1 #include <linux/delay.h>
2 #include <linux/dmaengine.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/platform_device.h>
5 #include <linux/module.h>
6 #include <linux/of.h>
7 #include <linux/slab.h>
8 #include <linux/of_dma.h>
9 #include <linux/of_irq.h>
10 #include <linux/dmapool.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_address.h>
13 #include <linux/pm_runtime.h>
14 #include "dmaengine.h"
15 
16 #define DESC_TYPE	27
17 #define DESC_TYPE_HOST	0x10
18 #define DESC_TYPE_TEARD	0x13
19 
20 #define TD_DESC_IS_RX	(1 << 16)
21 #define TD_DESC_DMA_NUM	10
22 
23 #define DESC_LENGTH_BITS_NUM	21
24 
25 #define DESC_TYPE_USB	(5 << 26)
26 #define DESC_PD_COMPLETE	(1 << 31)
27 
28 /* DMA engine */
29 #define DMA_TDFDQ	4
30 #define DMA_TXGCR(x)	(0x800 + (x) * 0x20)
31 #define DMA_RXGCR(x)	(0x808 + (x) * 0x20)
32 #define RXHPCRA0		4
33 
34 #define GCR_CHAN_ENABLE		(1 << 31)
35 #define GCR_TEARDOWN		(1 << 30)
36 #define GCR_STARV_RETRY		(1 << 24)
37 #define GCR_DESC_TYPE_HOST	(1 << 14)
38 
39 /* DMA scheduler */
40 #define DMA_SCHED_CTRL		0
41 #define DMA_SCHED_CTRL_EN	(1 << 31)
42 #define DMA_SCHED_WORD(x)	((x) * 4 + 0x800)
43 
44 #define SCHED_ENTRY0_CHAN(x)	((x) << 0)
45 #define SCHED_ENTRY0_IS_RX	(1 << 7)
46 
47 #define SCHED_ENTRY1_CHAN(x)	((x) << 8)
48 #define SCHED_ENTRY1_IS_RX	(1 << 15)
49 
50 #define SCHED_ENTRY2_CHAN(x)	((x) << 16)
51 #define SCHED_ENTRY2_IS_RX	(1 << 23)
52 
53 #define SCHED_ENTRY3_CHAN(x)	((x) << 24)
54 #define SCHED_ENTRY3_IS_RX	(1 << 31)
55 
56 /* Queue manager */
57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
58 #define ALLOC_DECS_NUM		128
59 #define DESCS_AREAS		1
60 #define TOTAL_DESCS_NUM		(ALLOC_DECS_NUM * DESCS_AREAS)
61 #define QMGR_SCRATCH_SIZE	(TOTAL_DESCS_NUM * 4)
62 
63 #define QMGR_LRAM0_BASE		0x80
64 #define QMGR_LRAM_SIZE		0x84
65 #define QMGR_LRAM1_BASE		0x88
66 #define QMGR_MEMBASE(x)		(0x1000 + (x) * 0x10)
67 #define QMGR_MEMCTRL(x)		(0x1004 + (x) * 0x10)
68 #define QMGR_MEMCTRL_IDX_SH	16
69 #define QMGR_MEMCTRL_DESC_SH	8
70 
71 #define QMGR_NUM_PEND	5
72 #define QMGR_PEND(x)	(0x90 + (x) * 4)
73 
74 #define QMGR_PENDING_SLOT_Q(x)	(x / 32)
75 #define QMGR_PENDING_BIT_Q(x)	(x % 32)
76 
77 #define QMGR_QUEUE_A(n)	(0x2000 + (n) * 0x10)
78 #define QMGR_QUEUE_B(n)	(0x2004 + (n) * 0x10)
79 #define QMGR_QUEUE_C(n)	(0x2008 + (n) * 0x10)
80 #define QMGR_QUEUE_D(n)	(0x200c + (n) * 0x10)
81 
82 /* Glue layer specific */
83 /* USBSS  / USB AM335x */
84 #define USBSS_IRQ_STATUS	0x28
85 #define USBSS_IRQ_ENABLER	0x2c
86 #define USBSS_IRQ_CLEARR	0x30
87 
88 #define USBSS_IRQ_PD_COMP	(1 <<  2)
89 
90 /* Packet Descriptor */
91 #define PD2_ZERO_LENGTH		(1 << 19)
92 
93 struct cppi41_channel {
94 	struct dma_chan chan;
95 	struct dma_async_tx_descriptor txd;
96 	struct cppi41_dd *cdd;
97 	struct cppi41_desc *desc;
98 	dma_addr_t desc_phys;
99 	void __iomem *gcr_reg;
100 	int is_tx;
101 	u32 residue;
102 
103 	unsigned int q_num;
104 	unsigned int q_comp_num;
105 	unsigned int port_num;
106 
107 	unsigned td_retry;
108 	unsigned td_queued:1;
109 	unsigned td_seen:1;
110 	unsigned td_desc_seen:1;
111 };
112 
113 struct cppi41_desc {
114 	u32 pd0;
115 	u32 pd1;
116 	u32 pd2;
117 	u32 pd3;
118 	u32 pd4;
119 	u32 pd5;
120 	u32 pd6;
121 	u32 pd7;
122 } __aligned(32);
123 
124 struct chan_queues {
125 	u16 submit;
126 	u16 complete;
127 };
128 
129 struct cppi41_dd {
130 	struct dma_device ddev;
131 
132 	void *qmgr_scratch;
133 	dma_addr_t scratch_phys;
