1 /*
2  * Intel Cache Quality-of-Service Monitoring (CQM) support.
3  *
4  * Based very, very heavily on work by Peter Zijlstra.
5  */
6 
7 #include <linux/perf_event.h>
8 #include <linux/slab.h>
9 #include <asm/cpu_device_id.h>
10 #include "perf_event.h"
11 
12 #define MSR_IA32_PQR_ASSOC	0x0c8f
13 #define MSR_IA32_QM_CTR		0x0c8e
14 #define MSR_IA32_QM_EVTSEL	0x0c8d
15 
16 static unsigned int cqm_max_rmid = -1;
17 static unsigned int cqm_l3_scale; /* supposedly cacheline size */
18 
19 struct intel_cqm_state {
20 	raw_spinlock_t		lock;
21 	int			rmid;
22 	int			cnt;
23 };
24 
25 static DEFINE_PER_CPU(struct intel_cqm_state, cqm_state);
26 
27 /*
28  * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
29  * Also protects event->hw.cqm_rmid
30  *
31  * Hold either for stability, both for modification of ->hw.cqm_rmid.
32  */
33 static DEFINE_MUTEX(cache_mutex);
34 static DEFINE_RAW_SPINLOCK(cache_lock);
35 
36 /*
37  * Groups of events that have the same target(s), one RMID per group.
38  */
39 static LIST_HEAD(cache_groups);
40 
41 /*
42  * Mask of CPUs for reading CQM values. We only need one per-socket.
43  */
44 static cpumask_t cqm_cpumask;
45 
46 #define RMID_VAL_ERROR		(1ULL << 63)
47 #define RMID_VAL_UNAVAIL	(1ULL << 62)
48 
49 #define QOS_L3_OCCUP_EVENT_ID	(1 << 0)
50 
51 #define QOS_EVENT_MASK	QOS_L3_OCCUP_EVENT_ID
52 
53 /*
54  * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
55  *
56  * This rmid is always free and is guaranteed to have an associated
57  * near-zero occupancy value, i.e. no cachelines are tagged with this
58  * RMID, once __intel_cqm_rmid_rotate() returns.
59  */
60 static unsigned int intel_cqm_rotation_rmid;
61 
62 #define INVALID_RMID		(-1)
63 
64 /*
65  * Is @rmid valid for programming the hardware?
66  *
67  * rmid 0 is reserved by the hardware for all non-monitored tasks, which
68  * means that we should never come across an rmid with that value.
69  * Likewise, an rmid value of -1 is used to indicate "no rmid currently
70  * assigned" and is used as part of the rotation code.
71  */
__rmid_valid(unsigned int rmid)72 static inline bool __rmid_valid(unsigned int rmid)
73 {
74 	if (!rmid || rmid == INVALID_RMID)
75 		return false;
76 
77 	return true;
78 }
79 
__rmid_read(unsigned int rmid)80 static u64 __rmid_read(unsigned int rmid)
81 {
82 	u64 val;
83 
84 	/*
85 	 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
86 	 * it just says that to increase confusion.
87 	 */
88 	wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
89 	rdmsrl(MSR_IA32_QM_CTR, val);
90 
91 	/*
92 	 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
93 	 * the number of cachelines tagged with @rmid.
94 	 */
95 	return val;
96 }
97 
98 enum rmid_recycle_state {
99 	RMID_YOUNG = 0,
100 	RMID_AVAILABLE,
101 	RMID_DIRTY,
102 };
103 
104 struct cqm_rmid_entry {
105 	unsigned int rmid;
106 	enum rmid_recycle_state state;
107 	struct list_head list;
108 	unsigned long queue_time;
109 };
110 
111 /*
112  * cqm_rmid_free_lru - A least recently used list of RMIDs.
113  *
114  * Oldest entry at the head, newest (most recently used) entry at the
115  * tail. This list is never traversed, it's only used to keep track of
116  * the lru order. That is, we only pick entries of the head or insert
117  * them on the tail.
118  *
119  * All entries on the list are 'free', and their RMIDs are not currently
120  * in use. To mark an RMID as in use, remove its entry from the lru
121  * list.
122  *
123  *
124  * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
125  *
126  * This list is contains RMIDs that no one is currently using but that
127  * may have a non-zero occupancy value associated with them. The
128  * rotation worker moves RMIDs from the limbo list to the free list once
129  * the occupancy value drops below __intel_cqm_threshold.
130  *
131  * Both lists are protected by cache_mutex.
132  */
133 static LIST_HEAD(cqm_rmid_free_lru);
134 static LIST_HEAD(cqm_rmid_limbo_lru);
135 
136 /*
137  * We use a simple array of pointers so that we can lookup a struct
138  * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
139  * and __put_rmid() from having to worry about dealing with struct
140  * cqm_rmid_entry - they just deal with rmids, i.e. integers.
141  *
142  * Once this array is initialized it is read-only. No locks are required
143  * to access it.
144  *
145  * All entries for all RMIDs can be looked up in the this array at all
146  * times.
147  */
148 static struct cqm_rmid_entry **cqm_rmid_ptrs;
149 
__rmid_entry(int rmid)150 static inline struct cqm_rmid_entry *__rmid_entry(int rmid)
151 {
152 	struct cqm_rmid_entry *entry;
153 
154 	entry = cqm_rmid_ptrs[rmid];
155 	WARN_ON(entry->rmid != rmid);
156 
157 	return entry;
158 }
159 
160 /*
161  * Returns < 0 on fail.
162  *
163  * We expect to be called with cache_mutex held.
