
621 
622 		/* initialize system time */
623 		getnstimeofday(&now);
624 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
625 					    now.tv_nsec);
626 	}
627 
628 	return copy_to_user(ifr->ifr_data, &config,
629 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631 
632 /**
633  * stmmac_init_ptp - init PTP
634  * @priv: driver private structure
635  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636  * This is done by looking at the HW cap. register.
637  * This function also registers the ptp driver.
638  */
stmmac_init_ptp(struct stmmac_priv * priv)639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642 		return -EOPNOTSUPP;
643 
644 	/* Fall-back to main clock in case of no PTP ref is passed */
645 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646 	if (IS_ERR(priv->clk_ptp_ref)) {
647 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648 		priv->clk_ptp_ref = NULL;
649 	} else {
650 		clk_prepare_enable(priv->clk_ptp_ref);
651 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652 	}
653 
654 	priv->adv_ts = 0;
655 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
656 		priv->adv_ts = 1;
657 
658 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660 
661 	if (netif_msg_hw(priv) && priv->adv_ts)
662 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663 
664 	priv->hw->ptp = &stmmac_ptp;
665 	priv->hwts_tx_en = 0;
666 	priv->hwts_rx_en = 0;
667 
668 	return stmmac_ptp_register(priv);
669 }
670 
stmmac_release_ptp(struct stmmac_priv * priv)671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673 	if (priv->clk_ptp_ref)
674 		clk_disable_unprepare(priv->clk_ptp_ref);
675 	stmmac_ptp_unregister(priv);
676 }
677 
678 /**
679  * stmmac_adjust_link - adjusts the link parameters
680  * @dev: net device structure
681  * Description: this is the helper called by the physical abstraction layer
682  * drivers to communicate the phy link status. According the speed and duplex
683  * this driver can invoke registered glue-logic as well.
684  * It also invoke the eee initialization because it could happen when switch
685  * on different networks (that are eee capable).
686  */
stmmac_adjust_link(struct net_device * dev)687 static void stmmac_adjust_link(struct net_device *dev)
688 {
689 	struct stmmac_priv *priv = netdev_priv(dev);
690 	struct phy_device *phydev = priv->phydev;
691 	unsigned long flags;
692 	int new_state = 0;
693 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694 
695 	if (phydev == NULL)
696 		return;
697 
698 	spin_lock_irqsave(&priv->lock, flags);
699 
700 	if (phydev->link) {
701 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702 
703 		/* Now we make sure that we can be in full duplex mode.
704 		 * If not, we operate in half-duplex mode. */
705 		if (phydev->duplex != priv->oldduplex) {
706 			new_state = 1;
707 			if (!(phydev->duplex))
708 				ctrl &= ~priv->hw->link.duplex;
709 			else
710 				ctrl |= priv->hw->link.duplex;
711 			priv->oldduplex = phydev->duplex;
712 		}
713 		/* Flow Control operation */
714 		if (phydev->pause)
715 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716 						 fc, pause_time);
717 
718 		if (phydev->speed != priv->speed) {
719 			new_state = 1;
720 			switch (phydev->speed) {
721 			case 1000:
722 				if (likely(priv->plat->has_gmac))
723 					ctrl &= ~priv->hw->link.port;
724 				stmmac_hw_fix_mac_speed(priv);
725 				break;
726 			case 100:
727 			case 10:
728 				if (priv->plat->has_gmac) {
729 					ctrl |= priv->hw->link.port;
730 					if (phydev->speed == SPEED_100) {
731 						ctrl |= priv->hw->link.speed;
732 					} else {
733 						ctrl &= ~(priv->hw->link.speed);
734 					}
735 				} else {
736 					ctrl &= ~priv->hw->link.port;
737 				}
738 				stmmac_hw_fix_mac_speed(priv);
739 				break;
740 			default:
741 				if (netif_msg_link(priv))
742 					pr_warn("%s: Speed (%d) not 10/100\n",
743 						dev->name, phydev->speed);
744 				break;
745 			}
746 
747 			priv->speed = phydev->speed;
748 		}
749 
750 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751 
752 		if (!priv->oldlink) {
753 			new_state = 1;
754 			priv->oldlink = 1;
755 		}
756 	} else if (priv->oldlink) {
757 		new_state = 1;
758 		priv->oldlink = 0;
759 		priv->speed = 0;
760 		priv->oldduplex = -1;
761 	}
762 
763 	if (new_state && netif_msg_link(priv))
764 		phy_print_status(phydev);
765 
766 	spin_unlock_irqrestore(&priv->lock, flags);
767 
768 	/* At this stage, it could be needed to setup the EEE or adjust some
769 	 * MAC related HW registers.
770 	 */
771 	priv->eee_enabled = stmmac_eee_init(priv);
772 }
773 
774 /**
775  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776  * @priv: driver private structure
777  * Description: this is to verify if the HW supports the PCS.
778  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779  * configured for the TBI, RTBI, or SGMII PHY interface.
780  */
stmmac_check_pcs_mode(struct stmmac_priv * priv)781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782 {
783 	int interface = priv->plat->interface;
784 
785 	if (priv->dma_cap.pcs) {
786 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790 			pr_debug("STMMAC: PCS RGMII support enable\n");
791 			priv->pcs = STMMAC_PCS_RGMII;
792 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
793 			pr_debug("STMMAC: PCS SGMII support enable\n");
794 			priv->pcs = STMMAC_PCS_SGMII;
795 		}
796 	}
797 }
798 
799 /**
800  * stmmac_init_phy - PHY initialization
801  * @dev: net device structure
802  * Description: it initializes the driver's PHY state, and attaches the PHY
803  * to the mac driver.
804  *  Return value:
805  *  0 on success
806  */
stmmac_init_phy(struct net_device * dev)807 static int stmmac_init_phy(struct net_device *dev)
808 {
809 	struct stmmac_priv *priv = netdev_priv(dev);
810 	struct phy_device *phydev;
811 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812 	char bus_id[MII_BUS_ID_SIZE];
813 	int interface = priv->plat->interface;
814 	int max_speed = priv->plat->max_speed;
815 	priv->oldlink = 0;
816 	priv->speed = 0;
817 	priv->oldduplex = -1;
818 
819 	if (priv->plat->phy_bus_name)
820 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
821 			 priv->plat->phy_bus_name, priv->plat->bus_id);
822 	else
823 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
824 			 priv->plat->bus_id);
825 
826 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
827 		 priv->plat->phy_addr);
828 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
829 
830 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
831 
832 	if (IS_ERR_OR_NULL(phydev)) {
833 		pr_err("%s: Could not attach to PHY\n", dev->name);
834 		if (!phydev)
835 			return -ENODEV;
836 
837 		return PTR_ERR(phydev);
838 	}
839 
840 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
841 	if ((interface == PHY_INTERFACE_MODE_MII) ||
842 	    (interface == PHY_INTERFACE_MODE_RMII) ||
843 		(max_speed < 1000 && max_speed > 0))
844 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
845 					 SUPPORTED_1000baseT_Full);
846 
847 	/*
848 	 * Broken HW is sometimes missing the pull-up resistor on the
849 	 * MDIO line, which results in reads to non-existent devices returning
850 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
851 	 * device as well.
852 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
853 	 */
854 	if (phydev->phy_id == 0) {
855 		phy_disconnect(phydev);
856 		return -ENODEV;
857 	}
858 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
859 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
860 
861 	priv->phydev = phydev;
862 
863 	return 0;
864 }
865 
866 /**
867  * stmmac_display_ring - display ring
868  * @head: pointer to the head of the ring passed.
869  * @size: size of the ring.
870  * @extend_desc: to verify if extended descriptors are used.
871  * Description: display the control/status and buffer descriptors.
872  */
stmmac_display_ring(void * head,int size,int extend_desc)873 static void stmmac_display_ring(void *head, int size, int extend_desc)
874 {
875 	int i;
876 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
877 	struct dma_desc *p = (struct dma_desc *)head;
878 
879 	for (i = 0; i < size; i++) {
880 		u64 x;
881 		if (extend_desc) {
882 			x = *(u64 *) ep;
883 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
884 				i, (unsigned int)virt_to_phys(ep),
885 				(unsigned int)x, (unsigned int)(x >> 32),
886 				ep->basic.des2, ep->basic.des3);
887 			ep++;
888 		} else {
889 			x = *(u64 *) p;
890 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
891 				i, (unsigned int)virt_to_phys(p),
892 				(unsigned int)x, (unsigned int)(x >> 32),
893 				p->des2, p->des3);
894 			p++;
895 		}
896 		pr_info("\n");
897 	}
898 }
899 
stmmac_display_rings(struct stmmac_priv * priv)900 static void stmmac_display_rings(struct stmmac_priv *priv)
901 {
902 	unsigned int txsize = priv->dma_tx_size;
903 	unsigned int rxsize = priv->dma_rx_size;
904 
905 	if (priv->extend_desc) {
906 		pr_info("Extended RX descriptor ring:\n");
907 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
908 		pr_info("Extended TX descriptor ring:\n");
909 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
910 	} else {
911 		pr_info("RX descriptor ring:\n");
912 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
913 		pr_info("TX descriptor ring:\n");
914 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
915 	}
916 }
917 
stmmac_set_bfsize(int mtu,int bufsize)918 static int stmmac_set_bfsize(int mtu, int bufsize)
919 {
920 	int ret = bufsize;
921 
922 	if (mtu >= BUF_SIZE_4KiB)
923 		ret = BUF_SIZE_8KiB;
924 	else if (mtu >= BUF_SIZE_2KiB)
925 		ret = BUF_SIZE_4KiB;
926 	else if (mtu > DEFAULT_BUFSIZE)
927 		ret = BUF_SIZE_2KiB;
928 	else
929 		ret = DEFAULT_BUFSIZE;
930 
931 	return ret;
932 }
933 
934 /**
935  * stmmac_clear_descriptors - clear descriptors
936  * @priv: driver private structure
937  * Description: this function is called to clear the tx and rx descriptors
938  * in case of both basic and extended descriptors are used.
939  */
stmmac_clear_descriptors(struct stmmac_priv * priv)940 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
941 {
942 	int i;
943 	unsigned int txsize = priv->dma_tx_size;
944 	unsigned int rxsize = priv->dma_rx_size;
945 
946 	/* Clear the Rx/Tx descriptors */
947 	for (i = 0; i < rxsize; i++)
948 		if (priv->extend_desc)
949 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
950 						     priv->use_riwt, priv->mode,
951 						     (i == rxsize - 1));
952 		else
953 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
954 						     priv->use_riwt, priv->mode,
955 						     (i == rxsize - 1));
956 	for (i = 0; i < txsize; i++)
957 		if (priv->extend_desc)
958 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
959 						     priv->mode,
960 						     (i == txsize - 1));
961 		else
962 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
963 						     priv->mode,
964 						     (i == txsize - 1));
965 }
966 
967 /**
968  * stmmac_init_rx_buffers - init the RX descriptor buffer.
