1 /*
2  * comedi/drivers/s626.c
3  * Sensoray s626 Comedi driver
4  *
5  * COMEDI - Linux Control and Measurement Device Interface
6  * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7  *
8  * Based on Sensoray Model 626 Linux driver Version 0.2
9  * Copyright (C) 2002-2004 Sensoray Co., Inc.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 /*
23  * Driver: s626
24  * Description: Sensoray 626 driver
25  * Devices: [Sensoray] 626 (s626)
26  * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
27  * Updated: Fri, 15 Feb 2008 10:28:42 +0000
28  * Status: experimental
29 
30  * Configuration options: not applicable, uses PCI auto config
31 
32  * INSN_CONFIG instructions:
33  *   analog input:
34  *    none
35  *
36  *   analog output:
37  *    none
38  *
39  *   digital channel:
40  *    s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
41  *    supported configuration options:
42  *    INSN_CONFIG_DIO_QUERY
43  *    COMEDI_INPUT
44  *    COMEDI_OUTPUT
45  *
46  *   encoder:
47  *    Every channel must be configured before reading.
48  *
49  *   Example code
50  *
51  *    insn.insn=INSN_CONFIG;   //configuration instruction
52  *    insn.n=1;                //number of operation (must be 1)
53  *    insn.data=&initialvalue; //initial value loaded into encoder
54  *                             //during configuration
55  *    insn.subdev=5;           //encoder subdevice
56  *    insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
57  *                                                         //to configure
58  *
59  *    comedi_do_insn(cf,&insn); //executing configuration
60  */
61 
62 #include <linux/module.h>
63 #include <linux/delay.h>
64 #include <linux/interrupt.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67 
68 #include "../comedi_pci.h"
69 
70 #include "s626.h"
71 
72 struct s626_buffer_dma {
73 	dma_addr_t physical_base;
74 	void *logical_base;
75 };
76 
77 struct s626_private {
78 	uint8_t ai_cmd_running;		/* ai_cmd is running */
79 	unsigned int ai_sample_timer;	/* time between samples in
80 					 * units of the timer */
81 	int ai_convert_count;		/* conversion counter */
82 	unsigned int ai_convert_timer;	/* time between conversion in
83 					 * units of the timer */
84 	uint16_t counter_int_enabs;	/* counter interrupt enable mask
85 					 * for MISC2 register */
86 	uint8_t adc_items;		/* number of items in ADC poll list */
87 	struct s626_buffer_dma rps_buf;	/* DMA buffer used to hold ADC (RPS1)
88 					 * program */
89 	struct s626_buffer_dma ana_buf;	/* DMA buffer used to receive ADC data
90 					 * and hold DAC data */
91 	uint32_t *dac_wbuf;		/* pointer to logical adrs of DMA buffer
92 					 * used to hold DAC data */
93 	uint16_t dacpol;		/* image of DAC polarity register */
94 	uint8_t trim_setpoint[12];	/* images of TrimDAC setpoints */
95 	uint32_t i2c_adrs;		/* I2C device address for onboard EEPROM
96 					 * (board rev dependent) */
97 };
98 
99 /* Counter overflow/index event flag masks for RDMISC2. */
100 #define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
101 #define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
102 
103 /*
104  * Enable/disable a function or test status bit(s) that are accessed
105  * through Main Control Registers 1 or 2.
106  */
s626_mc_enable(struct comedi_device * dev,unsigned int cmd,unsigned int reg)107 static void s626_mc_enable(struct comedi_device *dev,
108 			   unsigned int cmd, unsigned int reg)
109 {
110 	unsigned int val = (cmd << 16) | cmd;
111 
112 	mmiowb();
113 	writel(val, dev->mmio + reg);
114 }
115 
s626_mc_disable(struct comedi_device * dev,unsigned int cmd,unsigned int reg)116 static void s626_mc_disable(struct comedi_device *dev,
117 			    unsigned int cmd, unsigned int reg)
118 {
119 	writel(cmd << 16, dev->mmio + reg);
120 	mmiowb();
121 }
122 
s626_mc_test(struct comedi_device * dev,unsigned int cmd,unsigned int reg)123 static bool s626_mc_test(struct comedi_device *dev,
124 			 unsigned int cmd, unsigned int reg)
125 {
126 	unsigned int val;
127 
128 	val = readl(dev->mmio + reg);
129 
130 	return (val & cmd) ? true : false;
131 }
132 
133 #define S626_BUGFIX_STREG(REGADRS)   ((REGADRS) - 4)
134 
135 /* Write a time slot control record to TSL2. */
136 #define S626_VECTPORT(VECTNUM)		(S626_P_TSL2 + ((VECTNUM) << 2))
137 
138 static const struct comedi_lrange s626_range_table = {
139 	2, {
140 		BIP_RANGE(5),
141 		BIP_RANGE(10)
142 	}
143 };
144 
145 /*
146  * Execute a DEBI transfer.  This must be called from within a critical section.
147  */
s626_debi_transfer(struct comedi_device * dev)148 static void s626_debi_transfer(struct comedi_device *dev)
149 {
150 	static const int timeout = 10000;
151 	int i;
152 
153 	/* Initiate upload of shadow RAM to DEBI control register */
154 	s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
155 
156 	/*
157 	 * Wait for completion of upload from shadow RAM to
158 	 * DEBI control register.
159 	 */
160 	for (i = 0; i < timeout; i++) {
161 		if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
162 			break;
163 		udelay(1);
164 	}
165 	if (i == timeout)
166 		dev_err(dev->class_dev,
167 			"Timeout while uploading to DEBI control register\n");
168 
169 	/* Wait until DEBI transfer is done */
170 	for (i = 0; i < timeout; i++) {
171 		if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
172 			break;
173 		udelay(1);
174 	}
175 	if (i == timeout)
176 		dev_err(dev->class_dev, "DEBI transfer timeout\n");
177 }
178 
179 /*
180  * Read a value from a gate array register.
181  */
s626_debi_read(struct comedi_device * dev,uint16_t addr)182 static uint16_t s626_debi_read(struct comedi_device *dev, uint16_t addr)
183 {
184 	/* Set up DEBI control register value in shadow RAM */
185 	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
186 
187 	/*  Execute the DEBI transfer. */
188 	s626_debi_transfer(dev);
189 
190 	return readl(dev->mmio + S626_P_DEBIAD);
191 }
192 
193 /*
194  * Write a value to a gate array register.
195  */
s626_debi_write(struct comedi_device * dev,uint16_t addr,uint16_t wdata)196 static void s626_debi_write(struct comedi_device *dev, uint16_t addr,
197 			    uint16_t wdata)
198 {
199 	/* Set up DEBI control register value in shadow RAM */
200 	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
201 	writel(wdata, dev->mmio + S626_P_DEBIAD);
202 
203 	/*  Execute the DEBI transfer. */
204 	s626_debi_transfer(dev);
205 }
206 
207 /*
208  * Replace the specified bits in a gate array register.  Imports: mask
209  * specifies bits that are to be preserved, wdata is new value to be
210  * or'd with the masked original.
211  */
s626_debi_replace(struct comedi_device * dev,unsigned int addr,unsigned int mask,unsigned int wdata)212 static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
213 			      unsigned int mask, unsigned int wdata)
214 {
215 	unsigned int val;
216 
217 	addr &= 0xffff;
218 	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
219 	s626_debi_transfer(dev);
220 
221 	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
222 	val = readl(dev->mmio + S626_P_DEBIAD);
223 	val &= mask;
224 	val |= wdata;
225 	writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
226 	s626_debi_transfer(dev);
227 }
228 
229 /* **************  EEPROM ACCESS FUNCTIONS  ************** */
230 
s626_i2c_handshake_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)231 static int s626_i2c_handshake_eoc(struct comedi_device *dev,
232 				  struct comedi_subdevice *s,
233 				  struct comedi_insn *insn,
234 				  unsigned long context)
235 {
236 	bool status;
237 
238 	status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
239 	if (status)
240 		return 0;
241 	return -EBUSY;
242 }
243 
s626_i2c_handshake(struct comedi_device * dev,uint32_t val)244 static int s626_i2c_handshake(struct comedi_device *dev, uint32_t val)
245 {
246 	unsigned int ctrl;
247 	int ret;
248 
249 	/* Write I2C command to I2C Transfer Control shadow register */
250 	writel(val, dev->mmio + S626_P_I2CCTRL);
251 
252 	/*
253 	 * Upload I2C shadow registers into working registers and
254 	 * wait for upload confirmation.
255 	 */
256 	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
257 	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
258 	if (ret)
259 		return ret;
260 
261 	/* Wait until I2C bus transfer is finished or an error occurs */
262 	do {
263 		ctrl = readl(dev->mmio + S626_P_I2CCTRL);
264 	} while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
265 
266 	/* Return non-zero if I2C error occurred */
267 	return ctrl & S626_I2C_ERR;
268 }
269 
270 /* Read uint8_t from EEPROM. */
s626_i2c_read(struct comedi_device * dev,uint8_t addr)271 static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
272 {
273 	struct s626_private *devpriv = dev->private;
274 
275 	/*
276 	 * Send EEPROM target address:
277 	 *  Byte2 = I2C command: write to I2C EEPROM device.
278 	 *  Byte1 = EEPROM internal target address.
279 	 *  Byte0 = Not sent.
280 	 */
281 	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
282 						devpriv->i2c_adrs) |
283 				    S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
284 				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
285 		/* Abort function and declare error if handshake failed. */
286 		return 0;
287 
288 	/*
289 	 * Execute EEPROM read:
290 	 *  Byte2 = I2C command: read from I2C EEPROM device.
291 	 *  Byte1 receives uint8_t from EEPROM.
292 	 *  Byte0 = Not sent.
293 	 */
294 	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
295 						(devpriv->i2c_adrs | 1)) |
296 				    S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
297 				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
298 		/* Abort function and declare error if handshake failed. */
299 		return 0;
300 
301 	return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
302 }
303 
304 /* ***********  DAC FUNCTIONS *********** */
305 
306 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
307 static const uint8_t s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
308 
309 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
310 static const uint8_t s626_trimadrs[] = {
311 	0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
312 };
313 
314 enum {
315 	s626_send_dac_wait_not_mc1_a2out,
316 	s626_send_dac_wait_ssr_af2_out,
317 	s626_send_dac_wait_fb_buffer2_msb_00,
318 	s626_send_dac_wait_fb_buffer2_msb_ff
319 };
320 
s626_send_dac_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)321 static int s626_send_dac_eoc(struct comedi_device *dev,
322 			     struct comedi_subdevice *s,
323 			     struct comedi_insn *insn,
324 			     unsigned long context)
325 {
326 	unsigned int status;
327 
328 	switch (context) {
329 	case s626_send_dac_wait_not_mc1_a2out:
330 		status = readl(dev->mmio + S626_P_MC1);
331 		if (!(status & S626_MC1_A2OUT))
332 			return 0;
333 		break;
334 	case s626_send_dac_wait_ssr_af2_out:
335 		status = readl(dev->mmio + S626_P_SSR);
336 		if (status & S626_SSR_AF2_OUT)
337 			return 0;
338 		break;
339 	case s626_send_dac_wait_fb_buffer2_msb_00:
340 		status = readl(dev->mmio + S626_P_FB_BUFFER2);
341 		if (!(status & 0xff000000))
342 			return 0;
343 		break;
344 	case s626_send_dac_wait_fb_buffer2_msb_ff:
345 		status = readl(dev->mmio + S626_P_FB_BUFFER2);
346 		if (status & 0xff000000)
347 			return 0;
348 		break;
349 	default:
350 		return -EINVAL;
351 	}
352 	return -EBUSY;
353 }
354 
355 /*
356  * Private helper function: Transmit serial data to DAC via Audio
357  * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
358  * dacpol contains valid target image.
359  */
s626_send_dac(struct comedi_device * dev,uint32_t val)360 static int s626_send_dac(struct comedi_device *dev, uint32_t val)
361 {
362 	struct s626_private *devpriv = dev->private;
363 	int ret;
364 
365 	/* START THE SERIAL CLOCK RUNNING ------------- */
366 
367 	/*
368 	 * Assert DAC polarity control and enable gating of DAC serial clock
369 	 * and audio bit stream signals.  At this point in time we must be
370 	 * assured of being in time slot 0.  If we are not in slot 0, the
371 	 * serial clock and audio stream signals will be disabled; this is
372 	 * because the following s626_debi_write statement (which enables
373 	 * signals to be passed through the gate array) would execute before
374 	 * the trailing edge of WS1/WS3 (which turns off the signals), thus
375 	 * causing the signals to be inactive during the DAC write.
376 	 */
377 	s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
378 
379 	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
380 
381 	/* Copy DAC setpoint value to DAC's output DMA buffer. */
382 	/* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
383 	*devpriv->dac_wbuf = val;
384 
385 	/*
386 	 * Enable the output DMA transfer. This will cause the DMAC to copy
387 	 * the DAC's data value to A2's output FIFO. The DMA transfer will
388 	 * then immediately terminate because the protection address is
389 	 * reached upon transfer of the first DWORD value.
390 	 */
391 	s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
392 
393 	/* While the DMA transfer is executing ... */
394 
395 	/*
396 	 * Reset Audio2 output FIFO's underflow flag (along with any
397 	 * other FIFO underflow/overflow flags). When set, this flag
398 	 * will indicate that we have emerged from slot 0.
