1 /*
2  * Alchemy Semi Au1000 IrDA driver
3  *
4  * Copyright 2001 MontaVista Software Inc.
5  * Author: MontaVista Software, Inc.
6  *         	ppopov@mvista.com or source@mvista.com
7  *
8  *  This program is free software; you can distribute it and/or modify it
9  *  under the terms of the GNU General Public License (Version 2) as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  *  for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/clk.h>
22 #include <linux/module.h>
23 #include <linux/netdevice.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 
30 #include <net/irda/irda.h>
31 #include <net/irda/irmod.h>
32 #include <net/irda/wrapper.h>
33 #include <net/irda/irda_device.h>
34 #include <asm/mach-au1x00/au1000.h>
35 
36 /* registers */
37 #define IR_RING_PTR_STATUS	0x00
38 #define IR_RING_BASE_ADDR_H	0x04
39 #define IR_RING_BASE_ADDR_L	0x08
40 #define IR_RING_SIZE		0x0C
41 #define IR_RING_PROMPT		0x10
42 #define IR_RING_ADDR_CMPR	0x14
43 #define IR_INT_CLEAR		0x18
44 #define IR_CONFIG_1		0x20
45 #define IR_SIR_FLAGS		0x24
46 #define IR_STATUS		0x28
47 #define IR_READ_PHY_CONFIG	0x2C
48 #define IR_WRITE_PHY_CONFIG	0x30
49 #define IR_MAX_PKT_LEN		0x34
50 #define IR_RX_BYTE_CNT		0x38
51 #define IR_CONFIG_2		0x3C
52 #define IR_ENABLE		0x40
53 
54 /* Config1 */
55 #define IR_RX_INVERT_LED	(1 << 0)
56 #define IR_TX_INVERT_LED	(1 << 1)
57 #define IR_ST			(1 << 2)
58 #define IR_SF			(1 << 3)
59 #define IR_SIR			(1 << 4)
60 #define IR_MIR			(1 << 5)
61 #define IR_FIR			(1 << 6)
62 #define IR_16CRC		(1 << 7)
63 #define IR_TD			(1 << 8)
64 #define IR_RX_ALL		(1 << 9)
65 #define IR_DMA_ENABLE		(1 << 10)
66 #define IR_RX_ENABLE		(1 << 11)
67 #define IR_TX_ENABLE		(1 << 12)
68 #define IR_LOOPBACK		(1 << 14)
69 #define IR_SIR_MODE		(IR_SIR | IR_DMA_ENABLE | \
70 				 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
71 				 IR_16CRC)
72 
73 /* ir_status */
74 #define IR_RX_STATUS		(1 << 9)
75 #define IR_TX_STATUS		(1 << 10)
76 #define IR_PHYEN		(1 << 15)
77 
78 /* ir_write_phy_config */
79 #define IR_BR(x)		(((x) & 0x3f) << 10)	/* baud rate */
80 #define IR_PW(x)		(((x) & 0x1f) << 5)	/* pulse width */
81 #define IR_P(x)			((x) & 0x1f)		/* preamble bits */
82 
83 /* Config2 */
84 #define IR_MODE_INV		(1 << 0)
85 #define IR_ONE_PIN		(1 << 1)
86 #define IR_PHYCLK_40MHZ		(0 << 2)
87 #define IR_PHYCLK_48MHZ		(1 << 2)
88 #define IR_PHYCLK_56MHZ		(2 << 2)
89 #define IR_PHYCLK_64MHZ		(3 << 2)
90 #define IR_DP			(1 << 4)
91 #define IR_DA			(1 << 5)
92 #define IR_FLT_HIGH		(0 << 6)
93 #define IR_FLT_MEDHI		(1 << 6)
94 #define IR_FLT_MEDLO		(2 << 6)
95 #define IR_FLT_LO		(3 << 6)
96 #define IR_IEN			(1 << 8)
97 
98 /* ir_enable */
99 #define IR_HC			(1 << 3)	/* divide SBUS clock by 2 */
100 #define IR_CE			(1 << 2)	/* clock enable */
101 #define IR_C			(1 << 1)	/* coherency bit */
102 #define IR_BE			(1 << 0)	/* set in big endian mode */
103 
104 #define NUM_IR_DESC	64
105 #define RING_SIZE_4	0x0
106 #define RING_SIZE_16	0x3
107 #define RING_SIZE_64	0xF
108 #define MAX_NUM_IR_DESC	64
109 #define MAX_BUF_SIZE	2048