969  * @priv: driver private structure
970  * @p: descriptor pointer
971  * @i: descriptor index
972  * @flags: gfp flag.
973  * Description: this function is called to allocate a receive buffer, perform
974  * the DMA mapping and init the descriptor.
975  */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags)976 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
977 				  int i, gfp_t flags)
978 {
979 	struct sk_buff *skb;
980 
981 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
982 				 flags);
983 	if (!skb) {
984 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
985 		return -ENOMEM;
986 	}
987 	skb_reserve(skb, NET_IP_ALIGN);
988 	priv->rx_skbuff[i] = skb;
989 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
990 						priv->dma_buf_sz,
991 						DMA_FROM_DEVICE);
992 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
993 		pr_err("%s: DMA mapping error\n", __func__);
994 		dev_kfree_skb_any(skb);
995 		return -EINVAL;
996 	}
997 
998 	p->des2 = priv->rx_skbuff_dma[i];
999 
1000 	if ((priv->hw->mode->init_desc3) &&
1001 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
1002 		priv->hw->mode->init_desc3(p);
1003 
1004 	return 0;
1005 }
1006 
stmmac_free_rx_buffers(struct stmmac_priv * priv,int i)1007 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1008 {
1009 	if (priv->rx_skbuff[i]) {
1010 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1011 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1012 		dev_kfree_skb_any(priv->rx_skbuff[i]);
1013 	}
1014 	priv->rx_skbuff[i] = NULL;
1015 }
1016 
1017 /**
1018  * init_dma_desc_rings - init the RX/TX descriptor rings
1019  * @dev: net device structure
1020  * @flags: gfp flag.
1021  * Description: this function initializes the DMA RX/TX descriptors
1022  * and allocates the socket buffers. It suppors the chained and ring
1023  * modes.
1024  */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1025 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1026 {
1027 	int i;
1028 	struct stmmac_priv *priv = netdev_priv(dev);
1029 	unsigned int txsize = priv->dma_tx_size;
1030 	unsigned int rxsize = priv->dma_rx_size;
1031 	unsigned int bfsize = 0;
1032 	int ret = -ENOMEM;
1033 
1034 	if (priv->hw->mode->set_16kib_bfsize)
1035 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1036 
1037 	if (bfsize < BUF_SIZE_16KiB)
1038 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1039 
1040 	priv->dma_buf_sz = bfsize;
1041 
1042 	if (netif_msg_probe(priv))
1043 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1044 			 txsize, rxsize, bfsize);
1045 
1046 	if (netif_msg_probe(priv)) {
1047 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1048 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1049 
1050 		/* RX INITIALIZATION */
1051 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1052 	}
1053 	for (i = 0; i < rxsize; i++) {
1054 		struct dma_desc *p;
1055 		if (priv->extend_desc)
1056 			p = &((priv->dma_erx + i)->basic);
1057 		else
1058 			p = priv->dma_rx + i;
1059 
1060 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1061 		if (ret)
1062 			goto err_init_rx_buffers;
1063 
1064 		if (netif_msg_probe(priv))
1065 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1066 				 priv->rx_skbuff[i]->data,
1067 				 (unsigned int)priv->rx_skbuff_dma[i]);
1068 	}
1069 	priv->cur_rx = 0;
1070 	priv->dirty_rx = (unsigned int)(i - rxsize);
1071 	buf_sz = bfsize;
1072 
1073 	/* Setup the chained descriptor addresses */
1074 	if (priv->mode == STMMAC_CHAIN_MODE) {
1075 		if (priv->extend_desc) {
1076 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1077 					     rxsize, 1);
1078 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1079 					     txsize, 1);
1080 		} else {
1081 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1082 					     rxsize, 0);
1083 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1084 					     txsize, 0);
1085 		}
1086 	}
1087 
1088 	/* TX INITIALIZATION */
1089 	for (i = 0; i < txsize; i++) {
1090 		struct dma_desc *p;
1091 		if (priv->extend_desc)
1092 			p = &((priv->dma_etx + i)->basic);
1093 		else
1094 			p = priv->dma_tx + i;
1095 		p->des2 = 0;
1096 		priv->tx_skbuff_dma[i].buf = 0;
1097 		priv->tx_skbuff_dma[i].map_as_page = false;
1098 		priv->tx_skbuff[i] = NULL;
1099 	}
1100 
1101 	priv->dirty_tx = 0;
1102 	priv->cur_tx = 0;
1103 	netdev_reset_queue(priv->dev);
1104 
1105 	stmmac_clear_descriptors(priv);
1106 
1107 	if (netif_msg_hw(priv))
1108 		stmmac_display_rings(priv);
1109 
1110 	return 0;
1111 err_init_rx_buffers:
1112 	while (--i >= 0)
1113 		stmmac_free_rx_buffers(priv, i);
1114 	return ret;
1115 }
1116 
dma_free_rx_skbufs(struct stmmac_priv * priv)1117 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1118 {
1119 	int i;
1120 
1121 	for (i = 0; i < priv->dma_rx_size; i++)
1122 		stmmac_free_rx_buffers(priv, i);
1123 }
1124 
dma_free_tx_skbufs(struct stmmac_priv * priv)1125 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1126 {
1127 	int i;
1128 
1129 	for (i = 0; i < priv->dma_tx_size; i++) {
1130 		struct dma_desc *p;
1131 
1132 		if (priv->extend_desc)
1133 			p = &((priv->dma_etx + i)->basic);
1134 		else
1135 			p = priv->dma_tx + i;
1136 
1137 		if (priv->tx_skbuff_dma[i].buf) {
1138 			if (priv->tx_skbuff_dma[i].map_as_page)
1139 				dma_unmap_page(priv->device,
1140 					       priv->tx_skbuff_dma[i].buf,
1141 					       priv->hw->desc->get_tx_len(p),
1142 					       DMA_TO_DEVICE);
1143 			else
1144 				dma_unmap_single(priv->device,
1145 						 priv->tx_skbuff_dma[i].buf,
1146 						 priv->hw->desc->get_tx_len(p),
1147 						 DMA_TO_DEVICE);
1148 		}
1149 
1150 		if (priv->tx_skbuff[i] != NULL) {
1151 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1152 			priv->tx_skbuff[i] = NULL;
1153 			priv->tx_skbuff_dma[i].buf = 0;
1154 			priv->tx_skbuff_dma[i].map_as_page = false;
1155 		}
1156 	}
1157 }
1158 
1159 /**
1160  * alloc_dma_desc_resources - alloc TX/RX resources.
1161  * @priv: private structure
1162  * Description: according to which descriptor can be used (extend or basic)
1163  * this function allocates the resources for TX and RX paths. In case of
1164  * reception, for example, it pre-allocated the RX socket buffer in order to
1165  * allow zero-copy mechanism.
1166  */
alloc_dma_desc_resources(struct stmmac_priv * priv)1167 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1168 {
1169 	unsigned int txsize = priv->dma_tx_size;
1170 	unsigned int rxsize = priv->dma_rx_size;
1171 	int ret = -ENOMEM;
1172 
1173 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1174 					    GFP_KERNEL);
1175 	if (!priv->rx_skbuff_dma)
1176 		return -ENOMEM;
1177 
1178 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1179 					GFP_KERNEL);
1180 	if (!priv->rx_skbuff)
1181 		goto err_rx_skbuff;
1182 
1183 	priv->tx_skbuff_dma = kmalloc_array(txsize,
1184 					    sizeof(*priv->tx_skbuff_dma),
1185 					    GFP_KERNEL);
1186 	if (!priv->tx_skbuff_dma)
1187 		goto err_tx_skbuff_dma;
1188 
1189 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1190 					GFP_KERNEL);
1191 	if (!priv->tx_skbuff)
1192 		goto err_tx_skbuff;
1193 
1194 	if (priv->extend_desc) {
1195 		priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1196 						    sizeof(struct
1197 							   dma_extended_desc),
1198 						    &priv->dma_rx_phy,
1199 						    GFP_KERNEL);
1200 		if (!priv->dma_erx)
1201 			goto err_dma;
1202 
1203 		priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1204 						    sizeof(struct
1205 							   dma_extended_desc),
1206 						    &priv->dma_tx_phy,
1207 						    GFP_KERNEL);
1208 		if (!priv->dma_etx) {
1209 			dma_free_coherent(priv->device, priv->dma_rx_size *
1210 					  sizeof(struct dma_extended_desc),
1211 					  priv->dma_erx, priv->dma_rx_phy);
1212 			goto err_dma;
1213 		}
1214 	} else {
1215 		priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1216 						   sizeof(struct dma_desc),
1217 						   &priv->dma_rx_phy,
1218 						   GFP_KERNEL);
1219 		if (!priv->dma_rx)
1220 			goto err_dma;
1221 
1222 		priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1223 						   sizeof(struct dma_desc),
1224 						   &priv->dma_tx_phy,
1225 						   GFP_KERNEL);
1226 		if (!priv->dma_tx) {
1227 			dma_free_coherent(priv->device, priv->dma_rx_size *
1228 					  sizeof(struct dma_desc),
1229 					  priv->dma_rx, priv->dma_rx_phy);
1230 			goto err_dma;
1231 		}
1232 	}
1233 
1234 	return 0;
1235 
1236 err_dma:
1237 	kfree(priv->tx_skbuff);
1238 err_tx_skbuff:
1239 	kfree(priv->tx_skbuff_dma);
1240 err_tx_skbuff_dma:
1241 	kfree(priv->rx_skbuff);
1242 err_rx_skbuff:
1243 	kfree(priv->rx_skbuff_dma);
1244 	return ret;
1245 }
1246 
free_dma_desc_resources(struct stmmac_priv * priv)1247 static void free_dma_desc_resources(struct stmmac_priv *priv)
1248 {
1249 	/* Release the DMA TX/RX socket buffers */
1250 	dma_free_rx_skbufs(priv);
1251 	dma_free_tx_skbufs(priv);
1252 
1253 	/* Free DMA regions of consistent memory previously allocated */
1254 	if (!priv->extend_desc) {
1255 		dma_free_coherent(priv->device,
1256 				  priv->dma_tx_size * sizeof(struct dma_desc),
1257 				  priv->dma_tx, priv->dma_tx_phy);
1258 		dma_free_coherent(priv->device,
1259 				  priv->dma_rx_size * sizeof(struct dma_desc),
1260 				  priv->dma_rx, priv->dma_rx_phy);
1261 	} else {
1262 		dma_free_coherent(priv->device, priv->dma_tx_size *
1263 				  sizeof(struct dma_extended_desc),
1264 				  priv->dma_etx, priv->dma_tx_phy);
1265 		dma_free_coherent(priv->device, priv->dma_rx_size *
1266 				  sizeof(struct dma_extended_desc),
1267 				  priv->dma_erx, priv->dma_rx_phy);
1268 	}
1269 	kfree(priv->rx_skbuff_dma);
1270 	kfree(priv->rx_skbuff);
1271 	kfree(priv->tx_skbuff_dma);
1272 	kfree(priv->tx_skbuff);
1273 }
1274 
1275 /**
1276  *  stmmac_dma_operation_mode - HW DMA operation mode
1277  *  @priv: driver private structure
1278  *  Description: it is used for configuring the DMA operation mode register in
1279  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1280  */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1281 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1282 {
1283 	int rxfifosz = priv->plat->rx_fifo_size;
1284 
1285 	if (priv->plat->force_thresh_dma_mode)
1286 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1287 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1288 		/*
1289 		 * In case of GMAC, SF mode can be enabled
1290 		 * to perform the TX COE in HW. This depends on:
1291 		 * 1) TX COE if actually supported
1292 		 * 2) There is no bugged Jumbo frame support
1293 		 *    that needs to not insert csum in the TDES.
