1 /*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007 Maciej W. Rozycki
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 *
18 *
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21 *
22 * Updated to the driver model and the PHY abstraction layer
23 * by Maciej W. Rozycki.
24 */
25
26 #include <linux/bug.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/timer.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/bitops.h>
39 #include <linux/err.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/phy.h>
43 #include <linux/platform_device.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/cache.h>
47 #include <asm/io.h>
48 #include <asm/processor.h> /* Processor type for cache alignment. */
49
50 /* Operational parameters that usually are not changed. */
51
52 #define CONFIG_SBMAC_COALESCE
53
54 /* Time in jiffies before concluding the transmitter is hung. */
55 #define TX_TIMEOUT (2*HZ)
56
57
58 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
59 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
60
61 /* A few user-configurable values which may be modified when a driver
62 module is loaded. */
63
64 /* 1 normal messages, 0 quiet .. 7 verbose. */
65 static int debug = 1;
66 module_param(debug, int, S_IRUGO);
67 MODULE_PARM_DESC(debug, "Debug messages");
68
69 #ifdef CONFIG_SBMAC_COALESCE
70 static int int_pktcnt_tx = 255;
71 module_param(int_pktcnt_tx, int, S_IRUGO);
72 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
73
74 static int int_timeout_tx = 255;
75 module_param(int_timeout_tx, int, S_IRUGO);
76 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
77
78 static int int_pktcnt_rx = 64;
79 module_param(int_pktcnt_rx, int, S_IRUGO);
80 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
81
82 static int int_timeout_rx = 64;
83 module_param(int_timeout_rx, int, S_IRUGO);
84 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
85 #endif
86
87 #include <asm/sibyte/board.h>
88 #include <asm/sibyte/sb1250.h>
89 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
90 #include <asm/sibyte/bcm1480_regs.h>
91 #include <asm/sibyte/bcm1480_int.h>
92 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
93 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
94 #include <asm/sibyte/sb1250_regs.h>
95 #include <asm/sibyte/sb1250_int.h>
96 #else
97 #error invalid SiByte MAC configuration
98 #endif
99 #include <asm/sibyte/sb1250_scd.h>
100 #include <asm/sibyte/sb1250_mac.h>
101 #include <asm/sibyte/sb1250_dma.h>
102
103 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
104 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
105 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
106 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
107 #else
108 #error invalid SiByte MAC configuration
109 #endif
110
111 #ifdef K_INT_PHY
112 #define SBMAC_PHY_INT K_INT_PHY
113 #else
114 #define SBMAC_PHY_INT PHY_POLL
115 #endif
116
117 /**********************************************************************
118 * Simple types
119 ********************************************************************* */
120
121 enum sbmac_speed {
122 sbmac_speed_none = 0,
123 sbmac_speed_10 = SPEED_10,
124 sbmac_speed_100 = SPEED_100,
125 sbmac_speed_1000 = SPEED_1000,
126 };
127
128 enum sbmac_duplex {
129 sbmac_duplex_none = -1,
130 sbmac_duplex_half = DUPLEX_HALF,
131 sbmac_duplex_full = DUPLEX_FULL,
132 };
133
134 enum sbmac_fc {
135 sbmac_fc_none,
136 sbmac_fc_disabled,
137 sbmac_fc_frame,
138 sbmac_fc_collision,
139 sbmac_fc_carrier,
140 };
141
142 enum sbmac_state {
143 sbmac_state_uninit,
144 sbmac_state_off,
145 sbmac_state_on,
146 sbmac_state_broken,
147 };
148
149
150 /**********************************************************************
151 * Macros
152 ********************************************************************* */
153
154
155 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
156 (d)->sbdma_dscrtable : (d)->f+1)
157
158
159 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
160
161 #define SBMAC_MAX_TXDESCR 256
162 #define SBMAC_MAX_RXDESCR 256
163
164 #define ENET_PACKET_SIZE 1518
165 /*#define ENET_PACKET_SIZE 9216 */
166
167 /**********************************************************************
168 * DMA Descriptor structure
169 ********************************************************************* */
170
171 struct sbdmadscr {
172 uint64_t dscr_a;
173 uint64_t dscr_b;
174 };
175
176 /**********************************************************************
177 * DMA Controller structure
178 ********************************************************************* */
179
180 struct sbmacdma {
181
182 /*
183 * This stuff is used to identify the channel and the registers
184 * associated with it.
185 */
186 struct sbmac_softc *sbdma_eth; /* back pointer to associated
187 MAC */
188 int sbdma_channel; /* channel number */
189 int sbdma_txdir; /* direction (1=transmit) */
190 int sbdma_maxdescr; /* total # of descriptors
191 in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193 int sbdma_int_pktcnt;
194 /* # descriptors rx/tx
195 before interrupt */
196 int sbdma_int_timeout;
197 /* # usec rx/tx interrupt */
198 #endif
199 void __iomem *sbdma_config0; /* DMA config register 0 */
200 void __iomem *sbdma_config1; /* DMA config register 1 */
201 void __iomem *sbdma_dscrbase;
202 /* descriptor base address */
203 void __iomem *sbdma_dscrcnt; /* descriptor count register */
204 void __iomem *sbdma_curdscr; /* current descriptor
205 address */
206 void __iomem *sbdma_oodpktlost;
207 /* pkt drop (rx only) */
208
209 /*
210 * This stuff is for maintenance of the ring
211 */
212 void *sbdma_dscrtable_unaligned;
213 struct sbdmadscr *sbdma_dscrtable;
214 /* base of descriptor table */
215 struct sbdmadscr *sbdma_dscrtable_end;
216 /* end of descriptor table */
217 struct sk_buff **sbdma_ctxtable;
218 /* context table, one
219 per descr */
220 dma_addr_t sbdma_dscrtable_phys;
221 /* and also the phys addr */
222 struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */
223 struct sbdmadscr *sbdma_remptr; /* next dscr for sw
224 to remove */
225 };
226
227
228 /**********************************************************************
229 * Ethernet softc structure
230 ********************************************************************* */
231
232 struct sbmac_softc {
233
234 /*
235 * Linux-specific things
236 */
237 struct net_device *sbm_dev; /* pointer to linux device */
238 struct napi_struct napi;
239 struct phy_device *phy_dev; /* the associated PHY device */
240 struct mii_bus *mii_bus; /* the MII bus */
241 int phy_irq[PHY_MAX_ADDR];
242 spinlock_t sbm_lock; /* spin lock */
243 int sbm_devflags; /* current device flags */
244
245 /*
246 * Controller-specific things
247 */
248 void __iomem *sbm_base; /* MAC's base address */
249 enum sbmac_state sbm_state; /* current state */
250
251 void __iomem *sbm_macenable; /* MAC Enable Register */
252 void __iomem *sbm_maccfg; /* MAC Config Register */
253 void __iomem *sbm_fifocfg; /* FIFO Config Register */
254 void __iomem *sbm_framecfg; /* Frame Config Register */
255 void __iomem *sbm_rxfilter; /* Receive Filter Register */
256 void __iomem *sbm_isr; /* Interrupt Status Register */
257 void __iomem *sbm_imr; /* Interrupt Mask Register */
258 void __iomem *sbm_mdio; /* MDIO Register */
259
260 enum sbmac_speed sbm_speed; /* current speed */
261 enum sbmac_duplex sbm_duplex; /* current duplex */
262 enum sbmac_fc sbm_fc; /* cur. flow control setting */
263 int sbm_pause; /* current pause setting */
264 int sbm_link; /* current link state */
265
266 unsigned char sbm_hwaddr[ETH_ALEN];
267
268 struct sbmacdma sbm_txdma; /* only channel 0 for now */
269 struct sbmacdma sbm_rxdma;
270 int rx_hw_checksum;
271 int sbe_idx;
272 };
273
274
275 /**********************************************************************
276 * Externs
277 ********************************************************************* */
278
279 /**********************************************************************
280 * Prototypes
281 ********************************************************************* */
282
283 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
284 int txrx, int maxdescr);
285 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
286 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
287 struct sk_buff *m);
288 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
289 static void sbdma_emptyring(struct sbmacdma *d);
290 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
291 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
292 int work_to_do, int poll);
293 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
294 int poll);
295 static int sbmac_initctx(struct sbmac_softc *s);
296 static void sbmac_channel_start(struct sbmac_softc *s);
297 static void sbmac_channel_stop(struct sbmac_softc *s);
298 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
299 enum sbmac_state);
300 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
301 static uint64_t sbmac_addr2reg(unsigned char *ptr);
302 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
303 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
304 static void sbmac_setmulti(struct sbmac_softc *sc);
305 static int sbmac_init(struct platform_device *pldev, long long base);
306 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
307 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
308 enum sbmac_fc fc);
309
310 static int sbmac_open(struct net_device *dev);
311 static void sbmac_tx_timeout (struct net_device *dev);
312 static void sbmac_set_rx_mode(struct net_device *dev);
313 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
314 static int sbmac_close(struct net_device *dev);
315 static int sbmac_poll(struct napi_struct *napi, int budget);
316
317 static void sbmac_mii_poll(struct net_device *dev);
318 static int sbmac_mii_probe(struct net_device *dev);
319
320 static void sbmac_mii_sync(void __iomem *sbm_mdio);
321 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
322 int bitcnt);
323 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
324 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
325 u16 val);
326
327
328 /**********************************************************************
329 * Globals
330 ********************************************************************* */
331
332 static char sbmac_string[] = "sb1250-mac";
333
334 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
335
336
337 /**********************************************************************
338 * MDIO constants
339 ********************************************************************* */
340
341 #define MII_COMMAND_START 0x01
342 #define MII_COMMAND_READ 0x02
343 #define MII_COMMAND_WRITE 0x01
344 #define MII_COMMAND_ACK 0x02
345
346 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
347
348 #define ENABLE 1
349 #define DISABLE 0
350
351 /**********************************************************************
352 * SBMAC_MII_SYNC(sbm_mdio)
353 *
354 * Synchronize with the MII - send a pattern of bits to the MII
355 * that will guarantee that it is ready to accept a command.