134 
135 	struct cppi41_desc *cd;
136 	dma_addr_t descs_phys;
137 	u32 first_td_desc;
138 	struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
139 
140 	void __iomem *usbss_mem;
141 	void __iomem *ctrl_mem;
142 	void __iomem *sched_mem;
143 	void __iomem *qmgr_mem;
144 	unsigned int irq;
145 	const struct chan_queues *queues_rx;
146 	const struct chan_queues *queues_tx;
147 	struct chan_queues td_queue;
148 
149 	/* context for suspend/resume */
150 	unsigned int dma_tdfdq;
151 };
152 
153 #define FIST_COMPLETION_QUEUE	93
154 static struct chan_queues usb_queues_tx[] = {
155 	/* USB0 ENDP 1 */
156 	[ 0] = { .submit = 32, .complete =  93},
157 	[ 1] = { .submit = 34, .complete =  94},
158 	[ 2] = { .submit = 36, .complete =  95},
159 	[ 3] = { .submit = 38, .complete =  96},
160 	[ 4] = { .submit = 40, .complete =  97},
161 	[ 5] = { .submit = 42, .complete =  98},
162 	[ 6] = { .submit = 44, .complete =  99},
163 	[ 7] = { .submit = 46, .complete = 100},
164 	[ 8] = { .submit = 48, .complete = 101},
165 	[ 9] = { .submit = 50, .complete = 102},
166 	[10] = { .submit = 52, .complete = 103},
167 	[11] = { .submit = 54, .complete = 104},
168 	[12] = { .submit = 56, .complete = 105},
169 	[13] = { .submit = 58, .complete = 106},
170 	[14] = { .submit = 60, .complete = 107},
171 
172 	/* USB1 ENDP1 */
173 	[15] = { .submit = 62, .complete = 125},
174 	[16] = { .submit = 64, .complete = 126},
175 	[17] = { .submit = 66, .complete = 127},
176 	[18] = { .submit = 68, .complete = 128},
177 	[19] = { .submit = 70, .complete = 129},
178 	[20] = { .submit = 72, .complete = 130},
179 	[21] = { .submit = 74, .complete = 131},
180 	[22] = { .submit = 76, .complete = 132},
181 	[23] = { .submit = 78, .complete = 133},
182 	[24] = { .submit = 80, .complete = 134},
183 	[25] = { .submit = 82, .complete = 135},
184 	[26] = { .submit = 84, .complete = 136},
185 	[27] = { .submit = 86, .complete = 137},
186 	[28] = { .submit = 88, .complete = 138},
187 	[29] = { .submit = 90, .complete = 139},
188 };
189 
190 static const struct chan_queues usb_queues_rx[] = {
191 	/* USB0 ENDP 1 */
192 	[ 0] = { .submit =  1, .complete = 109},
193 	[ 1] = { .submit =  2, .complete = 110},
194 	[ 2] = { .submit =  3, .complete = 111},
195 	[ 3] = { .submit =  4, .complete = 112},
196 	[ 4] = { .submit =  5, .complete = 113},
197 	[ 5] = { .submit =  6, .complete = 114},
198 	[ 6] = { .submit =  7, .complete = 115},
199 	[ 7] = { .submit =  8, .complete = 116},
200 	[ 8] = { .submit =  9, .complete = 117},
201 	[ 9] = { .submit = 10, .complete = 118},
202 	[10] = { .submit = 11, .complete = 119},
203 	[11] = { .submit = 12, .complete = 120},
204 	[12] = { .submit = 13, .complete = 121},
205 	[13] = { .submit = 14, .complete = 122},
206 	[14] = { .submit = 15, .complete = 123},
207 
208 	/* USB1 ENDP 1 */
209 	[15] = { .submit = 16, .complete = 141},
210 	[16] = { .submit = 17, .complete = 142},
211 	[17] = { .submit = 18, .complete = 143},
212 	[18] = { .submit = 19, .complete = 144},
213 	[19] = { .submit = 20, .complete = 145},
214 	[20] = { .submit = 21, .complete = 146},
215 	[21] = { .submit = 22, .complete = 147},
216 	[22] = { .submit = 23, .complete = 148},
217 	[23] = { .submit = 24, .complete = 149},
218 	[24] = { .submit = 25, .complete = 150},
219 	[25] = { .submit = 26, .complete = 151},
220 	[26] = { .submit = 27, .complete = 152},
221 	[27] = { .submit = 28, .complete = 153},