1294 		 */
1295 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1296 					rxfifosz);
1297 		priv->xstats.threshold = SF_DMA_MODE;
1298 	} else
1299 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1300 					rxfifosz);
1301 }
1302 
1303 /**
1304  * stmmac_tx_clean - to manage the transmission completion
1305  * @priv: driver private structure
1306  * Description: it reclaims the transmit resources after transmission completes.
1307  */
stmmac_tx_clean(struct stmmac_priv * priv)1308 static void stmmac_tx_clean(struct stmmac_priv *priv)
1309 {
1310 	unsigned int txsize = priv->dma_tx_size;
1311 	unsigned int bytes_compl = 0, pkts_compl = 0;
1312 
1313 	spin_lock(&priv->tx_lock);
1314 
1315 	priv->xstats.tx_clean++;
1316 
1317 	while (priv->dirty_tx != priv->cur_tx) {
1318 		int last;
1319 		unsigned int entry = priv->dirty_tx % txsize;
1320 		struct sk_buff *skb = priv->tx_skbuff[entry];
1321 		struct dma_desc *p;
1322 
1323 		if (priv->extend_desc)
1324 			p = (struct dma_desc *)(priv->dma_etx + entry);
1325 		else
1326 			p = priv->dma_tx + entry;
1327 
1328 		/* Check if the descriptor is owned by the DMA. */
1329 		if (priv->hw->desc->get_tx_owner(p))
1330 			break;
1331 
1332 		/* Verify tx error by looking at the last segment. */
1333 		last = priv->hw->desc->get_tx_ls(p);
1334 		if (likely(last)) {
1335 			int tx_error =
1336 			    priv->hw->desc->tx_status(&priv->dev->stats,
1337 						      &priv->xstats, p,
1338 						      priv->ioaddr);
1339 			if (likely(tx_error == 0)) {
1340 				priv->dev->stats.tx_packets++;
1341 				priv->xstats.tx_pkt_n++;
1342 			} else
1343 				priv->dev->stats.tx_errors++;
1344 
1345 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1346 		}
1347 		if (netif_msg_tx_done(priv))
1348 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1349 				 priv->cur_tx, priv->dirty_tx);
1350 
1351 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1352 			if (priv->tx_skbuff_dma[entry].map_as_page)
1353 				dma_unmap_page(priv->device,
1354 					       priv->tx_skbuff_dma[entry].buf,
1355 					       priv->hw->desc->get_tx_len(p),
1356 					       DMA_TO_DEVICE);
1357 			else
1358 				dma_unmap_single(priv->device,
1359 						 priv->tx_skbuff_dma[entry].buf,
1360 						 priv->hw->desc->get_tx_len(p),
1361 						 DMA_TO_DEVICE);
1362 			priv->tx_skbuff_dma[entry].buf = 0;
1363 			priv->tx_skbuff_dma[entry].map_as_page = false;
1364 		}
1365 		priv->hw->mode->clean_desc3(priv, p);
1366 
1367 		if (likely(skb != NULL)) {
1368 			pkts_compl++;
1369 			bytes_compl += skb->len;
1370 			dev_consume_skb_any(skb);
1371 			priv->tx_skbuff[entry] = NULL;
1372 		}
1373 
1374 		priv->hw->desc->release_tx_desc(p, priv->mode);
1375 
1376 		priv->dirty_tx++;
1377 	}
1378 
1379 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1380 
1381 	if (unlikely(netif_queue_stopped(priv->dev) &&
1382 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1383 		netif_tx_lock(priv->dev);
1384 		if (netif_queue_stopped(priv->dev) &&
1385 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1386 			if (netif_msg_tx_done(priv))
1387 				pr_debug("%s: restart transmit\n", __func__);
1388 			netif_wake_queue(priv->dev);
1389 		}
1390 		netif_tx_unlock(priv->dev);
1391 	}
1392 
1393 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1394 		stmmac_enable_eee_mode(priv);
1395 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1396 	}
1397 	spin_unlock(&priv->tx_lock);
1398 }
1399 
stmmac_enable_dma_irq(struct stmmac_priv * priv)1400 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1401 {
1402 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1403 }
1404 
stmmac_disable_dma_irq(struct stmmac_priv * priv)1405 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1406 {
1407 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1408 }
1409 
1410 /**
1411  * stmmac_tx_err - to manage the tx error
1412  * @priv: driver private structure
1413  * Description: it cleans the descriptors and restarts the transmission
1414  * in case of transmission errors.
1415  */
stmmac_tx_err(struct stmmac_priv * priv)1416 static void stmmac_tx_err(struct stmmac_priv *priv)
1417 {
1418 	int i;
1419 	int txsize = priv->dma_tx_size;
1420 	netif_stop_queue(priv->dev);
1421 
1422 	priv->hw->dma->stop_tx(priv->ioaddr);
1423 	dma_free_tx_skbufs(priv);
1424 	for (i = 0; i < txsize; i++)
1425 		if (priv->extend_desc)
1426 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1427 						     priv->mode,
1428 						     (i == txsize - 1));
1429 		else
1430 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1431 						     priv->mode,
1432 						     (i == txsize - 1));
1433 	priv->dirty_tx = 0;
1434 	priv->cur_tx = 0;
1435 	netdev_reset_queue(priv->dev);
1436 	priv->hw->dma->start_tx(priv->ioaddr);
1437 
1438 	priv->dev->stats.tx_errors++;
1439 	netif_wake_queue(priv->dev);
1440 }
1441 
1442 /**
1443  * stmmac_dma_interrupt - DMA ISR
1444  * @priv: driver private structure
1445  * Description: this is the DMA ISR. It is called by the main ISR.
1446  * It calls the dwmac dma routine and schedule poll method in case of some
1447  * work can be done.
1448  */
stmmac_dma_interrupt(struct stmmac_priv * priv)1449 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1450 {
1451 	int status;
1452 	int rxfifosz = priv->plat->rx_fifo_size;
1453 
1454 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1455 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1456 		if (likely(napi_schedule_prep(&priv->napi))) {
1457 			stmmac_disable_dma_irq(priv);
1458 			__napi_schedule(&priv->napi);
1459 		}
1460 	}
1461 	if (unlikely(status & tx_hard_error_bump_tc)) {
1462 		/* Try to bump up the dma threshold on this failure */
1463 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1464 		    (tc <= 256)) {
1465 			tc += 64;
1466 			if (priv->plat->force_thresh_dma_mode)
1467 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1468 							rxfifosz);
1469 			else
1470 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1471 							SF_DMA_MODE, rxfifosz);
1472 			priv->xstats.threshold = tc;
1473 		}
1474 	} else if (unlikely(status == tx_hard_error))
1475 		stmmac_tx_err(priv);
1476 }
1477 
1478 /**
1479  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1480  * @priv: driver private structure
1481  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1482  */
stmmac_mmc_setup(struct stmmac_priv * priv)1483 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1484 {
1485 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1486 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1487 
1488 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1489 
1490 	if (priv->dma_cap.rmon) {
1491 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1492 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1493 	} else
1494 		pr_info(" No MAC Management Counters available\n");
1495 }
1496 
1497 /**
1498  * stmmac_get_synopsys_id - return the SYINID.
1499  * @priv: driver private structure
1500  * Description: this simple function is to decode and return the SYINID
1501  * starting from the HW core register.
1502  */
stmmac_get_synopsys_id(struct stmmac_priv * priv)1503 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1504 {
1505 	u32 hwid = priv->hw->synopsys_uid;
1506 
1507 	/* Check Synopsys Id (not available on old chips) */
1508 	if (likely(hwid)) {
1509 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1510 		u32 synid = (hwid & 0x000000ff);
1511 
1512 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1513 			uid, synid);
1514 
1515 		return synid;
1516 	}
1517 	return 0;
1518 }
1519 
1520 /**
1521  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1522  * @priv: driver private structure
1523  * Description: select the Enhanced/Alternate or Normal descriptors.
1524  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1525  * supported by the HW capability register.
1526  */
stmmac_selec_desc_mode(struct stmmac_priv * priv)1527 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1528 {
1529 	if (priv->plat->enh_desc) {
1530 		pr_info(" Enhanced/Alternate descriptors\n");
1531 
1532 		/* GMAC older than 3.50 has no extended descriptors */
1533 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1534 			pr_info("\tEnabled extended descriptors\n");
1535 			priv->extend_desc = 1;
1536 		} else
1537 			pr_warn("Extended descriptors not supported\n");
1538 
1539 		priv->hw->desc = &enh_desc_ops;
1540 	} else {
1541 		pr_info(" Normal descriptors\n");
1542 		priv->hw->desc = &ndesc_ops;
1543 	}
1544 }
1545 
1546 /**
1547  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1548  * @priv: driver private structure
1549  * Description:
1550  *  new GMAC chip generations have a new register to indicate the
1551  *  presence of the optional feature/functions.
1552  *  This can be also used to override the value passed through the
1553  *  platform and necessary for old MAC10/100 and GMAC chips.
1554  */
stmmac_get_hw_features(struct stmmac_priv * priv)1555 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1556 {
1557 	u32 hw_cap = 0;
1558 
1559 	if (priv->hw->dma->get_hw_feature) {
1560 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1561 
1562 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1563 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1564 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1565 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1566 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1567 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1568 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1569 		priv->dma_cap.pmt_remote_wake_up =
1570 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1571 		priv->dma_cap.pmt_magic_frame =
1572 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1573 		/* MMC */
1574 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1575 		/* IEEE 1588-2002 */
1576 		priv->dma_cap.time_stamp =
1577 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1578 		/* IEEE 1588-2008 */
1579 		priv->dma_cap.atime_stamp =
1580 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1581 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1582 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1583 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1584 		/* TX and RX csum */
1585 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1586 		priv->dma_cap.rx_coe_type1 =
1587 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1588 		priv->dma_cap.rx_coe_type2 =
1589 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1590 		priv->dma_cap.rxfifo_over_2048 =
1591 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1592 		/* TX and RX number of channels */
1593 		priv->dma_cap.number_rx_channel =
1594 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1595 		priv->dma_cap.number_tx_channel =
1596 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1597 		/* Alternate (enhanced) DESC mode */
1598 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1599 	}
1600 
1601 	return hw_cap;
1602 }
1603 
1604 /**
1605  * stmmac_check_ether_addr - check if the MAC addr is valid
1606  * @priv: driver private structure
1607  * Description:
1608  * it is to verify if the MAC address is valid, in case of failures it
1609  * generates a random MAC address
1610  */
stmmac_check_ether_addr(struct stmmac_priv * priv)1611 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1612 {
1613 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1614 		priv->hw->mac->get_umac_addr(priv->hw,
1615 					     priv->dev->dev_addr, 0);
1616 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1617 			eth_hw_addr_random(priv->dev);
1618 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1619 			priv->dev->dev_addr);
1620 	}
1621 }
1622 
1623 /**
1624  * stmmac_init_dma_engine - DMA init.