356 *
357 * Input parameters:
358 * sbm_mdio - address of the MAC's MDIO register
359 *
360 * Return value:
361 * nothing
362 ********************************************************************* */
363
sbmac_mii_sync(void __iomem * sbm_mdio)364 static void sbmac_mii_sync(void __iomem *sbm_mdio)
365 {
366 int cnt;
367 uint64_t bits;
368 int mac_mdio_genc;
369
370 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
371
372 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
373
374 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
375
376 for (cnt = 0; cnt < 32; cnt++) {
377 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
378 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
379 }
380 }
381
382 /**********************************************************************
383 * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
384 *
385 * Send some bits to the MII. The bits to be sent are right-
386 * justified in the 'data' parameter.
387 *
388 * Input parameters:
389 * sbm_mdio - address of the MAC's MDIO register
390 * data - data to send
391 * bitcnt - number of bits to send
392 ********************************************************************* */
393
sbmac_mii_senddata(void __iomem * sbm_mdio,unsigned int data,int bitcnt)394 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
395 int bitcnt)
396 {
397 int i;
398 uint64_t bits;
399 unsigned int curmask;
400 int mac_mdio_genc;
401
402 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
403
404 bits = M_MAC_MDIO_DIR_OUTPUT;
405 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
406
407 curmask = 1 << (bitcnt - 1);
408
409 for (i = 0; i < bitcnt; i++) {
410 if (data & curmask)
411 bits |= M_MAC_MDIO_OUT;
412 else bits &= ~M_MAC_MDIO_OUT;
413 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
414 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
415 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
416 curmask >>= 1;
417 }
418 }
419
420
421
422 /**********************************************************************
423 * SBMAC_MII_READ(bus, phyaddr, regidx)
424 * Read a PHY register.
425 *
426 * Input parameters:
427 * bus - MDIO bus handle
428 * phyaddr - PHY's address
429 * regnum - index of register to read
430 *
431 * Return value:
432 * value read, or 0xffff if an error occurred.
433 ********************************************************************* */
434
sbmac_mii_read(struct mii_bus * bus,int phyaddr,int regidx)435 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
436 {
437 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
438 void __iomem *sbm_mdio = sc->sbm_mdio;
439 int idx;
440 int error;
441 int regval;
442 int mac_mdio_genc;
443
444 /*
445 * Synchronize ourselves so that the PHY knows the next
446 * thing coming down is a command
447 */
448 sbmac_mii_sync(sbm_mdio);
449
450 /*
451 * Send the data to the PHY. The sequence is
452 * a "start" command (2 bits)
453 * a "read" command (2 bits)
454 * the PHY addr (5 bits)
455 * the register index (5 bits)
456 */
457 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
458 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
459 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
460 sbmac_mii_senddata(sbm_mdio, regidx, 5);
461
462 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
463
464 /*
465 * Switch the port around without a clock transition.
466 */
467 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
468
469 /*
470 * Send out a clock pulse to signal we want the status
471 */
472 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
473 sbm_mdio);
474 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
475
476 /*
477 * If an error occurred, the PHY will signal '1' back
478 */
479 error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
480
481 /*
482 * Issue an 'idle' clock pulse, but keep the direction
483 * the same.
484 */
485 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
486 sbm_mdio);
487 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
488
489 regval = 0;
490
491 for (idx = 0; idx < 16; idx++) {
492 regval <<= 1;
493
494 if (error == 0) {
495 if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
496 regval |= 1;
497 }
498
499 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
500 sbm_mdio);
501 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
502 }
503
504 /* Switch back to output */
505 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
506
507 if (error == 0)
508 return regval;
509 return 0xffff;
510 }
511
512
513 /**********************************************************************
514 * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
515 *
516 * Write a value to a PHY register.
517 *
518 * Input parameters:
519 * bus - MDIO bus handle
520 * phyaddr - PHY to use
521 * regidx - register within the PHY
522 * regval - data to write to register
523 *
524 * Return value:
525 * 0 for success
526 ********************************************************************* */
527
sbmac_mii_write(struct mii_bus * bus,int phyaddr,int regidx,u16 regval)528 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
529 u16 regval)
530 {
531 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
532 void __iomem *sbm_mdio = sc->sbm_mdio;
533 int mac_mdio_genc;
534
535 sbmac_mii_sync(sbm_mdio);
536
537 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
538 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
539 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
540 sbmac_mii_senddata(sbm_mdio, regidx, 5);
541 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
542 sbmac_mii_senddata(sbm_mdio, regval, 16);
543
544 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
545
546 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
547
548 return 0;
549 }
550
551
552
553 /**********************************************************************
554 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
555 *
556 * Initialize a DMA channel context. Since there are potentially
557 * eight DMA channels per MAC, it's nice to do this in a standard
558 * way.
559 *
560 * Input parameters:
561 * d - struct sbmacdma (DMA channel context)
562 * s - struct sbmac_softc (pointer to a MAC)
563 * chan - channel number (0..1 right now)
564 * txrx - Identifies DMA_TX or DMA_RX for channel direction
565 * maxdescr - number of descriptors
566 *
567 * Return value:
568 * nothing
569 ********************************************************************* */
570
sbdma_initctx(struct sbmacdma * d,struct sbmac_softc * s,int chan,int txrx,int maxdescr)571 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
572 int txrx, int maxdescr)
573 {
574 #ifdef CONFIG_SBMAC_COALESCE
575 int int_pktcnt, int_timeout;
576 #endif
577
578 /*
579 * Save away interesting stuff in the structure
580 */
581
582 d->sbdma_eth = s;
583 d->sbdma_channel = chan;
584 d->sbdma_txdir = txrx;
585
586 #if 0
587 /* RMON clearing */
588 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
589 #endif
590
591 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
592 __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
593 __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
594 __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
595 __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
596 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
597 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
598 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
599 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
600 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
601 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
602 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
603 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
604 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
605 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
606 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
607 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
608 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
609 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
610 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
611 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
612
613 /*
614 * initialize register pointers
615 */
616
617 d->sbdma_config0 =
618 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
619 d->sbdma_config1 =
620 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
621 d->sbdma_dscrbase =
622 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
623 d->sbdma_dscrcnt =
624 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
625 d->sbdma_curdscr =
626 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
627 if (d->sbdma_txdir)
628 d->sbdma_oodpktlost = NULL;
629 else
630 d->sbdma_oodpktlost =
631 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
632
633 /*
634 * Allocate memory for the ring
635 */
636
637 d->sbdma_maxdescr = maxdescr;
638
639 d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
640 sizeof(*d->sbdma_dscrtable),
641 GFP_KERNEL);
642
643 /*
644 * The descriptor table must be aligned to at least 16 bytes or the
645 * MAC will corrupt it.
646 */
647 d->sbdma_dscrtable = (struct sbdmadscr *)
648 ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
649 sizeof(*d->sbdma_dscrtable));
650
651 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
652
653 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
654
655 /*
656 * And context table
657 */
658
659 d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
660 sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
661
662 #ifdef CONFIG_SBMAC_COALESCE
663 /*
664 * Setup Rx/Tx DMA coalescing defaults
665 */
666
667 int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
668 if ( int_pktcnt ) {
669 d->sbdma_int_pktcnt = int_pktcnt;
670 } else {
671 d->sbdma_int_pktcnt = 1;
672 }
673
674 int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
675 if ( int_timeout ) {
676 d->sbdma_int_timeout = int_timeout;
677 } else {
678 d->sbdma_int_timeout = 0;
679 }
680 #endif
681
682 }
683
684 /**********************************************************************
685 * SBDMA_CHANNEL_START(d)
686 *
687 * Initialize the hardware registers for a DMA channel.
688 *
689 * Input parameters:
690 * d - DMA channel to init (context must be previously init'd
691 * rxtx - DMA_RX or DMA_TX depending on what type of channel
692 *
693 * Return value:
694 * nothing
695 ********************************************************************* */
696
sbdma_channel_start(struct sbmacdma * d,int rxtx)697 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
698 {
699 /*
700 * Turn on the DMA channel
701 */
702
703 #ifdef CONFIG_SBMAC_COALESCE
704 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
705 0, d->sbdma_config1);
706 __raw_writeq(M_DMA_EOP_INT_EN |
707 V_DMA_RINGSZ(d->sbdma_maxdescr) |
708 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
709 0, d->sbdma_config0);
710 #else
711 __raw_writeq(0, d->sbdma_config1);
712 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
713 0, d->sbdma_config0);
714 #endif
715
716 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
717
718 /*
719 * Initialize ring pointers
720 */
721
722 d->sbdma_addptr = d->sbdma_dscrtable;
723 d->sbdma_remptr = d->sbdma_dscrtable;
724 }
725
726 /**********************************************************************
727 * SBDMA_CHANNEL_STOP(d)
728 *
729 * Initialize the hardware registers for a DMA channel.