399 	 */
400 	writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
401 
402 	/*
403 	 * Wait for the DMA transfer to finish so that there will be data
404 	 * available in the FIFO when time slot 1 tries to transfer a DWORD
405 	 * from the FIFO to the output buffer register.  We test for DMA
406 	 * Done by polling the DMAC enable flag; this flag is automatically
407 	 * cleared when the transfer has finished.
408 	 */
409 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
410 			     s626_send_dac_wait_not_mc1_a2out);
411 	if (ret) {
412 		dev_err(dev->class_dev, "DMA transfer timeout\n");
413 		return ret;
414 	}
415 
416 	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
417 
418 	/*
419 	 * FIFO data is now available, so we enable execution of time slots
420 	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
421 	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
422 	 * detection.
423 	 */
424 	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
425 	       dev->mmio + S626_VECTPORT(0));
426 
427 	/*
428 	 * Wait for slot 1 to execute to ensure that the Packet will be
429 	 * transmitted.  This is detected by polling the Audio2 output FIFO
430 	 * underflow flag, which will be set when slot 1 execution has
431 	 * finished transferring the DAC's data DWORD from the output FIFO
432 	 * to the output buffer register.
433 	 */
434 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
435 			     s626_send_dac_wait_ssr_af2_out);
436 	if (ret) {
437 		dev_err(dev->class_dev,
438 			"TSL timeout waiting for slot 1 to execute\n");
439 		return ret;
440 	}
441 
442 	/*
443 	 * Set up to trap execution at slot 0 when the TSL sequencer cycles
444 	 * back to slot 0 after executing the EOS in slot 5.  Also,
445 	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
446 	 * stored in the last byte to be shifted out of the FIFO's DWORD
447 	 * buffer register.
448 	 */
449 	writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
450 	       dev->mmio + S626_VECTPORT(0));
451 
452 	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
453 
454 	/*
455 	 * Wait for the TSL to finish executing all time slots before
456 	 * exiting this function.  We must do this so that the next DAC
457 	 * write doesn't start, thereby enabling clock/chip select signals:
458 	 *
459 	 * 1. Before the TSL sequence cycles back to slot 0, which disables
460 	 *    the clock/cs signal gating and traps slot // list execution.
461 	 *    we have not yet finished slot 5 then the clock/cs signals are
462 	 *    still gated and we have not finished transmitting the stream.
463 	 *
464 	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
465 	 *    this case, the slot sequence is currently repeating, but with
466 	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
467 	 *    execution before setting up the next DAC setpoint DMA transfer
468 	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
469 	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
470 	 *    the TSL has not yet finished executing slot 5 ...
471 	 */
472 	if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
473 		/*
474 		 * The trap was set on time and we are still executing somewhere
475 		 * in slots 2-5, so we now wait for slot 0 to execute and trap
476 		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
477 		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
478 		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
479 		 */
480 		ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
481 				     s626_send_dac_wait_fb_buffer2_msb_00);
482 		if (ret) {
483 			dev_err(dev->class_dev,
484 				"TSL timeout waiting for slot 0 to execute\n");
485 			return ret;
486 		}
487 	}
488 	/*
489 	 * Either (1) we were too late setting the slot 0 trap; the TSL
490 	 * sequencer restarted slot 0 before we could set the EOS trap flag,
491 	 * or (2) we were not late and execution is now trapped at slot 0.
492 	 * In either case, we must now change slot 0 so that it will store
493 	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
494 	 * In order to do this, we reprogram slot 0 so that it will shift in
495 	 * SD3, which is driven only by a pull-up resistor.
496 	 */
497 	writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
498 	       dev->mmio + S626_VECTPORT(0));
499 
500 	/*
501 	 * Wait for slot 0 to execute, at which time the TSL is setup for
502 	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
503 	 * from 0x00 to 0xFF.
504 	 */
505 	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
506 			     s626_send_dac_wait_fb_buffer2_msb_ff);
507 	if (ret) {
508 		dev_err(dev->class_dev,
509 			"TSL timeout waiting for slot 0 to execute\n");
510 		return ret;
511 	}
512 	return 0;
513 }
514 
515 /*
516  * Private helper function: Write setpoint to an application DAC channel.
517  */
s626_set_dac(struct comedi_device * dev,uint16_t chan,int16_t dacdata)518 static int s626_set_dac(struct comedi_device *dev,
519 			uint16_t chan, int16_t dacdata)
520 {
521 	struct s626_private *devpriv = dev->private;
522 	uint16_t signmask;
523 	uint32_t ws_image;
524 	uint32_t val;
525 
526 	/*
527 	 * Adjust DAC data polarity and set up Polarity Control Register image.
528 	 */
529 	signmask = 1 << chan;
530 	if (dacdata < 0) {
531 		dacdata = -dacdata;
532 		devpriv->dacpol |= signmask;
533 	} else {
534 		devpriv->dacpol &= ~signmask;
535 	}
536 
537 	/* Limit DAC setpoint value to valid range. */
538 	if ((uint16_t)dacdata > 0x1FFF)
539 		dacdata = 0x1FFF;
540 
541 	/*
542 	 * Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
543 	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
544 	 * data to a non-existent TrimDac channel just to keep the clock
545 	 * running after sending data to the target DAC.  This is necessary
546 	 * to eliminate the clock glitch that would otherwise occur at the
547 	 * end of the target DAC's serial data stream.  When the sequence
548 	 * restarts at V0 (after executing V5), the gate array automatically
549 	 * disables gating for the DAC clock and all DAC chip selects.
550 	 */
551 
552 	/* Choose DAC chip select to be asserted */
553 	ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
554 	/* Slot 2: Transmit high data byte to target DAC */
555 	writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
556 	       dev->mmio + S626_VECTPORT(2));
557 	/* Slot 3: Transmit low data byte to target DAC */
558 	writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
559 	       dev->mmio + S626_VECTPORT(3));
560 	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
561 	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
562 	       dev->mmio + S626_VECTPORT(4));
563 	/* Slot 5: running after writing target DAC's low data byte */
564 	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
565 	       dev->mmio + S626_VECTPORT(5));
566 
567 	/*
568 	 * Construct and transmit target DAC's serial packet:
569 	 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
570 	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
571 	 * to a  non-existent TrimDac channel) that serves to keep the clock
572 	 * running after the packet has been sent to the target DAC.
573 	 */
574 	val = 0x0F000000;	/* Continue clock after target DAC data
575 				 * (write to non-existent trimdac). */
576 	val |= 0x00004000;	/* Address the two main dual-DAC devices
577 				 * (TSL's chip select enables target device). */
578 	val |= ((uint32_t)(chan & 1) << 15);	/* Address the DAC channel
579 						 * within the device. */
580 	val |= (uint32_t)dacdata;	/* Include DAC setpoint data. */
581 	return s626_send_dac(dev, val);
582 }
583 
s626_write_trim_dac(struct comedi_device * dev,uint8_t logical_chan,uint8_t dac_data)584 static int s626_write_trim_dac(struct comedi_device *dev,
585 			       uint8_t logical_chan, uint8_t dac_data)
586 {
587 	struct s626_private *devpriv = dev->private;
588 	uint32_t chan;
589 
590 	/*
591 	 * Save the new setpoint in case the application needs to read it back
592 	 * later.
593 	 */
594 	devpriv->trim_setpoint[logical_chan] = (uint8_t)dac_data;
595 
596 	/* Map logical channel number to physical channel number. */
597 	chan = s626_trimchan[logical_chan];
598 
599 	/*
600 	 * Set up TSL2 records for TrimDac write operation.  All slots shift
601 	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
602 	 * can be detected.
603 	 */
604 
605 	/* Slot 2: Send high uint8_t to target TrimDac */
606 	writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
607 	       dev->mmio + S626_VECTPORT(2));
608 	/* Slot 3: Send low uint8_t to target TrimDac */
609 	writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
610 	       dev->mmio + S626_VECTPORT(3));
611 	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
612 	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
613 	       dev->mmio + S626_VECTPORT(4));
614 	/* Slot 5: Send NOP low  uint8_t to DAC0 */
615 	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
616 	       dev->mmio + S626_VECTPORT(5));
617 
618 	/*
619 	 * Construct and transmit target DAC's serial packet:
620 	 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
621 	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
622 	 * WORD value (that writes a channel 0 NOP command to a non-existent
623 	 * main DAC channel) that serves to keep the clock running after the
624 	 * packet has been sent to the target DAC.
625 	 */
626 
627 	/*
628 	 * Address the DAC channel within the trimdac device.
629 	 * Include DAC setpoint data.
630 	 */
631 	return s626_send_dac(dev, (chan << 8) | dac_data);
632 }
633 
s626_load_trim_dacs(struct comedi_device * dev)634 static int s626_load_trim_dacs(struct comedi_device *dev)
635 {
636 	uint8_t i;
637 	int ret;
638 
639 	/* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
640 	for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
641 		ret = s626_write_trim_dac(dev, i,
642 					  s626_i2c_read(dev, s626_trimadrs[i]));
643 		if (ret)
644 			return ret;
645 	}
646 	return 0;
647 }
648 
649 /* ******  COUNTER FUNCTIONS  ******* */
650 
651 /*
652  * All counter functions address a specific counter by means of the
653  * "Counter" argument, which is a logical counter number.  The Counter
654  * argument may have any of the following legal values: 0=0A, 1=1A,
655  * 2=2A, 3=0B, 4=1B, 5=2B.
656  */
657 
658 /*
659  * Return/set a counter pair's latch trigger source.  0: On read
660  * access, 1: A index latches A, 2: B index latches B, 3: A overflow
661  * latches B.
662  */
s626_set_latch_source(struct comedi_device * dev,unsigned int chan,uint16_t value)663 static void s626_set_latch_source(struct comedi_device *dev,
664 				  unsigned int chan, uint16_t value)
665 {
666 	s626_debi_replace(dev, S626_LP_CRB(chan),
667 			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
668 			  S626_SET_CRB_LATCHSRC(value));
669 }
670 
671 /*
672  * Write value into counter preload register.
673  */
s626_preload(struct comedi_device * dev,unsigned int chan,uint32_t value)674 static void s626_preload(struct comedi_device *dev,
675 			 unsigned int chan, uint32_t value)
676 {
677 	s626_debi_write(dev, S626_LP_CNTR(chan), value);
678 	s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
679 }
680 
681 /* ******  PRIVATE COUNTER FUNCTIONS ****** */
682 
683 /*
684  * Reset a counter's index and overflow event capture flags.
685  */
s626_reset_cap_flags(struct comedi_device * dev,unsigned int chan)686 static void s626_reset_cap_flags(struct comedi_device *dev,
687 				 unsigned int chan)
688 {
689 	uint16_t set;
690 
691 	set = S626_SET_CRB_INTRESETCMD(1);
692 	if (chan < 3)
693 		set |= S626_SET_CRB_INTRESET_A(1);
694 	else
695 		set |= S626_SET_CRB_INTRESET_B(1);
696 
697 	s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
698 }
699 
700 #ifdef unused
701 /*
702  * Return counter setup in a format (COUNTER_SETUP) that is consistent
703  * for both A and B counters.
704  */
s626_get_mode_a(struct comedi_device * dev,unsigned int chan)705 static uint16_t s626_get_mode_a(struct comedi_device *dev,
706 				unsigned int chan)
707 {
708 	uint16_t cra;
709 	uint16_t crb;
710 	uint16_t setup;
711 	unsigned cntsrc, clkmult, clkpol, encmode;
712 
713 	/* Fetch CRA and CRB register images. */
714 	cra = s626_debi_read(dev, S626_LP_CRA(chan));
715 	crb = s626_debi_read(dev, S626_LP_CRB(chan));
716 
717 	/*
718 	 * Populate the standardized counter setup bit fields.
719 	 */
720 	setup =
721 		/* LoadSrc  = LoadSrcA. */
722 		S626_SET_STD_LOADSRC(S626_GET_CRA_LOADSRC_A(cra)) |
723 		/* LatchSrc = LatchSrcA. */
724 		S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
725 		/* IntSrc   = IntSrcA. */
726 		S626_SET_STD_INTSRC(S626_GET_CRA_INTSRC_A(cra)) |
727 		/* IndxSrc  = IndxSrcA. */
728 		S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_A(cra)) |
729 		/* IndxPol  = IndxPolA. */
730 		S626_SET_STD_INDXPOL(S626_GET_CRA_INDXPOL_A(cra)) |
731 		/* ClkEnab  = ClkEnabA. */
732 		S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_A(crb));
733 
734 	/* Adjust mode-dependent parameters. */
735 	cntsrc = S626_GET_CRA_CNTSRC_A(cra);
736 	if (cntsrc & S626_CNTSRC_SYSCLK) {
737 		/* Timer mode (CntSrcA<1> == 1): */
738 		encmode = S626_ENCMODE_TIMER;
739 		/* Set ClkPol to indicate count direction (CntSrcA<0>). */
740 		clkpol = cntsrc & 1;
741 		/* ClkMult must be 1x in Timer mode. */
742 		clkmult = S626_CLKMULT_1X;
743 	} else {
744 		/* Counter mode (CntSrcA<1> == 0): */
745 		encmode = S626_ENCMODE_COUNTER;
746 		/* Pass through ClkPol. */
747 		clkpol = S626_GET_CRA_CLKPOL_A(cra);
748 		/* Force ClkMult to 1x if not legal, else pass through. */
749 		clkmult = S626_GET_CRA_CLKMULT_A(cra);
750 		if (clkmult == S626_CLKMULT_SPECIAL)
751 			clkmult = S626_CLKMULT_1X;
752 	}
753 	setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
754 		 S626_SET_STD_CLKPOL(clkpol);
755 
756 	/* Return adjusted counter setup. */
757 	return setup;
758 }
759 
s626_get_mode_b(struct comedi_device * dev,unsigned int chan)760 static uint16_t s626_get_mode_b(struct comedi_device *dev,
761 				unsigned int chan)
762 {
763 	uint16_t cra;
764 	uint16_t crb;
765 	uint16_t setup;
766 	unsigned cntsrc, clkmult, clkpol, encmode;
767 
768 	/* Fetch CRA and CRB register images. */
769 	cra = s626_debi_read(dev, S626_LP_CRA(chan));
770 	crb = s626_debi_read(dev, S626_LP_CRB(chan));
771 
772 	/*
773 	 * Populate the standardized counter setup bit fields.