110 
111 /* Ring descriptor flags */
112 #define AU_OWN		(1 << 7) /* tx,rx */
113 #define IR_DIS_CRC	(1 << 6) /* tx */
114 #define IR_BAD_CRC	(1 << 5) /* tx */
115 #define IR_NEED_PULSE	(1 << 4) /* tx */
116 #define IR_FORCE_UNDER	(1 << 3) /* tx */
117 #define IR_DISABLE_TX	(1 << 2) /* tx */
118 #define IR_HW_UNDER	(1 << 0) /* tx */
119 #define IR_TX_ERROR	(IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
120 
121 #define IR_PHY_ERROR	(1 << 6) /* rx */
122 #define IR_CRC_ERROR	(1 << 5) /* rx */
123 #define IR_MAX_LEN	(1 << 4) /* rx */
124 #define IR_FIFO_OVER	(1 << 3) /* rx */
125 #define IR_SIR_ERROR	(1 << 2) /* rx */
126 #define IR_RX_ERROR	(IR_PHY_ERROR | IR_CRC_ERROR | \
127 			 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
128 
129 struct db_dest {
130 	struct db_dest *pnext;
131 	volatile u32 *vaddr;
132 	dma_addr_t dma_addr;
133 };
134 
135 struct ring_dest {
136 	u8 count_0;	/* 7:0  */
137 	u8 count_1;	/* 12:8 */
138 	u8 reserved;
139 	u8 flags;
140 	u8 addr_0;	/* 7:0   */
141 	u8 addr_1;	/* 15:8  */
142 	u8 addr_2;	/* 23:16 */
143 	u8 addr_3;	/* 31:24 */
144 };
145 
146 /* Private data for each instance */
147 struct au1k_private {
148 	void __iomem *iobase;
149 	int irq_rx, irq_tx;
150 
151 	struct db_dest *pDBfree;
152 	struct db_dest db[2 * NUM_IR_DESC];
153 	volatile struct ring_dest *rx_ring[NUM_IR_DESC];
154 	volatile struct ring_dest *tx_ring[NUM_IR_DESC];
155 	struct db_dest *rx_db_inuse[NUM_IR_DESC];
156 	struct db_dest *tx_db_inuse[NUM_IR_DESC];
157 	u32 rx_head;
158 	u32 tx_head;
159 	u32 tx_tail;
160 	u32 tx_full;
161 
162 	iobuff_t rx_buff;
163 
164 	struct net_device *netdev;
165 	struct qos_info qos;
166 	struct irlap_cb *irlap;
167 
168 	u8 open;
169 	u32 speed;
170 	u32 newspeed;
171 
172 	struct timer_list timer;
173 
174 	struct resource *ioarea;
175 	struct au1k_irda_platform_data *platdata;
176 	struct clk *irda_clk;
177 };
178 
179 static int qos_mtt_bits = 0x07;  /* 1 ms or more */
180 
181 #define RUN_AT(x) (jiffies + (x))
182 
au1k_irda_plat_set_phy_mode(struct au1k_private * p,int mode)183 static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
184 {
185 	if (p->platdata && p->platdata->set_phy_mode)
186 		p->platdata->set_phy_mode(mode);
187 }
188 
irda_read(struct au1k_private * p,unsigned long ofs)189 static inline unsigned long irda_read(struct au1k_private *p,
190 				      unsigned long ofs)
191 {
192 	/*
193 	* IrDA peripheral bug. You have to read the register
194 	* twice to get the right value.
195 	*/
196 	(void)__raw_readl(p->iobase + ofs);
197 	return __raw_readl(p->iobase + ofs);
198 }
199 
irda_write(struct au1k_private * p,unsigned long ofs,unsigned long val)200 static inline void irda_write(struct au1k_private *p, unsigned long ofs,
201 			      unsigned long val)
202 {
203 	__raw_writel(val, p->iobase + ofs);
204 	wmb();
205 }
206 
207 /*
208  * Buffer allocation/deallocation routines. The buffer descriptor returned
209  * has the virtual and dma address of a buffer suitable for
210  * both, receive and transmit operations.
