1 /*
2  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3  *
4  * Derived from:
5  *	https://github.com/yuq/sunxi-nfc-mtd
6  *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7  *
8  *	https://github.com/hno/Allwinner-Info
9  *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10  *
11  *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12  *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mtd.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/clk.h>
38 #include <linux/delay.h>
39 #include <linux/dmaengine.h>
40 #include <linux/gpio.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43 
44 #define NFC_REG_CTL		0x0000
45 #define NFC_REG_ST		0x0004
46 #define NFC_REG_INT		0x0008
47 #define NFC_REG_TIMING_CTL	0x000C
48 #define NFC_REG_TIMING_CFG	0x0010
49 #define NFC_REG_ADDR_LOW	0x0014
50 #define NFC_REG_ADDR_HIGH	0x0018
51 #define NFC_REG_SECTOR_NUM	0x001C
52 #define NFC_REG_CNT		0x0020
53 #define NFC_REG_CMD		0x0024
54 #define NFC_REG_RCMD_SET	0x0028
55 #define NFC_REG_WCMD_SET	0x002C
56 #define NFC_REG_IO_DATA		0x0030
57 #define NFC_REG_ECC_CTL		0x0034
58 #define NFC_REG_ECC_ST		0x0038
59 #define NFC_REG_DEBUG		0x003C
60 #define NFC_REG_ECC_CNT0	0x0040
61 #define NFC_REG_ECC_CNT1	0x0044
62 #define NFC_REG_ECC_CNT2	0x0048
63 #define NFC_REG_ECC_CNT3	0x004c
64 #define NFC_REG_USER_DATA_BASE	0x0050
65 #define NFC_REG_SPARE_AREA	0x00A0
66 #define NFC_RAM0_BASE		0x0400
67 #define NFC_RAM1_BASE		0x0800
68 
69 /* define bit use in NFC_CTL */
70 #define NFC_EN			BIT(0)
71 #define NFC_RESET		BIT(1)
72 #define NFC_BUS_WIDYH		BIT(2)
73 #define NFC_RB_SEL		BIT(3)
74 #define NFC_CE_SEL		GENMASK(26, 24)
75 #define NFC_CE_CTL		BIT(6)
76 #define NFC_CE_CTL1		BIT(7)
77 #define NFC_PAGE_SIZE		GENMASK(11, 8)
78 #define NFC_SAM			BIT(12)
79 #define NFC_RAM_METHOD		BIT(14)
80 #define NFC_DEBUG_CTL		BIT(31)
81 
82 /* define bit use in NFC_ST */
83 #define NFC_RB_B2R		BIT(0)
84 #define NFC_CMD_INT_FLAG	BIT(1)
85 #define NFC_DMA_INT_FLAG	BIT(2)
86 #define NFC_CMD_FIFO_STATUS	BIT(3)
87 #define NFC_STA			BIT(4)
88 #define NFC_NATCH_INT_FLAG	BIT(5)
89 #define NFC_RB_STATE0		BIT(8)
90 #define NFC_RB_STATE1		BIT(9)
91 #define NFC_RB_STATE2		BIT(10)
92 #define NFC_RB_STATE3		BIT(11)
93 
94 /* define bit use in NFC_INT */
95 #define NFC_B2R_INT_ENABLE	BIT(0)
96 #define NFC_CMD_INT_ENABLE	BIT(1)
97 #define NFC_DMA_INT_ENABLE	BIT(2)
98 #define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
99 				 NFC_CMD_INT_ENABLE | \
100 				 NFC_DMA_INT_ENABLE)
101 
102 /* define bit use in NFC_CMD */