164  */
__get_rmid(void)165 static int __get_rmid(void)
166 {
167 	struct cqm_rmid_entry *entry;
168 
169 	lockdep_assert_held(&cache_mutex);
170 
171 	if (list_empty(&cqm_rmid_free_lru))
172 		return INVALID_RMID;
173 
174 	entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
175 	list_del(&entry->list);
176 
177 	return entry->rmid;
178 }
179 
__put_rmid(unsigned int rmid)180 static void __put_rmid(unsigned int rmid)
181 {
182 	struct cqm_rmid_entry *entry;
183 
184 	lockdep_assert_held(&cache_mutex);
185 
186 	WARN_ON(!__rmid_valid(rmid));
187 	entry = __rmid_entry(rmid);
188 
189 	entry->queue_time = jiffies;
190 	entry->state = RMID_YOUNG;
191 
192 	list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
193 }
194 
intel_cqm_setup_rmid_cache(void)195 static int intel_cqm_setup_rmid_cache(void)
196 {
197 	struct cqm_rmid_entry *entry;
198 	unsigned int nr_rmids;
199 	int r = 0;
200 
201 	nr_rmids = cqm_max_rmid + 1;
202 	cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) *
203 				nr_rmids, GFP_KERNEL);
204 	if (!cqm_rmid_ptrs)
205 		return -ENOMEM;
206 
207 	for (; r <= cqm_max_rmid; r++) {
208 		struct cqm_rmid_entry *entry;
209 
210 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
211 		if (!entry)
212 			goto fail;
213 
214 		INIT_LIST_HEAD(&entry->list);
215 		entry->rmid = r;
216 		cqm_rmid_ptrs[r] = entry;
217 
218 		list_add_tail(&entry->list, &cqm_rmid_free_lru);
219 	}
220 
221 	/*
222 	 * RMID 0 is special and is always allocated. It's used for all
223 	 * tasks that are not monitored.
224 	 */
225 	entry = __rmid_entry(0);
226 	list_del(&entry->list);
227 
228 	mutex_lock(&cache_mutex);
229 	intel_cqm_rotation_rmid = __get_rmid();
230 	mutex_unlock(&cache_mutex);
231 
232 	return 0;
233 fail:
234 	while (r--)
235 		kfree(cqm_rmid_ptrs[r]);
236 
237 	kfree(cqm_rmid_ptrs);
238 	return -ENOMEM;
239 }
240 
241 /*
242  * Determine if @a and @b measure the same set of tasks.
243  *
244  * If @a and @b measure the same set of tasks then we want to share a
245  * single RMID.
246  */
__match_event(struct perf_event * a,struct perf_event * b)247 static bool __match_event(struct perf_event *a, struct perf_event *b)
248 {
249 	/* Per-cpu and task events don't mix */
250 	if ((a->attach_state & PERF_ATTACH_TASK) !=
251 	    (b->attach_state & PERF_ATTACH_TASK))
252 		return false;
253 
254 #ifdef CONFIG_CGROUP_PERF
255 	if (a->cgrp != b->cgrp)
256 		return false;
257 #endif
258 
259 	/* If not task event, we're machine wide */
260 	if (!(b->attach_state & PERF_ATTACH_TASK))
261 		return true;
262 
263 	/*
264 	 * Events that target same task are placed into the same cache group.
265 	 */
266 	if (a->hw.target == b->hw.target)
267 		return true;
268 
269 	/*
270 	 * Are we an inherited event?
271 	 */
272 	if (b->parent == a)
273 		return true;
274 
275 	return false;
276 }
277 
278 #ifdef CONFIG_CGROUP_PERF
event_to_cgroup(struct perf_event * event)279 static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
280 {
281 	if (event->attach_state & PERF_ATTACH_TASK)
282 		return perf_cgroup_from_task(event->hw.target);
283 
284 	return event->cgrp;
285 }
286 #endif
287 
288 /*
289  * Determine if @a's tasks intersect with @b's tasks
290  *
291  * There are combinations of events that we explicitly prohibit,
292  *
293  *		   PROHIBITS
294  *     system-wide    -> 	cgroup and task
295  *     cgroup 	      ->	system-wide
296  *     		      ->	task in cgroup
297  *     task 	      -> 	system-wide
298  *     		      ->	task in cgroup
299  *
300  * Call this function before allocating an RMID.
301  */
__conflict_event(struct perf_event * a,struct perf_event * b)302 static bool __conflict_event(struct perf_event *a, struct perf_event *b)
303 {
304 #ifdef CONFIG_CGROUP_PERF
305 	/*
306 	 * We can have any number of cgroups but only one system-wide
307 	 * event at a time.
308 	 */
309 	if (a->cgrp && b->cgrp) {
310 		struct perf_cgroup *ac = a->cgrp;
311 		struct perf_cgroup *bc = b->cgrp;
312 
313 		/*
314 		 * This condition should have been caught in
315 		 * __match_event() and we should be sharing an RMID.
316 		 */
317 		WARN_ON_ONCE(ac == bc);
318 
319 		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
320 		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
321 			return true;
322 
323 		return false;
324 	}
325 
326 	if (a->cgrp || b->cgrp) {
327 		struct perf_cgroup *ac, *bc;
328 
329 		/*
330 		 * cgroup and system-wide events are mutually exclusive
331 		 */
332 		if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
333 		    (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
334 			return true;
335 
336 		/*
337 		 * Ensure neither event is part of the other's cgroup
338 		 */
339 		ac = event_to_cgroup(a);
340 		bc = event_to_cgroup(b);
341 		if (ac == bc)
342 			return true;
343 
344 		/*
345 		 * Must have cgroup and non-intersecting task events.
346 		 */
347 		if (!ac || !bc)
348 			return false;
349 
350 		/*
351 		 * We have cgroup and task events, and the task belongs
352 		 * to a cgroup. Check for for overlap.
353 		 */
354 		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
355 		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
356 			return true;
357 
358 		return false;
359 	}
360 #endif
361 	/*
362 	 * If one of them is not a task, same story as above with cgroups.