211  */
GetFreeDB(struct au1k_private * aup)212 static struct db_dest *GetFreeDB(struct au1k_private *aup)
213 {
214 	struct db_dest *db;
215 	db = aup->pDBfree;
216 
217 	if (db)
218 		aup->pDBfree = db->pnext;
219 	return db;
220 }
221 
222 /*
223   DMA memory allocation, derived from pci_alloc_consistent.
224   However, the Au1000 data cache is coherent (when programmed
225   so), therefore we return KSEG0 address, not KSEG1.
226 */
dma_alloc(size_t size,dma_addr_t * dma_handle)227 static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
228 {
229 	void *ret;
230 	int gfp = GFP_ATOMIC | GFP_DMA;
231 
232 	ret = (void *)__get_free_pages(gfp, get_order(size));
233 
234 	if (ret != NULL) {
235 		memset(ret, 0, size);
236 		*dma_handle = virt_to_bus(ret);
237 		ret = (void *)KSEG0ADDR(ret);
238 	}
239 	return ret;
240 }
241 
dma_free(void * vaddr,size_t size)242 static void dma_free(void *vaddr, size_t size)
243 {
244 	vaddr = (void *)KSEG0ADDR(vaddr);
245 	free_pages((unsigned long) vaddr, get_order(size));
246 }
247 
248 
setup_hw_rings(struct au1k_private * aup,u32 rx_base,u32 tx_base)249 static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
250 {
251 	int i;
252 	for (i = 0; i < NUM_IR_DESC; i++) {
253 		aup->rx_ring[i] = (volatile struct ring_dest *)
254 			(rx_base + sizeof(struct ring_dest) * i);
255 	}
256 	for (i = 0; i < NUM_IR_DESC; i++) {
257 		aup->tx_ring[i] = (volatile struct ring_dest *)
258 			(tx_base + sizeof(struct ring_dest) * i);
259 	}
260 }
261 
au1k_irda_init_iobuf(iobuff_t * io,int size)262 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
263 {
264 	io->head = kmalloc(size, GFP_KERNEL);
265 	if (io->head != NULL) {
266 		io->truesize	= size;
267 		io->in_frame	= FALSE;
268 		io->state	= OUTSIDE_FRAME;
269 		io->data	= io->head;
270 	}
271 	return io->head ? 0 : -ENOMEM;
272 }
273 
274 /*
275  * Set the IrDA communications speed.
276  */
au1k_irda_set_speed(struct net_device * dev,int speed)277 static int au1k_irda_set_speed(struct net_device *dev, int speed)
278 {
279 	struct au1k_private *aup = netdev_priv(dev);
280 	volatile struct ring_dest *ptxd;
281 	unsigned long control;
282 	int ret = 0, timeout = 10, i;
283 
284 	if (speed == aup->speed)
285 		return ret;
286 
287 	/* disable PHY first */
288 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
289 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
290 
291 	/* disable RX/TX */
292 	irda_write(aup, IR_CONFIG_1,
293 	    irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
294 	msleep(20);
295 	while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
296 		msleep(20);
297 		if (!timeout--) {
298 			printk(KERN_ERR "%s: rx/tx disable timeout\n",
299 					dev->name);
300 			break;
301 		}
302 	}
303 
304 	/* disable DMA */
305 	irda_write(aup, IR_CONFIG_1,
306 		   irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
307 	msleep(20);
308 
309 	/* After we disable tx/rx. the index pointers go back to zero. */
310 	aup->tx_head = aup->tx_tail = aup->rx_head = 0;
311 	for (i = 0; i < NUM_IR_DESC; i++) {
312 		ptxd = aup->tx_ring[i];
313 		ptxd->flags = 0;
314 		ptxd->count_0 = 0;
315 		ptxd->count_1 = 0;
316 	}
317 
318 	for (i = 0; i < NUM_IR_DESC; i++) {
319 		ptxd = aup->rx_ring[i];
320 		ptxd->count_0 = 0;
321 		ptxd->count_1 = 0;
322 		ptxd->flags = AU_OWN;
323 	}
324 
325 	if (speed == 4000000)
326 		au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
327 	else
328 		au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
329 
330 	switch (speed) {
331 	case 9600:
332 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
333 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
334 		break;
335 	case 19200:
336 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