1625  * @priv: driver private structure
1626  * Description:
1627  * It inits the DMA invoking the specific MAC/GMAC callback.
1628  * Some DMA parameters can be passed from the platform;
1629  * in case of these are not passed a default is kept for the MAC or GMAC.
1630  */
stmmac_init_dma_engine(struct stmmac_priv * priv)1631 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1632 {
1633 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1634 	int mixed_burst = 0;
1635 	int atds = 0;
1636 
1637 	if (priv->plat->dma_cfg) {
1638 		pbl = priv->plat->dma_cfg->pbl;
1639 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1640 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1641 		burst_len = priv->plat->dma_cfg->burst_len;
1642 	}
1643 
1644 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1645 		atds = 1;
1646 
1647 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1648 				   burst_len, priv->dma_tx_phy,
1649 				   priv->dma_rx_phy, atds);
1650 }
1651 
1652 /**
1653  * stmmac_tx_timer - mitigation sw timer for tx.
1654  * @data: data pointer
1655  * Description:
1656  * This is the timer handler to directly invoke the stmmac_tx_clean.
1657  */
stmmac_tx_timer(unsigned long data)1658 static void stmmac_tx_timer(unsigned long data)
1659 {
1660 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1661 
1662 	stmmac_tx_clean(priv);
1663 }
1664 
1665 /**
1666  * stmmac_init_tx_coalesce - init tx mitigation options.
1667  * @priv: driver private structure
1668  * Description:
1669  * This inits the transmit coalesce parameters: i.e. timer rate,
1670  * timer handler and default threshold used for enabling the
1671  * interrupt on completion bit.
1672  */
stmmac_init_tx_coalesce(struct stmmac_priv * priv)1673 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1674 {
1675 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1676 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1677 	init_timer(&priv->txtimer);
1678 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1679 	priv->txtimer.data = (unsigned long)priv;
1680 	priv->txtimer.function = stmmac_tx_timer;
1681 	add_timer(&priv->txtimer);
1682 }
1683 
1684 /**
1685  * stmmac_hw_setup - setup mac in a usable state.
1686  *  @dev : pointer to the device structure.
1687  *  Description:
1688  *  this is the main function to setup the HW in a usable state because the
1689  *  dma engine is reset, the core registers are configured (e.g. AXI,
1690  *  Checksum features, timers). The DMA is ready to start receiving and
1691  *  transmitting.
1692  *  Return value:
1693  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1694  *  file on failure.
1695  */
stmmac_hw_setup(struct net_device * dev,bool init_ptp)1696 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1697 {
1698 	struct stmmac_priv *priv = netdev_priv(dev);
1699 	int ret;
1700 
1701 	/* DMA initialization and SW reset */
1702 	ret = stmmac_init_dma_engine(priv);
1703 	if (ret < 0) {
1704 		pr_err("%s: DMA engine initialization failed\n", __func__);
1705 		return ret;
1706 	}
1707 
1708 	/* Copy the MAC addr into the HW  */
1709 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1710 
1711 	/* If required, perform hw setup of the bus. */
1712 	if (priv->plat->bus_setup)
1713 		priv->plat->bus_setup(priv->ioaddr);
1714 
1715 	/* Initialize the MAC Core */
1716 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1717 
1718 	ret = priv->hw->mac->rx_ipc(priv->hw);
1719 	if (!ret) {
1720 		pr_warn(" RX IPC Checksum Offload disabled\n");
1721 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1722 		priv->hw->rx_csum = 0;
1723 	}
1724 
1725 	/* Enable the MAC Rx/Tx */
1726 	stmmac_set_mac(priv->ioaddr, true);
1727 
1728 	/* Set the HW DMA mode and the COE */
1729 	stmmac_dma_operation_mode(priv);
1730 
1731 	stmmac_mmc_setup(priv);
1732 
1733 	if (init_ptp) {
1734 		ret = stmmac_init_ptp(priv);
1735 		if (ret && ret != -EOPNOTSUPP)
1736 			pr_warn("%s: failed PTP initialisation\n", __func__);
1737 	}
1738 
1739 #ifdef CONFIG_DEBUG_FS
1740 	ret = stmmac_init_fs(dev);
1741 	if (ret < 0)
1742 		pr_warn("%s: failed debugFS registration\n", __func__);
1743 #endif
1744 	/* Start the ball rolling... */
1745 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1746 	priv->hw->dma->start_tx(priv->ioaddr);
1747 	priv->hw->dma->start_rx(priv->ioaddr);
1748 
1749 	/* Dump DMA/MAC registers */
1750 	if (netif_msg_hw(priv)) {
1751 		priv->hw->mac->dump_regs(priv->hw);
1752 		priv->hw->dma->dump_regs(priv->ioaddr);
1753 	}
1754 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1755 
1756 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1757 		priv->rx_riwt = MAX_DMA_RIWT;
1758 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1759 	}
1760 
1761 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1762 		priv->hw->mac->ctrl_ane(priv->hw, 0);
1763 
1764 	return 0;
1765 }
1766 
1767 /**
1768  *  stmmac_open - open entry point of the driver
1769  *  @dev : pointer to the device structure.
1770  *  Description:
1771  *  This function is the open entry point of the driver.
1772  *  Return value:
1773  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1774  *  file on failure.
1775  */
stmmac_open(struct net_device * dev)1776 static int stmmac_open(struct net_device *dev)
1777 {
1778 	struct stmmac_priv *priv = netdev_priv(dev);
1779 	int ret;
1780 
1781 	stmmac_check_ether_addr(priv);
1782 
1783 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1784 	    priv->pcs != STMMAC_PCS_RTBI) {
1785 		ret = stmmac_init_phy(dev);
1786 		if (ret) {
1787 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1788 			       __func__, ret);
1789 			return ret;
1790 		}
1791 	}
1792 
1793 	/* Extra statistics */
1794 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1795 	priv->xstats.threshold = tc;
1796 
1797 	/* Create and initialize the TX/RX descriptors chains. */
1798 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1799 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1800 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1801 
1802 	ret = alloc_dma_desc_resources(priv);
1803 	if (ret < 0) {
1804 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1805 		goto dma_desc_error;
1806 	}
1807 
1808 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1809 	if (ret < 0) {
1810 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1811 		goto init_error;
1812 	}
1813 
1814 	ret = stmmac_hw_setup(dev, true);
1815 	if (ret < 0) {
1816 		pr_err("%s: Hw setup failed\n", __func__);
1817 		goto init_error;
1818 	}
1819 
1820 	stmmac_init_tx_coalesce(priv);
1821 
1822 	if (priv->phydev)
1823 		phy_start(priv->phydev);
1824 
1825 	/* Request the IRQ lines */
1826 	ret = request_irq(dev->irq, stmmac_interrupt,
1827 			  IRQF_SHARED, dev->name, dev);
1828 	if (unlikely(ret < 0)) {
1829 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1830 		       __func__, dev->irq, ret);
1831 		goto init_error;
1832 	}
1833 
1834 	/* Request the Wake IRQ in case of another line is used for WoL */
1835 	if (priv->wol_irq != dev->irq) {
1836 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1837 				  IRQF_SHARED, dev->name, dev);
1838 		if (unlikely(ret < 0)) {
1839 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1840 			       __func__, priv->wol_irq, ret);
1841 			goto wolirq_error;
1842 		}
1843 	}
1844 
1845 	/* Request the IRQ lines */
1846 	if (priv->lpi_irq > 0) {
1847 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1848 				  dev->name, dev);
1849 		if (unlikely(ret < 0)) {
1850 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1851 			       __func__, priv->lpi_irq, ret);
1852 			goto lpiirq_error;
1853 		}
1854 	}
1855 
1856 	napi_enable(&priv->napi);
1857 	netif_start_queue(dev);
1858 
1859 	return 0;
1860 
1861 lpiirq_error:
1862 	if (priv->wol_irq != dev->irq)
1863 		free_irq(priv->wol_irq, dev);
1864 wolirq_error:
1865 	free_irq(dev->irq, dev);
1866 
1867 init_error:
1868 	free_dma_desc_resources(priv);
1869 dma_desc_error:
1870 	if (priv->phydev)
1871 		phy_disconnect(priv->phydev);
1872 
1873 	return ret;
1874 }
1875 
1876 /**
1877  *  stmmac_release - close entry point of the driver
1878  *  @dev : device pointer.
1879  *  Description:
1880  *  This is the stop entry point of the driver.
1881  */
stmmac_release(struct net_device * dev)1882 static int stmmac_release(struct net_device *dev)
1883 {
1884 	struct stmmac_priv *priv = netdev_priv(dev);
1885 
1886 	if (priv->eee_enabled)
1887 		del_timer_sync(&priv->eee_ctrl_timer);
1888 
1889 	/* Stop and disconnect the PHY */
1890 	if (priv->phydev) {
1891 		phy_stop(priv->phydev);
1892 		phy_disconnect(priv->phydev);
1893 		priv->phydev = NULL;
1894 	}
1895 
1896 	netif_stop_queue(dev);
1897 
1898 	napi_disable(&priv->napi);
1899 
1900 	del_timer_sync(&priv->txtimer);
1901 
1902 	/* Free the IRQ lines */
1903 	free_irq(dev->irq, dev);
1904 	if (priv->wol_irq != dev->irq)
1905 		free_irq(priv->wol_irq, dev);
1906 	if (priv->lpi_irq > 0)
1907 		free_irq(priv->lpi_irq, dev);
1908 
1909 	/* Stop TX/RX DMA and clear the descriptors */
1910 	priv->hw->dma->stop_tx(priv->ioaddr);
1911 	priv->hw->dma->stop_rx(priv->ioaddr);
1912 
1913 	/* Release and free the Rx/Tx resources */
1914 	free_dma_desc_resources(priv);
1915 
1916 	/* Disable the MAC Rx/Tx */
1917 	stmmac_set_mac(priv->ioaddr, false);
1918 
1919 	netif_carrier_off(dev);
1920 
1921 #ifdef CONFIG_DEBUG_FS
1922 	stmmac_exit_fs(dev);
1923 #endif
1924 
1925 	stmmac_release_ptp(priv);
1926 
1927 	return 0;
1928 }
1929 
1930 /**
1931  *  stmmac_xmit - Tx entry point of the driver
1932  *  @skb : the socket buffer
1933  *  @dev : device pointer
1934  *  Description : this is the tx entry point of the driver.