222 	[28] = { .submit = 29, .complete = 154},
223 	[29] = { .submit = 30, .complete = 155},
224 };
225 
226 struct cppi_glue_infos {
227 	irqreturn_t (*isr)(int irq, void *data);
228 	const struct chan_queues *queues_rx;
229 	const struct chan_queues *queues_tx;
230 	struct chan_queues td_queue;
231 };
232 
to_cpp41_chan(struct dma_chan * c)233 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
234 {
235 	return container_of(c, struct cppi41_channel, chan);
236 }
237 
desc_to_chan(struct cppi41_dd * cdd,u32 desc)238 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
239 {
240 	struct cppi41_channel *c;
241 	u32 descs_size;
242 	u32 desc_num;
243 
244 	descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
245 
246 	if (!((desc >= cdd->descs_phys) &&
247 			(desc < (cdd->descs_phys + descs_size)))) {
248 		return NULL;
249 	}
250 
251 	desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
252 	BUG_ON(desc_num >= ALLOC_DECS_NUM);
253 	c = cdd->chan_busy[desc_num];
254 	cdd->chan_busy[desc_num] = NULL;
255 	return c;
256 }
257 
cppi_writel(u32 val,void * __iomem * mem)258 static void cppi_writel(u32 val, void *__iomem *mem)
259 {
260 	__raw_writel(val, mem);
261 }
262 
cppi_readl(void * __iomem * mem)263 static u32 cppi_readl(void *__iomem *mem)
264 {
265 	return __raw_readl(mem);
266 }
267 
pd_trans_len(u32 val)268 static u32 pd_trans_len(u32 val)
269 {
270 	return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
271 }
272 
cppi41_pop_desc(struct cppi41_dd * cdd,unsigned queue_num)273 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
274 {
275 	u32 desc;
276 
277 	desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
278 	desc &= ~0x1f;
279 	return desc;
280 }
281 
cppi41_irq(int irq,void * data)282 static irqreturn_t cppi41_irq(int irq, void *data)
283 {
284 	struct cppi41_dd *cdd = data;
285 	struct cppi41_channel *c;
286 	u32 status;
287 	int i;
288 
289 	status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
290 	if (!(status & USBSS_IRQ_PD_COMP))
291 		return IRQ_NONE;
292 	cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
293 
294 	for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
295 			i++) {
296 		u32 val;
297 		u32 q_num;
298 
299 		val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
300 		if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
301 			u32 mask;
302 			/* set corresponding bit for completetion Q 93 */
303 			mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
304 			/* not set all bits for queues less than Q 93 */
305 			mask--;
306 			/* now invert and keep only Q 93+ set */
307 			val &= ~mask;
308 		}
309 
310 		if (val)
311 			__iormb();
312 
313 		while (val) {
314 			u32 desc, len;
315 
316 			q_num = __fls(val);
317 			val &= ~(1 << q_num);
318 			q_num += 32 * i;
319 			desc = cppi41_pop_desc(cdd, q_num);
320 			c = desc_to_chan(cdd, desc);
321 			if (WARN_ON(!c)) {
322 				pr_err("%s() q %d desc %08x\n", __func__,
323 						q_num, desc);
324 				continue;
325 			}
326 
327 			if (c->desc->pd2 & PD2_ZERO_LENGTH)
328 				len = 0;
329 			else
330 				len = pd_trans_len(c->desc->pd0);
331 
332 			c->residue = pd_trans_len(c->desc->pd6) - len;
333 			dma_cookie_complete(&c->txd);
334 			c->txd.callback(c->txd.callback_param);
335 		}
336 	}
337 	return IRQ_HANDLED;
338 }
339 
cppi41_tx_submit(struct dma_async_tx_descriptor * tx)340 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
341 {
