1 /*
2  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include "dsi.h"
15 #include "dsi.xml.h"
16 
17 #define dsi_phy_read(offset) msm_readl((offset))
18 #define dsi_phy_write(offset, data) msm_writel((data), (offset))
19 
20 struct dsi_dphy_timing {
21 	u32 clk_pre;
22 	u32 clk_post;
23 	u32 clk_zero;
24 	u32 clk_trail;
25 	u32 clk_prepare;
26 	u32 hs_exit;
27 	u32 hs_zero;
28 	u32 hs_prepare;
29 	u32 hs_trail;
30 	u32 hs_rqst;
31 	u32 ta_go;
32 	u32 ta_sure;
33 	u32 ta_get;
34 };
35 
36 struct msm_dsi_phy {
37 	void __iomem *base;
38 	void __iomem *reg_base;
39 	int id;
40 	struct dsi_dphy_timing timing;
41 	int (*enable)(struct msm_dsi_phy *phy, bool is_dual_panel,
42 		const unsigned long bit_rate, const unsigned long esc_rate);
43 	int (*disable)(struct msm_dsi_phy *phy);
44 };
45 
46 #define S_DIV_ROUND_UP(n, d)	\
47 	(((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
48 
linear_inter(s32 tmax,s32 tmin,s32 percent,s32 min_result,bool even)49 static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
50 				s32 min_result, bool even)
51 {
52 	s32 v;
53 	v = (tmax - tmin) * percent;
54 	v = S_DIV_ROUND_UP(v, 100) + tmin;
55 	if (even && (v & 0x1))
56 		return max_t(s32, min_result, v - 1);
57 	else
58 		return max_t(s32, min_result, v);
59 }
60 
dsi_dphy_timing_calc_clk_zero(struct dsi_dphy_timing * timing,s32 ui,s32 coeff,s32 pcnt)61 static void dsi_dphy_timing_calc_clk_zero(struct dsi_dphy_timing *timing,
62 					s32 ui, s32 coeff, s32 pcnt)
63 {
64 	s32 tmax, tmin, clk_z;
65 	s32 temp;
66 
67 	/* reset */
68 	temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui;
69 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
70 	if (tmin > 255) {
71 		tmax = 511;
72 		clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true);
73 	} else {
74 		tmax = 255;
75 		clk_z = linear_inter(tmax, tmin, pcnt, 0, true);
76 	}
77 
78 	/* adjust */
79 	temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7;
80 	timing->clk_zero = clk_z + 8 - temp;
81 }
82 
dsi_dphy_timing_calc(struct dsi_dphy_timing * timing,const unsigned long bit_rate,const unsigned long esc_rate)83 static int dsi_dphy_timing_calc(struct dsi_dphy_timing *timing,
84 	const unsigned long bit_rate, const unsigned long esc_rate)
85 {
86 	s32 ui, lpx;
87 	s32 tmax, tmin;
88 	s32 pcnt0 = 10;
89 	s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10;
90 	s32 pcnt2 = 10;
91 	s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40;
92 	s32 coeff = 1000; /* Precision, should avoid overflow */
93 	s32 temp;
94 
95 	if (!bit_rate || !esc_rate)
96 		return -EINVAL;
97 
98 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
99 	lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
100 
101 	tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2;
102 	tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2;
103 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true);
104 
105 	temp = lpx / ui;
106 	if (temp & 0x1)
107 		timing->hs_rqst = temp;
108 	else
109 		timing->hs_rqst = max_t(s32, 0, temp - 2);
110 
111 	/* Calculate clk_zero after clk_prepare and hs_rqst */
112 	dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2);
113 
114 	temp = 105 * coeff + 12 * ui - 20 * coeff;
115 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
116 	tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2;
117 	timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
118 
119 	temp = 85 * coeff + 6 * ui;
120 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
121 	temp = 40 * coeff + 4 * ui;
122 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
123 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true);
124 
125 	tmax = 255;
126 	temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui;
127 	temp = 145 * coeff + 10 * ui - temp;
128 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
129 	timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true);
130 
131 	temp = 105 * coeff + 12 * ui - 20 * coeff;
132 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
133 	temp = 60 * coeff + 4 * ui;
134 	tmin = DIV_ROUND_UP(temp, ui) - 2;
135 	timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
136 
137 	tmax = 255;
138 	tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2;