774 	 */
775 	setup =
776 		/* IntSrc   = IntSrcB. */
777 		S626_SET_STD_INTSRC(S626_GET_CRB_INTSRC_B(crb)) |
778 		/* LatchSrc = LatchSrcB. */
779 		S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
780 		/* LoadSrc  = LoadSrcB. */
781 		S626_SET_STD_LOADSRC(S626_GET_CRB_LOADSRC_B(crb)) |
782 		/* IndxPol  = IndxPolB. */
783 		S626_SET_STD_INDXPOL(S626_GET_CRB_INDXPOL_B(crb)) |
784 		/* ClkEnab  = ClkEnabB. */
785 		S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_B(crb)) |
786 		/* IndxSrc  = IndxSrcB. */
787 		S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_B(cra));
788 
789 	/* Adjust mode-dependent parameters. */
790 	cntsrc = S626_GET_CRA_CNTSRC_B(cra);
791 	clkmult = S626_GET_CRB_CLKMULT_B(crb);
792 	if (clkmult == S626_CLKMULT_SPECIAL) {
793 		/* Extender mode (ClkMultB == S626_CLKMULT_SPECIAL): */
794 		encmode = S626_ENCMODE_EXTENDER;
795 		/* Indicate multiplier is 1x. */
796 		clkmult = S626_CLKMULT_1X;
797 		/* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
798 		clkpol = cntsrc & 1;
799 	} else if (cntsrc & S626_CNTSRC_SYSCLK) {
800 		/* Timer mode (CntSrcB<1> == 1): */
801 		encmode = S626_ENCMODE_TIMER;
802 		/* Indicate multiplier is 1x. */
803 		clkmult = S626_CLKMULT_1X;
804 		/* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
805 		clkpol = cntsrc & 1;
806 	} else {
807 		/* If Counter mode (CntSrcB<1> == 0): */
808 		encmode = S626_ENCMODE_COUNTER;
809 		/* Clock multiplier is passed through. */
810 		/* Clock polarity is passed through. */
811 		clkpol = S626_GET_CRB_CLKPOL_B(crb);
812 	}
813 	setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
814 		 S626_SET_STD_CLKPOL(clkpol);
815 
816 	/* Return adjusted counter setup. */
817 	return setup;
818 }
819 
s626_get_mode(struct comedi_device * dev,unsigned int chan)820 static uint16_t s626_get_mode(struct comedi_device *dev,
821 			      unsigned int chan)
822 {
823 	return (chan < 3) ? s626_get_mode_a(dev, chan)
824 			  : s626_get_mode_b(dev, chan);
825 }
826 #endif
827 
828 /*
829  * Set the operating mode for the specified counter.  The setup
830  * parameter is treated as a COUNTER_SETUP data type.  The following
831  * parameters are programmable (all other parms are ignored): ClkMult,
832  * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
833  */
s626_set_mode_a(struct comedi_device * dev,unsigned int chan,uint16_t setup,uint16_t disable_int_src)834 static void s626_set_mode_a(struct comedi_device *dev,
835 			    unsigned int chan, uint16_t setup,
836 			    uint16_t disable_int_src)
837 {
838 	struct s626_private *devpriv = dev->private;
839 	uint16_t cra;
840 	uint16_t crb;
841 	unsigned cntsrc, clkmult, clkpol;
842 
843 	/* Initialize CRA and CRB images. */
844 	/* Preload trigger is passed through. */
845 	cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
846 	/* IndexSrc is passed through. */
847 	cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
848 
849 	/* Reset any pending CounterA event captures. */
850 	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
851 	/* Clock enable is passed through. */
852 	crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
853 
854 	/* Force IntSrc to Disabled if disable_int_src is asserted. */
855 	if (!disable_int_src)
856 		cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
857 
858 	/* Populate all mode-dependent attributes of CRA & CRB images. */
859 	clkpol = S626_GET_STD_CLKPOL(setup);
860 	switch (S626_GET_STD_ENCMODE(setup)) {
861 	case S626_ENCMODE_EXTENDER: /* Extender Mode: */
862 		/* Force to Timer mode (Extender valid only for B counters). */
863 		/* Fall through to case S626_ENCMODE_TIMER: */
864 	case S626_ENCMODE_TIMER:	/* Timer Mode: */
865 		/* CntSrcA<1> selects system clock */
866 		cntsrc = S626_CNTSRC_SYSCLK;
867 		/* Count direction (CntSrcA<0>) obtained from ClkPol. */
868 		cntsrc |= clkpol;
869 		/* ClkPolA behaves as always-on clock enable. */
870 		clkpol = 1;
871 		/* ClkMult must be 1x. */
872 		clkmult = S626_CLKMULT_1X;
873 		break;
874 	default:		/* Counter Mode: */
875 		/* Select ENC_C and ENC_D as clock/direction inputs. */
876 		cntsrc = S626_CNTSRC_ENCODER;
877 		/* Clock polarity is passed through. */
878 		/* Force multiplier to x1 if not legal, else pass through. */
879 		clkmult = S626_GET_STD_CLKMULT(setup);
880 		if (clkmult == S626_CLKMULT_SPECIAL)
881 			clkmult = S626_CLKMULT_1X;
882 		break;
883 	}
884 	cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
885 	       S626_SET_CRA_CLKMULT_A(clkmult);
886 
887 	/*
888 	 * Force positive index polarity if IndxSrc is software-driven only,
889 	 * otherwise pass it through.
890 	 */
891 	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
892 		cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
893 
894 	/*
895 	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
896 	 * enable mask to indicate the counter interrupt is disabled.
897 	 */
898 	if (disable_int_src)
899 		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
900 						S626_INDXMASK(chan));
901 
902 	/*
903 	 * While retaining CounterB and LatchSrc configurations, program the
904 	 * new counter operating mode.
905 	 */
906 	s626_debi_replace(dev, S626_LP_CRA(chan),
907 			  S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
908 	s626_debi_replace(dev, S626_LP_CRB(chan),
909 			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
910 }
911 
s626_set_mode_b(struct comedi_device * dev,unsigned int chan,uint16_t setup,uint16_t disable_int_src)912 static void s626_set_mode_b(struct comedi_device *dev,
913 			    unsigned int chan, uint16_t setup,
914 			    uint16_t disable_int_src)
915 {
916 	struct s626_private *devpriv = dev->private;
917 	uint16_t cra;
918 	uint16_t crb;
919 	unsigned cntsrc, clkmult, clkpol;
920 
921 	/* Initialize CRA and CRB images. */
922 	/* IndexSrc is passed through. */
923 	cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
924 
925 	/* Reset event captures and disable interrupts. */
926 	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
927 	/* Clock enable is passed through. */
928 	crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
929 	/* Preload trigger source is passed through. */
930 	crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
931 
932 	/* Force IntSrc to Disabled if disable_int_src is asserted. */
933 	if (!disable_int_src)
934 		crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
935 
936 	/* Populate all mode-dependent attributes of CRA & CRB images. */
937 	clkpol = S626_GET_STD_CLKPOL(setup);
938 	switch (S626_GET_STD_ENCMODE(setup)) {
939 	case S626_ENCMODE_TIMER:	/* Timer Mode: */
940 		/* CntSrcB<1> selects system clock */
941 		cntsrc = S626_CNTSRC_SYSCLK;
942 		/* with direction (CntSrcB<0>) obtained from ClkPol. */
943 		cntsrc |= clkpol;
944 		/* ClkPolB behaves as always-on clock enable. */
945 		clkpol = 1;
946 		/* ClkMultB must be 1x. */
947 		clkmult = S626_CLKMULT_1X;
948 		break;
949 	case S626_ENCMODE_EXTENDER:	/* Extender Mode: */
950 		/* CntSrcB source is OverflowA (same as "timer") */
951 		cntsrc = S626_CNTSRC_SYSCLK;
952 		/* with direction obtained from ClkPol. */
953 		cntsrc |= clkpol;
954 		/* ClkPolB controls IndexB -- always set to active. */
955 		clkpol = 1;
956 		/* ClkMultB selects OverflowA as the clock source. */
957 		clkmult = S626_CLKMULT_SPECIAL;
958 		break;
959 	default:		/* Counter Mode: */
960 		/* Select ENC_C and ENC_D as clock/direction inputs. */
961 		cntsrc = S626_CNTSRC_ENCODER;
962 		/* ClkPol is passed through. */
963 		/* Force ClkMult to x1 if not legal, otherwise pass through. */
964 		clkmult = S626_GET_STD_CLKMULT(setup);
965 		if (clkmult == S626_CLKMULT_SPECIAL)
966 			clkmult = S626_CLKMULT_1X;
967 		break;
968 	}
969 	cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
970 	crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
971 
972 	/*
973 	 * Force positive index polarity if IndxSrc is software-driven only,
974 	 * otherwise pass it through.
975 	 */
976 	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
977 		crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
978 
979 	/*
980 	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
981 	 * enable mask to indicate the counter interrupt is disabled.
982 	 */
983 	if (disable_int_src)
984 		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
985 						S626_INDXMASK(chan));
986 
987 	/*
988 	 * While retaining CounterA and LatchSrc configurations, program the
989 	 * new counter operating mode.
990 	 */
991 	s626_debi_replace(dev, S626_LP_CRA(chan),
992 			  ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
993 	s626_debi_replace(dev, S626_LP_CRB(chan),
994 			  S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
995 }
996 
s626_set_mode(struct comedi_device * dev,unsigned int chan,uint16_t setup,uint16_t disable_int_src)997 static void s626_set_mode(struct comedi_device *dev,
998 			  unsigned int chan,
999 			  uint16_t setup, uint16_t disable_int_src)
1000 {
1001 	if (chan < 3)
1002 		s626_set_mode_a(dev, chan, setup, disable_int_src);
1003 	else
1004 		s626_set_mode_b(dev, chan, setup, disable_int_src);
1005 }
1006 
1007 /*
1008  * Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
1009  */
s626_set_enable(struct comedi_device * dev,unsigned int chan,uint16_t enab)1010 static void s626_set_enable(struct comedi_device *dev,
1011 			    unsigned int chan, uint16_t enab)
1012 {
1013 	unsigned int mask = S626_CRBMSK_INTCTRL;
1014 	unsigned int set;
1015 
1016 	if (chan < 3) {
1017 		mask |= S626_CRBMSK_CLKENAB_A;
1018 		set = S626_SET_CRB_CLKENAB_A(enab);
1019 	} else {
1020 		mask |= S626_CRBMSK_CLKENAB_B;
1021 		set = S626_SET_CRB_CLKENAB_B(enab);
1022 	}
1023 	s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
1024 }
1025 
1026 #ifdef unused
s626_get_enable(struct comedi_device * dev,unsigned int chan)1027 static uint16_t s626_get_enable(struct comedi_device *dev,
1028 				unsigned int chan)
1029 {
1030 	uint16_t crb = s626_debi_read(dev, S626_LP_CRB(chan));
1031 
1032 	return (chan < 3) ? S626_GET_CRB_CLKENAB_A(crb)
1033 			  : S626_GET_CRB_CLKENAB_B(crb);
1034 }
1035 #endif
1036 
1037 #ifdef unused
s626_get_latch_source(struct comedi_device * dev,unsigned int chan)1038 static uint16_t s626_get_latch_source(struct comedi_device *dev,
1039 				      unsigned int chan)
1040 {
1041 	return S626_GET_CRB_LATCHSRC(s626_debi_read(dev, S626_LP_CRB(chan)));
1042 }
1043 #endif
1044 
1045 /*
1046  * Return/set the event that will trigger transfer of the preload
1047  * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
1048  * 2=OverflowA (B counters only), 3=disabled.
1049  */
s626_set_load_trig(struct comedi_device * dev,unsigned int chan,uint16_t trig)1050 static void s626_set_load_trig(struct comedi_device *dev,
1051 			       unsigned int chan, uint16_t trig)
1052 {
1053 	uint16_t reg;
1054 	uint16_t mask;
1055 	uint16_t set;
1056 
1057 	if (chan < 3) {
1058 		reg = S626_LP_CRA(chan);
1059 		mask = S626_CRAMSK_LOADSRC_A;
1060 		set = S626_SET_CRA_LOADSRC_A(trig);
1061 	} else {
1062 		reg = S626_LP_CRB(chan);
1063 		mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
1064 		set = S626_SET_CRB_LOADSRC_B(trig);
1065 	}
1066 	s626_debi_replace(dev, reg, ~mask, set);
1067 }
1068 
1069 #ifdef unused
s626_get_load_trig(struct comedi_device * dev,unsigned int chan)1070 static uint16_t s626_get_load_trig(struct comedi_device *dev,
1071 				   unsigned int chan)
1072 {
1073 	if (chan < 3)
1074 		return S626_GET_CRA_LOADSRC_A(s626_debi_read(dev,
1075 							S626_LP_CRA(chan)));
1076 	else
1077 		return S626_GET_CRB_LOADSRC_B(s626_debi_read(dev,
1078 							S626_LP_CRB(chan)));
1079 }
1080 #endif
1081 
1082 /*
1083  * Return/set counter interrupt source and clear any captured
1084  * index/overflow events.  int_source: 0=Disabled, 1=OverflowOnly,
1085  * 2=IndexOnly, 3=IndexAndOverflow.