342 	dma_cookie_t cookie;
343 
344 	cookie = dma_cookie_assign(tx);
345 
346 	return cookie;
347 }
348 
cppi41_dma_alloc_chan_resources(struct dma_chan * chan)349 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
350 {
351 	struct cppi41_channel *c = to_cpp41_chan(chan);
352 
353 	dma_cookie_init(chan);
354 	dma_async_tx_descriptor_init(&c->txd, chan);
355 	c->txd.tx_submit = cppi41_tx_submit;
356 
357 	if (!c->is_tx)
358 		cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
359 
360 	return 0;
361 }
362 
cppi41_dma_free_chan_resources(struct dma_chan * chan)363 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
364 {
365 }
366 
cppi41_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)367 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
368 	dma_cookie_t cookie, struct dma_tx_state *txstate)
369 {
370 	struct cppi41_channel *c = to_cpp41_chan(chan);
371 	enum dma_status ret;
372 
373 	/* lock */
374 	ret = dma_cookie_status(chan, cookie, txstate);
375 	if (txstate && ret == DMA_COMPLETE)
376 		txstate->residue = c->residue;
377 	/* unlock */
378 
379 	return ret;
380 }
381 
push_desc_queue(struct cppi41_channel * c)382 static void push_desc_queue(struct cppi41_channel *c)
383 {
384 	struct cppi41_dd *cdd = c->cdd;
385 	u32 desc_num;
386 	u32 desc_phys;
387 	u32 reg;
388 
389 	desc_phys = lower_32_bits(c->desc_phys);
390 	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
391 	WARN_ON(cdd->chan_busy[desc_num]);
392 	cdd->chan_busy[desc_num] = c;
393 
394 	reg = (sizeof(struct cppi41_desc) - 24) / 4;
395 	reg |= desc_phys;
396 	cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
397 }
398 
cppi41_dma_issue_pending(struct dma_chan * chan)399 static void cppi41_dma_issue_pending(struct dma_chan *chan)
400 {
401 	struct cppi41_channel *c = to_cpp41_chan(chan);
402 	u32 reg;
403 
404 	c->residue = 0;
405 
406 	reg = GCR_CHAN_ENABLE;
407 	if (!c->is_tx) {
408 		reg |= GCR_STARV_RETRY;
409 		reg |= GCR_DESC_TYPE_HOST;
410 		reg |= c->q_comp_num;
411 	}
412 
413 	cppi_writel(reg, c->gcr_reg);
414 
415 	/*
416 	 * We don't use writel() but __raw_writel() so we have to make sure
417 	 * that the DMA descriptor in coherent memory made to the main memory
418 	 * before starting the dma engine.
419 	 */
420 	__iowmb();
421 	push_desc_queue(c);
422 }
423 
get_host_pd0(u32 length)424 static u32 get_host_pd0(u32 length)
425 {
426 	u32 reg;
427 
428 	reg = DESC_TYPE_HOST << DESC_TYPE;
429 	reg |= length;
430 
431 	return reg;
432 }
433 
get_host_pd1(struct cppi41_channel * c)434 static u32 get_host_pd1(struct cppi41_channel *c)
435 {
436 	u32 reg;
437 
438 	reg = 0;
439 
440 	return reg;
441 }
442 
get_host_pd2(struct cppi41_channel * c)443 static u32 get_host_pd2(struct cppi41_channel *c)
444 {
445 	u32 reg;
446 
447 	reg = DESC_TYPE_USB;
448 	reg |= c->q_comp_num;
449 
450 	return reg;
451 }
452 
get_host_pd3(u32 length)453 static u32 get_host_pd3(u32 length)
454 {
455 	u32 reg;
456 
457 	/* PD3 = packet size */
458 	reg = length;
459 
460 	return reg;
461 }
462 
get_host_pd6(u32 length)463 static u32 get_host_pd6(u32 length)
464 {
465 	u32 reg;
466 
467 	/* PD6 buffer size */
468 	reg = DESC_PD_COMPLETE;
469 	reg |= length;
470 
471 	return reg;
472 }
473 
get_host_pd4_or_7(u32 addr)474 static u32 get_host_pd4_or_7(u32 addr)
475 {
476 	u32 reg;
477 
478 	reg = addr;
479 
480 	return reg;
481 }
482 
get_host_pd5(void)483 static u32 get_host_pd5(void)
484 {
485 	u32 reg;