337 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
338 		break;
339 	case 38400:
340 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
341 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
342 		break;
343 	case 57600:
344 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
345 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
346 		break;
347 	case 115200:
348 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
349 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
350 		break;
351 	case 4000000:
352 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
353 		irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
354 				IR_RX_ENABLE);
355 		break;
356 	default:
357 		printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
358 		ret = -EINVAL;
359 		break;
360 	}
361 
362 	aup->speed = speed;
363 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
364 
365 	control = irda_read(aup, IR_STATUS);
366 	irda_write(aup, IR_RING_PROMPT, 0);
367 
368 	if (control & (1 << 14)) {
369 		printk(KERN_ERR "%s: configuration error\n", dev->name);
370 	} else {
371 		if (control & (1 << 11))
372 			printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
373 		if (control & (1 << 12))
374 			printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
375 		if (control & (1 << 13))
376 			printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
377 		if (control & (1 << 10))
378 			printk(KERN_DEBUG "%s TX enabled\n", dev->name);
379 		if (control & (1 << 9))
380 			printk(KERN_DEBUG "%s RX enabled\n", dev->name);
381 	}
382 
383 	return ret;
384 }
385 
update_rx_stats(struct net_device * dev,u32 status,u32 count)386 static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
387 {
388 	struct net_device_stats *ps = &dev->stats;
389 
390 	ps->rx_packets++;
391 
392 	if (status & IR_RX_ERROR) {
393 		ps->rx_errors++;
394 		if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
395 			ps->rx_missed_errors++;
396 		if (status & IR_MAX_LEN)
397 			ps->rx_length_errors++;
398 		if (status & IR_CRC_ERROR)
399 			ps->rx_crc_errors++;
400 	} else
401 		ps->rx_bytes += count;
402 }
403 
update_tx_stats(struct net_device * dev,u32 status,u32 pkt_len)404 static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
405 {
406 	struct net_device_stats *ps = &dev->stats;
407 
408 	ps->tx_packets++;
409 	ps->tx_bytes += pkt_len;
410 
411 	if (status & IR_TX_ERROR) {
412 		ps->tx_errors++;
413 		ps->tx_aborted_errors++;
414 	}
415 }
416 
au1k_tx_ack(struct net_device * dev)417 static void au1k_tx_ack(struct net_device *dev)
418 {
419 	struct au1k_private *aup = netdev_priv(dev);
420 	volatile struct ring_dest *ptxd;
421 
422 	ptxd = aup->tx_ring[aup->tx_tail];
423 	while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
424 		update_tx_stats(dev, ptxd->flags,
425 				(ptxd->count_1 << 8) | ptxd->count_0);
426 		ptxd->count_0 = 0;
427 		ptxd->count_1 = 0;
428 		wmb();
429 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
430 		ptxd = aup->tx_ring[aup->tx_tail];
431 
432 		if (aup->tx_full) {
433 			aup->tx_full = 0;
434 			netif_wake_queue(dev);
435 		}
436 	}
437 
438 	if (aup->tx_tail == aup->tx_head) {
439 		if (aup->newspeed) {
440 			au1k_irda_set_speed(dev, aup->newspeed);
441 			aup->newspeed = 0;
442 		} else {
443 			irda_write(aup, IR_CONFIG_1,
444 			    irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
445 			irda_write(aup, IR_CONFIG_1,
446 			    irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
447 			irda_write(aup, IR_RING_PROMPT, 0);
448 		}
449 	}
450 }
451 
au1k_irda_rx(struct net_device * dev)452 static int au1k_irda_rx(struct net_device *dev)
453 {
454 	struct au1k_private *aup = netdev_priv(dev);
455 	volatile struct ring_dest *prxd;
456 	struct sk_buff *skb;
457 	struct db_dest *pDB;