1086  */
s626_set_int_src(struct comedi_device * dev,unsigned int chan,uint16_t int_source)1087 static void s626_set_int_src(struct comedi_device *dev,
1088 			     unsigned int chan, uint16_t int_source)
1089 {
1090 	struct s626_private *devpriv = dev->private;
1091 	uint16_t cra_reg = S626_LP_CRA(chan);
1092 	uint16_t crb_reg = S626_LP_CRB(chan);
1093 
1094 	if (chan < 3) {
1095 		/* Reset any pending counter overflow or index captures */
1096 		s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
1097 				  S626_SET_CRB_INTRESETCMD(1) |
1098 				  S626_SET_CRB_INTRESET_A(1));
1099 
1100 		/* Program counter interrupt source */
1101 		s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
1102 				  S626_SET_CRA_INTSRC_A(int_source));
1103 	} else {
1104 		uint16_t crb;
1105 
1106 		/* Cache writeable CRB register image */
1107 		crb = s626_debi_read(dev, crb_reg);
1108 		crb &= ~S626_CRBMSK_INTCTRL;
1109 
1110 		/* Reset any pending counter overflow or index captures */
1111 		s626_debi_write(dev, crb_reg,
1112 				crb | S626_SET_CRB_INTRESETCMD(1) |
1113 				S626_SET_CRB_INTRESET_B(1));
1114 
1115 		/* Program counter interrupt source */
1116 		s626_debi_write(dev, crb_reg,
1117 				(crb & ~S626_CRBMSK_INTSRC_B) |
1118 				S626_SET_CRB_INTSRC_B(int_source));
1119 	}
1120 
1121 	/* Update MISC2 interrupt enable mask. */
1122 	devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
1123 					S626_INDXMASK(chan));
1124 	switch (int_source) {
1125 	case 0:
1126 	default:
1127 		break;
1128 	case 1:
1129 		devpriv->counter_int_enabs |= S626_OVERMASK(chan);
1130 		break;
1131 	case 2:
1132 		devpriv->counter_int_enabs |= S626_INDXMASK(chan);
1133 		break;
1134 	case 3:
1135 		devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
1136 					       S626_INDXMASK(chan));
1137 		break;
1138 	}
1139 }
1140 
1141 #ifdef unused
s626_get_int_src(struct comedi_device * dev,unsigned int chan)1142 static uint16_t s626_get_int_src(struct comedi_device *dev,
1143 				 unsigned int chan)
1144 {
1145 	if (chan < 3)
1146 		return S626_GET_CRA_INTSRC_A(s626_debi_read(dev,
1147 							S626_LP_CRA(chan)));
1148 	else
1149 		return S626_GET_CRB_INTSRC_B(s626_debi_read(dev,
1150 							S626_LP_CRB(chan)));
1151 }
1152 #endif
1153 
1154 #ifdef unused
1155 /*
1156  * Return/set the clock multiplier.
1157  */
s626_set_clk_mult(struct comedi_device * dev,unsigned int chan,uint16_t value)1158 static void s626_set_clk_mult(struct comedi_device *dev,
1159 			      unsigned int chan, uint16_t value)
1160 {
1161 	uint16_t mode;
1162 
1163 	mode = s626_get_mode(dev, chan);
1164 	mode &= ~S626_STDMSK_CLKMULT;
1165 	mode |= S626_SET_STD_CLKMULT(value);
1166 
1167 	s626_set_mode(dev, chan, mode, false);
1168 }
1169 
s626_get_clk_mult(struct comedi_device * dev,unsigned int chan)1170 static uint16_t s626_get_clk_mult(struct comedi_device *dev,
1171 				  unsigned int chan)
1172 {
1173 	return S626_GET_STD_CLKMULT(s626_get_mode(dev, chan));
1174 }
1175 
1176 /*
1177  * Return/set the clock polarity.
1178  */
s626_set_clk_pol(struct comedi_device * dev,unsigned int chan,uint16_t value)1179 static void s626_set_clk_pol(struct comedi_device *dev,
1180 			     unsigned int chan, uint16_t value)
1181 {
1182 	uint16_t mode;
1183 
1184 	mode = s626_get_mode(dev, chan);
1185 	mode &= ~S626_STDMSK_CLKPOL;
1186 	mode |= S626_SET_STD_CLKPOL(value);
1187 
1188 	s626_set_mode(dev, chan, mode, false);
1189 }
1190 
s626_get_clk_pol(struct comedi_device * dev,unsigned int chan)1191 static uint16_t s626_get_clk_pol(struct comedi_device *dev,
1192 				 unsigned int chan)
1193 {
1194 	return S626_GET_STD_CLKPOL(s626_get_mode(dev, chan));
1195 }
1196 
1197 /*
1198  * Return/set the encoder mode.
1199  */
s626_set_enc_mode(struct comedi_device * dev,unsigned int chan,uint16_t value)1200 static void s626_set_enc_mode(struct comedi_device *dev,
1201 			      unsigned int chan, uint16_t value)
1202 {
1203 	uint16_t mode;
1204 
1205 	mode = s626_get_mode(dev, chan);
1206 	mode &= ~S626_STDMSK_ENCMODE;
1207 	mode |= S626_SET_STD_ENCMODE(value);
1208 
1209 	s626_set_mode(dev, chan, mode, false);
1210 }
1211 
s626_get_enc_mode(struct comedi_device * dev,unsigned int chan)1212 static uint16_t s626_get_enc_mode(struct comedi_device *dev,
1213 				  unsigned int chan)
1214 {
1215 	return S626_GET_STD_ENCMODE(s626_get_mode(dev, chan));
1216 }
1217 
1218 /*
1219  * Return/set the index polarity.
1220  */
s626_set_index_pol(struct comedi_device * dev,unsigned int chan,uint16_t value)1221 static void s626_set_index_pol(struct comedi_device *dev,
1222 			       unsigned int chan, uint16_t value)
1223 {
1224 	uint16_t mode;
1225 
1226 	mode = s626_get_mode(dev, chan);
1227 	mode &= ~S626_STDMSK_INDXPOL;
1228 	mode |= S626_SET_STD_INDXPOL(value != 0);
1229 
1230 	s626_set_mode(dev, chan, mode, false);
1231 }
1232 
s626_get_index_pol(struct comedi_device * dev,unsigned int chan)1233 static uint16_t s626_get_index_pol(struct comedi_device *dev,
1234 				   unsigned int chan)
1235 {
1236 	return S626_GET_STD_INDXPOL(s626_get_mode(dev, chan));
1237 }
1238 
1239 /*
1240  * Return/set the index source.
1241  */
s626_set_index_src(struct comedi_device * dev,unsigned int chan,uint16_t value)1242 static void s626_set_index_src(struct comedi_device *dev,
1243 			       unsigned int chan, uint16_t value)
1244 {
1245 	uint16_t mode;
1246 
1247 	mode = s626_get_mode(dev, chan);
1248 	mode &= ~S626_STDMSK_INDXSRC;
1249 	mode |= S626_SET_STD_INDXSRC(value != 0);
1250 
1251 	s626_set_mode(dev, chan, mode, false);
1252 }
1253 
s626_get_index_src(struct comedi_device * dev,unsigned int chan)1254 static uint16_t s626_get_index_src(struct comedi_device *dev,
1255 				   unsigned int chan)
1256 {
1257 	return S626_GET_STD_INDXSRC(s626_get_mode(dev, chan));
1258 }
1259 #endif
1260 
1261 /*
1262  * Generate an index pulse.
1263  */
s626_pulse_index(struct comedi_device * dev,unsigned int chan)1264 static void s626_pulse_index(struct comedi_device *dev,
1265 			     unsigned int chan)
1266 {
1267 	if (chan < 3) {
1268 		uint16_t cra;
1269 
1270 		cra = s626_debi_read(dev, S626_LP_CRA(chan));
1271 
1272 		/* Pulse index */
1273 		s626_debi_write(dev, S626_LP_CRA(chan),
1274 				(cra ^ S626_CRAMSK_INDXPOL_A));
1275 		s626_debi_write(dev, S626_LP_CRA(chan), cra);
1276 	} else {
1277 		uint16_t crb;
1278 
1279 		crb = s626_debi_read(dev, S626_LP_CRB(chan));
1280 		crb &= ~S626_CRBMSK_INTCTRL;
1281 
1282 		/* Pulse index */
1283 		s626_debi_write(dev, S626_LP_CRB(chan),
1284 				(crb ^ S626_CRBMSK_INDXPOL_B));
1285 		s626_debi_write(dev, S626_LP_CRB(chan), crb);
1286 	}
1287 }
1288 
s626_ai_reg_to_uint(unsigned int data)1289 static unsigned int s626_ai_reg_to_uint(unsigned int data)
1290 {
1291 	return ((data >> 18) & 0x3fff) ^ 0x2000;
1292 }
1293 
s626_dio_set_irq(struct comedi_device * dev,unsigned int chan)1294 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1295 {
1296 	unsigned int group = chan / 16;
1297 	unsigned int mask = 1 << (chan - (16 * group));
1298 	unsigned int status;
1299 
1300 	/* set channel to capture positive edge */
1301 	status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1302 	s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
1303 
1304 	/* enable interrupt on selected channel */
1305 	status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1306 	s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
1307 
1308 	/* enable edge capture write command */
1309 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1310 
1311 	/* enable edge capture on selected channel */
1312 	status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1313 	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
1314 
1315 	return 0;
1316 }
1317 
s626_dio_reset_irq(struct comedi_device * dev,unsigned int group,unsigned int mask)1318 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1319 			      unsigned int mask)
1320 {
1321 	/* disable edge capture write command */
1322 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1323 
1324 	/* enable edge capture on selected channel */
1325 	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
1326 
1327 	return 0;
1328 }
1329 
s626_dio_clear_irq(struct comedi_device * dev)1330 static int s626_dio_clear_irq(struct comedi_device *dev)
1331 {
1332 	unsigned int group;
1333 
1334 	/* disable edge capture write command */
1335 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1336 
1337 	/* clear all dio pending events and interrupt */
1338 	for (group = 0; group < S626_DIO_BANKS; group++)
1339 		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1340 
1341 	return 0;
1342 }
1343 
s626_handle_dio_interrupt(struct comedi_device * dev,uint16_t irqbit,uint8_t group)1344 static void s626_handle_dio_interrupt(struct comedi_device *dev,
1345 				      uint16_t irqbit, uint8_t group)
1346 {
1347 	struct s626_private *devpriv = dev->private;
1348 	struct comedi_subdevice *s = dev->read_subdev;
1349 	struct comedi_cmd *cmd = &s->async->cmd;
1350 
1351 	s626_dio_reset_irq(dev, group, irqbit);
1352 
1353 	if (devpriv->ai_cmd_running) {
1354 		/* check if interrupt is an ai acquisition start trigger */
1355 		if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1356 		    cmd->start_src == TRIG_EXT) {
1357 			/* Start executing the RPS program */
1358 			s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1359 
1360 			if (cmd->scan_begin_src == TRIG_EXT)
1361 				s626_dio_set_irq(dev, cmd->scan_begin_arg);
1362 		}
1363 		if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1364 		    cmd->scan_begin_src == TRIG_EXT) {
1365 			/* Trigger ADC scan loop start */
1366 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1367 
1368 			if (cmd->convert_src == TRIG_EXT) {
1369 				devpriv->ai_convert_count = cmd->chanlist_len;
1370 
1371 				s626_dio_set_irq(dev, cmd->convert_arg);
1372 			}
1373 
1374 			if (cmd->convert_src == TRIG_TIMER) {
1375 				devpriv->ai_convert_count = cmd->chanlist_len;
1376 				s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1377 			}
1378 		}
1379 		if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1380 		    cmd->convert_src == TRIG_EXT) {
1381 			/* Trigger ADC scan loop start */
1382 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1383 
1384 			devpriv->ai_convert_count--;
1385 			if (devpriv->ai_convert_count > 0)
1386 				s626_dio_set_irq(dev, cmd->convert_arg);
1387 		}
1388 	}
1389 }
1390 
s626_check_dio_interrupts(struct comedi_device * dev)1391 static void s626_check_dio_interrupts(struct comedi_device *dev)
1392 {
1393 	uint16_t irqbit;
1394 	uint8_t group;
1395 
1396 	for (group = 0; group < S626_DIO_BANKS; group++) {
1397 		/* read interrupt type */
1398 		irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1399 
1400 		/* check if interrupt is generated from dio channels */
1401 		if (irqbit) {
1402 			s626_handle_dio_interrupt(dev, irqbit, group);
1403 			return;
1404 		}
1405 	}
1406 }
1407 
s626_check_counter_interrupts(struct comedi_device * dev)1408 static void s626_check_counter_interrupts(struct comedi_device *dev)
1409 {
1410 	struct s626_private *devpriv = dev->private;
1411 	struct comedi_subdevice *s = dev->read_subdev;
1412 	struct comedi_async *async = s->async;
1413 	struct comedi_cmd *cmd = &async->cmd;
1414 	uint16_t irqbit;
1415 
1416 	/* read interrupt type */
1417 	irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1418 
1419 	/* check interrupt on counters */
1420 	if (irqbit & S626_IRQ_COINT1A) {
1421 		/* clear interrupt capture flag */
1422 		s626_reset_cap_flags(dev, 0);
1423 	}
1424 	if (irqbit & S626_IRQ_COINT2A) {
1425 		/* clear interrupt capture flag */
1426 		s626_reset_cap_flags(dev, 1);
1427 	}
1428 	if (irqbit & S626_IRQ_COINT3A) {
1429 		/* clear interrupt capture flag */
1430 		s626_reset_cap_flags(dev, 2);
1431 	}
1432 	if (irqbit & S626_IRQ_COINT1B) {
1433 		/* clear interrupt capture flag */
1434 		s626_reset_cap_flags(dev, 3);
1435 	}
1436 	if (irqbit & S626_IRQ_COINT2B) {
1437 		/* clear interrupt capture flag */
1438 		s626_reset_cap_flags(dev, 4);
1439 
1440 		if (devpriv->ai_convert_count > 0) {
1441 			devpriv->ai_convert_count--;
1442 			if (devpriv->ai_convert_count == 0)
1443 				s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1444 
1445 			if (cmd->convert_src == TRIG_TIMER) {
1446 				/* Trigger ADC scan loop start */
1447 				s626_mc_enable(dev, S626_MC2_ADC_RPS,
1448 					       S626_P_MC2);
1449 			}
1450 		}
1451 	}
1452 	if (irqbit & S626_IRQ_COINT3B) {
1453 		/* clear interrupt capture flag */
1454 		s626_reset_cap_flags(dev, 5);
1455 
1456 		if (cmd->scan_begin_src == TRIG_TIMER) {
1457 			/* Trigger ADC scan loop start */
1458 			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1459 		}
1460 
1461 		if (cmd->convert_src == TRIG_TIMER) {
1462 			devpriv->ai_convert_count = cmd->chanlist_len;
1463 			s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
1464 		}
1465 	}
1466 }
1467 
s626_handle_eos_interrupt(struct comedi_device * dev)1468 static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1469 {
1470 	struct s626_private *devpriv = dev->private;
1471 	struct comedi_subdevice *s = dev->read_subdev;
1472 	struct comedi_async *async = s->async;
1473 	struct comedi_cmd *cmd = &async->cmd;
1474 	/*
1475 	 * Init ptr to DMA buffer that holds new ADC data.  We skip the
1476 	 * first uint16_t in the buffer because it contains junk data
1477 	 * from the final ADC of the previous poll list scan.