1935  *  It programs the chain or the ring and supports oversized frames
1936  *  and SG feature.
1937  */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)1938 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1939 {
1940 	struct stmmac_priv *priv = netdev_priv(dev);
1941 	unsigned int txsize = priv->dma_tx_size;
1942 	unsigned int entry;
1943 	int i, csum_insertion = 0, is_jumbo = 0;
1944 	int nfrags = skb_shinfo(skb)->nr_frags;
1945 	struct dma_desc *desc, *first;
1946 	unsigned int nopaged_len = skb_headlen(skb);
1947 	unsigned int enh_desc = priv->plat->enh_desc;
1948 
1949 	spin_lock(&priv->tx_lock);
1950 
1951 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1952 		spin_unlock(&priv->tx_lock);
1953 		if (!netif_queue_stopped(dev)) {
1954 			netif_stop_queue(dev);
1955 			/* This is a hard error, log it. */
1956 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1957 		}
1958 		return NETDEV_TX_BUSY;
1959 	}
1960 
1961 	if (priv->tx_path_in_lpi_mode)
1962 		stmmac_disable_eee_mode(priv);
1963 
1964 	entry = priv->cur_tx % txsize;
1965 
1966 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1967 
1968 	if (priv->extend_desc)
1969 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1970 	else
1971 		desc = priv->dma_tx + entry;
1972 
1973 	first = desc;
1974 
1975 	/* To program the descriptors according to the size of the frame */
1976 	if (enh_desc)
1977 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1978 
1979 	if (likely(!is_jumbo)) {
1980 		desc->des2 = dma_map_single(priv->device, skb->data,
1981 					    nopaged_len, DMA_TO_DEVICE);
1982 		if (dma_mapping_error(priv->device, desc->des2))
1983 			goto dma_map_err;
1984 		priv->tx_skbuff_dma[entry].buf = desc->des2;
1985 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1986 						csum_insertion, priv->mode);
1987 	} else {
1988 		desc = first;
1989 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1990 		if (unlikely(entry < 0))
1991 			goto dma_map_err;
1992 	}
1993 
1994 	for (i = 0; i < nfrags; i++) {
1995 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1996 		int len = skb_frag_size(frag);
1997 
1998 		priv->tx_skbuff[entry] = NULL;
1999 		entry = (++priv->cur_tx) % txsize;
2000 		if (priv->extend_desc)
2001 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2002 		else
2003 			desc = priv->dma_tx + entry;
2004 
2005 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2006 					      DMA_TO_DEVICE);
2007 		if (dma_mapping_error(priv->device, desc->des2))
2008 			goto dma_map_err; /* should reuse desc w/o issues */
2009 
2010 		priv->tx_skbuff_dma[entry].buf = desc->des2;
2011 		priv->tx_skbuff_dma[entry].map_as_page = true;
2012 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2013 						priv->mode);
2014 		wmb();
2015 		priv->hw->desc->set_tx_owner(desc);
2016 		wmb();
2017 	}
2018 
2019 	priv->tx_skbuff[entry] = skb;
2020 
2021 	/* Finalize the latest segment. */
2022 	priv->hw->desc->close_tx_desc(desc);
2023 
2024 	wmb();
2025 	/* According to the coalesce parameter the IC bit for the latest
2026 	 * segment could be reset and the timer re-started to invoke the
2027 	 * stmmac_tx function. This approach takes care about the fragments.
2028 	 */
2029 	priv->tx_count_frames += nfrags + 1;
2030 	if (priv->tx_coal_frames > priv->tx_count_frames) {
2031 		priv->hw->desc->clear_tx_ic(desc);
2032 		priv->xstats.tx_reset_ic_bit++;
2033 		mod_timer(&priv->txtimer,
2034 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2035 	} else
2036 		priv->tx_count_frames = 0;
2037 
2038 	/* To avoid raise condition */
2039 	priv->hw->desc->set_tx_owner(first);
2040 	wmb();
2041 
2042 	priv->cur_tx++;
2043 
2044 	if (netif_msg_pktdata(priv)) {
2045 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2046 			__func__, (priv->cur_tx % txsize),
2047 			(priv->dirty_tx % txsize), entry, first, nfrags);
2048 
2049 		if (priv->extend_desc)
2050 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2051 		else
2052 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2053 
2054 		pr_debug(">>> frame to be transmitted: ");
2055 		print_pkt(skb->data, skb->len);
2056 	}
2057 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2058 		if (netif_msg_hw(priv))
2059 			pr_debug("%s: stop transmitted packets\n", __func__);
2060 		netif_stop_queue(dev);
2061 	}
2062 
2063 	dev->stats.tx_bytes += skb->len;
2064 
2065 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2066 		     priv->hwts_tx_en)) {
2067 		/* declare that device is doing timestamping */
2068 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2069 		priv->hw->desc->enable_tx_timestamp(first);
2070 	}
2071 
2072 	if (!priv->hwts_tx_en)
2073 		skb_tx_timestamp(skb);
2074 
2075 	netdev_sent_queue(dev, skb->len);
2076 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2077 
2078 	spin_unlock(&priv->tx_lock);
2079 	return NETDEV_TX_OK;
2080 
2081 dma_map_err:
2082 	spin_unlock(&priv->tx_lock);
2083 	dev_err(priv->device, "Tx dma map failed\n");
2084 	dev_kfree_skb(skb);
2085 	priv->dev->stats.tx_dropped++;
2086 	return NETDEV_TX_OK;
2087 }
2088 
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)2089 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2090 {
2091 	struct ethhdr *ehdr;
2092 	u16 vlanid;
2093 
2094 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2095 	    NETIF_F_HW_VLAN_CTAG_RX &&
2096 	    !__vlan_get_tag(skb, &vlanid)) {
2097 		/* pop the vlan tag */
2098 		ehdr = (struct ethhdr *)skb->data;
2099 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2100 		skb_pull(skb, VLAN_HLEN);
2101 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2102 	}
2103 }
2104 
2105 
2106 /**
2107  * stmmac_rx_refill - refill used skb preallocated buffers
2108  * @priv: driver private structure
2109  * Description : this is to reallocate the skb for the reception process
2110  * that is based on zero-copy.
2111  */
stmmac_rx_refill(struct stmmac_priv * priv)2112 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2113 {
2114 	unsigned int rxsize = priv->dma_rx_size;
2115 	int bfsize = priv->dma_buf_sz;
2116 
2117 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2118 		unsigned int entry = priv->dirty_rx % rxsize;
2119 		struct dma_desc *p;
2120 
2121 		if (priv->extend_desc)
2122 			p = (struct dma_desc *)(priv->dma_erx + entry);
2123 		else
2124 			p = priv->dma_rx + entry;
2125 
2126 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2127 			struct sk_buff *skb;
2128 
2129 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2130 
2131 			if (unlikely(skb == NULL))
2132 				break;
2133 
2134 			priv->rx_skbuff[entry] = skb;
2135 			priv->rx_skbuff_dma[entry] =
2136 			    dma_map_single(priv->device, skb->data, bfsize,
2137 					   DMA_FROM_DEVICE);
2138 			if (dma_mapping_error(priv->device,
2139 					      priv->rx_skbuff_dma[entry])) {
2140 				dev_err(priv->device, "Rx dma map failed\n");
2141 				dev_kfree_skb(skb);
2142 				break;
2143 			}
2144 			p->des2 = priv->rx_skbuff_dma[entry];
2145 
2146 			priv->hw->mode->refill_desc3(priv, p);
2147 
2148 			if (netif_msg_rx_status(priv))
2149 				pr_debug("\trefill entry #%d\n", entry);
2150 		}
2151 		wmb();
2152 		priv->hw->desc->set_rx_owner(p);
2153 		wmb();
2154 	}
2155 }
2156 
2157 /**
2158  * stmmac_rx - manage the receive process
2159  * @priv: driver private structure
2160  * @limit: napi bugget.
2161  * Description :  this the function called by the napi poll method.
2162  * It gets all the frames inside the ring.
2163  */
stmmac_rx(struct stmmac_priv * priv,int limit)2164 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2165 {
2166 	unsigned int rxsize = priv->dma_rx_size;
2167 	unsigned int entry = priv->cur_rx % rxsize;
2168 	unsigned int next_entry;
2169 	unsigned int count = 0;
2170 	int coe = priv->hw->rx_csum;
2171 
2172 	if (netif_msg_rx_status(priv)) {
2173 		pr_debug("%s: descriptor ring:\n", __func__);
2174 		if (priv->extend_desc)
2175 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2176 		else
2177 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2178 	}
2179 	while (count < limit) {
2180 		int status;
2181 		struct dma_desc *p;
2182 
2183 		if (priv->extend_desc)
2184 			p = (struct dma_desc *)(priv->dma_erx + entry);
2185 		else
2186 			p = priv->dma_rx + entry;
2187 
2188 		if (priv->hw->desc->get_rx_owner(p))
2189 			break;
2190 
2191 		count++;
2192 
2193 		next_entry = (++priv->cur_rx) % rxsize;
2194 		if (priv->extend_desc)
2195 			prefetch(priv->dma_erx + next_entry);
2196 		else
2197 			prefetch(priv->dma_rx + next_entry);
2198 
2199 		/* read the status of the incoming frame */
2200 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2201 						   &priv->xstats, p);
2202 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2203 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2204 							   &priv->xstats,
2205 							   priv->dma_erx +
2206 							   entry);
2207 		if (unlikely(status == discard_frame)) {
2208 			priv->dev->stats.rx_errors++;
2209 			if (priv->hwts_rx_en && !priv->extend_desc) {
2210 				/* DESC2 & DESC3 will be overwitten by device
2211 				 * with timestamp value, hence reinitialize
2212 				 * them in stmmac_rx_refill() function so that
2213 				 * device can reuse it.