486 
487 	reg = 0;
488 
489 	return reg;
490 }
491 
cppi41_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned sg_len,enum dma_transfer_direction dir,unsigned long tx_flags,void * context)492 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
493 	struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
494 	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
495 {
496 	struct cppi41_channel *c = to_cpp41_chan(chan);
497 	struct cppi41_desc *d;
498 	struct scatterlist *sg;
499 	unsigned int i;
500 	unsigned int num;
501 
502 	num = 0;
503 	d = c->desc;
504 	for_each_sg(sgl, sg, sg_len, i) {
505 		u32 addr;
506 		u32 len;
507 
508 		/* We need to use more than one desc once musb supports sg */
509 		BUG_ON(num > 0);
510 		addr = lower_32_bits(sg_dma_address(sg));
511 		len = sg_dma_len(sg);
512 
513 		d->pd0 = get_host_pd0(len);
514 		d->pd1 = get_host_pd1(c);
515 		d->pd2 = get_host_pd2(c);
516 		d->pd3 = get_host_pd3(len);
517 		d->pd4 = get_host_pd4_or_7(addr);
518 		d->pd5 = get_host_pd5();
519 		d->pd6 = get_host_pd6(len);
520 		d->pd7 = get_host_pd4_or_7(addr);
521 
522 		d++;
523 	}
524 
525 	return &c->txd;
526 }
527 
cppi41_compute_td_desc(struct cppi41_desc * d)528 static void cppi41_compute_td_desc(struct cppi41_desc *d)
529 {
530 	d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
531 }
532 
cppi41_tear_down_chan(struct cppi41_channel * c)533 static int cppi41_tear_down_chan(struct cppi41_channel *c)
534 {
535 	struct cppi41_dd *cdd = c->cdd;
536 	struct cppi41_desc *td;
537 	u32 reg;
538 	u32 desc_phys;
539 	u32 td_desc_phys;
540 
541 	td = cdd->cd;
542 	td += cdd->first_td_desc;
543 
544 	td_desc_phys = cdd->descs_phys;
545 	td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
546 
547 	if (!c->td_queued) {
548 		cppi41_compute_td_desc(td);
549 		__iowmb();
550 
551 		reg = (sizeof(struct cppi41_desc) - 24) / 4;
552 		reg |= td_desc_phys;
553 		cppi_writel(reg, cdd->qmgr_mem +
554 				QMGR_QUEUE_D(cdd->td_queue.submit));
555 
556 		reg = GCR_CHAN_ENABLE;
557 		if (!c->is_tx) {
558 			reg |= GCR_STARV_RETRY;
559 			reg |= GCR_DESC_TYPE_HOST;
560 			reg |= c->q_comp_num;
561 		}
562 		reg |= GCR_TEARDOWN;
563 		cppi_writel(reg, c->gcr_reg);
564 		c->td_queued = 1;
565 		c->td_retry = 500;
566 	}
567 
568 	if (!c->td_seen || !c->td_desc_seen) {
569 
570 		desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
571 		if (!desc_phys)
572 			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
573 
574 		if (desc_phys == c->desc_phys) {
575 			c->td_desc_seen = 1;
576 
577 		} else if (desc_phys == td_desc_phys) {
578 			u32 pd0;
579 
580 			__iormb();
581 			pd0 = td->pd0;
582 			WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
583 			WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
584 			WARN_ON((pd0 & 0x1f) != c->port_num);
585 			c->td_seen = 1;
586 		} else if (desc_phys) {
587 			WARN_ON_ONCE(1);
588 		}
589 	}
590 	c->td_retry--;
591 	/*
592 	 * If the TX descriptor / channel is in use, the caller needs to poke
593 	 * his TD bit multiple times. After that he hardware releases the
594 	 * transfer descriptor followed by TD descriptor. Waiting seems not to
595 	 * cause any difference.
596 	 * RX seems to be thrown out right away. However once the TearDown
597 	 * descriptor gets through we are done. If we have seens the transfer
598 	 * descriptor before the TD we fetch it from enqueue, it has to be
599 	 * there waiting for us.