1478 	 */
1479 	uint32_t *readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
1480 	int i;
1481 
1482 	/* get the data and hand it over to comedi */
1483 	for (i = 0; i < cmd->chanlist_len; i++) {
1484 		unsigned short tempdata;
1485 
1486 		/*
1487 		 * Convert ADC data to 16-bit integer values and copy
1488 		 * to application buffer.
1489 		 */
1490 		tempdata = s626_ai_reg_to_uint(*readaddr);
1491 		readaddr++;
1492 
1493 		comedi_buf_write_samples(s, &tempdata, 1);
1494 	}
1495 
1496 	if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1497 		async->events |= COMEDI_CB_EOA;
1498 
1499 	if (async->events & COMEDI_CB_CANCEL_MASK)
1500 		devpriv->ai_cmd_running = 0;
1501 
1502 	if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1503 		s626_dio_set_irq(dev, cmd->scan_begin_arg);
1504 
1505 	comedi_handle_events(dev, s);
1506 
1507 	return !devpriv->ai_cmd_running;
1508 }
1509 
s626_irq_handler(int irq,void * d)1510 static irqreturn_t s626_irq_handler(int irq, void *d)
1511 {
1512 	struct comedi_device *dev = d;
1513 	unsigned long flags;
1514 	uint32_t irqtype, irqstatus;
1515 
1516 	if (!dev->attached)
1517 		return IRQ_NONE;
1518 	/* lock to avoid race with comedi_poll */
1519 	spin_lock_irqsave(&dev->spinlock, flags);
1520 
1521 	/* save interrupt enable register state */
1522 	irqstatus = readl(dev->mmio + S626_P_IER);
1523 
1524 	/* read interrupt type */
1525 	irqtype = readl(dev->mmio + S626_P_ISR);
1526 
1527 	/* disable master interrupt */
1528 	writel(0, dev->mmio + S626_P_IER);
1529 
1530 	/* clear interrupt */
1531 	writel(irqtype, dev->mmio + S626_P_ISR);
1532 
1533 	switch (irqtype) {
1534 	case S626_IRQ_RPS1:	/* end_of_scan occurs */
1535 		if (s626_handle_eos_interrupt(dev))
1536 			irqstatus = 0;
1537 		break;
1538 	case S626_IRQ_GPIO3:	/* check dio and counter interrupt */
1539 		/* s626_dio_clear_irq(dev); */
1540 		s626_check_dio_interrupts(dev);
1541 		s626_check_counter_interrupts(dev);
1542 		break;
1543 	}
1544 
1545 	/* enable interrupt */
1546 	writel(irqstatus, dev->mmio + S626_P_IER);
1547 
1548 	spin_unlock_irqrestore(&dev->spinlock, flags);
1549 	return IRQ_HANDLED;
1550 }
1551 
1552 /*
1553  * This function builds the RPS program for hardware driven acquisition.
1554  */
s626_reset_adc(struct comedi_device * dev,uint8_t * ppl)1555 static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
1556 {
1557 	struct s626_private *devpriv = dev->private;
1558 	struct comedi_subdevice *s = dev->read_subdev;
1559 	struct comedi_cmd *cmd = &s->async->cmd;
1560 	uint32_t *rps;
1561 	uint32_t jmp_adrs;
1562 	uint16_t i;
1563 	uint16_t n;
1564 	uint32_t local_ppl;
1565 
1566 	/* Stop RPS program in case it is currently running */
1567 	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1568 
1569 	/* Set starting logical address to write RPS commands. */
1570 	rps = (uint32_t *)devpriv->rps_buf.logical_base;
1571 
1572 	/* Initialize RPS instruction pointer */
1573 	writel((uint32_t)devpriv->rps_buf.physical_base,
1574 	       dev->mmio + S626_P_RPSADDR1);
1575 
1576 	/* Construct RPS program in rps_buf DMA buffer */
1577 	if (cmd->scan_begin_src != TRIG_FOLLOW) {
1578 		/* Wait for Start trigger. */
1579 		*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1580 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1581 	}
1582 
1583 	/*
1584 	 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1585 	 * because the first RPS DEBI Write following a non-RPS DEBI write
1586 	 * seems to always fail.  If we don't do this dummy write, the ADC
1587 	 * gain might not be set to the value required for the first slot in
1588 	 * the poll list; the ADC gain would instead remain unchanged from
1589 	 * the previously programmed value.
1590 	 */
1591 	/* Write DEBI Write command and address to shadow RAM. */
1592 	*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1593 	*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1594 	*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1595 	/* Write DEBI immediate data  to shadow RAM: */
1596 	*rps++ = S626_GSEL_BIPOLAR5V;	/* arbitrary immediate data  value. */
1597 	*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1598 	/* Reset "shadow RAM  uploaded" flag. */
1599 	/* Invoke shadow RAM upload. */
1600 	*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1601 	/* Wait for shadow upload to finish. */
1602 	*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1603 
1604 	/*
1605 	 * Digitize all slots in the poll list. This is implemented as a
1606 	 * for loop to limit the slot count to 16 in case the application
1607 	 * forgot to set the S626_EOPL flag in the final slot.
1608 	 */
1609 	for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1610 	     devpriv->adc_items++) {
1611 		/*
1612 		 * Convert application's poll list item to private board class
1613 		 * format.  Each app poll list item is an uint8_t with form
1614 		 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1615 		 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1616 		 */
1617 		local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1618 					   S626_GSEL_BIPOLAR10V);
1619 
1620 		/* Switch ADC analog gain. */
1621 		/* Write DEBI command and address to shadow RAM. */
1622 		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1623 		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1624 		/* Write DEBI immediate data to shadow RAM. */
1625 		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1626 		*rps++ = local_ppl;
1627 		/* Reset "shadow RAM uploaded" flag. */
1628 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1629 		/* Invoke shadow RAM upload. */
1630 		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1631 		/* Wait for shadow upload to finish. */
1632 		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1633 		/* Select ADC analog input channel. */
1634 		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1635 		/* Write DEBI command and address to shadow RAM. */
1636 		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1637 		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1638 		/* Write DEBI immediate data to shadow RAM. */
1639 		*rps++ = local_ppl;
1640 		/* Reset "shadow RAM uploaded" flag. */
1641 		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1642 		/* Invoke shadow RAM upload. */
1643 		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1644 		/* Wait for shadow upload to finish. */
1645 		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1646 
1647 		/*
1648 		 * Delay at least 10 microseconds for analog input settling.
1649 		 * Instead of padding with NOPs, we use S626_RPS_JUMP
1650 		 * instructions here; this allows us to produce a longer delay
1651 		 * than is possible with NOPs because each S626_RPS_JUMP
1652 		 * flushes the RPS' instruction prefetch pipeline.
1653 		 */
1654 		jmp_adrs =
1655 			(uint32_t)devpriv->rps_buf.physical_base +
1656 			(uint32_t)((unsigned long)rps -
1657 				   (unsigned long)devpriv->
1658 						  rps_buf.logical_base);
1659 		for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1660 			jmp_adrs += 8;	/* Repeat to implement time delay: */
1661 			/* Jump to next RPS instruction. */
1662 			*rps++ = S626_RPS_JUMP;
1663 			*rps++ = jmp_adrs;
1664 		}
1665 
1666 		if (cmd->convert_src != TRIG_NOW) {
1667 			/* Wait for Start trigger. */
1668 			*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1669 			*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1670 		}
1671 		/* Start ADC by pulsing GPIO1. */
1672 		/* Begin ADC Start pulse. */
1673 		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1674 		*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1675 		*rps++ = S626_RPS_NOP;
1676 		/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1677 		/* End ADC Start pulse. */
1678 		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1679 		*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1680 		/*
1681 		 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1682 		 * busy) and for data from previous conversion to shift into FB
1683 		 * BUFFER 1 register.
1684 		 */
1685 		/* Wait for ADC done. */
1686 		*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1687 
1688 		/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1689 		*rps++ = S626_RPS_STREG |
1690 			 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1691 		*rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1692 			 (devpriv->adc_items << 2);
1693 
1694 		/*
1695 		 * If this slot's EndOfPollList flag is set, all channels have
1696 		 * now been processed.
1697 		 */
1698 		if (*ppl++ & S626_EOPL) {
1699 			devpriv->adc_items++; /* Adjust poll list item count. */
1700 			break;	/* Exit poll list processing loop. */
1701 		}
1702 	}
1703 
1704 	/*
1705 	 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1706 	 * ADC to stabilize for 2 microseconds before starting the final
1707 	 * (dummy) conversion.  This delay is necessary to allow sufficient
1708 	 * time between last conversion finished and the start of the dummy
1709 	 * conversion.  Without this delay, the last conversion's data value
1710 	 * is sometimes set to the previous conversion's data value.
1711 	 */
1712 	for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1713 		*rps++ = S626_RPS_NOP;
1714 
1715 	/*
1716 	 * Start a dummy conversion to cause the data from the last
1717 	 * conversion of interest to be shifted in.
1718 	 */
1719 	/* Begin ADC Start pulse. */
1720 	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1721 	*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1722 	*rps++ = S626_RPS_NOP;
1723 	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1724 	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1725 	*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1726 
1727 	/*
1728 	 * Wait for the data from the last conversion of interest to arrive
1729 	 * in FB BUFFER 1 register.
1730 	 */
1731 	*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;	/* Wait for ADC done. */
1732 
1733 	/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1734 	*rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1735 	*rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1736 		 (devpriv->adc_items << 2);
1737 
1738 	/* Indicate ADC scan loop is finished. */
1739 	/* Signal ReadADC() that scan is done. */
1740 	/* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1741 
1742 	/* invoke interrupt */
1743 	if (devpriv->ai_cmd_running == 1)
1744 		*rps++ = S626_RPS_IRQ;
1745 
1746 	/* Restart RPS program at its beginning. */
1747 	*rps++ = S626_RPS_JUMP;	/* Branch to start of RPS program. */
1748 	*rps++ = (uint32_t)devpriv->rps_buf.physical_base;
1749 
1750 	/* End of RPS program build */
1751 }
1752 
1753 #ifdef unused_code
s626_ai_rinsn(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1754 static int s626_ai_rinsn(struct comedi_device *dev,
1755 			 struct comedi_subdevice *s,
1756 			 struct comedi_insn *insn,
1757 			 unsigned int *data)
1758 {
1759 	struct s626_private *devpriv = dev->private;
1760 	uint8_t i;
1761 	int32_t *readaddr;
1762 
1763 	/* Trigger ADC scan loop start */
1764 	s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1765 
1766 	/* Wait until ADC scan loop is finished (RPS Signal 0 reset) */
1767 	while (s626_mc_test(dev, S626_MC2_ADC_RPS, S626_P_MC2))
1768 		;
1769 
1770 	/*
1771 	 * Init ptr to DMA buffer that holds new ADC data.  We skip the
1772 	 * first uint16_t in the buffer because it contains junk data from
1773 	 * the final ADC of the previous poll list scan.