363 	 */
364 	if (!(a->attach_state & PERF_ATTACH_TASK) ||
365 	    !(b->attach_state & PERF_ATTACH_TASK))
366 		return true;
367 
368 	/*
369 	 * Must be non-overlapping.
370 	 */
371 	return false;
372 }
373 
374 struct rmid_read {
375 	unsigned int rmid;
376 	atomic64_t value;
377 };
378 
379 static void __intel_cqm_event_count(void *info);
380 
381 /*
382  * Exchange the RMID of a group of events.
383  */
384 static unsigned int
intel_cqm_xchg_rmid(struct perf_event * group,unsigned int rmid)385 intel_cqm_xchg_rmid(struct perf_event *group, unsigned int rmid)
386 {
387 	struct perf_event *event;
388 	unsigned int old_rmid = group->hw.cqm_rmid;
389 	struct list_head *head = &group->hw.cqm_group_entry;
390 
391 	lockdep_assert_held(&cache_mutex);
392 
393 	/*
394 	 * If our RMID is being deallocated, perform a read now.
395 	 */
396 	if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
397 		struct rmid_read rr = {
398 			.value = ATOMIC64_INIT(0),
399 			.rmid = old_rmid,
400 		};
401 
402 		on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
403 				 &rr, 1);
404 		local64_set(&group->count, atomic64_read(&rr.value));
405 	}
406 
407 	raw_spin_lock_irq(&cache_lock);
408 
409 	group->hw.cqm_rmid = rmid;
410 	list_for_each_entry(event, head, hw.cqm_group_entry)
411 		event->hw.cqm_rmid = rmid;
412 
413 	raw_spin_unlock_irq(&cache_lock);
414 
415 	return old_rmid;
416 }
417 
418 /*
419  * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
420  * cachelines are still tagged with RMIDs in limbo, we progressively
421  * increment the threshold until we find an RMID in limbo with <=
422  * __intel_cqm_threshold lines tagged. This is designed to mitigate the
423  * problem where cachelines tagged with an RMID are not steadily being
424  * evicted.
425  *
426  * On successful rotations we decrease the threshold back towards zero.
427  *
428  * __intel_cqm_max_threshold provides an upper bound on the threshold,
429  * and is measured in bytes because it's exposed to userland.
430  */
431 static unsigned int __intel_cqm_threshold;
432 static unsigned int __intel_cqm_max_threshold;
433 
434 /*
435  * Test whether an RMID has a zero occupancy value on this cpu.
436  */
intel_cqm_stable(void * arg)437 static void intel_cqm_stable(void *arg)
438 {
439 	struct cqm_rmid_entry *entry;
440 
441 	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
442 		if (entry->state != RMID_AVAILABLE)
443 			break;
444 
445 		if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
446 			entry->state = RMID_DIRTY;
447 	}
448 }
449 
450 /*
451  * If we have group events waiting for an RMID that don't conflict with
452  * events already running, assign @rmid.
453  */
intel_cqm_sched_in_event(unsigned int rmid)454 static bool intel_cqm_sched_in_event(unsigned int rmid)
455 {
456 	struct perf_event *leader, *event;
457 
458 	lockdep_assert_held(&cache_mutex);
459 
460 	leader = list_first_entry(&cache_groups, struct perf_event,
461 				  hw.cqm_groups_entry);
462 	event = leader;
463 
464 	list_for_each_entry_continue(event, &cache_groups,
465 				     hw.cqm_groups_entry) {
466 		if (__rmid_valid(event->hw.cqm_rmid))
467 			continue;
468 
469 		if (__conflict_event(event, leader))
470 			continue;
471 
472 		intel_cqm_xchg_rmid(event, rmid);
473 		return true;
474 	}
475 
476 	return false;
477 }
478 
479 /*
480  * Initially use this constant for both the limbo queue time and the
481  * rotation timer interval, pmu::hrtimer_interval_ms.
482  *
483  * They don't need to be the same, but the two are related since if you
484  * rotate faster than you recycle RMIDs, you may run out of available
485  * RMIDs.
486  */
487 #define RMID_DEFAULT_QUEUE_TIME 250	/* ms */
488 
489 static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
490 
491 /*
492  * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
493  * @nr_available: number of freeable RMIDs on the limbo list
494  *
495  * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
496  * cachelines are tagged with those RMIDs. After this we can reuse them
497  * and know that the current set of active RMIDs is stable.
498  *
499  * Return %true or %false depending on whether stabilization needs to be
500  * reattempted.
501  *
502  * If we return %true then @nr_available is updated to indicate the
503  * number of RMIDs on the limbo list that have been queued for the
504  * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
505  * are above __intel_cqm_threshold.
506  */
intel_cqm_rmid_stabilize(unsigned int * available)507 static bool intel_cqm_rmid_stabilize(unsigned int *available)
508 {
509 	struct cqm_rmid_entry *entry, *tmp;
510 
511 	lockdep_assert_held(&cache_mutex);
512 
513 	*available = 0;
514 	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
515 		unsigned long min_queue_time;
516 		unsigned long now = jiffies;
517 
518 		/*
519 		 * We hold RMIDs placed into limbo for a minimum queue
520 		 * time. Before the minimum queue time has elapsed we do
521 		 * not recycle RMIDs.
522 		 *
523 		 * The reasoning is that until a sufficient time has
524 		 * passed since we stopped using an RMID, any RMID
525 		 * placed onto the limbo list will likely still have
526 		 * data tagged in the cache, which means we'll probably
527 		 * fail to recycle it anyway.
528 		 *
529 		 * We can save ourselves an expensive IPI by skipping
530 		 * any RMIDs that have not been queued for the minimum
531 		 * time.