139 	timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true);
140 
141 	tmax = 63;
142 	temp = ((timing->hs_exit >> 1) + 1) * 2 * ui;
143 	temp = 60 * coeff + 52 * ui - 24 * ui - temp;
144 	tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
145 	timing->clk_post = linear_inter(tmax, tmin, pcnt2, 0, false);
146 
147 	tmax = 63;
148 	temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui;
149 	temp += ((timing->clk_zero >> 1) + 1) * 2 * ui;
150 	temp += 8 * ui + lpx;
151 	tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
152 	if (tmin > tmax) {
153 		temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false) >> 1;
154 		timing->clk_pre = temp >> 1;
155 		temp = (2 * tmax - tmin) * pcnt2;
156 	} else {
157 		timing->clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false);
158 	}
159 
160 	timing->ta_go = 3;
161 	timing->ta_sure = 0;
162 	timing->ta_get = 4;
163 
164 	DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
165 		timing->clk_pre, timing->clk_post, timing->clk_zero,
166 		timing->clk_trail, timing->clk_prepare, timing->hs_exit,
167 		timing->hs_zero, timing->hs_prepare, timing->hs_trail,
168 		timing->hs_rqst);
169 
170 	return 0;
171 }
172 
dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy * phy,bool enable)173 static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy, bool enable)
174 {
175 	void __iomem *base = phy->reg_base;
176 
177 	if (!enable) {
178 		dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0);
179 		return;
180 	}
181 
182 	dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0);
183 	dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 1);
184 	dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0);
185 	dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0);
186 	dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x3);
187 	dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x9);
188 	dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x7);
189 	dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20);
190 }
191 
dsi_28nm_phy_enable(struct msm_dsi_phy * phy,bool is_dual_panel,const unsigned long bit_rate,const unsigned long esc_rate)192 static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel,
193 		const unsigned long bit_rate, const unsigned long esc_rate)
194 {
195 	struct dsi_dphy_timing *timing = &phy->timing;
196 	int i;
197 	void __iomem *base = phy->base;
198 
199 	DBG("");
200 
201 	if (dsi_dphy_timing_calc(timing, bit_rate, esc_rate)) {
202 		pr_err("%s: D-PHY timing calculation failed\n", __func__);
203 		return -EINVAL;
204 	}
205 
206 	dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_0, 0xff);
207 
208 	dsi_28nm_phy_regulator_ctrl(phy, true);
209 
210 	dsi_phy_write(base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x00);
211 
212 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_0,
213 		DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero));
214 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_1,
215 		DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail));
216 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_2,
217 		DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare));
218 	if (timing->clk_zero & BIT(8))
219 		dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_3,
220 			DSI_28nm_PHY_TIMING_CTRL_3_CLK_ZERO_8);
221 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_4,
222 		DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
223 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_5,
224 		DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero));
225 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_6,
226 		DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare));
227 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_7,
228 		DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail));
229 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_8,
230 		DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst));
231 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_9,
232 		DSI_28nm_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) |
233 		DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
234 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_10,
235 		DSI_28nm_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get));