2214 				 */
2215 				priv->rx_skbuff[entry] = NULL;
2216 				dma_unmap_single(priv->device,
2217 						 priv->rx_skbuff_dma[entry],
2218 						 priv->dma_buf_sz,
2219 						 DMA_FROM_DEVICE);
2220 			}
2221 		} else {
2222 			struct sk_buff *skb;
2223 			int frame_len;
2224 
2225 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2226 
2227 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2228 			 * Type frames (LLC/LLC-SNAP)
2229 			 */
2230 			if (unlikely(status != llc_snap))
2231 				frame_len -= ETH_FCS_LEN;
2232 
2233 			if (netif_msg_rx_status(priv)) {
2234 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2235 					 p, entry, p->des2);
2236 				if (frame_len > ETH_FRAME_LEN)
2237 					pr_debug("\tframe size %d, COE: %d\n",
2238 						 frame_len, status);
2239 			}
2240 			skb = priv->rx_skbuff[entry];
2241 			if (unlikely(!skb)) {
2242 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2243 				       priv->dev->name);
2244 				priv->dev->stats.rx_dropped++;
2245 				break;
2246 			}
2247 			prefetch(skb->data - NET_IP_ALIGN);
2248 			priv->rx_skbuff[entry] = NULL;
2249 
2250 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2251 
2252 			skb_put(skb, frame_len);
2253 			dma_unmap_single(priv->device,
2254 					 priv->rx_skbuff_dma[entry],
2255 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2256 
2257 			if (netif_msg_pktdata(priv)) {
2258 				pr_debug("frame received (%dbytes)", frame_len);
2259 				print_pkt(skb->data, frame_len);
2260 			}
2261 
2262 			stmmac_rx_vlan(priv->dev, skb);
2263 
2264 			skb->protocol = eth_type_trans(skb, priv->dev);
2265 
2266 			if (unlikely(!coe))
2267 				skb_checksum_none_assert(skb);
2268 			else
2269 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2270 
2271 			napi_gro_receive(&priv->napi, skb);
2272 
2273 			priv->dev->stats.rx_packets++;
2274 			priv->dev->stats.rx_bytes += frame_len;
2275 		}
2276 		entry = next_entry;
2277 	}
2278 
2279 	stmmac_rx_refill(priv);
2280 
2281 	priv->xstats.rx_pkt_n += count;
2282 
2283 	return count;
2284 }
2285 
2286 /**
2287  *  stmmac_poll - stmmac poll method (NAPI)
2288  *  @napi : pointer to the napi structure.
2289  *  @budget : maximum number of packets that the current CPU can receive from
2290  *	      all interfaces.
2291  *  Description :
2292  *  To look at the incoming frames and clear the tx resources.
2293  */
stmmac_poll(struct napi_struct * napi,int budget)2294 static int stmmac_poll(struct napi_struct *napi, int budget)
2295 {
2296 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2297 	int work_done = 0;
2298 
2299 	priv->xstats.napi_poll++;
2300 	stmmac_tx_clean(priv);
2301 
2302 	work_done = stmmac_rx(priv, budget);
2303 	if (work_done < budget) {
2304 		napi_complete(napi);
2305 		stmmac_enable_dma_irq(priv);
2306 	}
2307 	return work_done;
2308 }
2309 
2310 /**
2311  *  stmmac_tx_timeout
2312  *  @dev : Pointer to net device structure
2313  *  Description: this function is called when a packet transmission fails to
2314  *   complete within a reasonable time. The driver will mark the error in the
2315  *   netdev structure and arrange for the device to be reset to a sane state
2316  *   in order to transmit a new packet.
2317  */
stmmac_tx_timeout(struct net_device * dev)2318 static void stmmac_tx_timeout(struct net_device *dev)
2319 {
2320 	struct stmmac_priv *priv = netdev_priv(dev);
2321 
2322 	/* Clear Tx resources and restart transmitting again */
2323 	stmmac_tx_err(priv);
2324 }
2325 
2326 /**
2327  *  stmmac_set_rx_mode - entry point for multicast addressing
2328  *  @dev : pointer to the device structure
2329  *  Description:
2330  *  This function is a driver entry point which gets called by the kernel
2331  *  whenever multicast addresses must be enabled/disabled.
2332  *  Return value:
2333  *  void.
2334  */
stmmac_set_rx_mode(struct net_device * dev)2335 static void stmmac_set_rx_mode(struct net_device *dev)
2336 {
2337 	struct stmmac_priv *priv = netdev_priv(dev);
2338 
2339 	priv->hw->mac->set_filter(priv->hw, dev);
2340 }
2341 
2342 /**
2343  *  stmmac_change_mtu - entry point to change MTU size for the device.
2344  *  @dev : device pointer.
2345  *  @new_mtu : the new MTU size for the device.
2346  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2347  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2348  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2349  *  Return value:
2350  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2351  *  file on failure.
2352  */
stmmac_change_mtu(struct net_device * dev,int new_mtu)2353 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2354 {
2355 	struct stmmac_priv *priv = netdev_priv(dev);
2356 	int max_mtu;
2357 
2358 	if (netif_running(dev)) {
2359 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2360 		return -EBUSY;
2361 	}
2362 
2363 	if (priv->plat->enh_desc)
2364 		max_mtu = JUMBO_LEN;
2365 	else
2366 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2367 
2368 	if (priv->plat->maxmtu < max_mtu)
2369 		max_mtu = priv->plat->maxmtu;
2370 
2371 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2372 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2373 		return -EINVAL;
2374 	}
2375 
2376 	dev->mtu = new_mtu;
2377 	netdev_update_features(dev);
2378 
2379 	return 0;
2380 }
2381 
stmmac_fix_features(struct net_device * dev,netdev_features_t features)2382 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2383 					     netdev_features_t features)
2384 {
2385 	struct stmmac_priv *priv = netdev_priv(dev);
2386 
2387 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2388 		features &= ~NETIF_F_RXCSUM;
2389 
2390 	if (!priv->plat->tx_coe)
2391 		features &= ~NETIF_F_ALL_CSUM;
2392 
2393 	/* Some GMAC devices have a bugged Jumbo frame support that
2394 	 * needs to have the Tx COE disabled for oversized frames
2395 	 * (due to limited buffer sizes). In this case we disable
2396 	 * the TX csum insertionin the TDES and not use SF.
2397 	 */
2398 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2399 		features &= ~NETIF_F_ALL_CSUM;
2400 
2401 	return features;
2402 }
2403 
stmmac_set_features(struct net_device * netdev,netdev_features_t features)2404 static int stmmac_set_features(struct net_device *netdev,
2405 			       netdev_features_t features)
2406 {
2407 	struct stmmac_priv *priv = netdev_priv(netdev);
2408 
2409 	/* Keep the COE Type in case of csum is supporting */
2410 	if (features & NETIF_F_RXCSUM)
2411 		priv->hw->rx_csum = priv->plat->rx_coe;
2412 	else
2413 		priv->hw->rx_csum = 0;
2414 	/* No check needed because rx_coe has been set before and it will be
2415 	 * fixed in case of issue.
2416 	 */
2417 	priv->hw->mac->rx_ipc(priv->hw);
2418 
2419 	return 0;
2420 }
2421 
2422 /**
2423  *  stmmac_interrupt - main ISR
2424  *  @irq: interrupt number.
2425  *  @dev_id: to pass the net device pointer.
2426  *  Description: this is the main driver interrupt service routine.
2427  *  It can call:
2428  *  o DMA service routine (to manage incoming frame reception and transmission
2429  *    status)
2430  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2431  *    interrupts.
2432  */
stmmac_interrupt(int irq,void * dev_id)2433 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2434 {
2435 	struct net_device *dev = (struct net_device *)dev_id;
2436 	struct stmmac_priv *priv = netdev_priv(dev);
2437 
2438 	if (priv->irq_wake)
2439 		pm_wakeup_event(priv->device, 0);
2440 
2441 	if (unlikely(!dev)) {
2442 		pr_err("%s: invalid dev pointer\n", __func__);
2443 		return IRQ_NONE;
2444 	}
2445 
2446 	/* To handle GMAC own interrupts */
2447 	if (priv->plat->has_gmac) {
2448 		int status = priv->hw->mac->host_irq_status(priv->hw,
2449 							    &priv->xstats);
2450 		if (unlikely(status)) {
2451 			/* For LPI we need to save the tx status */
2452 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2453 				priv->tx_path_in_lpi_mode = true;
2454 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2455 				priv->tx_path_in_lpi_mode = false;
2456 		}
2457 	}
2458 
2459 	/* To handle DMA interrupts */
2460 	stmmac_dma_interrupt(priv);
2461 
2462 	return IRQ_HANDLED;
2463 }
2464 
2465 #ifdef CONFIG_NET_POLL_CONTROLLER
2466 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2467  * to allow network I/O with interrupts disabled.
2468  */
stmmac_poll_controller(struct net_device * dev)2469 static void stmmac_poll_controller(struct net_device *dev)
2470 {
2471 	disable_irq(dev->irq);
2472 	stmmac_interrupt(dev->irq, dev);
2473 	enable_irq(dev->irq);
2474 }
2475 #endif
2476 
2477 /**
2478  *  stmmac_ioctl - Entry point for the Ioctl
2479  *  @dev: Device pointer.
2480  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2481  *  a proprietary structure used to pass information to the driver.