1774 	 */
1775 	readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
1776 
1777 	/*
1778 	 * Convert ADC data to 16-bit integer values and
1779 	 * copy to application buffer.
1780 	 */
1781 	for (i = 0; i < devpriv->adc_items; i++) {
1782 		*data = s626_ai_reg_to_uint(*readaddr++);
1783 		data++;
1784 	}
1785 
1786 	return i;
1787 }
1788 #endif
1789 
s626_ai_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)1790 static int s626_ai_eoc(struct comedi_device *dev,
1791 		       struct comedi_subdevice *s,
1792 		       struct comedi_insn *insn,
1793 		       unsigned long context)
1794 {
1795 	unsigned int status;
1796 
1797 	status = readl(dev->mmio + S626_P_PSR);
1798 	if (status & S626_PSR_GPIO2)
1799 		return 0;
1800 	return -EBUSY;
1801 }
1802 
s626_ai_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)1803 static int s626_ai_insn_read(struct comedi_device *dev,
1804 			     struct comedi_subdevice *s,
1805 			     struct comedi_insn *insn,
1806 			     unsigned int *data)
1807 {
1808 	uint16_t chan = CR_CHAN(insn->chanspec);
1809 	uint16_t range = CR_RANGE(insn->chanspec);
1810 	uint16_t adc_spec = 0;
1811 	uint32_t gpio_image;
1812 	uint32_t tmp;
1813 	int ret;
1814 	int n;
1815 
1816 	/*
1817 	 * Convert application's ADC specification into form
1818 	 *  appropriate for register programming.
1819 	 */
1820 	if (range == 0)
1821 		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1822 	else
1823 		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1824 
1825 	/* Switch ADC analog gain. */
1826 	s626_debi_write(dev, S626_LP_GSEL, adc_spec);	/* Set gain. */
1827 
1828 	/* Select ADC analog input channel. */
1829 	s626_debi_write(dev, S626_LP_ISEL, adc_spec);	/* Select channel. */
1830 
1831 	for (n = 0; n < insn->n; n++) {
1832 		/* Delay 10 microseconds for analog input settling. */
1833 		udelay(10);
1834 
1835 		/* Start ADC by pulsing GPIO1 low */
1836 		gpio_image = readl(dev->mmio + S626_P_GPIO);
1837 		/* Assert ADC Start command */
1838 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1839 		/* and stretch it out */
1840 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1841 		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1842 		/* Negate ADC Start command */
1843 		writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1844 
1845 		/*
1846 		 * Wait for ADC to complete (GPIO2 is asserted high when
1847 		 * ADC not busy) and for data from previous conversion to
1848 		 * shift into FB BUFFER 1 register.
1849 		 */
1850 
1851 		/* Wait for ADC done */
1852 		ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1853 		if (ret)
1854 			return ret;
1855 
1856 		/* Fetch ADC data */
1857 		if (n != 0) {
1858 			tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1859 			data[n - 1] = s626_ai_reg_to_uint(tmp);
1860 		}
1861 
1862 		/*
1863 		 * Allow the ADC to stabilize for 4 microseconds before
1864 		 * starting the next (final) conversion.  This delay is
1865 		 * necessary to allow sufficient time between last
1866 		 * conversion finished and the start of the next
1867 		 * conversion.  Without this delay, the last conversion's
1868 		 * data value is sometimes set to the previous
1869 		 * conversion's data value.
1870 		 */
1871 		udelay(4);
1872 	}
1873 
1874 	/*
1875 	 * Start a dummy conversion to cause the data from the
1876 	 * previous conversion to be shifted in.
1877 	 */
1878 	gpio_image = readl(dev->mmio + S626_P_GPIO);
1879 	/* Assert ADC Start command */
1880 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1881 	/* and stretch it out */
1882 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1883 	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1884 	/* Negate ADC Start command */
1885 	writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1886 
1887 	/* Wait for the data to arrive in FB BUFFER 1 register. */
1888 
1889 	/* Wait for ADC done */
1890 	ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1891 	if (ret)
1892 		return ret;
1893 
1894 	/* Fetch ADC data from audio interface's input shift register. */
1895 
1896 	/* Fetch ADC data */
1897 	if (n != 0) {
1898 		tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1899 		data[n - 1] = s626_ai_reg_to_uint(tmp);
1900 	}
1901 
1902 	return n;
1903 }
1904 
s626_ai_load_polllist(uint8_t * ppl,struct comedi_cmd * cmd)1905 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1906 {
1907 	int n;
1908 
1909 	for (n = 0; n < cmd->chanlist_len; n++) {
1910 		if (CR_RANGE(cmd->chanlist[n]) == 0)
1911 			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
1912 		else
1913 			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
1914 	}
1915 	if (n != 0)
1916 		ppl[n - 1] |= S626_EOPL;
1917 
1918 	return n;
1919 }
1920 
s626_ai_inttrig(struct comedi_device * dev,struct comedi_subdevice * s,unsigned int trig_num)1921 static int s626_ai_inttrig(struct comedi_device *dev,
1922 			   struct comedi_subdevice *s,
1923 			   unsigned int trig_num)
1924 {
1925 	struct comedi_cmd *cmd = &s->async->cmd;
1926 
1927 	if (trig_num != cmd->start_arg)
1928 		return -EINVAL;
1929 
1930 	/* Start executing the RPS program */
1931 	s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1932 
1933 	s->async->inttrig = NULL;
1934 
1935 	return 1;
1936 }
1937 
1938 /*
1939  * This function doesn't require a particular form, this is just what
1940  * happens to be used in some of the drivers.  It should convert ns
1941  * nanoseconds to a counter value suitable for programming the device.
1942  * Also, it should adjust ns so that it cooresponds to the actual time
1943  * that the device will use.
1944  */
s626_ns_to_timer(unsigned int * nanosec,unsigned int flags)1945 static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
1946 {
1947 	int divider, base;
1948 
1949 	base = 500;		/* 2MHz internal clock */
1950 
1951 	switch (flags & CMDF_ROUND_MASK) {
1952 	case CMDF_ROUND_NEAREST:
1953 	default:
1954 		divider = DIV_ROUND_CLOSEST(*nanosec, base);
1955 		break;
1956 	case CMDF_ROUND_DOWN:
1957 		divider = (*nanosec) / base;
1958 		break;
1959 	case CMDF_ROUND_UP:
1960 		divider = DIV_ROUND_UP(*nanosec, base);
1961 		break;
1962 	}
1963 
1964 	*nanosec = base * divider;
1965 	return divider - 1;
1966 }
1967 
s626_timer_load(struct comedi_device * dev,unsigned int chan,int tick)1968 static void s626_timer_load(struct comedi_device *dev,
1969 			    unsigned int chan, int tick)
1970 {
1971 	uint16_t setup =
1972 		/* Preload upon index. */
1973 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
1974 		/* Disable hardware index. */
1975 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
1976 		/* Operating mode is Timer. */
1977 		S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
1978 		/* Count direction is Down. */
1979 		S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
1980 		/* Clock multiplier is 1x. */
1981 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1982 		/* Enabled by index */
1983 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
1984 	uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
1985 	/* uint16_t enab = S626_CLKENAB_ALWAYS; */
1986 
1987 	s626_set_mode(dev, chan, setup, false);
1988 
1989 	/* Set the preload register */
1990 	s626_preload(dev, chan, tick);
1991 
1992 	/*
1993 	 * Software index pulse forces the preload register to load
1994 	 * into the counter
1995 	 */
1996 	s626_set_load_trig(dev, chan, 0);
1997 	s626_pulse_index(dev, chan);
1998 
1999 	/* set reload on counter overflow */
2000 	s626_set_load_trig(dev, chan, 1);
2001 
2002 	/* set interrupt on overflow */
2003 	s626_set_int_src(dev, chan, S626_INTSRC_OVER);
2004 
2005 	s626_set_latch_source(dev, chan, value_latchsrc);
2006 	/* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
2007 }
2008 
2009 /* TO COMPLETE  */
s626_ai_cmd(struct comedi_device * dev,struct comedi_subdevice * s)2010 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
2011 {
2012 	struct s626_private *devpriv = dev->private;
2013 	uint8_t ppl[16];
2014 	struct comedi_cmd *cmd = &s->async->cmd;
2015 	int tick;
2016 
2017 	if (devpriv->ai_cmd_running) {
2018 		dev_err(dev->class_dev,
2019 			"s626_ai_cmd: Another ai_cmd is running\n");
2020 		return -EBUSY;
2021 	}
2022 	/* disable interrupt */
2023 	writel(0, dev->mmio + S626_P_IER);
2024 
2025 	/* clear interrupt request */
2026 	writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
2027 
2028 	/* clear any pending interrupt */
2029 	s626_dio_clear_irq(dev);
2030 	/* s626_enc_clear_irq(dev); */
2031 
2032 	/* reset ai_cmd_running flag */
2033 	devpriv->ai_cmd_running = 0;
2034 
2035 	s626_ai_load_polllist(ppl, cmd);
2036 	devpriv->ai_cmd_running = 1;
2037 	devpriv->ai_convert_count = 0;
2038 
2039 	switch (cmd->scan_begin_src) {
2040 	case TRIG_FOLLOW:
2041 		break;
2042 	case TRIG_TIMER:
2043 		/*
2044 		 * set a counter to generate adc trigger at scan_begin_arg
2045 		 * interval
2046 		 */
2047 		tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
2048 
2049 		/* load timer value and enable interrupt */
2050 		s626_timer_load(dev, 5, tick);
2051 		s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
2052 		break;
2053 	case TRIG_EXT:
2054 		/* set the digital line and interrupt for scan trigger */
2055 		if (cmd->start_src != TRIG_EXT)
2056 			s626_dio_set_irq(dev, cmd->scan_begin_arg);
2057 		break;
2058 	}
2059 
2060 	switch (cmd->convert_src) {
2061 	case TRIG_NOW:
2062 		break;
2063 	case TRIG_TIMER:
2064 		/*
2065 		 * set a counter to generate adc trigger at convert_arg
2066 		 * interval
2067 		 */
2068 		tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
2069 
2070 		/* load timer value and enable interrupt */
2071 		s626_timer_load(dev, 4, tick);
2072 		s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
2073 		break;
2074 	case TRIG_EXT:
2075 		/* set the digital line and interrupt for convert trigger */
2076 		if (cmd->scan_begin_src != TRIG_EXT &&
2077 		    cmd->start_src == TRIG_EXT)
2078 			s626_dio_set_irq(dev, cmd->convert_arg);
2079 		break;
2080 	}
2081 
2082 	s626_reset_adc(dev, ppl);
2083 
2084 	switch (cmd->start_src) {
2085 	case TRIG_NOW:
2086 		/* Trigger ADC scan loop start */
2087 		/* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
2088 
2089 		/* Start executing the RPS program */
2090 		s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
2091 		s->async->inttrig = NULL;
2092 		break;
2093 	case TRIG_EXT:
2094 		/* configure DIO channel for acquisition trigger */
2095 		s626_dio_set_irq(dev, cmd->start_arg);
2096 		s->async->inttrig = NULL;
2097 		break;
2098 	case TRIG_INT:
2099 		s->async->inttrig = s626_ai_inttrig;
2100 		break;
2101 	}
2102 
2103 	/* enable interrupt */
2104 	writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
2105 
2106 	return 0;
2107 }
2108 
s626_ai_cmdtest(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_cmd * cmd)2109 static int s626_ai_cmdtest(struct comedi_device *dev,
2110 			   struct comedi_subdevice *s, struct comedi_cmd *cmd)
2111 {
2112 	int err = 0;
2113 	unsigned int arg;
2114 
2115 	/* Step 1 : check if triggers are trivially valid */
2116 
2117 	err |= comedi_check_trigger_src(&cmd->start_src,
2118 					TRIG_NOW | TRIG_INT | TRIG_EXT);
2119 	err |= comedi_check_trigger_src(&cmd->scan_begin_src,
2120 					TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
2121 	err |= comedi_check_trigger_src(&cmd->convert_src,
2122 					TRIG_TIMER | TRIG_EXT | TRIG_NOW);
2123 	err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
2124 	err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
2125 
2126 	if (err)
2127 		return 1;
2128 
2129 	/* Step 2a : make sure trigger sources are unique */
2130 
2131 	err |= comedi_check_trigger_is_unique(cmd->start_src);
2132 	err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
2133 	err |= comedi_check_trigger_is_unique(cmd->convert_src);
2134 	err |= comedi_check_trigger_is_unique(cmd->stop_src);
2135 
2136 	/* Step 2b : and mutually compatible */
2137 
2138 	if (err)
2139 		return 2;
2140 
2141 	/* Step 3: check if arguments are trivially valid */
2142 
2143 	switch (cmd->start_src) {
2144 	case TRIG_NOW:
2145 	case TRIG_INT:
2146 		err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
2147 		break;
2148 	case TRIG_EXT:
2149 		err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
2150 		break;
2151 	}
2152 
2153 	if (cmd->scan_begin_src == TRIG_EXT)
2154 		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
2155 	if (cmd->convert_src == TRIG_EXT)
2156 		err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
2157 
2158 #define S626_MAX_SPEED	200000	/* in nanoseconds */
2159 #define S626_MIN_SPEED	2000000000	/* in nanoseconds */
2160 
2161 	if (cmd->scan_begin_src == TRIG_TIMER) {
2162 		err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
2163 						    S626_MAX_SPEED);
2164 		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
2165 						    S626_MIN_SPEED);
2166 	} else {
2167 		/*
2168 		 * external trigger
2169 		 * should be level/edge, hi/lo specification here
2170 		 * should specify multiple external triggers
2171 		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
2172 		 */
2173 	}
2174 	if (cmd->convert_src == TRIG_TIMER) {
2175 		err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
2176 						    S626_MAX_SPEED);
2177 		err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
2178 						    S626_MIN_SPEED);
2179 	} else {
2180 		/*
2181 		 * external trigger - see above
2182 		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
2183 		 */
2184 	}
2185 
2186 	err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
2187 					   cmd->chanlist_len);
2188 
2189 	if (cmd->stop_src == TRIG_COUNT)
2190 		err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
2191 	else	/* TRIG_NONE */
2192 		err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
2193 
2194 	if (err)
2195 		return 3;
2196 
2197 	/* step 4: fix up any arguments */
2198 
2199 	if (cmd->scan_begin_src == TRIG_TIMER) {
2200 		arg = cmd->scan_begin_arg;
2201 		s626_ns_to_timer(&arg, cmd->flags);
2202 		err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
2203 	}
2204 
2205 	if (cmd->convert_src == TRIG_TIMER) {
2206 		arg = cmd->convert_arg;
2207 		s626_ns_to_timer(&arg, cmd->flags);
2208 		err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
2209 
2210 		if (cmd->scan_begin_src == TRIG_TIMER) {
2211 			arg = cmd->convert_arg * cmd->scan_end_arg;
2212 			err |= comedi_check_trigger_arg_min(&cmd->
2213 							    scan_begin_arg,
2214 							    arg);
2215 		}
2216 	}
2217 
2218 	if (err)
2219 		return 4;
2220 
2221 	return 0;
2222 }
2223 
s626_ai_cancel(struct comedi_device * dev,struct comedi_subdevice * s)2224 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
2225 {
2226 	struct s626_private *devpriv = dev->private;
2227 
2228 	/* Stop RPS program in case it is currently running */
2229 	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
2230 
2231 	/* disable master interrupt */
2232 	writel(0, dev->mmio + S626_P_IER);
2233 
2234 	devpriv->ai_cmd_running = 0;
2235 
2236 	return 0;
2237 }
2238 
s626_ao_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2239 static int s626_ao_insn_write(struct comedi_device *dev,
2240 			      struct comedi_subdevice *s,
2241 			      struct comedi_insn *insn,
2242 			      unsigned int *data)
2243 {
2244 	unsigned int chan = CR_CHAN(insn->chanspec);
2245 	int i;
2246 
2247 	for (i = 0; i < insn->n; i++) {
2248 		int16_t dacdata = (int16_t)data[i];
2249 		int ret;
2250 
2251 		dacdata -= (0x1fff);
2252 
2253 		ret = s626_set_dac(dev, chan, dacdata);
2254 		if (ret)
2255 			return ret;
2256 
2257 		s->readback[chan] = data[i];
2258 	}
2259 
2260 	return insn->n;
2261 }
2262 
2263 /* *************** DIGITAL I/O FUNCTIONS *************** */
2264 
2265 /*
2266  * All DIO functions address a group of DIO channels by means of
2267  * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2268  * ports A, B and C, respectively.