730 *
731 * Input parameters:
732 * d - DMA channel to init (context must be previously init'd
733 *
734 * Return value:
735 * nothing
736 ********************************************************************* */
737
sbdma_channel_stop(struct sbmacdma * d)738 static void sbdma_channel_stop(struct sbmacdma *d)
739 {
740 /*
741 * Turn off the DMA channel
742 */
743
744 __raw_writeq(0, d->sbdma_config1);
745
746 __raw_writeq(0, d->sbdma_dscrbase);
747
748 __raw_writeq(0, d->sbdma_config0);
749
750 /*
751 * Zero ring pointers
752 */
753
754 d->sbdma_addptr = NULL;
755 d->sbdma_remptr = NULL;
756 }
757
sbdma_align_skb(struct sk_buff * skb,unsigned int power2,unsigned int offset)758 static inline void sbdma_align_skb(struct sk_buff *skb,
759 unsigned int power2, unsigned int offset)
760 {
761 unsigned char *addr = skb->data;
762 unsigned char *newaddr = PTR_ALIGN(addr, power2);
763
764 skb_reserve(skb, newaddr - addr + offset);
765 }
766
767
768 /**********************************************************************
769 * SBDMA_ADD_RCVBUFFER(d,sb)
770 *
771 * Add a buffer to the specified DMA channel. For receive channels,
772 * this queues a buffer for inbound packets.
773 *
774 * Input parameters:
775 * sc - softc structure
776 * d - DMA channel descriptor
777 * sb - sk_buff to add, or NULL if we should allocate one
778 *
779 * Return value:
780 * 0 if buffer could not be added (ring is full)
781 * 1 if buffer added successfully
782 ********************************************************************* */
783
784
sbdma_add_rcvbuffer(struct sbmac_softc * sc,struct sbmacdma * d,struct sk_buff * sb)785 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
786 struct sk_buff *sb)
787 {
788 struct net_device *dev = sc->sbm_dev;
789 struct sbdmadscr *dsc;
790 struct sbdmadscr *nextdsc;
791 struct sk_buff *sb_new = NULL;
792 int pktsize = ENET_PACKET_SIZE;
793
794 /* get pointer to our current place in the ring */
795
796 dsc = d->sbdma_addptr;
797 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
798
799 /*
800 * figure out if the ring is full - if the next descriptor
801 * is the same as the one that we're going to remove from
802 * the ring, the ring is full
803 */
804
805 if (nextdsc == d->sbdma_remptr) {
806 return -ENOSPC;
807 }
808
809 /*
810 * Allocate a sk_buff if we don't already have one.
811 * If we do have an sk_buff, reset it so that it's empty.
812 *
813 * Note: sk_buffs don't seem to be guaranteed to have any sort
814 * of alignment when they are allocated. Therefore, allocate enough
815 * extra space to make sure that:
816 *
817 * 1. the data does not start in the middle of a cache line.
818 * 2. The data does not end in the middle of a cache line
819 * 3. The buffer can be aligned such that the IP addresses are
820 * naturally aligned.
821 *
822 * Remember, the SOCs MAC writes whole cache lines at a time,
823 * without reading the old contents first. So, if the sk_buff's
824 * data portion starts in the middle of a cache line, the SOC
825 * DMA will trash the beginning (and ending) portions.
826 */
827
828 if (sb == NULL) {
829 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
830 SMP_CACHE_BYTES * 2 +
831 NET_IP_ALIGN);
832 if (sb_new == NULL)
833 return -ENOBUFS;
834
835 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
836 }
837 else {
838 sb_new = sb;
839 /*
840 * nothing special to reinit buffer, it's already aligned
841 * and sb->data already points to a good place.
842 */
843 }
844
845 /*
846 * fill in the descriptor
847 */
848
849 #ifdef CONFIG_SBMAC_COALESCE
850 /*
851 * Do not interrupt per DMA transfer.
852 */
853 dsc->dscr_a = virt_to_phys(sb_new->data) |
854 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
855 #else
856 dsc->dscr_a = virt_to_phys(sb_new->data) |
857 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
858 M_DMA_DSCRA_INTERRUPT;
859 #endif
860
861 /* receiving: no options */
862 dsc->dscr_b = 0;
863
864 /*
865 * fill in the context
866 */
867
868 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
869
870 /*
871 * point at next packet
872 */
873
874 d->sbdma_addptr = nextdsc;
875
876 /*
877 * Give the buffer to the DMA engine.
878 */
879
880 __raw_writeq(1, d->sbdma_dscrcnt);
881
882 return 0; /* we did it */
883 }
884
885 /**********************************************************************
886 * SBDMA_ADD_TXBUFFER(d,sb)
887 *
888 * Add a transmit buffer to the specified DMA channel, causing a
889 * transmit to start.
890 *
891 * Input parameters:
892 * d - DMA channel descriptor
893 * sb - sk_buff to add
894 *
895 * Return value:
896 * 0 transmit queued successfully
897 * otherwise error code
898 ********************************************************************* */
899
900
sbdma_add_txbuffer(struct sbmacdma * d,struct sk_buff * sb)901 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
902 {
903 struct sbdmadscr *dsc;
904 struct sbdmadscr *nextdsc;
905 uint64_t phys;
906 uint64_t ncb;
907 int length;
908
909 /* get pointer to our current place in the ring */
910
911 dsc = d->sbdma_addptr;
912 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
913
914 /*
915 * figure out if the ring is full - if the next descriptor
916 * is the same as the one that we're going to remove from
917 * the ring, the ring is full
918 */
919
920 if (nextdsc == d->sbdma_remptr) {
921 return -ENOSPC;
922 }
923
924 /*
925 * Under Linux, it's not necessary to copy/coalesce buffers
926 * like it is on NetBSD. We think they're all contiguous,
927 * but that may not be true for GBE.
928 */
929
930 length = sb->len;
931
932 /*
933 * fill in the descriptor. Note that the number of cache
934 * blocks in the descriptor is the number of blocks
935 * *spanned*, so we need to add in the offset (if any)
936 * while doing the calculation.
937 */
938
939 phys = virt_to_phys(sb->data);
940 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
941
942 dsc->dscr_a = phys |
943 V_DMA_DSCRA_A_SIZE(ncb) |
944 #ifndef CONFIG_SBMAC_COALESCE
945 M_DMA_DSCRA_INTERRUPT |
946 #endif
947 M_DMA_ETHTX_SOP;
948
949 /* transmitting: set outbound options and length */
950
951 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
952 V_DMA_DSCRB_PKT_SIZE(length);
953
954 /*
955 * fill in the context
956 */
957
958 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
959
960 /*
961 * point at next packet
962 */
963
964 d->sbdma_addptr = nextdsc;
965
966 /*
967 * Give the buffer to the DMA engine.
968 */
969
970 __raw_writeq(1, d->sbdma_dscrcnt);
971
972 return 0; /* we did it */
973 }
974
975
976
977
978 /**********************************************************************
979 * SBDMA_EMPTYRING(d)
980 *
981 * Free all allocated sk_buffs on the specified DMA channel;
982 *
983 * Input parameters:
984 * d - DMA channel
985 *
986 * Return value:
987 * nothing
988 ********************************************************************* */
989
sbdma_emptyring(struct sbmacdma * d)990 static void sbdma_emptyring(struct sbmacdma *d)
991 {
992 int idx;
993 struct sk_buff *sb;
994
995 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
996 sb = d->sbdma_ctxtable[idx];
997 if (sb) {
998 dev_kfree_skb(sb);
999 d->sbdma_ctxtable[idx] = NULL;
1000 }
1001 }
1002 }
1003
1004
1005 /**********************************************************************
1006 * SBDMA_FILLRING(d)
1007 *
1008 * Fill the specified DMA channel (must be receive channel)
1009 * with sk_buffs
1010 *
1011 * Input parameters:
1012 * sc - softc structure
1013 * d - DMA channel
1014 *
1015 * Return value:
1016 * nothing
1017 ********************************************************************* */
1018
sbdma_fillring(struct sbmac_softc * sc,struct sbmacdma * d)1019 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1020 {
1021 int idx;
1022
1023 for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1024 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1025 break;
1026 }
1027 }
1028
1029 #ifdef CONFIG_NET_POLL_CONTROLLER
sbmac_netpoll(struct net_device * netdev)1030 static void sbmac_netpoll(struct net_device *netdev)
1031 {
1032 struct sbmac_softc *sc = netdev_priv(netdev);
1033 int irq = sc->sbm_dev->irq;
1034
1035 __raw_writeq(0, sc->sbm_imr);
1036
1037 sbmac_intr(irq, netdev);
1038
1039 #ifdef CONFIG_SBMAC_COALESCE
1040 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1041 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1042 sc->sbm_imr);
1043 #else
1044 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1045 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1046 #endif
1047 }
1048 #endif
1049
1050 /**********************************************************************
1051 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1052 *
1053 * Process "completed" receive buffers on the specified DMA channel.