532 		 */
533 		min_queue_time = entry->queue_time +
534 			msecs_to_jiffies(__rmid_queue_time_ms);
535 
536 		if (time_after(min_queue_time, now))
537 			break;
538 
539 		entry->state = RMID_AVAILABLE;
540 		(*available)++;
541 	}
542 
543 	/*
544 	 * Fast return if none of the RMIDs on the limbo list have been
545 	 * sitting on the queue for the minimum queue time.
546 	 */
547 	if (!*available)
548 		return false;
549 
550 	/*
551 	 * Test whether an RMID is free for each package.
552 	 */
553 	on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
554 
555 	list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
556 		/*
557 		 * Exhausted all RMIDs that have waited min queue time.
558 		 */
559 		if (entry->state == RMID_YOUNG)
560 			break;
561 
562 		if (entry->state == RMID_DIRTY)
563 			continue;
564 
565 		list_del(&entry->list);	/* remove from limbo */
566 
567 		/*
568 		 * The rotation RMID gets priority if it's
569 		 * currently invalid. In which case, skip adding
570 		 * the RMID to the the free lru.
571 		 */
572 		if (!__rmid_valid(intel_cqm_rotation_rmid)) {
573 			intel_cqm_rotation_rmid = entry->rmid;
574 			continue;
575 		}
576 
577 		/*
578 		 * If we have groups waiting for RMIDs, hand
579 		 * them one now provided they don't conflict.
580 		 */
581 		if (intel_cqm_sched_in_event(entry->rmid))
582 			continue;
583 
584 		/*
585 		 * Otherwise place it onto the free list.
586 		 */
587 		list_add_tail(&entry->list, &cqm_rmid_free_lru);
588 	}
589 
590 
591 	return __rmid_valid(intel_cqm_rotation_rmid);
592 }
593 
594 /*
595  * Pick a victim group and move it to the tail of the group list.
596  * @next: The first group without an RMID
597  */
__intel_cqm_pick_and_rotate(struct perf_event * next)598 static void __intel_cqm_pick_and_rotate(struct perf_event *next)
599 {
600 	struct perf_event *rotor;
601 	unsigned int rmid;
602 
603 	lockdep_assert_held(&cache_mutex);
604 
605 	rotor = list_first_entry(&cache_groups, struct perf_event,
606 				 hw.cqm_groups_entry);
607 
608 	/*
609 	 * The group at the front of the list should always have a valid
610 	 * RMID. If it doesn't then no groups have RMIDs assigned and we
611 	 * don't need to rotate the list.
612 	 */
613 	if (next == rotor)
614 		return;
615 
616 	rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
617 	__put_rmid(rmid);
618 
619 	list_rotate_left(&cache_groups);
620 }
621 
622 /*
623  * Deallocate the RMIDs from any events that conflict with @event, and
624  * place them on the back of the group list.
625  */
intel_cqm_sched_out_conflicting_events(struct perf_event * event)626 static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
627 {
628 	struct perf_event *group, *g;
629 	unsigned int rmid;
630 
631 	lockdep_assert_held(&cache_mutex);
632 
633 	list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
634 		if (group == event)
635 			continue;
636 
637 		rmid = group->hw.cqm_rmid;
638 
639 		/*
640 		 * Skip events that don't have a valid RMID.
641 		 */
642 		if (!__rmid_valid(rmid))
643 			continue;
644 
645 		/*
646 		 * No conflict? No problem! Leave the event alone.
647 		 */
648 		if (!__conflict_event(group, event))
649 			continue;
650 
651 		intel_cqm_xchg_rmid(group, INVALID_RMID);
652 		__put_rmid(rmid);
653 	}
654 }
655 
656 /*
657  * Attempt to rotate the groups and assign new RMIDs.
658  *
659  * We rotate for two reasons,
660  *   1. To handle the scheduling of conflicting events
661  *   2. To recycle RMIDs
662  *
663  * Rotating RMIDs is complicated because the hardware doesn't give us
664  * any clues.
665  *
666  * There's problems with the hardware interface; when you change the
667  * task:RMID map cachelines retain their 'old' tags, giving a skewed
668  * picture. In order to work around this, we must always keep one free
669  * RMID - intel_cqm_rotation_rmid.
670  *
671  * Rotation works by taking away an RMID from a group (the old RMID),
672  * and assigning the free RMID to another group (the new RMID). We must
673  * then wait for the old RMID to not be used (no cachelines tagged).
674  * This ensure that all cachelines are tagged with 'active' RMIDs. At
675  * this point we can start reading values for the new RMID and treat the
676  * old RMID as the free RMID for the next rotation.
677  *
678  * Return %true or %false depending on whether we did any rotating.
679  */
__intel_cqm_rmid_rotate(void)680 static bool __intel_cqm_rmid_rotate(void)
681 {
682 	struct perf_event *group, *start = NULL;
683 	unsigned int threshold_limit;
684 	unsigned int nr_needed = 0;
685 	unsigned int nr_available;
686 	bool rotated = false;
687 
688 	mutex_lock(&cache_mutex);
689 
690 again:
691 	/*
692 	 * Fast path through this function if there are no groups and no
693 	 * RMIDs that need cleaning.
694 	 */
695 	if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
696 		goto out;
697 
698 	list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
699 		if (!__rmid_valid(group->hw.cqm_rmid)) {
700 			if (!start)
701 				start = group;
702 			nr_needed++;
703 		}
704 	}
705 
706 	/*
707 	 * We have some event groups, but they all have RMIDs assigned
708 	 * and no RMIDs need cleaning.
709 	 */
710 	if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
711 		goto out;
712 
713 	if (!nr_needed)
714 		goto stabilize;
715 
716 	/*
717 	 * We have more event groups without RMIDs than available RMIDs,
718 	 * or we have event groups that conflict with the ones currently
719 	 * scheduled.
720 	 *
721 	 * We force deallocate the rmid of the group at the head of
722 	 * cache_groups. The first event group without an RMID then gets
723 	 * assigned intel_cqm_rotation_rmid. This ensures we always make
724 	 * forward progress.