458 	u32 flags, count;
459 
460 	prxd = aup->rx_ring[aup->rx_head];
461 	flags = prxd->flags;
462 
463 	while (!(flags & AU_OWN))  {
464 		pDB = aup->rx_db_inuse[aup->rx_head];
465 		count = (prxd->count_1 << 8) | prxd->count_0;
466 		if (!(flags & IR_RX_ERROR)) {
467 			/* good frame */
468 			update_rx_stats(dev, flags, count);
469 			skb = alloc_skb(count + 1, GFP_ATOMIC);
470 			if (skb == NULL) {
471 				dev->stats.rx_dropped++;
472 				continue;
473 			}
474 			skb_reserve(skb, 1);
475 			if (aup->speed == 4000000)
476 				skb_put(skb, count);
477 			else
478 				skb_put(skb, count - 2);
479 			skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
480 						count - 2);
481 			skb->dev = dev;
482 			skb_reset_mac_header(skb);
483 			skb->protocol = htons(ETH_P_IRDA);
484 			netif_rx(skb);
485 			prxd->count_0 = 0;
486 			prxd->count_1 = 0;
487 		}
488 		prxd->flags |= AU_OWN;
489 		aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
490 		irda_write(aup, IR_RING_PROMPT, 0);
491 
492 		/* next descriptor */
493 		prxd = aup->rx_ring[aup->rx_head];
494 		flags = prxd->flags;
495 
496 	}
497 	return 0;
498 }
499 
au1k_irda_interrupt(int dummy,void * dev_id)500 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
501 {
502 	struct net_device *dev = dev_id;
503 	struct au1k_private *aup = netdev_priv(dev);
504 
505 	irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
506 
507 	au1k_irda_rx(dev);
508 	au1k_tx_ack(dev);
509 
510 	return IRQ_HANDLED;
511 }
512 
au1k_init(struct net_device * dev)513 static int au1k_init(struct net_device *dev)
514 {
515 	struct au1k_private *aup = netdev_priv(dev);
516 	u32 enable, ring_address, phyck;
517 	struct clk *c;
518 	int i;
519 
520 	c = clk_get(NULL, "irda_clk");
521 	if (IS_ERR(c))
522 		return PTR_ERR(c);
523 	i = clk_prepare_enable(c);
524 	if (i) {
525 		clk_put(c);
526 		return i;
527 	}
528 
529 	switch (clk_get_rate(c)) {
530 	case 40000000:
531 		phyck = IR_PHYCLK_40MHZ;
532 		break;
533 	case 48000000:
534 		phyck = IR_PHYCLK_48MHZ;
535 		break;
536 	case 56000000:
537 		phyck = IR_PHYCLK_56MHZ;
538 		break;
539 	case 64000000:
540 		phyck = IR_PHYCLK_64MHZ;
541 		break;
542 	default:
543 		clk_disable_unprepare(c);
544 		clk_put(c);
545 		return -EINVAL;
546 	}
547 	aup->irda_clk = c;
548 
549 	enable = IR_HC | IR_CE | IR_C;
550 #ifndef CONFIG_CPU_LITTLE_ENDIAN
551 	enable |= IR_BE;
552 #endif
553 	aup->tx_head = 0;
554 	aup->tx_tail = 0;
555 	aup->rx_head = 0;
556 
557 	for (i = 0; i < NUM_IR_DESC; i++)
558 		aup->rx_ring[i]->flags = AU_OWN;
559 
560 	irda_write(aup, IR_ENABLE, enable);
561 	msleep(20);
562 
563 	/* disable PHY */
564 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
565 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
566 	msleep(20);
567 
568 	irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
569 
570 	ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
571 	irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
572 	irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
573 
574 	irda_write(aup, IR_RING_SIZE,
575 				(RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
576 
577 	irda_write(aup, IR_CONFIG_2, phyck | IR_ONE_PIN);
578 	irda_write(aup, IR_RING_ADDR_CMPR, 0);
579 
580 	au1k_irda_set_speed(dev, 9600);
581 	return 0;
582 }
583 
au1k_irda_start(struct net_device * dev)584 static int au1k_irda_start(struct net_device *dev)
585 {
586 	struct au1k_private *aup = netdev_priv(dev);
587 	char hwname[32];
588 	int retval;
589 
590 	retval = au1k_init(dev);
591 	if (retval) {
592 		printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
593 		return retval;
594 	}
595 
596 	retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
597 			     dev->name, dev);
598 	if (retval) {