1054 *
1055 * Input parameters:
1056 * sc - softc structure
1057 * d - DMA channel context
1058 * work_to_do - no. of packets to process before enabling interrupt
1059 * again (for NAPI)
1060 * poll - 1: using polling (for NAPI)
1061 *
1062 * Return value:
1063 * nothing
1064 ********************************************************************* */
1065
sbdma_rx_process(struct sbmac_softc * sc,struct sbmacdma * d,int work_to_do,int poll)1066 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1067 int work_to_do, int poll)
1068 {
1069 struct net_device *dev = sc->sbm_dev;
1070 int curidx;
1071 int hwidx;
1072 struct sbdmadscr *dsc;
1073 struct sk_buff *sb;
1074 int len;
1075 int work_done = 0;
1076 int dropped = 0;
1077
1078 prefetch(d);
1079
1080 again:
1081 /* Check if the HW dropped any frames */
1082 dev->stats.rx_fifo_errors
1083 += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1084 __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1085
1086 while (work_to_do-- > 0) {
1087 /*
1088 * figure out where we are (as an index) and where
1089 * the hardware is (also as an index)
1090 *
1091 * This could be done faster if (for example) the
1092 * descriptor table was page-aligned and contiguous in
1093 * both virtual and physical memory -- you could then
1094 * just compare the low-order bits of the virtual address
1095 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1096 */
1097
1098 dsc = d->sbdma_remptr;
1099 curidx = dsc - d->sbdma_dscrtable;
1100
1101 prefetch(dsc);
1102 prefetch(&d->sbdma_ctxtable[curidx]);
1103
1104 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1105 d->sbdma_dscrtable_phys) /
1106 sizeof(*d->sbdma_dscrtable);
1107
1108 /*
1109 * If they're the same, that means we've processed all
1110 * of the descriptors up to (but not including) the one that
1111 * the hardware is working on right now.
1112 */
1113
1114 if (curidx == hwidx)
1115 goto done;
1116
1117 /*
1118 * Otherwise, get the packet's sk_buff ptr back
1119 */
1120
1121 sb = d->sbdma_ctxtable[curidx];
1122 d->sbdma_ctxtable[curidx] = NULL;
1123
1124 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1125
1126 /*
1127 * Check packet status. If good, process it.
1128 * If not, silently drop it and put it back on the
1129 * receive ring.
1130 */
1131
1132 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1133
1134 /*
1135 * Add a new buffer to replace the old one. If we fail
1136 * to allocate a buffer, we're going to drop this
1137 * packet and put it right back on the receive ring.
1138 */
1139
1140 if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1141 -ENOBUFS)) {
1142 dev->stats.rx_dropped++;
1143 /* Re-add old buffer */
1144 sbdma_add_rcvbuffer(sc, d, sb);
1145 /* No point in continuing at the moment */
1146 printk(KERN_ERR "dropped packet (1)\n");
1147 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1148 goto done;
1149 } else {
1150 /*
1151 * Set length into the packet
1152 */
1153 skb_put(sb,len);
1154
1155 /*
1156 * Buffer has been replaced on the
1157 * receive ring. Pass the buffer to
1158 * the kernel
1159 */
1160 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1161 /* Check hw IPv4/TCP checksum if supported */
1162 if (sc->rx_hw_checksum == ENABLE) {
1163 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1164 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1165 sb->ip_summed = CHECKSUM_UNNECESSARY;
1166 /* don't need to set sb->csum */
1167 } else {
1168 skb_checksum_none_assert(sb);
1169 }
1170 }
1171 prefetch(sb->data);
1172 prefetch((const void *)(((char *)sb->data)+32));
1173 if (poll)
1174 dropped = netif_receive_skb(sb);
1175 else
1176 dropped = netif_rx(sb);
1177
1178 if (dropped == NET_RX_DROP) {
1179 dev->stats.rx_dropped++;
1180 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1181 goto done;
1182 }
1183 else {
1184 dev->stats.rx_bytes += len;
1185 dev->stats.rx_packets++;
1186 }
1187 }
1188 } else {
1189 /*
1190 * Packet was mangled somehow. Just drop it and
1191 * put it back on the receive ring.
1192 */
1193 dev->stats.rx_errors++;
1194 sbdma_add_rcvbuffer(sc, d, sb);
1195 }
1196
1197
1198 /*
1199 * .. and advance to the next buffer.
1200 */
1201
1202 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1203 work_done++;
1204 }
1205 if (!poll) {
1206 work_to_do = 32;
1207 goto again; /* collect fifo drop statistics again */
1208 }
1209 done:
1210 return work_done;
1211 }
1212
1213 /**********************************************************************
1214 * SBDMA_TX_PROCESS(sc,d)
1215 *
1216 * Process "completed" transmit buffers on the specified DMA channel.
1217 * This is normally called within the interrupt service routine.
1218 * Note that this isn't really ideal for priority channels, since
1219 * it processes all of the packets on a given channel before
1220 * returning.
1221 *
1222 * Input parameters:
1223 * sc - softc structure
1224 * d - DMA channel context
1225 * poll - 1: using polling (for NAPI)
1226 *
1227 * Return value:
1228 * nothing
1229 ********************************************************************* */
1230
sbdma_tx_process(struct sbmac_softc * sc,struct sbmacdma * d,int poll)1231 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1232 int poll)
1233 {
1234 struct net_device *dev = sc->sbm_dev;
1235 int curidx;
1236 int hwidx;
1237 struct sbdmadscr *dsc;
1238 struct sk_buff *sb;
1239 unsigned long flags;
1240 int packets_handled = 0;
1241
1242 spin_lock_irqsave(&(sc->sbm_lock), flags);
1243
1244 if (d->sbdma_remptr == d->sbdma_addptr)
1245 goto end_unlock;
1246
1247 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1248 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1249
1250 for (;;) {
1251 /*
1252 * figure out where we are (as an index) and where
1253 * the hardware is (also as an index)
1254 *
1255 * This could be done faster if (for example) the
1256 * descriptor table was page-aligned and contiguous in
1257 * both virtual and physical memory -- you could then
1258 * just compare the low-order bits of the virtual address
1259 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1260 */
1261
1262 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1263
1264 /*
1265 * If they're the same, that means we've processed all
1266 * of the descriptors up to (but not including) the one that
1267 * the hardware is working on right now.
1268 */
1269
1270 if (curidx == hwidx)
1271 break;
1272
1273 /*
1274 * Otherwise, get the packet's sk_buff ptr back
1275 */
1276
1277 dsc = &(d->sbdma_dscrtable[curidx]);
1278 sb = d->sbdma_ctxtable[curidx];
1279 d->sbdma_ctxtable[curidx] = NULL;
1280
1281 /*
1282 * Stats
1283 */
1284
1285 dev->stats.tx_bytes += sb->len;
1286 dev->stats.tx_packets++;
1287
1288 /*
1289 * for transmits, we just free buffers.
1290 */
1291
1292 dev_kfree_skb_irq(sb);
1293
1294 /*
1295 * .. and advance to the next buffer.
1296 */
1297
1298 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1299
1300 packets_handled++;
1301
1302 }
1303
1304 /*
1305 * Decide if we should wake up the protocol or not.
1306 * Other drivers seem to do this when we reach a low
1307 * watermark on the transmit queue.
1308 */
1309
1310 if (packets_handled)
1311 netif_wake_queue(d->sbdma_eth->sbm_dev);
1312
1313 end_unlock:
1314 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1315
1316 }
1317
1318
1319
1320 /**********************************************************************
1321 * SBMAC_INITCTX(s)
1322 *
1323 * Initialize an Ethernet context structure - this is called
1324 * once per MAC on the 1250. Memory is allocated here, so don't
1325 * call it again from inside the ioctl routines that bring the
1326 * interface up/down
1327 *
1328 * Input parameters:
1329 * s - sbmac context structure
1330 *
1331 * Return value:
1332 * 0
1333 ********************************************************************* */
1334
sbmac_initctx(struct sbmac_softc * s)1335 static int sbmac_initctx(struct sbmac_softc *s)
1336 {
1337
1338 /*
1339 * figure out the addresses of some ports
1340 */
1341
1342 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1343 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1344 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1345 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1346 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1347 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1348 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1349 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1350
1351 /*
1352 * Initialize the DMA channels. Right now, only one per MAC is used
1353 * Note: Only do this _once_, as it allocates memory from the kernel!
1354 */
1355
1356 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1357 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1358
1359 /*
1360 * initial state is OFF
1361 */
1362
1363 s->sbm_state = sbmac_state_off;
1364
1365 return 0;
1366 }
1367
1368
sbdma_uninitctx(struct sbmacdma * d)1369 static void sbdma_uninitctx(struct sbmacdma *d)
1370 {
1371 if (d->sbdma_dscrtable_unaligned) {
1372 kfree(d->sbdma_dscrtable_unaligned);
1373 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1374 }
1375
1376 if (d->sbdma_ctxtable) {
1377 kfree(d->sbdma_ctxtable);
1378 d->sbdma_ctxtable = NULL;
1379 }
1380 }
1381
1382
sbmac_uninitctx(struct sbmac_softc * sc)1383 static void sbmac_uninitctx(struct sbmac_softc *sc)
1384 {
1385 sbdma_uninitctx(&(sc->sbm_txdma));
1386 sbdma_uninitctx(&(sc->sbm_rxdma));
1387 }
1388
1389
1390 /**********************************************************************
1391 * SBMAC_CHANNEL_START(s)
1392 *
1393 * Start packet processing on this MAC.