725 	 *
726 	 * Rotate the cache_groups list so the previous head is now the
727 	 * tail.
728 	 */
729 	__intel_cqm_pick_and_rotate(start);
730 
731 	/*
732 	 * If the rotation is going to succeed, reduce the threshold so
733 	 * that we don't needlessly reuse dirty RMIDs.
734 	 */
735 	if (__rmid_valid(intel_cqm_rotation_rmid)) {
736 		intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
737 		intel_cqm_rotation_rmid = __get_rmid();
738 
739 		intel_cqm_sched_out_conflicting_events(start);
740 
741 		if (__intel_cqm_threshold)
742 			__intel_cqm_threshold--;
743 	}
744 
745 	rotated = true;
746 
747 stabilize:
748 	/*
749 	 * We now need to stablize the RMID we freed above (if any) to
750 	 * ensure that the next time we rotate we have an RMID with zero
751 	 * occupancy value.
752 	 *
753 	 * Alternatively, if we didn't need to perform any rotation,
754 	 * we'll have a bunch of RMIDs in limbo that need stabilizing.
755 	 */
756 	threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
757 
758 	while (intel_cqm_rmid_stabilize(&nr_available) &&
759 	       __intel_cqm_threshold < threshold_limit) {
760 		unsigned int steal_limit;
761 
762 		/*
763 		 * Don't spin if nobody is actively waiting for an RMID,
764 		 * the rotation worker will be kicked as soon as an
765 		 * event needs an RMID anyway.
766 		 */
767 		if (!nr_needed)
768 			break;
769 
770 		/* Allow max 25% of RMIDs to be in limbo. */
771 		steal_limit = (cqm_max_rmid + 1) / 4;
772 
773 		/*
774 		 * We failed to stabilize any RMIDs so our rotation
775 		 * logic is now stuck. In order to make forward progress
776 		 * we have a few options:
777 		 *
778 		 *   1. rotate ("steal") another RMID
779 		 *   2. increase the threshold
780 		 *   3. do nothing
781 		 *
782 		 * We do both of 1. and 2. until we hit the steal limit.
783 		 *
784 		 * The steal limit prevents all RMIDs ending up on the
785 		 * limbo list. This can happen if every RMID has a
786 		 * non-zero occupancy above threshold_limit, and the
787 		 * occupancy values aren't dropping fast enough.
788 		 *
789 		 * Note that there is prioritisation at work here - we'd
790 		 * rather increase the number of RMIDs on the limbo list
791 		 * than increase the threshold, because increasing the
792 		 * threshold skews the event data (because we reuse
793 		 * dirty RMIDs) - threshold bumps are a last resort.
794 		 */
795 		if (nr_available < steal_limit)
796 			goto again;
797 
798 		__intel_cqm_threshold++;
799 	}
800 
801 out:
802 	mutex_unlock(&cache_mutex);
803 	return rotated;
804 }
805 
806 static void intel_cqm_rmid_rotate(struct work_struct *work);
807 
808 static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
809 
810 static struct pmu intel_cqm_pmu;
811 
intel_cqm_rmid_rotate(struct work_struct * work)812 static void intel_cqm_rmid_rotate(struct work_struct *work)
813 {
814 	unsigned long delay;
815 
816 	__intel_cqm_rmid_rotate();
817 
818 	delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
819 	schedule_delayed_work(&intel_cqm_rmid_work, delay);
820 }
821 
822 /*
823  * Find a group and setup RMID.
824  *
825  * If we're part of a group, we use the group's RMID.
826  */
intel_cqm_setup_event(struct perf_event * event,struct perf_event ** group)827 static void intel_cqm_setup_event(struct perf_event *event,
828 				  struct perf_event **group)
829 {
830 	struct perf_event *iter;
831 	unsigned int rmid;
832 	bool conflict = false;
833 
834 	list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
835 		rmid = iter->hw.cqm_rmid;
836 
837 		if (__match_event(iter, event)) {
838 			/* All tasks in a group share an RMID */
839 			event->hw.cqm_rmid = rmid;
840 			*group = iter;
841 			return;
842 		}
843 
844 		/*
845 		 * We only care about conflicts for events that are
846 		 * actually scheduled in (and hence have a valid RMID).
847 		 */
848 		if (__conflict_event(iter, event) && __rmid_valid(rmid))
849 			conflict = true;
850 	}
851 
852 	if (conflict)
853 		rmid = INVALID_RMID;
854 	else
855 		rmid = __get_rmid();
856 
857 	event->hw.cqm_rmid = rmid;
858 }
859 
intel_cqm_event_read(struct perf_event * event)860 static void intel_cqm_event_read(struct perf_event *event)
861 {
862 	unsigned long flags;
863 	unsigned int rmid;
864 	u64 val;
865 
866 	/*
867 	 * Task events are handled by intel_cqm_event_count().
868 	 */
869 	if (event->cpu == -1)
870 		return;
871 
872 	raw_spin_lock_irqsave(&cache_lock, flags);
873 	rmid = event->hw.cqm_rmid;
874 
875 	if (!__rmid_valid(rmid))
876 		goto out;
877 
878 	val = __rmid_read(rmid);
879 
880 	/*
881 	 * Ignore this reading on error states and do not update the value.