599 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
600 				dev->name, dev->irq);
601 		return retval;
602 	}
603 	retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
604 			     dev->name, dev);
605 	if (retval) {
606 		free_irq(aup->irq_tx, dev);
607 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
608 				dev->name, dev->irq);
609 		return retval;
610 	}
611 
612 	/* Give self a hardware name */
613 	sprintf(hwname, "Au1000 SIR/FIR");
614 	aup->irlap = irlap_open(dev, &aup->qos, hwname);
615 	netif_start_queue(dev);
616 
617 	/* int enable */
618 	irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
619 
620 	/* power up */
621 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
622 
623 	aup->timer.expires = RUN_AT((3 * HZ));
624 	aup->timer.data = (unsigned long)dev;
625 	return 0;
626 }
627 
au1k_irda_stop(struct net_device * dev)628 static int au1k_irda_stop(struct net_device *dev)
629 {
630 	struct au1k_private *aup = netdev_priv(dev);
631 
632 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
633 
634 	/* disable interrupts */
635 	irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
636 	irda_write(aup, IR_CONFIG_1, 0);
637 	irda_write(aup, IR_ENABLE, 0); /* disable clock */
638 
639 	if (aup->irlap) {
640 		irlap_close(aup->irlap);
641 		aup->irlap = NULL;
642 	}
643 
644 	netif_stop_queue(dev);
645 	del_timer(&aup->timer);
646 
647 	/* disable the interrupt */
648 	free_irq(aup->irq_tx, dev);
649 	free_irq(aup->irq_rx, dev);
650 
651 	clk_disable_unprepare(aup->irda_clk);
652 	clk_put(aup->irda_clk);
653 
654 	return 0;
655 }
656 
657 /*
658  * Au1000 transmit routine.
659  */
au1k_irda_hard_xmit(struct sk_buff * skb,struct net_device * dev)660 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
661 {
662 	struct au1k_private *aup = netdev_priv(dev);
663 	int speed = irda_get_next_speed(skb);
664 	volatile struct ring_dest *ptxd;
665 	struct db_dest *pDB;
666 	u32 len, flags;
667 
668 	if (speed != aup->speed && speed != -1)
669 		aup->newspeed = speed;
670 
671 	if ((skb->len == 0) && (aup->newspeed)) {
672 		if (aup->tx_tail == aup->tx_head) {
673 			au1k_irda_set_speed(dev, speed);
674 			aup->newspeed = 0;
675 		}
676 		dev_kfree_skb(skb);
677 		return NETDEV_TX_OK;
678 	}
679 
680 	ptxd = aup->tx_ring[aup->tx_head];
681 	flags = ptxd->flags;
682 
683 	if (flags & AU_OWN) {
684 		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
685 		netif_stop_queue(dev);
686 		aup->tx_full = 1;
687 		return 1;
688 	} else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
689 		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
690 		netif_stop_queue(dev);
691 		aup->tx_full = 1;
692 		return 1;
693 	}
694 
695 	pDB = aup->tx_db_inuse[aup->tx_head];
696 
697 #if 0
698 	if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
699 		printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
700 				irda_read(aup, IR_RX_BYTE_CNT));
701 	}
702 #endif
703 
704 	if (aup->speed == 4000000) {
705 		/* FIR */
706 		skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
707 		ptxd->count_0 = skb->len & 0xff;
708 		ptxd->count_1 = (skb->len >> 8) & 0xff;
709 	} else {
710 		/* SIR */
711 		len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
712 		ptxd->count_0 = len & 0xff;
713 		ptxd->count_1 = (len >> 8) & 0xff;
714 		ptxd->flags |= IR_DIS_CRC;
715 	}
716 	ptxd->flags |= AU_OWN;
717 	wmb();
718 
719 	irda_write(aup, IR_CONFIG_1,
720 		   irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
721 	irda_write(aup, IR_RING_PROMPT, 0);
722 
723 	dev_kfree_skb(skb);
724 	aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
725 	return NETDEV_TX_OK;
726 }
727 
728 /*
729  * The Tx ring has been full longer than the watchdog timeout
730  * value. The transmitter must be hung?