1394 *
1395 * Input parameters:
1396 * s - sbmac structure
1397 *
1398 * Return value:
1399 * nothing
1400 ********************************************************************* */
1401
sbmac_channel_start(struct sbmac_softc * s)1402 static void sbmac_channel_start(struct sbmac_softc *s)
1403 {
1404 uint64_t reg;
1405 void __iomem *port;
1406 uint64_t cfg,fifo,framecfg;
1407 int idx, th_value;
1408
1409 /*
1410 * Don't do this if running
1411 */
1412
1413 if (s->sbm_state == sbmac_state_on)
1414 return;
1415
1416 /*
1417 * Bring the controller out of reset, but leave it off.
1418 */
1419
1420 __raw_writeq(0, s->sbm_macenable);
1421
1422 /*
1423 * Ignore all received packets
1424 */
1425
1426 __raw_writeq(0, s->sbm_rxfilter);
1427
1428 /*
1429 * Calculate values for various control registers.
1430 */
1431
1432 cfg = M_MAC_RETRY_EN |
1433 M_MAC_TX_HOLD_SOP_EN |
1434 V_MAC_TX_PAUSE_CNT_16K |
1435 M_MAC_AP_STAT_EN |
1436 M_MAC_FAST_SYNC |
1437 M_MAC_SS_EN |
1438 0;
1439
1440 /*
1441 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1442 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1443 * Use a larger RD_THRSH for gigabit
1444 */
1445 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1446 th_value = 28;
1447 else
1448 th_value = 64;
1449
1450 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1451 ((s->sbm_speed == sbmac_speed_1000)
1452 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1453 V_MAC_TX_RL_THRSH(4) |
1454 V_MAC_RX_PL_THRSH(4) |
1455 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1456 V_MAC_RX_RL_THRSH(8) |
1457 0;
1458
1459 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1460 V_MAC_MAX_FRAMESZ_DEFAULT |
1461 V_MAC_BACKOFF_SEL(1);
1462
1463 /*
1464 * Clear out the hash address map
1465 */
1466
1467 port = s->sbm_base + R_MAC_HASH_BASE;
1468 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1469 __raw_writeq(0, port);
1470 port += sizeof(uint64_t);
1471 }
1472
1473 /*
1474 * Clear out the exact-match table
1475 */
1476
1477 port = s->sbm_base + R_MAC_ADDR_BASE;
1478 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1479 __raw_writeq(0, port);
1480 port += sizeof(uint64_t);
1481 }
1482
1483 /*
1484 * Clear out the DMA Channel mapping table registers
1485 */
1486
1487 port = s->sbm_base + R_MAC_CHUP0_BASE;
1488 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1489 __raw_writeq(0, port);
1490 port += sizeof(uint64_t);
1491 }
1492
1493
1494 port = s->sbm_base + R_MAC_CHLO0_BASE;
1495 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1496 __raw_writeq(0, port);
1497 port += sizeof(uint64_t);
1498 }
1499
1500 /*
1501 * Program the hardware address. It goes into the hardware-address
1502 * register as well as the first filter register.
1503 */
1504
1505 reg = sbmac_addr2reg(s->sbm_hwaddr);
1506
1507 port = s->sbm_base + R_MAC_ADDR_BASE;
1508 __raw_writeq(reg, port);
1509 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1510
1511 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1512 /*
1513 * Pass1 SOCs do not receive packets addressed to the
1514 * destination address in the R_MAC_ETHERNET_ADDR register.
1515 * Set the value to zero.
1516 */
1517 __raw_writeq(0, port);
1518 #else
1519 __raw_writeq(reg, port);
1520 #endif
1521
1522 /*
1523 * Set the receive filter for no packets, and write values
1524 * to the various config registers
1525 */
1526
1527 __raw_writeq(0, s->sbm_rxfilter);
1528 __raw_writeq(0, s->sbm_imr);
1529 __raw_writeq(framecfg, s->sbm_framecfg);
1530 __raw_writeq(fifo, s->sbm_fifocfg);
1531 __raw_writeq(cfg, s->sbm_maccfg);
1532
1533 /*
1534 * Initialize DMA channels (rings should be ok now)
1535 */
1536
1537 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1538 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1539
1540 /*
1541 * Configure the speed, duplex, and flow control
1542 */
1543
1544 sbmac_set_speed(s,s->sbm_speed);
1545 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1546
1547 /*
1548 * Fill the receive ring
1549 */
1550
1551 sbdma_fillring(s, &(s->sbm_rxdma));
1552
1553 /*
1554 * Turn on the rest of the bits in the enable register
1555 */
1556
1557 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1558 __raw_writeq(M_MAC_RXDMA_EN0 |
1559 M_MAC_TXDMA_EN0, s->sbm_macenable);
1560 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1561 __raw_writeq(M_MAC_RXDMA_EN0 |
1562 M_MAC_TXDMA_EN0 |
1563 M_MAC_RX_ENABLE |
1564 M_MAC_TX_ENABLE, s->sbm_macenable);
1565 #else
1566 #error invalid SiByte MAC configuration
1567 #endif
1568
1569 #ifdef CONFIG_SBMAC_COALESCE
1570 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1571 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1572 #else
1573 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1574 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1575 #endif
1576
1577 /*
1578 * Enable receiving unicasts and broadcasts
1579 */
1580
1581 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1582
1583 /*
1584 * we're running now.
1585 */
1586
1587 s->sbm_state = sbmac_state_on;
1588
1589 /*
1590 * Program multicast addresses
1591 */
1592
1593 sbmac_setmulti(s);
1594
1595 /*
1596 * If channel was in promiscuous mode before, turn that on
1597 */
1598
1599 if (s->sbm_devflags & IFF_PROMISC) {
1600 sbmac_promiscuous_mode(s,1);
1601 }
1602
1603 }
1604
1605
1606 /**********************************************************************
1607 * SBMAC_CHANNEL_STOP(s)
1608 *
1609 * Stop packet processing on this MAC.
1610 *
1611 * Input parameters:
1612 * s - sbmac structure
1613 *
1614 * Return value:
1615 * nothing
1616 ********************************************************************* */
1617
sbmac_channel_stop(struct sbmac_softc * s)1618 static void sbmac_channel_stop(struct sbmac_softc *s)
1619 {
1620 /* don't do this if already stopped */
1621
1622 if (s->sbm_state == sbmac_state_off)
1623 return;
1624
1625 /* don't accept any packets, disable all interrupts */
1626
1627 __raw_writeq(0, s->sbm_rxfilter);
1628 __raw_writeq(0, s->sbm_imr);
1629
1630 /* Turn off ticker */
1631
1632 /* XXX */
1633
1634 /* turn off receiver and transmitter */
1635
1636 __raw_writeq(0, s->sbm_macenable);
1637
1638 /* We're stopped now. */
1639
1640 s->sbm_state = sbmac_state_off;
1641
1642 /*
1643 * Stop DMA channels (rings should be ok now)
1644 */
1645
1646 sbdma_channel_stop(&(s->sbm_rxdma));
1647 sbdma_channel_stop(&(s->sbm_txdma));
1648
1649 /* Empty the receive and transmit rings */
1650
1651 sbdma_emptyring(&(s->sbm_rxdma));
1652 sbdma_emptyring(&(s->sbm_txdma));
1653
1654 }
1655
1656 /**********************************************************************
1657 * SBMAC_SET_CHANNEL_STATE(state)
1658 *
1659 * Set the channel's state ON or OFF
1660 *
1661 * Input parameters:
1662 * state - new state
1663 *
1664 * Return value:
1665 * old state
1666 ********************************************************************* */
sbmac_set_channel_state(struct sbmac_softc * sc,enum sbmac_state state)1667 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1668 enum sbmac_state state)
1669 {
1670 enum sbmac_state oldstate = sc->sbm_state;
1671
1672 /*
1673 * If same as previous state, return
1674 */
1675
1676 if (state == oldstate) {
1677 return oldstate;
1678 }
1679
1680 /*
1681 * If new state is ON, turn channel on
1682 */
1683
1684 if (state == sbmac_state_on) {
1685 sbmac_channel_start(sc);
1686 }
1687 else {
1688 sbmac_channel_stop(sc);
1689 }
1690
1691 /*
1692 * Return previous state
1693 */
1694
1695 return oldstate;
1696 }
1697
1698
1699 /**********************************************************************
1700 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1701 *
1702 * Turn on or off promiscuous mode
1703 *
1704 * Input parameters:
1705 * sc - softc
1706 * onoff - 1 to turn on, 0 to turn off
1707 *
1708 * Return value:
1709 * nothing
1710 ********************************************************************* */
1711
sbmac_promiscuous_mode(struct sbmac_softc * sc,int onoff)1712 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1713 {
1714 uint64_t reg;
1715
1716 if (sc->sbm_state != sbmac_state_on)
1717 return;
1718
1719 if (onoff) {
1720 reg = __raw_readq(sc->sbm_rxfilter);
1721 reg |= M_MAC_ALLPKT_EN;
1722 __raw_writeq(reg, sc->sbm_rxfilter);
1723 }
1724 else {
1725 reg = __raw_readq(sc->sbm_rxfilter);
1726 reg &= ~M_MAC_ALLPKT_EN;
1727 __raw_writeq(reg, sc->sbm_rxfilter);
1728 }
1729 }
1730
1731 /**********************************************************************
1732 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1733 *
1734 * Set the iphdr offset as 15 assuming ethernet encapsulation
1735 *
1736 * Input parameters:
1737 * sc - softc
1738 *
1739 * Return value:
1740 * nothing
1741 ********************************************************************* */
1742
sbmac_set_iphdr_offset(struct sbmac_softc * sc)1743 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1744 {
1745 uint64_t reg;
1746
1747 /* Hard code the off set to 15 for now */
1748 reg = __raw_readq(sc->sbm_rxfilter);
1749 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1750 __raw_writeq(reg, sc->sbm_rxfilter);
1751
1752 /* BCM1250 pass1 didn't have hardware checksum. Everything
1753 later does. */
1754 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1755 sc->rx_hw_checksum = DISABLE;
1756 } else {
1757 sc->rx_hw_checksum = ENABLE;
1758 }
1759 }
1760
1761
1762 /**********************************************************************
1763 * SBMAC_ADDR2REG(ptr)
1764 *
1765 * Convert six bytes into the 64-bit register value that
1766 * we typically write into the SBMAC's address/mcast registers
1767 *
1768 * Input parameters:
1769 * ptr - pointer to 6 bytes
1770 *
1771 * Return value:
1772 * register value
1773 ********************************************************************* */
1774
sbmac_addr2reg(unsigned char * ptr)1775 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1776 {
1777 uint64_t reg = 0;
1778
1779 ptr += 6;
1780
1781 reg |= (uint64_t) *(--ptr);
1782 reg <<= 8;
1783 reg |= (uint64_t) *(--ptr);
1784 reg <<= 8;
1785 reg |= (uint64_t) *(--ptr);
1786 reg <<= 8;
1787 reg |= (uint64_t) *(--ptr);
1788 reg <<= 8;
1789 reg |= (uint64_t) *(--ptr);
1790 reg <<= 8;
1791 reg |= (uint64_t) *(--ptr);
1792
1793 return reg;
1794 }
1795
1796
1797 /**********************************************************************
1798 * SBMAC_SET_SPEED(s,speed)
1799 *
1800 * Configure LAN speed for the specified MAC.