882 	 */
883 	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
884 		goto out;
885 
886 	local64_set(&event->count, val);
887 out:
888 	raw_spin_unlock_irqrestore(&cache_lock, flags);
889 }
890 
__intel_cqm_event_count(void * info)891 static void __intel_cqm_event_count(void *info)
892 {
893 	struct rmid_read *rr = info;
894 	u64 val;
895 
896 	val = __rmid_read(rr->rmid);
897 
898 	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
899 		return;
900 
901 	atomic64_add(val, &rr->value);
902 }
903 
cqm_group_leader(struct perf_event * event)904 static inline bool cqm_group_leader(struct perf_event *event)
905 {
906 	return !list_empty(&event->hw.cqm_groups_entry);
907 }
908 
intel_cqm_event_count(struct perf_event * event)909 static u64 intel_cqm_event_count(struct perf_event *event)
910 {
911 	unsigned long flags;
912 	struct rmid_read rr = {
913 		.value = ATOMIC64_INIT(0),
914 	};
915 
916 	/*
917 	 * We only need to worry about task events. System-wide events
918 	 * are handled like usual, i.e. entirely with
919 	 * intel_cqm_event_read().
920 	 */
921 	if (event->cpu != -1)
922 		return __perf_event_count(event);
923 
924 	/*
925 	 * Only the group leader gets to report values. This stops us
926 	 * reporting duplicate values to userspace, and gives us a clear
927 	 * rule for which task gets to report the values.
928 	 *
929 	 * Note that it is impossible to attribute these values to
930 	 * specific packages - we forfeit that ability when we create
931 	 * task events.
932 	 */
933 	if (!cqm_group_leader(event))
934 		return 0;
935 
936 	/*
937 	 * Getting up-to-date values requires an SMP IPI which is not
938 	 * possible if we're being called in interrupt context. Return
939 	 * the cached values instead.
940 	 */
941 	if (unlikely(in_interrupt()))
942 		goto out;
943 
944 	/*
945 	 * Notice that we don't perform the reading of an RMID
946 	 * atomically, because we can't hold a spin lock across the
947 	 * IPIs.
948 	 *
949 	 * Speculatively perform the read, since @event might be
950 	 * assigned a different (possibly invalid) RMID while we're
951 	 * busying performing the IPI calls. It's therefore necessary to
952 	 * check @event's RMID afterwards, and if it has changed,
953 	 * discard the result of the read.
954 	 */
955 	rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
956 
957 	if (!__rmid_valid(rr.rmid))
958 		goto out;
959 
960 	on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
961 
962 	raw_spin_lock_irqsave(&cache_lock, flags);
963 	if (event->hw.cqm_rmid == rr.rmid)
964 		local64_set(&event->count, atomic64_read(&rr.value));
965 	raw_spin_unlock_irqrestore(&cache_lock, flags);
966 out:
967 	return __perf_event_count(event);
968 }
969 
intel_cqm_event_start(struct perf_event * event,int mode)970 static void intel_cqm_event_start(struct perf_event *event, int mode)
971 {
972 	struct intel_cqm_state *state = this_cpu_ptr(&cqm_state);
973 	unsigned int rmid = event->hw.cqm_rmid;
974 	unsigned long flags;
975 
976 	if (!(event->hw.cqm_state & PERF_HES_STOPPED))
977 		return;
978 
979 	event->hw.cqm_state &= ~PERF_HES_STOPPED;
980 
981 	raw_spin_lock_irqsave(&state->lock, flags);
982 
983 	if (state->cnt++)
984 		WARN_ON_ONCE(state->rmid != rmid);
985 	else
986 		WARN_ON_ONCE(state->rmid);
987 
988 	state->rmid = rmid;
989 	wrmsrl(MSR_IA32_PQR_ASSOC, state->rmid);
990 
991 	raw_spin_unlock_irqrestore(&state->lock, flags);
992 }
993 
intel_cqm_event_stop(struct perf_event * event,int mode)994 static void intel_cqm_event_stop(struct perf_event *event, int mode)
995 {
996 	struct intel_cqm_state *state = this_cpu_ptr(&cqm_state);
997 	unsigned long flags;
998 
999 	if (event->hw.cqm_state & PERF_HES_STOPPED)
1000 		return;
1001 
1002 	event->hw.cqm_state |= PERF_HES_STOPPED;
1003 
1004 	raw_spin_lock_irqsave(&state->lock, flags);
1005 	intel_cqm_event_read(event);
1006 
1007 	if (!--state->cnt) {
1008 		state->rmid = 0;
1009 		wrmsrl(MSR_IA32_PQR_ASSOC, 0);
1010 	} else {
1011 		WARN_ON_ONCE(!state->rmid);
1012 	}
1013 
1014 	raw_spin_unlock_irqrestore(&state->lock, flags);
1015 }
1016 
intel_cqm_event_add(struct perf_event * event,int mode)1017 static int intel_cqm_event_add(struct perf_event *event, int mode)
1018 {
1019 	unsigned long flags;
1020 	unsigned int rmid;
1021 
1022 	raw_spin_lock_irqsave(&cache_lock, flags);
1023 
1024 	event->hw.cqm_state = PERF_HES_STOPPED;
1025 	rmid = event->hw.cqm_rmid;
1026 
1027 	if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1028 		intel_cqm_event_start(event, mode);
1029 
1030 	raw_spin_unlock_irqrestore(&cache_lock, flags);
1031 
1032 	return 0;
1033 }
1034 
intel_cqm_event_del(struct perf_event * event,int mode)1035 static void intel_cqm_event_del(struct perf_event *event, int mode)
1036 {
1037 	intel_cqm_event_stop(event, mode);
1038 }
1039 
intel_cqm_event_destroy(struct perf_event * event)1040 static void intel_cqm_event_destroy(struct perf_event *event)
1041 {
1042 	struct perf_event *group_other = NULL;
1043 
1044 	mutex_lock(&cache_mutex);
1045 
1046 	/*
1047 	 * If there's another event in this group...
1048 	 */
1049 	if (!list_empty(&event->hw.cqm_group_entry)) {
1050 		group_other = list_first_entry(&event->hw.cqm_group_entry,
1051 					       struct perf_event,
1052 					       hw.cqm_group_entry);
1053 		list_del(&event->hw.cqm_group_entry);
1054 	}
1055 
1056 	/*
1057 	 * And we're the group leader..