103 #define NFC_CMD_LOW_BYTE	GENMASK(7, 0)
104 #define NFC_CMD_HIGH_BYTE	GENMASK(15, 8)
105 #define NFC_ADR_NUM		GENMASK(18, 16)
106 #define NFC_SEND_ADR		BIT(19)
107 #define NFC_ACCESS_DIR		BIT(20)
108 #define NFC_DATA_TRANS		BIT(21)
109 #define NFC_SEND_CMD1		BIT(22)
110 #define NFC_WAIT_FLAG		BIT(23)
111 #define NFC_SEND_CMD2		BIT(24)
112 #define NFC_SEQ			BIT(25)
113 #define NFC_DATA_SWAP_METHOD	BIT(26)
114 #define NFC_ROW_AUTO_INC	BIT(27)
115 #define NFC_SEND_CMD3		BIT(28)
116 #define NFC_SEND_CMD4		BIT(29)
117 #define NFC_CMD_TYPE		GENMASK(31, 30)
118 
119 /* define bit use in NFC_RCMD_SET */
120 #define NFC_READ_CMD		GENMASK(7, 0)
121 #define NFC_RANDOM_READ_CMD0	GENMASK(15, 8)
122 #define NFC_RANDOM_READ_CMD1	GENMASK(23, 16)
123 
124 /* define bit use in NFC_WCMD_SET */
125 #define NFC_PROGRAM_CMD		GENMASK(7, 0)
126 #define NFC_RANDOM_WRITE_CMD	GENMASK(15, 8)
127 #define NFC_READ_CMD0		GENMASK(23, 16)
128 #define NFC_READ_CMD1		GENMASK(31, 24)
129 
130 /* define bit use in NFC_ECC_CTL */
131 #define NFC_ECC_EN		BIT(0)
132 #define NFC_ECC_PIPELINE	BIT(3)
133 #define NFC_ECC_EXCEPTION	BIT(4)
134 #define NFC_ECC_BLOCK_SIZE	BIT(5)
135 #define NFC_RANDOM_EN		BIT(9)
136 #define NFC_RANDOM_DIRECTION	BIT(10)
137 #define NFC_ECC_MODE_SHIFT	12
138 #define NFC_ECC_MODE		GENMASK(15, 12)
139 #define NFC_RANDOM_SEED		GENMASK(30, 16)
140 
141 /* NFC_USER_DATA helper macros */
142 #define NFC_BUF_TO_USER_DATA(buf)	((buf)[0] | ((buf)[1] << 8) | \
143 					((buf)[2] << 16) | ((buf)[3] << 24))
144 
145 #define NFC_DEFAULT_TIMEOUT_MS	1000
146 
147 #define NFC_SRAM_SIZE		1024
148 
149 #define NFC_MAX_CS		7
150 
151 /*
152  * Ready/Busy detection type: describes the Ready/Busy detection modes
153  *
154  * @RB_NONE:	no external detection available, rely on STATUS command
155  *		and software timeouts
156  * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
157  *		pin of the NAND flash chip must be connected to one of the
158  *		native NAND R/B pins (those which can be muxed to the NAND
159  *		Controller)
160  * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
161  *		pin of the NAND flash chip must be connected to a GPIO capable
162  *		pin.
163  */
164 enum sunxi_nand_rb_type {
165 	RB_NONE,
166 	RB_NATIVE,
167 	RB_GPIO,
168 };
169 
170 /*
171  * Ready/Busy structure: stores information related to Ready/Busy detection
172  *
173  * @type:	the Ready/Busy detection mode
174  * @info:	information related to the R/B detection mode. Either a gpio
175  *		id or a native R/B id (those supported by the NAND controller).