1801 * Warning: must be called when MAC is off!
1802 *
1803 * Input parameters:
1804 * s - sbmac structure
1805 * speed - speed to set MAC to (see enum sbmac_speed)
1806 *
1807 * Return value:
1808 * 1 if successful
1809 * 0 indicates invalid parameters
1810 ********************************************************************* */
1811
sbmac_set_speed(struct sbmac_softc * s,enum sbmac_speed speed)1812 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1813 {
1814 uint64_t cfg;
1815 uint64_t framecfg;
1816
1817 /*
1818 * Save new current values
1819 */
1820
1821 s->sbm_speed = speed;
1822
1823 if (s->sbm_state == sbmac_state_on)
1824 return 0; /* save for next restart */
1825
1826 /*
1827 * Read current register values
1828 */
1829
1830 cfg = __raw_readq(s->sbm_maccfg);
1831 framecfg = __raw_readq(s->sbm_framecfg);
1832
1833 /*
1834 * Mask out the stuff we want to change
1835 */
1836
1837 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1838 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1839 M_MAC_SLOT_SIZE);
1840
1841 /*
1842 * Now add in the new bits
1843 */
1844
1845 switch (speed) {
1846 case sbmac_speed_10:
1847 framecfg |= V_MAC_IFG_RX_10 |
1848 V_MAC_IFG_TX_10 |
1849 K_MAC_IFG_THRSH_10 |
1850 V_MAC_SLOT_SIZE_10;
1851 cfg |= V_MAC_SPEED_SEL_10MBPS;
1852 break;
1853
1854 case sbmac_speed_100:
1855 framecfg |= V_MAC_IFG_RX_100 |
1856 V_MAC_IFG_TX_100 |
1857 V_MAC_IFG_THRSH_100 |
1858 V_MAC_SLOT_SIZE_100;
1859 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1860 break;
1861
1862 case sbmac_speed_1000:
1863 framecfg |= V_MAC_IFG_RX_1000 |
1864 V_MAC_IFG_TX_1000 |
1865 V_MAC_IFG_THRSH_1000 |
1866 V_MAC_SLOT_SIZE_1000;
1867 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1868 break;
1869
1870 default:
1871 return 0;
1872 }
1873
1874 /*
1875 * Send the bits back to the hardware
1876 */
1877
1878 __raw_writeq(framecfg, s->sbm_framecfg);
1879 __raw_writeq(cfg, s->sbm_maccfg);
1880
1881 return 1;
1882 }
1883
1884 /**********************************************************************
1885 * SBMAC_SET_DUPLEX(s,duplex,fc)
1886 *
1887 * Set Ethernet duplex and flow control options for this MAC
1888 * Warning: must be called when MAC is off!
1889 *
1890 * Input parameters:
1891 * s - sbmac structure
1892 * duplex - duplex setting (see enum sbmac_duplex)
1893 * fc - flow control setting (see enum sbmac_fc)
1894 *
1895 * Return value:
1896 * 1 if ok
1897 * 0 if an invalid parameter combination was specified
1898 ********************************************************************* */
1899
sbmac_set_duplex(struct sbmac_softc * s,enum sbmac_duplex duplex,enum sbmac_fc fc)1900 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1901 enum sbmac_fc fc)
1902 {
1903 uint64_t cfg;
1904
1905 /*
1906 * Save new current values
1907 */
1908
1909 s->sbm_duplex = duplex;
1910 s->sbm_fc = fc;
1911
1912 if (s->sbm_state == sbmac_state_on)
1913 return 0; /* save for next restart */
1914
1915 /*
1916 * Read current register values
1917 */
1918
1919 cfg = __raw_readq(s->sbm_maccfg);
1920
1921 /*
1922 * Mask off the stuff we're about to change
1923 */
1924
1925 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1926
1927
1928 switch (duplex) {
1929 case sbmac_duplex_half:
1930 switch (fc) {
1931 case sbmac_fc_disabled:
1932 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1933 break;
1934
1935 case sbmac_fc_collision:
1936 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1937 break;
1938
1939 case sbmac_fc_carrier:
1940 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1941 break;
1942
1943 case sbmac_fc_frame: /* not valid in half duplex */
1944 default: /* invalid selection */
1945 return 0;
1946 }
1947 break;
1948
1949 case sbmac_duplex_full:
1950 switch (fc) {
1951 case sbmac_fc_disabled:
1952 cfg |= V_MAC_FC_CMD_DISABLED;
1953 break;
1954
1955 case sbmac_fc_frame:
1956 cfg |= V_MAC_FC_CMD_ENABLED;
1957 break;
1958
1959 case sbmac_fc_collision: /* not valid in full duplex */
1960 case sbmac_fc_carrier: /* not valid in full duplex */
1961 default:
1962 return 0;
1963 }
1964 break;
1965 default:
1966 return 0;
1967 }
1968
1969 /*
1970 * Send the bits back to the hardware
1971 */
1972
1973 __raw_writeq(cfg, s->sbm_maccfg);
1974
1975 return 1;
1976 }
1977
1978
1979
1980
1981 /**********************************************************************
1982 * SBMAC_INTR()
1983 *
1984 * Interrupt handler for MAC interrupts
1985 *
1986 * Input parameters:
1987 * MAC structure
1988 *
1989 * Return value:
1990 * nothing
1991 ********************************************************************* */
sbmac_intr(int irq,void * dev_instance)1992 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1993 {
1994 struct net_device *dev = (struct net_device *) dev_instance;
1995 struct sbmac_softc *sc = netdev_priv(dev);
1996 uint64_t isr;
1997 int handled = 0;
1998
1999 /*
2000 * Read the ISR (this clears the bits in the real
2001 * register, except for counter addr)
2002 */
2003
2004 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2005
2006 if (isr == 0)
2007 return IRQ_RETVAL(0);
2008 handled = 1;
2009
2010 /*
2011 * Transmits on channel 0
2012 */
2013
2014 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2015 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2016
2017 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2018 if (napi_schedule_prep(&sc->napi)) {
2019 __raw_writeq(0, sc->sbm_imr);
2020 __napi_schedule(&sc->napi);
2021 /* Depend on the exit from poll to reenable intr */
2022 }
2023 else {
2024 /* may leave some packets behind */
2025 sbdma_rx_process(sc,&(sc->sbm_rxdma),
2026 SBMAC_MAX_RXDESCR * 2, 0);
2027 }
2028 }
2029 return IRQ_RETVAL(handled);
2030 }
2031
2032 /**********************************************************************
2033 * SBMAC_START_TX(skb,dev)
2034 *
2035 * Start output on the specified interface. Basically, we
2036 * queue as many buffers as we can until the ring fills up, or
2037 * we run off the end of the queue, whichever comes first.
2038 *
2039 * Input parameters:
2040 *
2041 *
2042 * Return value:
2043 * nothing
2044 ********************************************************************* */
sbmac_start_tx(struct sk_buff * skb,struct net_device * dev)2045 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2046 {
2047 struct sbmac_softc *sc = netdev_priv(dev);
2048 unsigned long flags;
2049
2050 /* lock eth irq */
2051 spin_lock_irqsave(&sc->sbm_lock, flags);
2052
2053 /*
2054 * Put the buffer on the transmit ring. If we
2055 * don't have room, stop the queue.