1058 	 */
1059 	if (cqm_group_leader(event)) {
1060 		/*
1061 		 * If there was a group_other, make that leader, otherwise
1062 		 * destroy the group and return the RMID.
1063 		 */
1064 		if (group_other) {
1065 			list_replace(&event->hw.cqm_groups_entry,
1066 				     &group_other->hw.cqm_groups_entry);
1067 		} else {
1068 			unsigned int rmid = event->hw.cqm_rmid;
1069 
1070 			if (__rmid_valid(rmid))
1071 				__put_rmid(rmid);
1072 			list_del(&event->hw.cqm_groups_entry);
1073 		}
1074 	}
1075 
1076 	mutex_unlock(&cache_mutex);
1077 }
1078 
intel_cqm_event_init(struct perf_event * event)1079 static int intel_cqm_event_init(struct perf_event *event)
1080 {
1081 	struct perf_event *group = NULL;
1082 	bool rotate = false;
1083 
1084 	if (event->attr.type != intel_cqm_pmu.type)
1085 		return -ENOENT;
1086 
1087 	if (event->attr.config & ~QOS_EVENT_MASK)
1088 		return -EINVAL;
1089 
1090 	/* unsupported modes and filters */
1091 	if (event->attr.exclude_user   ||
1092 	    event->attr.exclude_kernel ||
1093 	    event->attr.exclude_hv     ||
1094 	    event->attr.exclude_idle   ||
1095 	    event->attr.exclude_host   ||
1096 	    event->attr.exclude_guest  ||
1097 	    event->attr.sample_period) /* no sampling */
1098 		return -EINVAL;
1099 
1100 	INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1101 	INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1102 
1103 	event->destroy = intel_cqm_event_destroy;
1104 
1105 	mutex_lock(&cache_mutex);
1106 
1107 	/* Will also set rmid */
1108 	intel_cqm_setup_event(event, &group);
1109 
1110 	if (group) {
1111 		list_add_tail(&event->hw.cqm_group_entry,
1112 			      &group->hw.cqm_group_entry);
1113 	} else {
1114 		list_add_tail(&event->hw.cqm_groups_entry,
1115 			      &cache_groups);
1116 
1117 		/*
1118 		 * All RMIDs are either in use or have recently been
1119 		 * used. Kick the rotation worker to clean/free some.
1120 		 *
1121 		 * We only do this for the group leader, rather than for
1122 		 * every event in a group to save on needless work.
1123 		 */
1124 		if (!__rmid_valid(event->hw.cqm_rmid))
1125 			rotate = true;
1126 	}
1127 
1128 	mutex_unlock(&cache_mutex);
1129 
1130 	if (rotate)
1131 		schedule_delayed_work(&intel_cqm_rmid_work, 0);
1132 
1133 	return 0;
1134 }
1135 
1136 EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1137 EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1138 EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1139 EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1140 EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1141 
1142 static struct attribute *intel_cqm_events_attr[] = {
1143 	EVENT_PTR(intel_cqm_llc),
1144 	EVENT_PTR(intel_cqm_llc_pkg),
1145 	EVENT_PTR(intel_cqm_llc_unit),
1146 	EVENT_PTR(intel_cqm_llc_scale),
1147 	EVENT_PTR(intel_cqm_llc_snapshot),
1148 	NULL,
1149 };
1150 
1151 static struct attribute_group intel_cqm_events_group = {
1152 	.name = "events",
1153 	.attrs = intel_cqm_events_attr,
1154 };
1155 
1156 PMU_FORMAT_ATTR(event, "config:0-7");
1157 static struct attribute *intel_cqm_formats_attr[] = {
1158 	&format_attr_event.attr,
1159 	NULL,
1160 };
1161 
1162 static struct attribute_group intel_cqm_format_group = {
1163 	.name = "format",
1164 	.attrs = intel_cqm_formats_attr,
1165 };
1166 
1167 static ssize_t
max_recycle_threshold_show(struct device * dev,struct device_attribute * attr,char * page)1168 max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1169 			   char *page)
1170 {
1171 	ssize_t rv;
1172 
1173 	mutex_lock(&cache_mutex);
1174 	rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1175 	mutex_unlock(&cache_mutex);
1176 
1177 	return rv;
1178 }
1179 
1180 static ssize_t
max_recycle_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1181 max_recycle_threshold_store(struct device *dev,
1182 			    struct device_attribute *attr,
1183 			    const char *buf, size_t count)
1184 {
1185 	unsigned int bytes, cachelines;
1186 	int ret;
1187 
1188 	ret = kstrtouint(buf, 0, &bytes);
1189 	if (ret)
1190 		return ret;
1191 
1192 	mutex_lock(&cache_mutex);
1193 
1194 	__intel_cqm_max_threshold = bytes;
1195 	cachelines = bytes / cqm_l3_scale;
1196 
1197 	/*
1198 	 * The new maximum takes effect immediately.