731  */
au1k_tx_timeout(struct net_device * dev)732 static void au1k_tx_timeout(struct net_device *dev)
733 {
734 	u32 speed;
735 	struct au1k_private *aup = netdev_priv(dev);
736 
737 	printk(KERN_ERR "%s: tx timeout\n", dev->name);
738 	speed = aup->speed;
739 	aup->speed = 0;
740 	au1k_irda_set_speed(dev, speed);
741 	aup->tx_full = 0;
742 	netif_wake_queue(dev);
743 }
744 
au1k_irda_ioctl(struct net_device * dev,struct ifreq * ifreq,int cmd)745 static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
746 {
747 	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
748 	struct au1k_private *aup = netdev_priv(dev);
749 	int ret = -EOPNOTSUPP;
750 
751 	switch (cmd) {
752 	case SIOCSBANDWIDTH:
753 		if (capable(CAP_NET_ADMIN)) {
754 			/*
755 			 * We are unable to set the speed if the
756 			 * device is not running.
757 			 */
758 			if (aup->open)
759 				ret = au1k_irda_set_speed(dev,
760 						rq->ifr_baudrate);
761 			else {
762 				printk(KERN_ERR "%s ioctl: !netif_running\n",
763 						dev->name);
764 				ret = 0;
765 			}
766 		}
767 		break;
768 
769 	case SIOCSMEDIABUSY:
770 		ret = -EPERM;
771 		if (capable(CAP_NET_ADMIN)) {
772 			irda_device_set_media_busy(dev, TRUE);
773 			ret = 0;
774 		}
775 		break;
776 
777 	case SIOCGRECEIVING:
778 		rq->ifr_receiving = 0;
779 		break;
780 	default:
781 		break;
782 	}
783 	return ret;
784 }
785 
786 static const struct net_device_ops au1k_irda_netdev_ops = {
787 	.ndo_open		= au1k_irda_start,
788 	.ndo_stop		= au1k_irda_stop,
789 	.ndo_start_xmit		= au1k_irda_hard_xmit,
790 	.ndo_tx_timeout		= au1k_tx_timeout,
791 	.ndo_do_ioctl		= au1k_irda_ioctl,
792 };
793 
au1k_irda_net_init(struct net_device * dev)794 static int au1k_irda_net_init(struct net_device *dev)
795 {
796 	struct au1k_private *aup = netdev_priv(dev);
797 	struct db_dest *pDB, *pDBfree;
798 	int i, err, retval = 0;
799 	dma_addr_t temp;
800 
801 	err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
802 	if (err)
803 		goto out1;
804 
805 	dev->netdev_ops = &au1k_irda_netdev_ops;
806 
807 	irda_init_max_qos_capabilies(&aup->qos);
808 
809 	/* The only value we must override it the baudrate */
810 	aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
811 		IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
812 
813 	aup->qos.min_turn_time.bits = qos_mtt_bits;
814 	irda_qos_bits_to_value(&aup->qos);
815 
816 	retval = -ENOMEM;
817 
818 	/* Tx ring follows rx ring + 512 bytes */
819 	/* we need a 1k aligned buffer */
820 	aup->rx_ring[0] = (struct ring_dest *)
821 		dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
822 			  &temp);
823 	if (!aup->rx_ring[0])
824 		goto out2;
825 
826 	/* allocate the data buffers */
827 	aup->db[0].vaddr =
828 		dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
829 	if (!aup->db[0].vaddr)
830 		goto out3;
831 
832 	setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
833 
834 	pDBfree = NULL;
835 	pDB = aup->db;
836 	for (i = 0; i < (2 * NUM_IR_DESC); i++) {
837 		pDB->pnext = pDBfree;
838 		pDBfree = pDB;
839 		pDB->vaddr =
840 		       (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
841 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
842 		pDB++;
843 	}
844 	aup->pDBfree = pDBfree;
845 
846 	/* attach a data buffer to each descriptor */
847 	for (i = 0; i < NUM_IR_DESC; i++) {
848 		pDB = GetFreeDB(aup);
849 		if (!pDB)
850 			goto out3;
851 		aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
852 		aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
853 		aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
854 		aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
855 		aup->rx_db_inuse[i] = pDB;