176  */
177 struct sunxi_nand_rb {
178 	enum sunxi_nand_rb_type type;
179 	union {
180 		int gpio;
181 		int nativeid;
182 	} info;
183 };
184 
185 /*
186  * Chip Select structure: stores information related to NAND Chip Select
187  *
188  * @cs:		the NAND CS id used to communicate with a NAND Chip
189  * @rb:		the Ready/Busy description
190  */
191 struct sunxi_nand_chip_sel {
192 	u8 cs;
193 	struct sunxi_nand_rb rb;
194 };
195 
196 /*
197  * sunxi HW ECC infos: stores information related to HW ECC support
198  *
199  * @mode:	the sunxi ECC mode field deduced from ECC requirements
200  * @layout:	the OOB layout depending on the ECC requirements and the
201  *		selected ECC mode
202  */
203 struct sunxi_nand_hw_ecc {
204 	int mode;
205 	struct nand_ecclayout layout;
206 };
207 
208 /*
209  * NAND chip structure: stores NAND chip device related information
210  *
211  * @node:		used to store NAND chips into a list
212  * @nand:		base NAND chip structure
213  * @mtd:		base MTD structure
214  * @clk_rate:		clk_rate required for this NAND chip
215  * @selected:		current active CS
216  * @nsels:		number of CS lines required by the NAND chip
217  * @sels:		array of CS lines descriptions
218  */
219 struct sunxi_nand_chip {
220 	struct list_head node;
221 	struct nand_chip nand;
222 	struct mtd_info mtd;
223 	unsigned long clk_rate;
224 	int selected;
225 	int nsels;
226 	struct sunxi_nand_chip_sel sels[0];
227 };
228 
to_sunxi_nand(struct nand_chip * nand)229 static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
230 {
231 	return container_of(nand, struct sunxi_nand_chip, nand);
232 }
233 
234 /*
235  * NAND Controller structure: stores sunxi NAND controller information
236  *
237  * @controller:		base controller structure
238  * @dev:		parent device (used to print error messages)
239  * @regs:		NAND controller registers
240  * @ahb_clk:		NAND Controller AHB clock
241  * @mod_clk:		NAND Controller mod clock
242  * @assigned_cs:	bitmask describing already assigned CS lines
243  * @clk_rate:		NAND controller current clock rate
244  * @chips:		a list containing all the NAND chips attached to
245  *			this NAND controller
246  * @complete:		a completion object used to wait for NAND
247  *			controller events
248  */
249 struct sunxi_nfc {
250 	struct nand_hw_control controller;
251 	struct device *dev;
252 	void __iomem *regs;
253 	struct clk *ahb_clk;
254 	struct clk *mod_clk;
255 	unsigned long assigned_cs;
256 	unsigned long clk_rate;
257 	struct list_head chips;
258 	struct completion complete;
259 };
260 
to_sunxi_nfc(struct nand_hw_control * ctrl)261 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
262 {
263 	return container_of(ctrl, struct sunxi_nfc, controller);
264 }
265 
sunxi_nfc_interrupt(int irq,void * dev_id)266 static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
267 {
268 	struct sunxi_nfc *nfc = dev_id;
269 	u32 st = readl(nfc->regs + NFC_REG_ST);
270 	u32 ien = readl(nfc->regs + NFC_REG_INT);
271 
272 	if (!(ien & st))
273 		return IRQ_NONE;
274 
275 	if ((ien & st) == ien)
276 		complete(&nfc->complete);
277 
278 	writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
279 	writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
280 
281 	return IRQ_HANDLED;
282 }
283 
sunxi_nfc_wait_int(struct sunxi_nfc * nfc,u32 flags,unsigned int timeout_ms)284 static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
285 			      unsigned int timeout_ms)
286 {
287 	init_completion(&nfc->complete);
288 
289 	writel(flags, nfc->regs + NFC_REG_INT);
290 
291 	if (!timeout_ms)
292 		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
293 
294 	if (!wait_for_completion_timeout(&nfc->complete,
295 					 msecs_to_jiffies(timeout_ms))) {
296 		dev_err(nfc->dev, "wait interrupt timedout\n");
297 		return -ETIMEDOUT;
298 	}
299 
300 	return 0;
301 }
302 
sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc * nfc)303 static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
304 {
305 	unsigned long timeout = jiffies +
306 				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
307 
308 	do {
309 		if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
310 			return 0;
311 	} while (time_before(jiffies, timeout));
312 
313 	dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