1199 	 */
1200 	if (__intel_cqm_threshold > cachelines)
1201 		__intel_cqm_threshold = cachelines;
1202 
1203 	mutex_unlock(&cache_mutex);
1204 
1205 	return count;
1206 }
1207 
1208 static DEVICE_ATTR_RW(max_recycle_threshold);
1209 
1210 static struct attribute *intel_cqm_attrs[] = {
1211 	&dev_attr_max_recycle_threshold.attr,
1212 	NULL,
1213 };
1214 
1215 static const struct attribute_group intel_cqm_group = {
1216 	.attrs = intel_cqm_attrs,
1217 };
1218 
1219 static const struct attribute_group *intel_cqm_attr_groups[] = {
1220 	&intel_cqm_events_group,
1221 	&intel_cqm_format_group,
1222 	&intel_cqm_group,
1223 	NULL,
1224 };
1225 
1226 static struct pmu intel_cqm_pmu = {
1227 	.hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1228 	.attr_groups	     = intel_cqm_attr_groups,
1229 	.task_ctx_nr	     = perf_sw_context,
1230 	.event_init	     = intel_cqm_event_init,
1231 	.add		     = intel_cqm_event_add,
1232 	.del		     = intel_cqm_event_del,
1233 	.start		     = intel_cqm_event_start,
1234 	.stop		     = intel_cqm_event_stop,
1235 	.read		     = intel_cqm_event_read,
1236 	.count		     = intel_cqm_event_count,
1237 };
1238 
cqm_pick_event_reader(int cpu)1239 static inline void cqm_pick_event_reader(int cpu)
1240 {
1241 	int phys_id = topology_physical_package_id(cpu);
1242 	int i;
1243 
1244 	for_each_cpu(i, &cqm_cpumask) {
1245 		if (phys_id == topology_physical_package_id(i))
1246 			return;	/* already got reader for this socket */
1247 	}
1248 
1249 	cpumask_set_cpu(cpu, &cqm_cpumask);
1250 }
1251 
intel_cqm_cpu_prepare(unsigned int cpu)1252 static void intel_cqm_cpu_prepare(unsigned int cpu)
1253 {
1254 	struct intel_cqm_state *state = &per_cpu(cqm_state, cpu);
1255 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1256 
1257 	raw_spin_lock_init(&state->lock);
1258 	state->rmid = 0;
1259 	state->cnt  = 0;
1260 
1261 	WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1262 	WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1263 }
1264 
intel_cqm_cpu_exit(unsigned int cpu)1265 static void intel_cqm_cpu_exit(unsigned int cpu)
1266 {
1267 	int phys_id = topology_physical_package_id(cpu);
1268 	int i;
1269 
1270 	/*
1271 	 * Is @cpu a designated cqm reader?
1272 	 */
1273 	if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1274 		return;
1275 
1276 	for_each_online_cpu(i) {
1277 		if (i == cpu)
1278 			continue;
1279 
1280 		if (phys_id == topology_physical_package_id(i)) {
1281 			cpumask_set_cpu(i, &cqm_cpumask);
1282 			break;
1283 		}
1284 	}
1285 }
1286 
intel_cqm_cpu_notifier(struct notifier_block * nb,unsigned long action,void * hcpu)1287 static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1288 				  unsigned long action, void *hcpu)
1289 {
1290 	unsigned int cpu  = (unsigned long)hcpu;
1291 
1292 	switch (action & ~CPU_TASKS_FROZEN) {
1293 	case CPU_UP_PREPARE:
1294 		intel_cqm_cpu_prepare(cpu);
1295 		break;
1296 	case CPU_DOWN_PREPARE:
1297 		intel_cqm_cpu_exit(cpu);
1298 		break;
1299 	case CPU_STARTING:
1300 		cqm_pick_event_reader(cpu);
1301 		break;
1302 	}
1303 
1304 	return NOTIFY_OK;
1305 }
1306 
1307 static const struct x86_cpu_id intel_cqm_match[] = {
1308 	{ .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1309 	{}
1310 };
1311 
intel_cqm_init(void)1312 static int __init intel_cqm_init(void)
1313 {
1314 	char *str, scale[20];
1315 	int i, cpu, ret;
1316 
1317 	if (!x86_match_cpu(intel_cqm_match))
1318 		return -ENODEV;
1319 
1320 	cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1321 
1322 	/*
1323 	 * It's possible that not all resources support the same number
1324 	 * of RMIDs. Instead of making scheduling much more complicated
1325 	 * (where we have to match a task's RMID to a cpu that supports
1326 	 * that many RMIDs) just find the minimum RMIDs supported across
1327 	 * all cpus.
1328 	 *
1329 	 * Also, check that the scales match on all cpus.
1330 	 */
1331 	cpu_notifier_register_begin();
1332 
1333 	for_each_online_cpu(cpu) {
1334 		struct cpuinfo_x86 *c = &cpu_data(cpu);
1335 
1336 		if (c->x86_cache_max_rmid < cqm_max_rmid)
1337 			cqm_max_rmid = c->x86_cache_max_rmid;
1338 
1339 		if (c->x86_cache_occ_scale != cqm_l3_scale) {
1340 			pr_err("Multiple LLC scale values, disabling\n");
1341 			ret = -EINVAL;
1342 			goto out;
1343 		}
1344 	}
1345 
1346 	/*
1347 	 * A reasonable upper limit on the max threshold is the number
1348 	 * of lines tagged per RMID if all RMIDs have the same number of
1349 	 * lines tagged in the LLC.
1350 	 *
1351 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1352 	 */
1353 	__intel_cqm_max_threshold =
1354 		boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1355 
1356 	snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1357 	str = kstrdup(scale, GFP_KERNEL);
1358 	if (!str) {
1359 		ret = -ENOMEM;
1360 		goto out;
1361 	}
1362 
1363 	event_attr_intel_cqm_llc_scale.event_str = str;
1364 
1365 	ret = intel_cqm_setup_rmid_cache();
1366 	if (ret)
1367 		goto out;
1368 
1369 	for_each_online_cpu(i) {
1370 		intel_cqm_cpu_prepare(i);
1371 		cqm_pick_event_reader(i);
1372 	}
1373 
1374 	__perf_cpu_notifier(intel_cqm_cpu_notifier);
1375 
1376 	ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1377 	if (ret)
1378 		pr_err("Intel CQM perf registration failed: %d\n", ret);
1379 	else
1380 		pr_info("Intel CQM monitoring enabled\n");
1381 
1382 out:
1383 	cpu_notifier_register_done();
1384 
1385 	return ret;
1386 }
1387 device_initcall(intel_cqm_init);
1388