2269  */
2270 
s626_dio_init(struct comedi_device * dev)2271 static void s626_dio_init(struct comedi_device *dev)
2272 {
2273 	uint16_t group;
2274 
2275 	/* Prepare to treat writes to WRCapSel as capture disables. */
2276 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
2277 
2278 	/* For each group of sixteen channels ... */
2279 	for (group = 0; group < S626_DIO_BANKS; group++) {
2280 		/* Disable all interrupts */
2281 		s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
2282 		/* Disable all event captures */
2283 		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
2284 		/* Init all DIOs to default edge polarity */
2285 		s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
2286 		/* Program all outputs to inactive state */
2287 		s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
2288 	}
2289 }
2290 
s626_dio_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2291 static int s626_dio_insn_bits(struct comedi_device *dev,
2292 			      struct comedi_subdevice *s,
2293 			      struct comedi_insn *insn,
2294 			      unsigned int *data)
2295 {
2296 	unsigned long group = (unsigned long)s->private;
2297 
2298 	if (comedi_dio_update_state(s, data))
2299 		s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
2300 
2301 	data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
2302 
2303 	return insn->n;
2304 }
2305 
s626_dio_insn_config(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2306 static int s626_dio_insn_config(struct comedi_device *dev,
2307 				struct comedi_subdevice *s,
2308 				struct comedi_insn *insn,
2309 				unsigned int *data)
2310 {
2311 	unsigned long group = (unsigned long)s->private;
2312 	int ret;
2313 
2314 	ret = comedi_dio_insn_config(dev, s, insn, data, 0);
2315 	if (ret)
2316 		return ret;
2317 
2318 	s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
2319 
2320 	return insn->n;
2321 }
2322 
2323 /*
2324  * Now this function initializes the value of the counter (data[0])
2325  * and set the subdevice. To complete with trigger and interrupt
2326  * configuration.
2327  *
2328  * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2329  * what is being configured, but this function appears to be using data[0]
2330  * as a variable.
2331  */
s626_enc_insn_config(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2332 static int s626_enc_insn_config(struct comedi_device *dev,
2333 				struct comedi_subdevice *s,
2334 				struct comedi_insn *insn, unsigned int *data)
2335 {
2336 	unsigned int chan = CR_CHAN(insn->chanspec);
2337 	uint16_t setup =
2338 		/* Preload upon index. */
2339 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2340 		/* Disable hardware index. */
2341 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2342 		/* Operating mode is Counter. */
2343 		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2344 		/* Active high clock. */
2345 		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2346 		/* Clock multiplier is 1x. */
2347 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2348 		/* Enabled by index */
2349 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2350 	/* uint16_t disable_int_src = true; */
2351 	/* uint32_t Preloadvalue;              //Counter initial value */
2352 	uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
2353 	uint16_t enab = S626_CLKENAB_ALWAYS;
2354 
2355 	/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2356 
2357 	s626_set_mode(dev, chan, setup, true);
2358 	s626_preload(dev, chan, data[0]);
2359 	s626_pulse_index(dev, chan);
2360 	s626_set_latch_source(dev, chan, value_latchsrc);
2361 	s626_set_enable(dev, chan, (enab != 0));
2362 
2363 	return insn->n;
2364 }
2365 
s626_enc_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2366 static int s626_enc_insn_read(struct comedi_device *dev,
2367 			      struct comedi_subdevice *s,
2368 			      struct comedi_insn *insn,
2369 			      unsigned int *data)
2370 {
2371 	unsigned int chan = CR_CHAN(insn->chanspec);
2372 	uint16_t cntr_latch_reg = S626_LP_CNTR(chan);
2373 	int i;
2374 
2375 	for (i = 0; i < insn->n; i++) {
2376 		unsigned int val;
2377 
2378 		/*
2379 		 * Read the counter's output latch LSW/MSW.
2380 		 * Latches on LSW read.
2381 		 */
2382 		val = s626_debi_read(dev, cntr_latch_reg);
2383 		val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2384 		data[i] = val;
2385 	}
2386 
2387 	return insn->n;
2388 }
2389 
s626_enc_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)2390 static int s626_enc_insn_write(struct comedi_device *dev,
2391 			       struct comedi_subdevice *s,
2392 			       struct comedi_insn *insn, unsigned int *data)
2393 {
2394 	unsigned int chan = CR_CHAN(insn->chanspec);
2395 
2396 	/* Set the preload register */
2397 	s626_preload(dev, chan, data[0]);
2398 
2399 	/*
2400 	 * Software index pulse forces the preload register to load
2401 	 * into the counter
2402 	 */
2403 	s626_set_load_trig(dev, chan, 0);
2404 	s626_pulse_index(dev, chan);
2405 	s626_set_load_trig(dev, chan, 2);
2406 
2407 	return 1;
2408 }
2409 
s626_write_misc2(struct comedi_device * dev,uint16_t new_image)2410 static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
2411 {
2412 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2413 	s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2414 	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2415 }
2416 
s626_counters_init(struct comedi_device * dev)2417 static void s626_counters_init(struct comedi_device *dev)
2418 {
2419 	int chan;
2420 	uint16_t setup =
2421 		/* Preload upon index. */
2422 		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2423 		/* Disable hardware index. */
2424 		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2425 		/* Operating mode is counter. */
2426 		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2427 		/* Active high clock. */
2428 		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2429 		/* Clock multiplier is 1x. */
2430 		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2431 		/* Enabled by index */
2432 		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2433 
2434 	/*
2435 	 * Disable all counter interrupts and clear any captured counter events.
2436 	 */
2437 	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2438 		s626_set_mode(dev, chan, setup, true);
2439 		s626_set_int_src(dev, chan, 0);
2440 		s626_reset_cap_flags(dev, chan);
2441 		s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
2442 	}
2443 }
2444 
s626_allocate_dma_buffers(struct comedi_device * dev)2445 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2446 {
2447 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2448 	struct s626_private *devpriv = dev->private;
2449 	void *addr;
2450 	dma_addr_t appdma;
2451 
2452 	addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2453 	if (!addr)
2454 		return -ENOMEM;
2455 	devpriv->ana_buf.logical_base = addr;
2456 	devpriv->ana_buf.physical_base = appdma;
2457 
2458 	addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2459 	if (!addr)
2460 		return -ENOMEM;
2461 	devpriv->rps_buf.logical_base = addr;
2462 	devpriv->rps_buf.physical_base = appdma;
2463 
2464 	return 0;
2465 }
2466 
s626_free_dma_buffers(struct comedi_device * dev)2467 static void s626_free_dma_buffers(struct comedi_device *dev)
2468 {
2469 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2470 	struct s626_private *devpriv = dev->private;
2471 
2472 	if (!devpriv)
2473 		return;
2474 
2475 	if (devpriv->rps_buf.logical_base)
2476 		pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2477 				    devpriv->rps_buf.logical_base,
2478 				    devpriv->rps_buf.physical_base);
2479 	if (devpriv->ana_buf.logical_base)
2480 		pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2481 				    devpriv->ana_buf.logical_base,
2482 				    devpriv->ana_buf.physical_base);
2483 }
2484 
s626_initialize(struct comedi_device * dev)2485 static int s626_initialize(struct comedi_device *dev)
2486 {
2487 	struct s626_private *devpriv = dev->private;
2488 	dma_addr_t phys_buf;
2489 	uint16_t chan;
2490 	int i;
2491 	int ret;
2492 
2493 	/* Enable DEBI and audio pins, enable I2C interface */
2494 	s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2495 		       S626_P_MC1);
2496 
2497 	/*
2498 	 * Configure DEBI operating mode
2499 	 *
2500 	 *  Local bus is 16 bits wide
2501 	 *  Declare DEBI transfer timeout interval
2502 	 *  Set up byte lane steering
2503 	 *  Intel-compatible local bus (DEBI never times out)
2504 	 */
2505 	writel(S626_DEBI_CFG_SLAVE16 |
2506 	       (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2507 	       S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
2508 
2509 	/* Disable MMU paging */
2510 	writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
2511 
2512 	/* Init GPIO so that ADC Start* is negated */
2513 	writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
2514 
2515 	/* I2C device address for onboard eeprom (revb) */
2516 	devpriv->i2c_adrs = 0xA0;
2517 
2518 	/*
2519 	 * Issue an I2C ABORT command to halt any I2C
2520 	 * operation in progress and reset BUSY flag.
2521 	 */
2522 	writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2523 	       dev->mmio + S626_P_I2CSTAT);
2524 	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2525 	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2526 	if (ret)
2527 		return ret;
2528 
2529 	/*
2530 	 * Per SAA7146 data sheet, write to STATUS
2531 	 * reg twice to reset all  I2C error flags.
2532 	 */
2533 	for (i = 0; i < 2; i++) {
2534 		writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
2535 		s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2536 		ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2537 		if (ret)
2538 			return ret;
2539 	}
2540 
2541 	/*
2542 	 * Init audio interface functional attributes: set DAC/ADC
2543 	 * serial clock rates, invert DAC serial clock so that
2544 	 * DAC data setup times are satisfied, enable DAC serial
2545 	 * clock out.
2546 	 */
2547 	writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
2548 
2549 	/*
2550 	 * Set up TSL1 slot list, which is used to control the
2551 	 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2552 	 * S626_SIB_A1  = store data uint8_t at next available location
2553 	 * in FB BUFFER1 register.
2554 	 */
2555 	writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
2556 	writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2557 	       dev->mmio + S626_P_TSL1 + 4);
2558 
2559 	/* Enable TSL1 slot list so that it executes all the time */
2560 	writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
2561 
2562 	/*
2563 	 * Initialize RPS registers used for ADC
2564 	 */
2565 
2566 	/* Physical start of RPS program */
2567 	writel((uint32_t)devpriv->rps_buf.physical_base,
2568 	       dev->mmio + S626_P_RPSADDR1);
2569 	/* RPS program performs no explicit mem writes */
2570 	writel(0, dev->mmio + S626_P_RPSPAGE1);
2571 	/* Disable RPS timeouts */
2572 	writel(0, dev->mmio + S626_P_RPS1_TOUT);
2573 
2574 #if 0
2575 	/*
2576 	 * SAA7146 BUG WORKAROUND
2577 	 *
2578 	 * Initialize SAA7146 ADC interface to a known state by
2579 	 * invoking ADCs until FB BUFFER 1 register shows that it
2580 	 * is correctly receiving ADC data. This is necessary
2581 	 * because the SAA7146 ADC interface does not start up in
2582 	 * a defined state after a PCI reset.