236 	dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_11,
237 		DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD(0));
238 
239 	dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_1, 0x00);
240 	dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
241 
242 	dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_1, 0x6);
243 
244 	for (i = 0; i < 4; i++) {
245 		dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_0(i), 0);
246 		dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_1(i), 0);
247 		dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_2(i), 0);
248 		dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_3(i), 0);
249 		dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_DATAPATH(i), 0);
250 		dsi_phy_write(base + REG_DSI_28nm_PHY_LN_DEBUG_SEL(i), 0);
251 		dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_0(i), 0x1);
252 		dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_1(i), 0x97);
253 	}
254 	dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(0), 0);
255 	dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(1), 0x5);
256 	dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(2), 0xa);
257 	dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(3), 0xf);
258 
259 	dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_1, 0xc0);
260 	dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR0, 0x1);
261 	dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR1, 0xbb);
262 
263 	dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
264 
265 	if (is_dual_panel && (phy->id != DSI_CLOCK_MASTER))
266 		dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, 0x00);
267 	else
268 		dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, 0x01);
269 
270 	return 0;
271 }
272 
dsi_28nm_phy_disable(struct msm_dsi_phy * phy)273 static int dsi_28nm_phy_disable(struct msm_dsi_phy *phy)
274 {
275 	dsi_phy_write(phy->base + REG_DSI_28nm_PHY_CTRL_0, 0);
276 	dsi_28nm_phy_regulator_ctrl(phy, false);
277 
278 	/*
279 	 * Wait for the registers writes to complete in order to
280 	 * ensure that the phy is completely disabled
281 	 */
282 	wmb();
283 
284 	return 0;
285 }
286 
287 #define dsi_phy_func_init(name)	\
288 	do {	\
289 		phy->enable = dsi_##name##_phy_enable;	\
290 		phy->disable = dsi_##name##_phy_disable;	\
291 	} while (0)
292 
msm_dsi_phy_init(struct platform_device * pdev,enum msm_dsi_phy_type type,int id)293 struct msm_dsi_phy *msm_dsi_phy_init(struct platform_device *pdev,
294 			enum msm_dsi_phy_type type, int id)
295 {
296 	struct msm_dsi_phy *phy;
297 
298 	phy = devm_kzalloc(&pdev->dev, sizeof(*phy), GFP_KERNEL);
299 	if (!phy)
300 		return NULL;
301 
302 	phy->base = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
303 	if (IS_ERR_OR_NULL(phy->base)) {
304 		pr_err("%s: failed to map phy base\n", __func__);
305 		return NULL;
306 	}
307 	phy->reg_base = msm_ioremap(pdev, "dsi_phy_regulator", "DSI_PHY_REG");
308 	if (IS_ERR_OR_NULL(phy->reg_base)) {
309 		pr_err("%s: failed to map phy regulator base\n", __func__);
310 		return NULL;
311 	}
312 
313 	switch (type) {
314 	case MSM_DSI_PHY_28NM:
315 		dsi_phy_func_init(28nm);
316 		break;
317 	default:
318 		pr_err("%s: unsupported type, %d\n", __func__, type);
319 		return NULL;
320 	}
321 
322 	phy->id = id;
323 
324 	return phy;
325 }
326 
msm_dsi_phy_enable(struct msm_dsi_phy * phy,bool is_dual_panel,const unsigned long bit_rate,const unsigned long esc_rate)327 int msm_dsi_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel,
328 	const unsigned long bit_rate, const unsigned long esc_rate)
329 {
330 	if (!phy || !phy->enable)
331 		return -EINVAL;
332 	return phy->enable(phy, is_dual_panel, bit_rate, esc_rate);
333 }
334 
msm_dsi_phy_disable(struct msm_dsi_phy * phy)335 int msm_dsi_phy_disable(struct msm_dsi_phy *phy)
336 {
337 	if (!phy || !phy->disable)
338 		return -EINVAL;
339 	return phy->disable(phy);
340 }
341 
msm_dsi_phy_get_clk_pre_post(struct msm_dsi_phy * phy,u32 * clk_pre,u32 * clk_post)342 void msm_dsi_phy_get_clk_pre_post(struct msm_dsi_phy *phy,
343 	u32 *clk_pre, u32 *clk_post)
344 {
345 	if (!phy)
346 		return;
347 	if (clk_pre)
348 		*clk_pre = phy->timing.clk_pre;
349 	if (clk_post)
350 		*clk_post = phy->timing.clk_post;
351 }
352 
353