2056 */
2057
2058 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2059 /* XXX save skb that we could not send */
2060 netif_stop_queue(dev);
2061 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2062
2063 return NETDEV_TX_BUSY;
2064 }
2065
2066 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2067
2068 return NETDEV_TX_OK;
2069 }
2070
2071 /**********************************************************************
2072 * SBMAC_SETMULTI(sc)
2073 *
2074 * Reprogram the multicast table into the hardware, given
2075 * the list of multicasts associated with the interface
2076 * structure.
2077 *
2078 * Input parameters:
2079 * sc - softc
2080 *
2081 * Return value:
2082 * nothing
2083 ********************************************************************* */
2084
sbmac_setmulti(struct sbmac_softc * sc)2085 static void sbmac_setmulti(struct sbmac_softc *sc)
2086 {
2087 uint64_t reg;
2088 void __iomem *port;
2089 int idx;
2090 struct netdev_hw_addr *ha;
2091 struct net_device *dev = sc->sbm_dev;
2092
2093 /*
2094 * Clear out entire multicast table. We do this by nuking
2095 * the entire hash table and all the direct matches except
2096 * the first one, which is used for our station address
2097 */
2098
2099 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2100 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2101 __raw_writeq(0, port);
2102 }
2103
2104 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2105 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2106 __raw_writeq(0, port);
2107 }
2108
2109 /*
2110 * Clear the filter to say we don't want any multicasts.
2111 */
2112
2113 reg = __raw_readq(sc->sbm_rxfilter);
2114 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2115 __raw_writeq(reg, sc->sbm_rxfilter);
2116
2117 if (dev->flags & IFF_ALLMULTI) {
2118 /*
2119 * Enable ALL multicasts. Do this by inverting the
2120 * multicast enable bit.
2121 */
2122 reg = __raw_readq(sc->sbm_rxfilter);
2123 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2124 __raw_writeq(reg, sc->sbm_rxfilter);
2125 return;
2126 }
2127
2128
2129 /*
2130 * Progam new multicast entries. For now, only use the
2131 * perfect filter. In the future we'll need to use the
2132 * hash filter if the perfect filter overflows
2133 */
2134
2135 /* XXX only using perfect filter for now, need to use hash
2136 * XXX if the table overflows */
2137
2138 idx = 1; /* skip station address */
2139 netdev_for_each_mc_addr(ha, dev) {
2140 if (idx == MAC_ADDR_COUNT)
2141 break;
2142 reg = sbmac_addr2reg(ha->addr);
2143 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2144 __raw_writeq(reg, port);
2145 idx++;
2146 }
2147
2148 /*
2149 * Enable the "accept multicast bits" if we programmed at least one
2150 * multicast.
2151 */
2152
2153 if (idx > 1) {
2154 reg = __raw_readq(sc->sbm_rxfilter);
2155 reg |= M_MAC_MCAST_EN;
2156 __raw_writeq(reg, sc->sbm_rxfilter);
2157 }
2158 }
2159
sb1250_change_mtu(struct net_device * _dev,int new_mtu)2160 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2161 {
2162 if (new_mtu > ENET_PACKET_SIZE)
2163 return -EINVAL;
2164 _dev->mtu = new_mtu;
2165 pr_info("changing the mtu to %d\n", new_mtu);
2166 return 0;
2167 }
2168
2169 static const struct net_device_ops sbmac_netdev_ops = {
2170 .ndo_open = sbmac_open,
2171 .ndo_stop = sbmac_close,
2172 .ndo_start_xmit = sbmac_start_tx,
2173 .ndo_set_rx_mode = sbmac_set_rx_mode,
2174 .ndo_tx_timeout = sbmac_tx_timeout,
2175 .ndo_do_ioctl = sbmac_mii_ioctl,
2176 .ndo_change_mtu = sb1250_change_mtu,
2177 .ndo_validate_addr = eth_validate_addr,
2178 .ndo_set_mac_address = eth_mac_addr,
2179 #ifdef CONFIG_NET_POLL_CONTROLLER
2180 .ndo_poll_controller = sbmac_netpoll,
2181 #endif
2182 };
2183
2184 /**********************************************************************
2185 * SBMAC_INIT(dev)
2186 *
2187 * Attach routine - init hardware and hook ourselves into linux
2188 *
2189 * Input parameters:
2190 * dev - net_device structure
2191 *
2192 * Return value:
2193 * status
2194 ********************************************************************* */
2195
sbmac_init(struct platform_device * pldev,long long base)2196 static int sbmac_init(struct platform_device *pldev, long long base)
2197 {
2198 struct net_device *dev = platform_get_drvdata(pldev);
2199 int idx = pldev->id;
2200 struct sbmac_softc *sc = netdev_priv(dev);
2201 unsigned char *eaddr;
2202 uint64_t ea_reg;
2203 int i;
2204 int err;
2205
2206 sc->sbm_dev = dev;
2207 sc->sbe_idx = idx;
2208
2209 eaddr = sc->sbm_hwaddr;
2210
2211 /*
2212 * Read the ethernet address. The firmware left this programmed
2213 * for us in the ethernet address register for each mac.
2214 */
2215
2216 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2217 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2218 for (i = 0; i < 6; i++) {
2219 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2220 ea_reg >>= 8;
2221 }
2222
2223 for (i = 0; i < 6; i++) {
2224 dev->dev_addr[i] = eaddr[i];
2225 }
2226
2227 /*
2228 * Initialize context (get pointers to registers and stuff), then
2229 * allocate the memory for the descriptor tables.
2230 */
2231
2232 sbmac_initctx(sc);
2233
2234 /*
2235 * Set up Linux device callins
2236 */
2237
2238 spin_lock_init(&(sc->sbm_lock));
2239
2240 dev->netdev_ops = &sbmac_netdev_ops;
2241 dev->watchdog_timeo = TX_TIMEOUT;
2242
2243 netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2244
2245 dev->irq = UNIT_INT(idx);
2246
2247 /* This is needed for PASS2 for Rx H/W checksum feature */
2248 sbmac_set_iphdr_offset(sc);
2249
2250 sc->mii_bus = mdiobus_alloc();
2251 if (sc->mii_bus == NULL) {
2252 err = -ENOMEM;
2253 goto uninit_ctx;
2254 }
2255
2256 sc->mii_bus->name = sbmac_mdio_string;
2257 snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2258 pldev->name, idx);
2259 sc->mii_bus->priv = sc;
2260 sc->mii_bus->read = sbmac_mii_read;
2261 sc->mii_bus->write = sbmac_mii_write;
2262 sc->mii_bus->irq = sc->phy_irq;
2263 for (i = 0; i < PHY_MAX_ADDR; ++i)
2264 sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2265
2266 sc->mii_bus->parent = &pldev->dev;
2267 /*
2268 * Probe PHY address
2269 */
2270 err = mdiobus_register(sc->mii_bus);
2271 if (err) {
2272 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2273 dev->name);
2274 goto free_mdio;
2275 }
2276 platform_set_drvdata(pldev, sc->mii_bus);
2277
2278 err = register_netdev(dev);
2279 if (err) {
2280 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2281 sbmac_string, idx);
2282 goto unreg_mdio;
2283 }
2284
2285 pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2286
2287 if (sc->rx_hw_checksum == ENABLE)
2288 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2289
2290 /*
2291 * Display Ethernet address (this is called during the config
2292 * process so we need to finish off the config message that
2293 * was being displayed)
2294 */
2295 pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2296 dev->name, base, eaddr);
2297
2298 return 0;
2299 unreg_mdio:
2300 mdiobus_unregister(sc->mii_bus);
2301 free_mdio:
2302 mdiobus_free(sc->mii_bus);
2303 uninit_ctx:
2304 sbmac_uninitctx(sc);
2305 return err;
2306 }
2307
2308
sbmac_open(struct net_device * dev)2309 static int sbmac_open(struct net_device *dev)
2310 {
2311 struct sbmac_softc *sc = netdev_priv(dev);
2312 int err;
2313
2314 if (debug > 1)
2315 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2316
2317 /*
2318 * map/route interrupt (clear status first, in case something
2319 * weird is pending; we haven't initialized the mac registers
2320 * yet)
2321 */
2322
2323 __raw_readq(sc->sbm_isr);
2324 err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2325 if (err) {
2326 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2327 dev->irq);
2328 goto out_err;
2329 }
2330
2331 sc->sbm_speed = sbmac_speed_none;
2332 sc->sbm_duplex = sbmac_duplex_none;
2333 sc->sbm_fc = sbmac_fc_none;
2334 sc->sbm_pause = -1;
2335 sc->sbm_link = 0;
2336
2337 /*
2338 * Attach to the PHY
2339 */
2340 err = sbmac_mii_probe(dev);
2341 if (err)
2342 goto out_unregister;
2343
2344 /*
2345 * Turn on the channel
2346 */
2347
2348 sbmac_set_channel_state(sc,sbmac_state_on);
2349
2350 netif_start_queue(dev);
2351
2352 sbmac_set_rx_mode(dev);
2353
2354 phy_start(sc->phy_dev);
2355
2356 napi_enable(&sc->napi);
2357
2358 return 0;
2359
2360 out_unregister:
2361 free_irq(dev->irq, dev);