2583 	 */
2584 	{
2585 		struct comedi_subdevice *s = dev->read_subdev;
2586 		uint8_t poll_list;
2587 		uint16_t adc_data;
2588 		uint16_t start_val;
2589 		uint16_t index;
2590 		unsigned int data[16];
2591 
2592 		/* Create a simple polling list for analog input channel 0 */
2593 		poll_list = S626_EOPL;
2594 		s626_reset_adc(dev, &poll_list);
2595 
2596 		/* Get initial ADC value */
2597 		s626_ai_rinsn(dev, s, NULL, data);
2598 		start_val = data[0];
2599 
2600 		/*
2601 		 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2602 		 * EXECUTION.
2603 		 *
2604 		 * Invoke ADCs until the new ADC value differs from the initial
2605 		 * value or a timeout occurs.  The timeout protects against the
2606 		 * possibility that the driver is restarting and the ADC data is
2607 		 * a fixed value resulting from the applied ADC analog input
2608 		 * being unusually quiet or at the rail.
2609 		 */
2610 		for (index = 0; index < 500; index++) {
2611 			s626_ai_rinsn(dev, s, NULL, data);
2612 			adc_data = data[0];
2613 			if (adc_data != start_val)
2614 				break;
2615 		}
2616 	}
2617 #endif	/* SAA7146 BUG WORKAROUND */
2618 
2619 	/*
2620 	 * Initialize the DAC interface
2621 	 */
2622 
2623 	/*
2624 	 * Init Audio2's output DMAC attributes:
2625 	 *   burst length = 1 DWORD
2626 	 *   threshold = 1 DWORD.
2627 	 */
2628 	writel(0, dev->mmio + S626_P_PCI_BT_A);
2629 
2630 	/*
2631 	 * Init Audio2's output DMA physical addresses.  The protection
2632 	 * address is set to 1 DWORD past the base address so that a
2633 	 * single DWORD will be transferred each time a DMA transfer is
2634 	 * enabled.
2635 	 */
2636 	phys_buf = devpriv->ana_buf.physical_base +
2637 		   (S626_DAC_WDMABUF_OS * sizeof(uint32_t));
2638 	writel((uint32_t)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2639 	writel((uint32_t)(phys_buf + sizeof(uint32_t)),
2640 	       dev->mmio + S626_P_PROTA2_OUT);
2641 
2642 	/*
2643 	 * Cache Audio2's output DMA buffer logical address.  This is
2644 	 * where DAC data is buffered for A2 output DMA transfers.
2645 	 */
2646 	devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
2647 			    S626_DAC_WDMABUF_OS;
2648 
2649 	/*
2650 	 * Audio2's output channels does not use paging.  The
2651 	 * protection violation handling bit is set so that the
2652 	 * DMAC will automatically halt and its PCI address pointer
2653 	 * will be reset when the protection address is reached.
2654 	 */
2655 	writel(8, dev->mmio + S626_P_PAGEA2_OUT);
2656 
2657 	/*
2658 	 * Initialize time slot list 2 (TSL2), which is used to control
2659 	 * the clock generation for and serialization of data to be sent
2660 	 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
2661 	 * execution; this permits other slots to be safely modified
2662 	 * without first turning off the TSL sequencer (which is
2663 	 * apparently impossible to do).  Also, SD3 (which is driven by a
2664 	 * pull-up resistor) is shifted in and stored to the MSB of
2665 	 * FB_BUFFER2 to be used as evidence that the slot sequence has
2666 	 * not yet finished executing.
2667 	 */
2668 
2669 	/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2670 	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2671 	       dev->mmio + S626_VECTPORT(0));
2672 
2673 	/*
2674 	 * Initialize slot 1, which is constant.  Slot 1 causes a
2675 	 * DWORD to be transferred from audio channel 2's output FIFO
2676 	 * to the FIFO's output buffer so that it can be serialized
2677 	 * and sent to the DAC during subsequent slots.  All remaining
2678 	 * slots are dynamically populated as required by the target
2679 	 * DAC device.
2680 	 */
2681 
2682 	/* Slot 1: Fetch DWORD from Audio2's output FIFO */
2683 	writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
2684 
2685 	/* Start DAC's audio interface (TSL2) running */
2686 	writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
2687 
2688 	/*
2689 	 * Init Trim DACs to calibrated values.  Do it twice because the
2690 	 * SAA7146 audio channel does not always reset properly and
2691 	 * sometimes causes the first few TrimDAC writes to malfunction.
2692 	 */
2693 	s626_load_trim_dacs(dev);
2694 	ret = s626_load_trim_dacs(dev);
2695 	if (ret)
2696 		return ret;
2697 
2698 	/*
2699 	 * Manually init all gate array hardware in case this is a soft
2700 	 * reset (we have no way of determining whether this is a warm
2701 	 * or cold start).  This is necessary because the gate array will
2702 	 * reset only in response to a PCI hard reset; there is no soft
2703 	 * reset function.
2704 	 */
2705 
2706 	/*
2707 	 * Init all DAC outputs to 0V and init all DAC setpoint and
2708 	 * polarity images.
2709 	 */
2710 	for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2711 		ret = s626_set_dac(dev, chan, 0);
2712 		if (ret)
2713 			return ret;
2714 	}
2715 
2716 	/* Init counters */
2717 	s626_counters_init(dev);
2718 
2719 	/*
2720 	 * Without modifying the state of the Battery Backup enab, disable
2721 	 * the watchdog timer, set DIO channels 0-5 to operate in the
2722 	 * standard DIO (vs. counter overflow) mode, disable the battery
2723 	 * charger, and reset the watchdog interval selector to zero.
2724 	 */
2725 	s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2726 			       S626_MISC2_BATT_ENABLE));
2727 
2728 	/* Initialize the digital I/O subsystem */
2729 	s626_dio_init(dev);
2730 
2731 	return 0;
2732 }
2733 
s626_auto_attach(struct comedi_device * dev,unsigned long context_unused)2734 static int s626_auto_attach(struct comedi_device *dev,
2735 			    unsigned long context_unused)
2736 {
2737 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2738 	struct s626_private *devpriv;
2739 	struct comedi_subdevice *s;
2740 	int ret;
2741 
2742 	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
2743 	if (!devpriv)
2744 		return -ENOMEM;
2745 
2746 	ret = comedi_pci_enable(dev);
2747 	if (ret)
2748 		return ret;
2749 
2750 	dev->mmio = pci_ioremap_bar(pcidev, 0);
2751 	if (!dev->mmio)
2752 		return -ENOMEM;
2753 
2754 	/* disable master interrupt */
2755 	writel(0, dev->mmio + S626_P_IER);
2756 
2757 	/* soft reset */
2758 	writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
2759 
2760 	/* DMA FIXME DMA// */
2761 
2762 	ret = s626_allocate_dma_buffers(dev);
2763 	if (ret)
2764 		return ret;
2765 
2766 	if (pcidev->irq) {
2767 		ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2768 				  dev->board_name, dev);
2769 
2770 		if (ret == 0)
2771 			dev->irq = pcidev->irq;
2772 	}
2773 
2774 	ret = comedi_alloc_subdevices(dev, 6);
2775 	if (ret)
2776 		return ret;
2777 
2778 	s = &dev->subdevices[0];
2779 	/* analog input subdevice */
2780 	s->type		= COMEDI_SUBD_AI;
2781 	s->subdev_flags	= SDF_READABLE | SDF_DIFF;
2782 	s->n_chan	= S626_ADC_CHANNELS;
2783 	s->maxdata	= 0x3fff;
2784 	s->range_table	= &s626_range_table;
2785 	s->len_chanlist	= S626_ADC_CHANNELS;
2786 	s->insn_read	= s626_ai_insn_read;
2787 	if (dev->irq) {
2788 		dev->read_subdev = s;
2789 		s->subdev_flags	|= SDF_CMD_READ;
2790 		s->do_cmd	= s626_ai_cmd;
2791 		s->do_cmdtest	= s626_ai_cmdtest;
2792 		s->cancel	= s626_ai_cancel;
2793 	}
2794 
2795 	s = &dev->subdevices[1];
2796 	/* analog output subdevice */
2797 	s->type		= COMEDI_SUBD_AO;
2798 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2799 	s->n_chan	= S626_DAC_CHANNELS;
2800 	s->maxdata	= 0x3fff;
2801 	s->range_table	= &range_bipolar10;
2802 	s->insn_write	= s626_ao_insn_write;
2803 
2804 	ret = comedi_alloc_subdev_readback(s);
2805 	if (ret)
2806 		return ret;
2807 
2808 	s = &dev->subdevices[2];
2809 	/* digital I/O subdevice */
2810 	s->type		= COMEDI_SUBD_DIO;
2811 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2812 	s->n_chan	= 16;
2813 	s->maxdata	= 1;
2814 	s->io_bits	= 0xffff;
2815 	s->private	= (void *)0;	/* DIO group 0 */
2816 	s->range_table	= &range_digital;
2817 	s->insn_config	= s626_dio_insn_config;
2818 	s->insn_bits	= s626_dio_insn_bits;
2819 
2820 	s = &dev->subdevices[3];
2821 	/* digital I/O subdevice */
2822 	s->type		= COMEDI_SUBD_DIO;
2823 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2824 	s->n_chan	= 16;
2825 	s->maxdata	= 1;
2826 	s->io_bits	= 0xffff;
2827 	s->private	= (void *)1;	/* DIO group 1 */
2828 	s->range_table	= &range_digital;
2829 	s->insn_config	= s626_dio_insn_config;
2830 	s->insn_bits	= s626_dio_insn_bits;
2831 
2832 	s = &dev->subdevices[4];
2833 	/* digital I/O subdevice */
2834 	s->type		= COMEDI_SUBD_DIO;
2835 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
2836 	s->n_chan	= 16;
2837 	s->maxdata	= 1;
2838 	s->io_bits	= 0xffff;
2839 	s->private	= (void *)2;	/* DIO group 2 */
2840 	s->range_table	= &range_digital;
2841 	s->insn_config	= s626_dio_insn_config;
2842 	s->insn_bits	= s626_dio_insn_bits;
2843 
2844 	s = &dev->subdevices[5];
2845 	/* encoder (counter) subdevice */
2846 	s->type		= COMEDI_SUBD_COUNTER;
2847 	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2848 	s->n_chan	= S626_ENCODER_CHANNELS;
2849 	s->maxdata	= 0xffffff;
2850 	s->range_table	= &range_unknown;
2851 	s->insn_config	= s626_enc_insn_config;
2852 	s->insn_read	= s626_enc_insn_read;
2853 	s->insn_write	= s626_enc_insn_write;
2854 
2855 	ret = s626_initialize(dev);
2856 	if (ret)
2857 		return ret;
2858 
2859 	return 0;
2860 }
2861 
s626_detach(struct comedi_device * dev)2862 static void s626_detach(struct comedi_device *dev)
2863 {
2864 	struct s626_private *devpriv = dev->private;
2865 
2866 	if (devpriv) {
2867 		/* stop ai_command */
2868 		devpriv->ai_cmd_running = 0;
2869 
2870 		if (dev->mmio) {
2871 			/* interrupt mask */
2872 			/* Disable master interrupt */
2873 			writel(0, dev->mmio + S626_P_IER);
2874 			/* Clear board's IRQ status flag */
2875 			writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2876 			       dev->mmio + S626_P_ISR);
2877 
2878 			/* Disable the watchdog timer and battery charger. */
2879 			s626_write_misc2(dev, 0);
2880 
2881 			/* Close all interfaces on 7146 device */
2882 			writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2883 			writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
2884 		}
2885 	}
2886 	comedi_pci_detach(dev);
2887 	s626_free_dma_buffers(dev);
2888 }
2889 
2890 static struct comedi_driver s626_driver = {
2891 	.driver_name	= "s626",
2892 	.module		= THIS_MODULE,
2893 	.auto_attach	= s626_auto_attach,
2894 	.detach		= s626_detach,
2895 };
2896 
s626_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)2897 static int s626_pci_probe(struct pci_dev *dev,
2898 			  const struct pci_device_id *id)
2899 {
2900 	return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
2901 }
2902 
2903 /*
2904  * For devices with vendor:device id == 0x1131:0x7146 you must specify
2905  * also subvendor:subdevice ids, because otherwise it will conflict with
2906  * Philips SAA7146 media/dvb based cards.
2907  */
2908 static const struct pci_device_id s626_pci_table[] = {
2909 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2910 			 0x6000, 0x0272) },
2911 	{ 0 }
2912 };
2913 MODULE_DEVICE_TABLE(pci, s626_pci_table);
2914 
2915 static struct pci_driver s626_pci_driver = {
2916 	.name		= "s626",
2917 	.id_table	= s626_pci_table,
2918 	.probe		= s626_pci_probe,
2919 	.remove		= comedi_pci_auto_unconfig,
2920 };
2921 module_comedi_pci_driver(s626_driver, s626_pci_driver);
2922 
2923 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2924 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2925 MODULE_LICENSE("GPL");
2926