2482  *  @cmd: IOCTL command
2483  *  Description:
2484  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2485  */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2486 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2487 {
2488 	struct stmmac_priv *priv = netdev_priv(dev);
2489 	int ret = -EOPNOTSUPP;
2490 
2491 	if (!netif_running(dev))
2492 		return -EINVAL;
2493 
2494 	switch (cmd) {
2495 	case SIOCGMIIPHY:
2496 	case SIOCGMIIREG:
2497 	case SIOCSMIIREG:
2498 		if (!priv->phydev)
2499 			return -EINVAL;
2500 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2501 		break;
2502 	case SIOCSHWTSTAMP:
2503 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2504 		break;
2505 	default:
2506 		break;
2507 	}
2508 
2509 	return ret;
2510 }
2511 
2512 #ifdef CONFIG_DEBUG_FS
2513 static struct dentry *stmmac_fs_dir;
2514 
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq)2515 static void sysfs_display_ring(void *head, int size, int extend_desc,
2516 			       struct seq_file *seq)
2517 {
2518 	int i;
2519 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2520 	struct dma_desc *p = (struct dma_desc *)head;
2521 
2522 	for (i = 0; i < size; i++) {
2523 		u64 x;
2524 		if (extend_desc) {
2525 			x = *(u64 *) ep;
2526 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2527 				   i, (unsigned int)virt_to_phys(ep),
2528 				   (unsigned int)x, (unsigned int)(x >> 32),
2529 				   ep->basic.des2, ep->basic.des3);
2530 			ep++;
2531 		} else {
2532 			x = *(u64 *) p;
2533 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2534 				   i, (unsigned int)virt_to_phys(ep),
2535 				   (unsigned int)x, (unsigned int)(x >> 32),
2536 				   p->des2, p->des3);
2537 			p++;
2538 		}
2539 		seq_printf(seq, "\n");
2540 	}
2541 }
2542 
stmmac_sysfs_ring_read(struct seq_file * seq,void * v)2543 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2544 {
2545 	struct net_device *dev = seq->private;
2546 	struct stmmac_priv *priv = netdev_priv(dev);
2547 	unsigned int txsize = priv->dma_tx_size;
2548 	unsigned int rxsize = priv->dma_rx_size;
2549 
2550 	if (priv->extend_desc) {
2551 		seq_printf(seq, "Extended RX descriptor ring:\n");
2552 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2553 		seq_printf(seq, "Extended TX descriptor ring:\n");
2554 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2555 	} else {
2556 		seq_printf(seq, "RX descriptor ring:\n");
2557 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2558 		seq_printf(seq, "TX descriptor ring:\n");
2559 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2560 	}
2561 
2562 	return 0;
2563 }
2564 
stmmac_sysfs_ring_open(struct inode * inode,struct file * file)2565 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2566 {
2567 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2568 }
2569 
2570 static const struct file_operations stmmac_rings_status_fops = {
2571 	.owner = THIS_MODULE,
2572 	.open = stmmac_sysfs_ring_open,
2573 	.read = seq_read,
2574 	.llseek = seq_lseek,
2575 	.release = single_release,
2576 };
2577 
stmmac_sysfs_dma_cap_read(struct seq_file * seq,void * v)2578 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2579 {
2580 	struct net_device *dev = seq->private;
2581 	struct stmmac_priv *priv = netdev_priv(dev);
2582 
2583 	if (!priv->hw_cap_support) {
2584 		seq_printf(seq, "DMA HW features not supported\n");
2585 		return 0;
2586 	}
2587 
2588 	seq_printf(seq, "==============================\n");
2589 	seq_printf(seq, "\tDMA HW features\n");
2590 	seq_printf(seq, "==============================\n");
2591 
2592 	seq_printf(seq, "\t10/100 Mbps %s\n",
2593 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2594 	seq_printf(seq, "\t1000 Mbps %s\n",
2595 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2596 	seq_printf(seq, "\tHalf duple %s\n",
2597 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2598 	seq_printf(seq, "\tHash Filter: %s\n",
2599 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2600 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2601 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2602 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2603 		   (priv->dma_cap.pcs) ? "Y" : "N");
2604 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2605 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2606 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2607 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2608 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2609 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2610 	seq_printf(seq, "\tRMON module: %s\n",
2611 		   (priv->dma_cap.rmon) ? "Y" : "N");
2612 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2613 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2614 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2615 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2616 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2617 		   (priv->dma_cap.eee) ? "Y" : "N");
2618 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2619 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2620 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2621 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2622 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2623 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2624 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2625 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2626 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2627 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2628 		   priv->dma_cap.number_rx_channel);
2629 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2630 		   priv->dma_cap.number_tx_channel);
2631 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2632 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2633 
2634 	return 0;
2635 }
2636 
stmmac_sysfs_dma_cap_open(struct inode * inode,struct file * file)2637 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2638 {
2639 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2640 }
2641 
2642 static const struct file_operations stmmac_dma_cap_fops = {
2643 	.owner = THIS_MODULE,
2644 	.open = stmmac_sysfs_dma_cap_open,
2645 	.read = seq_read,
2646 	.llseek = seq_lseek,
2647 	.release = single_release,
2648 };
2649 
stmmac_init_fs(struct net_device * dev)2650 static int stmmac_init_fs(struct net_device *dev)
2651 {
2652 	struct stmmac_priv *priv = netdev_priv(dev);
2653 
2654 	/* Create per netdev entries */
2655 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2656 
2657 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2658 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
2659 		       STMMAC_RESOURCE_NAME, dev->name);
2660 
2661 		return -ENOMEM;
2662 	}
2663 
2664 	/* Entry to report DMA RX/TX rings */
2665 	priv->dbgfs_rings_status =
2666 		debugfs_create_file("descriptors_status", S_IRUGO,
2667 				    priv->dbgfs_dir, dev,
2668 				    &stmmac_rings_status_fops);
2669 
2670 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2671 		pr_info("ERROR creating stmmac ring debugfs file\n");
2672 		debugfs_remove_recursive(priv->dbgfs_dir);
2673 
2674 		return -ENOMEM;
2675 	}
2676 
2677 	/* Entry to report the DMA HW features */
2678 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2679 					    priv->dbgfs_dir,
2680 					    dev, &stmmac_dma_cap_fops);
2681 
2682 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2683 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2684 		debugfs_remove_recursive(priv->dbgfs_dir);
2685 
2686 		return -ENOMEM;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
stmmac_exit_fs(struct net_device * dev)2692 static void stmmac_exit_fs(struct net_device *dev)
2693 {
2694 	struct stmmac_priv *priv = netdev_priv(dev);
2695 
2696 	debugfs_remove_recursive(priv->dbgfs_dir);
2697 }
2698 #endif /* CONFIG_DEBUG_FS */
2699 
2700 static const struct net_device_ops stmmac_netdev_ops = {
2701 	.ndo_open = stmmac_open,
2702 	.ndo_start_xmit = stmmac_xmit,
2703 	.ndo_stop = stmmac_release,
2704 	.ndo_change_mtu = stmmac_change_mtu,
2705 	.ndo_fix_features = stmmac_fix_features,
2706 	.ndo_set_features = stmmac_set_features,
2707 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2708 	.ndo_tx_timeout = stmmac_tx_timeout,
2709 	.ndo_do_ioctl = stmmac_ioctl,
2710 #ifdef CONFIG_NET_POLL_CONTROLLER
2711 	.ndo_poll_controller = stmmac_poll_controller,
2712 #endif
2713 	.ndo_set_mac_address = eth_mac_addr,
2714 };
2715 
2716 /**
2717  *  stmmac_hw_init - Init the MAC device
2718  *  @priv: driver private structure
2719  *  Description: this function is to configure the MAC device according to
2720  *  some platform parameters or the HW capability register. It prepares the
2721  *  driver to use either ring or chain modes and to setup either enhanced or
2722  *  normal descriptors.
2723  */
stmmac_hw_init(struct stmmac_priv * priv)2724 static int stmmac_hw_init(struct stmmac_priv *priv)
2725 {
2726 	struct mac_device_info *mac;
2727 
2728 	/* Identify the MAC HW device */
2729 	if (priv->plat->has_gmac) {
2730 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2731 		mac = dwmac1000_setup(priv->ioaddr,
2732 				      priv->plat->multicast_filter_bins,
2733 				      priv->plat->unicast_filter_entries);
2734 	} else {
2735 		mac = dwmac100_setup(priv->ioaddr);
2736 	}
2737 	if (!mac)
2738 		return -ENOMEM;
2739 
2740 	priv->hw = mac;
2741 
2742 	/* Get and dump the chip ID */
2743 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2744 
2745 	/* To use the chained or ring mode */
2746 	if (chain_mode) {
2747 		priv->hw->mode = &chain_mode_ops;
2748 		pr_info(" Chain mode enabled\n");
2749 		priv->mode = STMMAC_CHAIN_MODE;
2750 	} else {
2751 		priv->hw->mode = &ring_mode_ops;
2752 		pr_info(" Ring mode enabled\n");
2753 		priv->mode = STMMAC_RING_MODE;
2754 	}
2755 
2756 	/* Get the HW capability (new GMAC newer than 3.50a) */
2757 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2758 	if (priv->hw_cap_support) {
2759 		pr_info(" DMA HW capability register supported");
2760 
2761 		/* We can override some gmac/dma configuration fields: e.g.
2762 		 * enh_desc, tx_coe (e.g. that are passed through the
2763 		 * platform) with the values from the HW capability
2764 		 * register (if supported).
2765 		 */
2766 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2767 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2768 
2769 		/* TXCOE doesn't work in thresh DMA mode */
2770 		if (priv->plat->force_thresh_dma_mode)
2771 			priv->plat->tx_coe = 0;
2772 		else
2773 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
2774 
2775 		if (priv->dma_cap.rx_coe_type2)
2776 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2777 		else if (priv->dma_cap.rx_coe_type1)
2778 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2779 
2780 	} else
2781 		pr_info(" No HW DMA feature register supported");
2782 
2783 	/* To use alternate (extended) or normal descriptor structures */
2784 	stmmac_selec_desc_mode(priv);
2785 
2786 	if (priv->plat->rx_coe) {
2787 		priv->hw->rx_csum = priv->plat->rx_coe;
2788 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2789 			priv->plat->rx_coe);
2790 	}
2791 	if (priv->plat->tx_coe)
2792 		pr_info(" TX Checksum insertion supported\n");
2793 
2794 	if (priv->plat->pmt) {
2795 		pr_info(" Wake-Up On Lan supported\n");
2796 		device_set_wakeup_capable(priv->device, 1);
2797 	}
2798 
2799 	return 0;
2800 }
2801 
2802 /**
2803  * stmmac_dvr_probe
2804  * @device: device pointer
2805  * @plat_dat: platform data pointer
2806  * @addr: iobase memory address
2807  * Description: this is the main probe function used to
2808  * call the alloc_etherdev, allocate the priv structure.
2809  * Return:
2810  * on success the new private structure is returned, otherwise the error
2811  * pointer.
2812  */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,void __iomem * addr)2813 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2814 				     struct plat_stmmacenet_data *plat_dat,
2815 				     void __iomem *addr)
2816 {
2817 	int ret = 0;
2818 	struct net_device *ndev = NULL;
2819 	struct stmmac_priv *priv;
2820 
2821 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2822 	if (!ndev)
2823 		return ERR_PTR(-ENOMEM);
2824 
2825 	SET_NETDEV_DEV(ndev, device);
2826 
2827 	priv = netdev_priv(ndev);
2828 	priv->device = device;
2829 	priv->dev = ndev;
2830 
2831 	stmmac_set_ethtool_ops(ndev);
2832 	priv->pause = pause;
2833 	priv->plat = plat_dat;
2834 	priv->ioaddr = addr;
2835 	priv->dev->base_addr = (unsigned long)addr;
2836 
2837 	/* Verify driver arguments */
2838 	stmmac_verify_args();
2839 
2840 	/* Override with kernel parameters if supplied XXX CRS XXX
2841 	 * this needs to have multiple instances
2842 	 */
2843 	if ((phyaddr >= 0) && (phyaddr <= 31))
2844 		priv->plat->phy_addr = phyaddr;
2845 
2846 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2847 	if (IS_ERR(priv->stmmac_clk)) {
2848 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2849 			 __func__);
2850 		/* If failed to obtain stmmac_clk and specific clk_csr value
2851 		 * is NOT passed from the platform, probe fail.