2362 out_err:
2363 return err;
2364 }
2365
sbmac_mii_probe(struct net_device * dev)2366 static int sbmac_mii_probe(struct net_device *dev)
2367 {
2368 struct sbmac_softc *sc = netdev_priv(dev);
2369 struct phy_device *phy_dev;
2370 int i;
2371
2372 for (i = 0; i < PHY_MAX_ADDR; i++) {
2373 phy_dev = sc->mii_bus->phy_map[i];
2374 if (phy_dev)
2375 break;
2376 }
2377 if (!phy_dev) {
2378 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2379 return -ENXIO;
2380 }
2381
2382 phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll,
2383 PHY_INTERFACE_MODE_GMII);
2384 if (IS_ERR(phy_dev)) {
2385 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2386 return PTR_ERR(phy_dev);
2387 }
2388
2389 /* Remove any features not supported by the controller */
2390 phy_dev->supported &= SUPPORTED_10baseT_Half |
2391 SUPPORTED_10baseT_Full |
2392 SUPPORTED_100baseT_Half |
2393 SUPPORTED_100baseT_Full |
2394 SUPPORTED_1000baseT_Half |
2395 SUPPORTED_1000baseT_Full |
2396 SUPPORTED_Autoneg |
2397 SUPPORTED_MII |
2398 SUPPORTED_Pause |
2399 SUPPORTED_Asym_Pause;
2400 phy_dev->advertising = phy_dev->supported;
2401
2402 pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2403 dev->name, phy_dev->drv->name,
2404 dev_name(&phy_dev->dev), phy_dev->irq);
2405
2406 sc->phy_dev = phy_dev;
2407
2408 return 0;
2409 }
2410
2411
sbmac_mii_poll(struct net_device * dev)2412 static void sbmac_mii_poll(struct net_device *dev)
2413 {
2414 struct sbmac_softc *sc = netdev_priv(dev);
2415 struct phy_device *phy_dev = sc->phy_dev;
2416 unsigned long flags;
2417 enum sbmac_fc fc;
2418 int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2419
2420 link_chg = (sc->sbm_link != phy_dev->link);
2421 speed_chg = (sc->sbm_speed != phy_dev->speed);
2422 duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2423 pause_chg = (sc->sbm_pause != phy_dev->pause);
2424
2425 if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2426 return; /* Hmmm... */
2427
2428 if (!phy_dev->link) {
2429 if (link_chg) {
2430 sc->sbm_link = phy_dev->link;
2431 sc->sbm_speed = sbmac_speed_none;
2432 sc->sbm_duplex = sbmac_duplex_none;
2433 sc->sbm_fc = sbmac_fc_disabled;
2434 sc->sbm_pause = -1;
2435 pr_info("%s: link unavailable\n", dev->name);
2436 }
2437 return;
2438 }
2439
2440 if (phy_dev->duplex == DUPLEX_FULL) {
2441 if (phy_dev->pause)
2442 fc = sbmac_fc_frame;
2443 else
2444 fc = sbmac_fc_disabled;
2445 } else
2446 fc = sbmac_fc_collision;
2447 fc_chg = (sc->sbm_fc != fc);
2448
2449 pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2450 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2451
2452 spin_lock_irqsave(&sc->sbm_lock, flags);
2453
2454 sc->sbm_speed = phy_dev->speed;
2455 sc->sbm_duplex = phy_dev->duplex;
2456 sc->sbm_fc = fc;
2457 sc->sbm_pause = phy_dev->pause;
2458 sc->sbm_link = phy_dev->link;
2459
2460 if ((speed_chg || duplex_chg || fc_chg) &&
2461 sc->sbm_state != sbmac_state_off) {
2462 /*
2463 * something changed, restart the channel
2464 */
2465 if (debug > 1)
2466 pr_debug("%s: restarting channel "
2467 "because PHY state changed\n", dev->name);
2468 sbmac_channel_stop(sc);
2469 sbmac_channel_start(sc);
2470 }
2471
2472 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2473 }
2474
2475
sbmac_tx_timeout(struct net_device * dev)2476 static void sbmac_tx_timeout (struct net_device *dev)
2477 {
2478 struct sbmac_softc *sc = netdev_priv(dev);
2479 unsigned long flags;
2480
2481 spin_lock_irqsave(&sc->sbm_lock, flags);
2482
2483
2484 dev->trans_start = jiffies; /* prevent tx timeout */
2485 dev->stats.tx_errors++;
2486
2487 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2488
2489 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2490 }
2491
2492
2493
2494
sbmac_set_rx_mode(struct net_device * dev)2495 static void sbmac_set_rx_mode(struct net_device *dev)
2496 {
2497 unsigned long flags;
2498 struct sbmac_softc *sc = netdev_priv(dev);
2499
2500 spin_lock_irqsave(&sc->sbm_lock, flags);
2501 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2502 /*
2503 * Promiscuous changed.
2504 */
2505
2506 if (dev->flags & IFF_PROMISC) {
2507 sbmac_promiscuous_mode(sc,1);
2508 }
2509 else {
2510 sbmac_promiscuous_mode(sc,0);
2511 }
2512 }
2513 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2514
2515 /*
2516 * Program the multicasts. Do this every time.
2517 */
2518
2519 sbmac_setmulti(sc);
2520
2521 }
2522
sbmac_mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2523 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2524 {
2525 struct sbmac_softc *sc = netdev_priv(dev);
2526
2527 if (!netif_running(dev) || !sc->phy_dev)
2528 return -EINVAL;
2529
2530 return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2531 }
2532
sbmac_close(struct net_device * dev)2533 static int sbmac_close(struct net_device *dev)
2534 {
2535 struct sbmac_softc *sc = netdev_priv(dev);
2536
2537 napi_disable(&sc->napi);
2538
2539 phy_stop(sc->phy_dev);
2540
2541 sbmac_set_channel_state(sc, sbmac_state_off);
2542
2543 netif_stop_queue(dev);
2544
2545 if (debug > 1)
2546 pr_debug("%s: Shutting down ethercard\n", dev->name);
2547
2548 phy_disconnect(sc->phy_dev);
2549 sc->phy_dev = NULL;
2550 free_irq(dev->irq, dev);
2551
2552 sbdma_emptyring(&(sc->sbm_txdma));
2553 sbdma_emptyring(&(sc->sbm_rxdma));
2554
2555 return 0;
2556 }
2557
sbmac_poll(struct napi_struct * napi,int budget)2558 static int sbmac_poll(struct napi_struct *napi, int budget)
2559 {
2560 struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2561 int work_done;
2562
2563 work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2564 sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2565
2566 if (work_done < budget) {
2567 napi_complete(napi);
2568
2569 #ifdef CONFIG_SBMAC_COALESCE
2570 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2571 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2572 sc->sbm_imr);
2573 #else
2574 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2575 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2576 #endif
2577 }
2578
2579 return work_done;
2580 }
2581
2582
sbmac_probe(struct platform_device * pldev)2583 static int sbmac_probe(struct platform_device *pldev)
2584 {
2585 struct net_device *dev;
2586 struct sbmac_softc *sc;
2587 void __iomem *sbm_base;
2588 struct resource *res;
2589 u64 sbmac_orig_hwaddr;
2590 int err;
2591
2592 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2593 BUG_ON(!res);
2594 sbm_base = ioremap_nocache(res->start, resource_size(res));
2595 if (!sbm_base) {
2596 printk(KERN_ERR "%s: unable to map device registers\n",
2597 dev_name(&pldev->dev));
2598 err = -ENOMEM;
2599 goto out_out;
2600 }
2601
2602 /*
2603 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2604 * value for us by the firmware if we're going to use this MAC.
2605 * If we find a zero, skip this MAC.
2606 */
2607 sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2608 pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2609 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2610 if (sbmac_orig_hwaddr == 0) {
2611 err = 0;
2612 goto out_unmap;
2613 }
2614
2615 /*
2616 * Okay, cool. Initialize this MAC.
2617 */
2618 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2619 if (!dev) {
2620 err = -ENOMEM;
2621 goto out_unmap;
2622 }
2623
2624 platform_set_drvdata(pldev, dev);
2625 SET_NETDEV_DEV(dev, &pldev->dev);
2626
2627 sc = netdev_priv(dev);
2628 sc->sbm_base = sbm_base;
2629
2630 err = sbmac_init(pldev, res->start);
2631 if (err)
2632 goto out_kfree;
2633
2634 return 0;
2635
2636 out_kfree:
2637 free_netdev(dev);
2638 __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2639
2640 out_unmap:
2641 iounmap(sbm_base);
2642
2643 out_out:
2644 return err;
2645 }
2646
sbmac_remove(struct platform_device * pldev)2647 static int __exit sbmac_remove(struct platform_device *pldev)
2648 {
2649 struct net_device *dev = platform_get_drvdata(pldev);
2650 struct sbmac_softc *sc = netdev_priv(dev);
2651
2652 unregister_netdev(dev);
2653 sbmac_uninitctx(sc);
2654 mdiobus_unregister(sc->mii_bus);
2655 mdiobus_free(sc->mii_bus);
2656 iounmap(sc->sbm_base);
2657 free_netdev(dev);
2658
2659 return 0;
2660 }
2661
2662 static struct platform_driver sbmac_driver = {
2663 .probe = sbmac_probe,
2664 .remove = __exit_p(sbmac_remove),
2665 .driver = {
2666 .name = sbmac_string,
2667 },
2668 };
2669
2670 module_platform_driver(sbmac_driver);
2671