600 	 */
601 	if (!c->td_seen && c->td_retry) {
602 		udelay(1);
603 		return -EAGAIN;
604 	}
605 	WARN_ON(!c->td_retry);
606 
607 	if (!c->td_desc_seen) {
608 		desc_phys = cppi41_pop_desc(cdd, c->q_num);
609 		if (!desc_phys)
610 			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
611 		WARN_ON(!desc_phys);
612 	}
613 
614 	c->td_queued = 0;
615 	c->td_seen = 0;
616 	c->td_desc_seen = 0;
617 	cppi_writel(0, c->gcr_reg);
618 	return 0;
619 }
620 
cppi41_stop_chan(struct dma_chan * chan)621 static int cppi41_stop_chan(struct dma_chan *chan)
622 {
623 	struct cppi41_channel *c = to_cpp41_chan(chan);
624 	struct cppi41_dd *cdd = c->cdd;
625 	u32 desc_num;
626 	u32 desc_phys;
627 	int ret;
628 
629 	desc_phys = lower_32_bits(c->desc_phys);
630 	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
631 	if (!cdd->chan_busy[desc_num])
632 		return 0;
633 
634 	ret = cppi41_tear_down_chan(c);
635 	if (ret)
636 		return ret;
637 
638 	WARN_ON(!cdd->chan_busy[desc_num]);
639 	cdd->chan_busy[desc_num] = NULL;
640 
641 	return 0;
642 }
643 
cleanup_chans(struct cppi41_dd * cdd)644 static void cleanup_chans(struct cppi41_dd *cdd)
645 {
646 	while (!list_empty(&cdd->ddev.channels)) {
647 		struct cppi41_channel *cchan;
648 
649 		cchan = list_first_entry(&cdd->ddev.channels,
650 				struct cppi41_channel, chan.device_node);
651 		list_del(&cchan->chan.device_node);
652 		kfree(cchan);
653 	}
654 }
655 
cppi41_add_chans(struct device * dev,struct cppi41_dd * cdd)656 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
657 {
658 	struct cppi41_channel *cchan;
659 	int i;
660 	int ret;
661 	u32 n_chans;
662 
663 	ret = of_property_read_u32(dev->of_node, "#dma-channels",
664 			&n_chans);
665 	if (ret)
666 		return ret;
667 	/*
668 	 * The channels can only be used as TX or as RX. So we add twice
669 	 * that much dma channels because USB can only do RX or TX.
670 	 */
671 	n_chans *= 2;
672 
673 	for (i = 0; i < n_chans; i++) {
674 		cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
675 		if (!cchan)
676 			goto err;
677 
678 		cchan->cdd = cdd;
679 		if (i & 1) {
680 			cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
681 			cchan->is_tx = 1;
682 		} else {
683 			cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
684 			cchan->is_tx = 0;
685 		}
686 		cchan->port_num = i >> 1;
687 		cchan->desc = &cdd->cd[i];
688 		cchan->desc_phys = cdd->descs_phys;
689 		cchan->desc_phys += i * sizeof(struct cppi41_desc);
690 		cchan->chan.device = &cdd->ddev;
691 		list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
692 	}
693 	cdd->first_td_desc = n_chans;
694 
695 	return 0;
696 err:
697 	cleanup_chans(cdd);
698 	return -ENOMEM;
699 }
700 
purge_descs(struct device * dev,struct cppi41_dd * cdd)701 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
702 {
703 	unsigned int mem_decs;
704 	int i;
705 
706 	mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
707 
708 	for (i = 0; i < DESCS_AREAS; i++) {
709 
710 		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
711 		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
712 
713 		dma_free_coherent(dev, mem_decs, cdd->cd,
714 				cdd->descs_phys);
715 	}
716 }
717 
disable_sched(struct cppi41_dd * cdd)718 static void disable_sched(struct cppi41_dd *cdd)
719 {
720 	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
721 }
722 
deinit_cppi41(struct device * dev,struct cppi41_dd * cdd)723 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
724 {
725 	disable_sched(cdd);
726 
727 	purge_descs(dev, cdd);
728 
729 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
730 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
731 	dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
732 			cdd->scratch_phys);
733 }
734 
init_descs(struct device * dev,struct cppi41_dd * cdd)735 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
736 {
737 	unsigned int desc_size;
738 	unsigned int mem_decs;
739 	int i;
740 	u32 reg;
741 	u32 idx;
742 
743 	BUILD_BUG_ON(sizeof(struct cppi41_desc) &
744 			(sizeof(struct cppi41_desc) - 1));
745 	BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
746 	BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
747 
748 	desc_size = sizeof(struct cppi41_desc);
749 	mem_decs = ALLOC_DECS_NUM * desc_size;
750 
751 	idx = 0;
752 	for (i = 0; i < DESCS_AREAS; i++) {
753 
754 		reg = idx << QMGR_MEMCTRL_IDX_SH;
755 		reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
756 		reg |= ilog2(ALLOC_DECS_NUM) - 5;
757 
758 		BUILD_BUG_ON(DESCS_AREAS != 1);
759 		cdd->cd = dma_alloc_coherent(dev, mem_decs,
760 				&cdd->descs_phys, GFP_KERNEL);
761 		if (!cdd->cd)
762 			return -ENOMEM;
763 
764 		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
765 		cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
766 