2852 		 */
2853 		if (!priv->plat->clk_csr) {
2854 			ret = PTR_ERR(priv->stmmac_clk);
2855 			goto error_clk_get;
2856 		} else {
2857 			priv->stmmac_clk = NULL;
2858 		}
2859 	}
2860 	clk_prepare_enable(priv->stmmac_clk);
2861 
2862 	priv->pclk = devm_clk_get(priv->device, "pclk");
2863 	if (IS_ERR(priv->pclk)) {
2864 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2865 			ret = -EPROBE_DEFER;
2866 			goto error_pclk_get;
2867 		}
2868 		priv->pclk = NULL;
2869 	}
2870 	clk_prepare_enable(priv->pclk);
2871 
2872 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2873 						  STMMAC_RESOURCE_NAME);
2874 	if (IS_ERR(priv->stmmac_rst)) {
2875 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2876 			ret = -EPROBE_DEFER;
2877 			goto error_hw_init;
2878 		}
2879 		dev_info(priv->device, "no reset control found\n");
2880 		priv->stmmac_rst = NULL;
2881 	}
2882 	if (priv->stmmac_rst)
2883 		reset_control_deassert(priv->stmmac_rst);
2884 
2885 	/* Init MAC and get the capabilities */
2886 	ret = stmmac_hw_init(priv);
2887 	if (ret)
2888 		goto error_hw_init;
2889 
2890 	ndev->netdev_ops = &stmmac_netdev_ops;
2891 
2892 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2893 			    NETIF_F_RXCSUM;
2894 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2895 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2896 #ifdef STMMAC_VLAN_TAG_USED
2897 	/* Both mac100 and gmac support receive VLAN tag detection */
2898 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2899 #endif
2900 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2901 
2902 	if (flow_ctrl)
2903 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2904 
2905 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2906 	 * In some case, for example on bugged HW this feature
2907 	 * has to be disable and this can be done by passing the
2908 	 * riwt_off field from the platform.
2909 	 */
2910 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2911 		priv->use_riwt = 1;
2912 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2913 	}
2914 
2915 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2916 
2917 	spin_lock_init(&priv->lock);
2918 	spin_lock_init(&priv->tx_lock);
2919 
2920 	ret = register_netdev(ndev);
2921 	if (ret) {
2922 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2923 		goto error_netdev_register;
2924 	}
2925 
2926 	/* If a specific clk_csr value is passed from the platform
2927 	 * this means that the CSR Clock Range selection cannot be
2928 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2929 	 * set the MDC clock dynamically according to the csr actual
2930 	 * clock input.
2931 	 */
2932 	if (!priv->plat->clk_csr)
2933 		stmmac_clk_csr_set(priv);
2934 	else
2935 		priv->clk_csr = priv->plat->clk_csr;
2936 
2937 	stmmac_check_pcs_mode(priv);
2938 
2939 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2940 	    priv->pcs != STMMAC_PCS_RTBI) {
2941 		/* MDIO bus Registration */
2942 		ret = stmmac_mdio_register(ndev);
2943 		if (ret < 0) {
2944 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2945 				 __func__, priv->plat->bus_id);
2946 			goto error_mdio_register;
2947 		}
2948 	}
2949 
2950 	return priv;
2951 
2952 error_mdio_register:
2953 	unregister_netdev(ndev);
2954 error_netdev_register:
2955 	netif_napi_del(&priv->napi);
2956 error_hw_init:
2957 	clk_disable_unprepare(priv->pclk);
2958 error_pclk_get:
2959 	clk_disable_unprepare(priv->stmmac_clk);
2960 error_clk_get:
2961 	free_netdev(ndev);
2962 
2963 	return ERR_PTR(ret);
2964 }
2965 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2966 
2967 /**
2968  * stmmac_dvr_remove
2969  * @ndev: net device pointer
2970  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2971  * changes the link status, releases the DMA descriptor rings.
2972  */
stmmac_dvr_remove(struct net_device * ndev)2973 int stmmac_dvr_remove(struct net_device *ndev)
2974 {
2975 	struct stmmac_priv *priv = netdev_priv(ndev);
2976 
2977 	pr_info("%s:\n\tremoving driver", __func__);
2978 
2979 	priv->hw->dma->stop_rx(priv->ioaddr);
2980 	priv->hw->dma->stop_tx(priv->ioaddr);
2981 
2982 	stmmac_set_mac(priv->ioaddr, false);
2983 	netif_carrier_off(ndev);
2984 	unregister_netdev(ndev);
2985 	if (priv->stmmac_rst)
2986 		reset_control_assert(priv->stmmac_rst);
2987 	clk_disable_unprepare(priv->pclk);
2988 	clk_disable_unprepare(priv->stmmac_clk);
2989 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2990 	    priv->pcs != STMMAC_PCS_RTBI)
2991 		stmmac_mdio_unregister(ndev);
2992 	free_netdev(ndev);
2993 
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
2997 
2998 /**
2999  * stmmac_suspend - suspend callback
3000  * @ndev: net device pointer
3001  * Description: this is the function to suspend the device and it is called
3002  * by the platform driver to stop the network queue, release the resources,
3003  * program the PMT register (for WoL), clean and release driver resources.
3004  */
stmmac_suspend(struct net_device * ndev)3005 int stmmac_suspend(struct net_device *ndev)
3006 {
3007 	struct stmmac_priv *priv = netdev_priv(ndev);
3008 	unsigned long flags;
3009 
3010 	if (!ndev || !netif_running(ndev))
3011 		return 0;
3012 
3013 	if (priv->phydev)
3014 		phy_stop(priv->phydev);
3015 
3016 	spin_lock_irqsave(&priv->lock, flags);
3017 
3018 	netif_device_detach(ndev);
3019 	netif_stop_queue(ndev);
3020 
3021 	napi_disable(&priv->napi);
3022 
3023 	/* Stop TX/RX DMA */
3024 	priv->hw->dma->stop_tx(priv->ioaddr);
3025 	priv->hw->dma->stop_rx(priv->ioaddr);
3026 
3027 	stmmac_clear_descriptors(priv);
3028 
3029 	/* Enable Power down mode by programming the PMT regs */
3030 	if (device_may_wakeup(priv->device)) {
3031 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3032 		priv->irq_wake = 1;
3033 	} else {
3034 		stmmac_set_mac(priv->ioaddr, false);
3035 		pinctrl_pm_select_sleep_state(priv->device);
3036 		/* Disable clock in case of PWM is off */
3037 		clk_disable(priv->pclk);
3038 		clk_disable(priv->stmmac_clk);
3039 	}
3040 	spin_unlock_irqrestore(&priv->lock, flags);
3041 
3042 	priv->oldlink = 0;
3043 	priv->speed = 0;
3044 	priv->oldduplex = -1;
3045 	return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(stmmac_suspend);
3048 
3049 /**
3050  * stmmac_resume - resume callback
3051  * @ndev: net device pointer
3052  * Description: when resume this function is invoked to setup the DMA and CORE
3053  * in a usable state.
3054  */
stmmac_resume(struct net_device * ndev)3055 int stmmac_resume(struct net_device *ndev)
3056 {
3057 	struct stmmac_priv *priv = netdev_priv(ndev);
3058 	unsigned long flags;
3059 
3060 	if (!netif_running(ndev))
3061 		return 0;
3062 
3063 	spin_lock_irqsave(&priv->lock, flags);
3064 
3065 	/* Power Down bit, into the PM register, is cleared
3066 	 * automatically as soon as a magic packet or a Wake-up frame
3067 	 * is received. Anyway, it's better to manually clear
3068 	 * this bit because it can generate problems while resuming
3069 	 * from another devices (e.g. serial console).
3070 	 */
3071 	if (device_may_wakeup(priv->device)) {
3072 		priv->hw->mac->pmt(priv->hw, 0);
3073 		priv->irq_wake = 0;
3074 	} else {
3075 		pinctrl_pm_select_default_state(priv->device);
3076 		/* enable the clk prevously disabled */
3077 		clk_enable(priv->stmmac_clk);
3078 		clk_enable(priv->pclk);
3079 		/* reset the phy so that it's ready */
3080 		if (priv->mii)
3081 			stmmac_mdio_reset(priv->mii);
3082 	}
3083 
3084 	netif_device_attach(ndev);
3085 
3086 	init_dma_desc_rings(ndev, GFP_ATOMIC);
3087 	stmmac_hw_setup(ndev, false);
3088 	stmmac_init_tx_coalesce(priv);
3089 
3090 	napi_enable(&priv->napi);
3091 
3092 	netif_start_queue(ndev);
3093 
3094 	spin_unlock_irqrestore(&priv->lock, flags);
3095 
3096 	if (priv->phydev)
3097 		phy_start(priv->phydev);
3098 
3099 	return 0;
3100 }
3101 EXPORT_SYMBOL_GPL(stmmac_resume);
3102 
3103 #ifndef MODULE
stmmac_cmdline_opt(char * str)3104 static int __init stmmac_cmdline_opt(char *str)
3105 {
3106 	char *opt;
3107 
3108 	if (!str || !*str)
3109 		return -EINVAL;
3110 	while ((opt = strsep(&str, ",")) != NULL) {
3111 		if (!strncmp(opt, "debug:", 6)) {
3112 			if (kstrtoint(opt + 6, 0, &debug))
3113 				goto err;
3114 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3115 			if (kstrtoint(opt + 8, 0, &phyaddr))
3116 				goto err;
3117 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
3118 			if (kstrtoint(opt + 11, 0, &dma_txsize))
3119 				goto err;
3120 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
3121 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
3122 				goto err;
3123 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3124 			if (kstrtoint(opt + 7, 0, &buf_sz))
3125 				goto err;
3126 		} else if (!strncmp(opt, "tc:", 3)) {
3127 			if (kstrtoint(opt + 3, 0, &tc))
3128 				goto err;
3129 		} else if (!strncmp(opt, "watchdog:", 9)) {
3130 			if (kstrtoint(opt + 9, 0, &watchdog))
3131 				goto err;
3132 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3133 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3134 				goto err;
3135 		} else if (!strncmp(opt, "pause:", 6)) {
3136 			if (kstrtoint(opt + 6, 0, &pause))
3137 				goto err;
3138 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3139 			if (kstrtoint(opt + 10, 0, &eee_timer))
3140 				goto err;
3141 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3142 			if (kstrtoint(opt + 11, 0, &chain_mode))
3143 				goto err;
3144 		}
3145 	}
3146 	return 0;
3147 
3148 err:
3149 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3150 	return -EINVAL;
3151 }
3152 
3153 __setup("stmmaceth=", stmmac_cmdline_opt);
3154 #endif /* MODULE */
3155 
stmmac_init(void)3156 static int __init stmmac_init(void)
3157 {
3158 #ifdef CONFIG_DEBUG_FS
3159 	/* Create debugfs main directory if it doesn't exist yet */
3160 	if (!stmmac_fs_dir) {
3161 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3162 
3163 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3164 			pr_err("ERROR %s, debugfs create directory failed\n",
3165 			       STMMAC_RESOURCE_NAME);
3166 
3167 			return -ENOMEM;
3168 		}
3169 	}
3170 #endif
3171 
3172 	return 0;
3173 }
3174 
stmmac_exit(void)3175 static void __exit stmmac_exit(void)
3176 {
3177 #ifdef CONFIG_DEBUG_FS
3178 	debugfs_remove_recursive(stmmac_fs_dir);
3179 #endif
3180 }
3181 
3182 module_init(stmmac_init)
3183 module_exit(stmmac_exit)
3184 
3185 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3186 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3187 MODULE_LICENSE("GPL");
3188