856 	}
857 	for (i = 0; i < NUM_IR_DESC; i++) {
858 		pDB = GetFreeDB(aup);
859 		if (!pDB)
860 			goto out3;
861 		aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
862 		aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
863 		aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
864 		aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
865 		aup->tx_ring[i]->count_0 = 0;
866 		aup->tx_ring[i]->count_1 = 0;
867 		aup->tx_ring[i]->flags = 0;
868 		aup->tx_db_inuse[i] = pDB;
869 	}
870 
871 	return 0;
872 
873 out3:
874 	dma_free((void *)aup->rx_ring[0],
875 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
876 out2:
877 	kfree(aup->rx_buff.head);
878 out1:
879 	printk(KERN_ERR "au1k_irda_net_init() failed.  Returns %d\n", retval);
880 	return retval;
881 }
882 
au1k_irda_probe(struct platform_device * pdev)883 static int au1k_irda_probe(struct platform_device *pdev)
884 {
885 	struct au1k_private *aup;
886 	struct net_device *dev;
887 	struct resource *r;
888 	struct clk *c;
889 	int err;
890 
891 	dev = alloc_irdadev(sizeof(struct au1k_private));
892 	if (!dev)
893 		return -ENOMEM;
894 
895 	aup = netdev_priv(dev);
896 
897 	aup->platdata = pdev->dev.platform_data;
898 
899 	err = -EINVAL;
900 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
901 	if (!r)
902 		goto out;
903 
904 	aup->irq_tx = r->start;
905 
906 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
907 	if (!r)
908 		goto out;
909 
910 	aup->irq_rx = r->start;
911 
912 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
913 	if (!r)
914 		goto out;
915 
916 	err = -EBUSY;
917 	aup->ioarea = request_mem_region(r->start, resource_size(r),
918 					 pdev->name);
919 	if (!aup->ioarea)
920 		goto out;
921 
922 	/* bail out early if clock doesn't exist */
923 	c = clk_get(NULL, "irda_clk");
924 	if (IS_ERR(c)) {
925 		err = PTR_ERR(c);
926 		goto out;
927 	}
928 	clk_put(c);
929 
930 	aup->iobase = ioremap_nocache(r->start, resource_size(r));
931 	if (!aup->iobase)
932 		goto out2;
933 
934 	dev->irq = aup->irq_rx;
935 
936 	err = au1k_irda_net_init(dev);
937 	if (err)
938 		goto out3;
939 	err = register_netdev(dev);
940 	if (err)
941 		goto out4;
942 
943 	platform_set_drvdata(pdev, dev);
944 
945 	printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
946 	return 0;
947 
948 out4:
949 	dma_free((void *)aup->db[0].vaddr,
950 		MAX_BUF_SIZE * 2 * NUM_IR_DESC);
951 	dma_free((void *)aup->rx_ring[0],
952 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
953 	kfree(aup->rx_buff.head);
954 out3:
955 	iounmap(aup->iobase);
956 out2:
957 	release_resource(aup->ioarea);
958 	kfree(aup->ioarea);
959 out:
960 	free_netdev(dev);
961 	return err;
962 }
963 
au1k_irda_remove(struct platform_device * pdev)964 static int au1k_irda_remove(struct platform_device *pdev)
965 {
966 	struct net_device *dev = platform_get_drvdata(pdev);
967 	struct au1k_private *aup = netdev_priv(dev);
968 
969 	unregister_netdev(dev);
970 
971 	dma_free((void *)aup->db[0].vaddr,
972 		MAX_BUF_SIZE * 2 * NUM_IR_DESC);
973 	dma_free((void *)aup->rx_ring[0],
974 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
975 	kfree(aup->rx_buff.head);
976 
977 	iounmap(aup->iobase);
978 	release_resource(aup->ioarea);
979 	kfree(aup->ioarea);
980 
981 	free_netdev(dev);
982 
983 	return 0;
984 }
985 
986 static struct platform_driver au1k_irda_driver = {
987 	.driver	= {
988 		.name	= "au1000-irda",
989 	},
990 	.probe		= au1k_irda_probe,
991 	.remove		= au1k_irda_remove,
992 };
993 
994 module_platform_driver(au1k_irda_driver);
995 
996 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
997 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
998