767 		idx += ALLOC_DECS_NUM;
768 	}
769 	return 0;
770 }
771 
init_sched(struct cppi41_dd * cdd)772 static void init_sched(struct cppi41_dd *cdd)
773 {
774 	unsigned ch;
775 	unsigned word;
776 	u32 reg;
777 
778 	word = 0;
779 	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
780 	for (ch = 0; ch < 15 * 2; ch += 2) {
781 
782 		reg = SCHED_ENTRY0_CHAN(ch);
783 		reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
784 
785 		reg |= SCHED_ENTRY2_CHAN(ch + 1);
786 		reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
787 		cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
788 		word++;
789 	}
790 	reg = 15 * 2 * 2 - 1;
791 	reg |= DMA_SCHED_CTRL_EN;
792 	cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
793 }
794 
init_cppi41(struct device * dev,struct cppi41_dd * cdd)795 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
796 {
797 	int ret;
798 
799 	BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
800 	cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
801 			&cdd->scratch_phys, GFP_KERNEL);
802 	if (!cdd->qmgr_scratch)
803 		return -ENOMEM;
804 
805 	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
806 	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
807 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
808 
809 	ret = init_descs(dev, cdd);
810 	if (ret)
811 		goto err_td;
812 
813 	cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
814 	init_sched(cdd);
815 	return 0;
816 err_td:
817 	deinit_cppi41(dev, cdd);
818 	return ret;
819 }
820 
821 static struct platform_driver cpp41_dma_driver;
822 /*
823  * The param format is:
824  * X Y
825  * X: Port
826  * Y: 0 = RX else TX
827  */
828 #define INFO_PORT	0
829 #define INFO_IS_TX	1
830 
cpp41_dma_filter_fn(struct dma_chan * chan,void * param)831 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
832 {
833 	struct cppi41_channel *cchan;
834 	struct cppi41_dd *cdd;
835 	const struct chan_queues *queues;
836 	u32 *num = param;
837 
838 	if (chan->device->dev->driver != &cpp41_dma_driver.driver)
839 		return false;
840 
841 	cchan = to_cpp41_chan(chan);
842 
843 	if (cchan->port_num != num[INFO_PORT])
844 		return false;
845 
846 	if (cchan->is_tx && !num[INFO_IS_TX])
847 		return false;
848 	cdd = cchan->cdd;
849 	if (cchan->is_tx)
850 		queues = cdd->queues_tx;
851 	else
852 		queues = cdd->queues_rx;
853 
854 	BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
855 	if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
856 		return false;
857 
858 	cchan->q_num = queues[cchan->port_num].submit;
859 	cchan->q_comp_num = queues[cchan->port_num].complete;
860 	return true;
861 }
862 
863 static struct of_dma_filter_info cpp41_dma_info = {
864 	.filter_fn = cpp41_dma_filter_fn,
865 };
866 
cppi41_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)867 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
868 		struct of_dma *ofdma)
869 {
870 	int count = dma_spec->args_count;
871 	struct of_dma_filter_info *info = ofdma->of_dma_data;
872 
873 	if (!info || !info->filter_fn)
874 		return NULL;
875 
876 	if (count != 2)
877 		return NULL;
878 
879 	return dma_request_channel(info->dma_cap, info->filter_fn,
880 			&dma_spec->args[0]);
881 }
882 
883 static const struct cppi_glue_infos usb_infos = {
884 	.isr = cppi41_irq,
885 	.queues_rx = usb_queues_rx,
886 	.queues_tx = usb_queues_tx,
887 	.td_queue = { .submit = 31, .complete = 0 },
888 };
889 
890 static const struct of_device_id cppi41_dma_ids[] = {
891 	{ .compatible = "ti,am3359-cppi41", .data = &usb_infos},
892 	{},
893 };
894 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
895 
get_glue_info(struct device * dev)896 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
897 {
898 	const struct of_device_id *of_id;
899 
900 	of_id = of_match_node(cppi41_dma_ids, dev->of_node);
901 	if (!of_id)
902 		return NULL;
903 	return of_id->data;
904 }
905 
906 #define CPPI41_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
907 				BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
908 				BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
909 				BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
910 
cppi41_dma_probe(struct platform_device * pdev)911 static int cppi41_dma_probe(struct platform_device *pdev)
912 {
913 	struct cppi41_dd *cdd;
914 	struct device *dev = &pdev->dev;
915 	const struct cppi_glue_infos *glue_info;
916 	int irq;
917 	int ret;
918 
919 	glue_info = get_glue_info(dev);
920 	if (!glue_info)
921 		return -EINVAL;
922 
923 	cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
924 	if (!cdd)
925 		return -ENOMEM;
926 
927 	dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
928 	cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
929 	cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
930 	cdd->ddev.device_tx_status = cppi41_dma_tx_status;
931 	cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
932 	cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
933 	cdd->ddev.device_terminate_all = cppi41_stop_chan;
934 	cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
935 	cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
936 	cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
937 	cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
938 	cdd->ddev.dev = dev;
939 	INIT_LIST_HEAD(&cdd->ddev.channels);
940 	cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
941 
942 	cdd->usbss_mem = of_iomap(dev->of_node, 0);
943 	cdd->ctrl_mem = of_iomap(dev->of_node, 1);
944 	cdd->sched_mem = of_iomap(dev->of_node, 2);
945 	cdd->qmgr_mem = of_iomap(dev->of_node, 3);
946 
947 	if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
948 			!cdd->qmgr_mem)
949 		return -ENXIO;
950 
951 	pm_runtime_enable(dev);
952 	ret = pm_runtime_get_sync(dev);
953 	if (ret < 0)
954 		goto err_get_sync;
955 
956 	cdd->queues_rx = glue_info->queues_rx;
957 	cdd->queues_tx = glue_info->queues_tx;
958 	cdd->td_queue = glue_info->td_queue;
959 
960 	ret = init_cppi41(dev, cdd);
961 	if (ret)
962 		goto err_init_cppi;
963 
964 	ret = cppi41_add_chans(dev, cdd);
965 	if (ret)
966 		goto err_chans;
967 
968 	irq = irq_of_parse_and_map(dev->of_node, 0);
969 	if (!irq) {
970 		ret = -EINVAL;
971 		goto err_irq;
972 	}
973 
974 	cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
975 
976 	ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
977 			dev_name(dev), cdd);
978 	if (ret)
979 		goto err_irq;
980 	cdd->irq = irq;
981 
982 	ret = dma_async_device_register(&cdd->ddev);
983 	if (ret)
984 		goto err_dma_reg;
985 
986 	ret = of_dma_controller_register(dev->of_node,
987 			cppi41_dma_xlate, &cpp41_dma_info);
988 	if (ret)
989 		goto err_of;
990 
991 	platform_set_drvdata(pdev, cdd);
992 	return 0;
993 err_of:
994 	dma_async_device_unregister(&cdd->ddev);
995 err_dma_reg:
996 err_irq:
997 	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
998 	cleanup_chans(cdd);
999 err_chans:
1000 	deinit_cppi41(dev, cdd);
1001 err_init_cppi:
1002 	pm_runtime_put(dev);
1003 err_get_sync:
1004 	pm_runtime_disable(dev);
1005 	iounmap(cdd->usbss_mem);
1006 	iounmap(cdd->ctrl_mem);
1007 	iounmap(cdd->sched_mem);
1008 	iounmap(cdd->qmgr_mem);
1009 	return ret;
1010 }
1011 
cppi41_dma_remove(struct platform_device * pdev)1012 static int cppi41_dma_remove(struct platform_device *pdev)
1013 {
1014 	struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1015 
1016 	of_dma_controller_free(pdev->dev.of_node);
1017 	dma_async_device_unregister(&cdd->ddev);
1018 
1019 	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1020 	devm_free_irq(&pdev->dev, cdd->irq, cdd);
1021 	cleanup_chans(cdd);
1022 	deinit_cppi41(&pdev->dev, cdd);
1023 	iounmap(cdd->usbss_mem);
1024 	iounmap(cdd->ctrl_mem);
1025 	iounmap(cdd->sched_mem);
1026 	iounmap(cdd->qmgr_mem);
1027 	pm_runtime_put(&pdev->dev);
1028 	pm_runtime_disable(&pdev->dev);
1029 	return 0;
1030 }
1031 
1032 #ifdef CONFIG_PM_SLEEP
cppi41_suspend(struct device * dev)1033 static int cppi41_suspend(struct device *dev)
1034 {
1035 	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1036 
1037 	cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1038 	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1039 	disable_sched(cdd);
1040 
1041 	return 0;
1042 }
1043 
cppi41_resume(struct device * dev)1044 static int cppi41_resume(struct device *dev)
1045 {
1046 	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1047 	struct cppi41_channel *c;
1048 	int i;
1049 
1050 	for (i = 0; i < DESCS_AREAS; i++)
1051 		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1052 
1053 	list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1054 		if (!c->is_tx)
1055 			cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1056 
1057 	init_sched(cdd);
1058 
1059 	cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1060 	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1061 	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1062 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1063 
1064 	cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1065 
1066 	return 0;
1067 }
1068 #endif
1069 
1070 static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
1071 
1072 static struct platform_driver cpp41_dma_driver = {
1073 	.probe  = cppi41_dma_probe,
1074 	.remove = cppi41_dma_remove,
1075 	.driver = {
1076 		.name = "cppi41-dma-engine",
1077 		.pm = &cppi41_pm_ops,
1078 		.of_match_table = of_match_ptr(cppi41_dma_ids),
1079 	},
1080 };
1081 
1082 module_platform_driver(cpp41_dma_driver);
1083 MODULE_LICENSE("GPL");
1084 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
1085