314 	return -ETIMEDOUT;
315 }
316 
sunxi_nfc_rst(struct sunxi_nfc * nfc)317 static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
318 {
319 	unsigned long timeout = jiffies +
320 				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
321 
322 	writel(0, nfc->regs + NFC_REG_ECC_CTL);
323 	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
324 
325 	do {
326 		if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
327 			return 0;
328 	} while (time_before(jiffies, timeout));
329 
330 	dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
331 	return -ETIMEDOUT;
332 }
333 
sunxi_nfc_dev_ready(struct mtd_info * mtd)334 static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
335 {
336 	struct nand_chip *nand = mtd->priv;
337 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
338 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
339 	struct sunxi_nand_rb *rb;
340 	unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
341 	int ret;
342 
343 	if (sunxi_nand->selected < 0)
344 		return 0;
345 
346 	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
347 
348 	switch (rb->type) {
349 	case RB_NATIVE:
350 		ret = !!(readl(nfc->regs + NFC_REG_ST) &
351 			 (NFC_RB_STATE0 << rb->info.nativeid));
352 		if (ret)
353 			break;
354 
355 		sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
356 		ret = !!(readl(nfc->regs + NFC_REG_ST) &
357 			 (NFC_RB_STATE0 << rb->info.nativeid));
358 		break;
359 	case RB_GPIO:
360 		ret = gpio_get_value(rb->info.gpio);
361 		break;
362 	case RB_NONE:
363 	default:
364 		ret = 0;
365 		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
366 		break;
367 	}
368 
369 	return ret;
370 }
371 
sunxi_nfc_select_chip(struct mtd_info * mtd,int chip)372 static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
373 {
374 	struct nand_chip *nand = mtd->priv;
375 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
376 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
377 	struct sunxi_nand_chip_sel *sel;
378 	u32 ctl;
379 
380 	if (chip > 0 && chip >= sunxi_nand->nsels)
381 		return;
382 
383 	if (chip == sunxi_nand->selected)
384 		return;
385 
386 	ctl = readl(nfc->regs + NFC_REG_CTL) &
387 	      ~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN);
388 
389 	if (chip >= 0) {
390 		sel = &sunxi_nand->sels[chip];
391 
392 		ctl |= (sel->cs << 24) | NFC_EN |
393 		       (((nand->page_shift - 10) & 0xf) << 8);
394 		if (sel->rb.type == RB_NONE) {
395 			nand->dev_ready = NULL;
396 		} else {
397 			nand->dev_ready = sunxi_nfc_dev_ready;
398 			if (sel->rb.type == RB_NATIVE)
399 				ctl |= (sel->rb.info.nativeid << 3);
400 		}
401 
402 		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
403 
404 		if (nfc->clk_rate != sunxi_nand->clk_rate) {
405 			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
406 			nfc->clk_rate = sunxi_nand->clk_rate;
407 		}
408 	}
409 
410 	writel(ctl, nfc->regs + NFC_REG_CTL);
411 
412 	sunxi_nand->selected = chip;
413 }
414 
sunxi_nfc_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)415 static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
416 {
417 	struct nand_chip *nand = mtd->priv;
418 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
419 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
420 	int ret;
421 	int cnt;
422 	int offs = 0;
423 	u32 tmp;
424 
425 	while (len > offs) {
426 		cnt = min(len - offs, NFC_SRAM_SIZE);
427 
428 		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
429 		if (ret)
430 			break;
431 
432 		writel(cnt, nfc->regs + NFC_REG_CNT);
433 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
434 		writel(tmp, nfc->regs + NFC_REG_CMD);
435 
436 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
437 		if (ret)
438 			break;
439 
440 		if (buf)
441 			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
442 				      cnt);
443 		offs += cnt;
444 	}
445 }
446 
sunxi_nfc_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)447 static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
448 				int len)
449 {
450 	struct nand_chip *nand = mtd->priv;
451 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
452 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
453 	int ret;
454 	int cnt;
455 	int offs = 0;
456 	u32 tmp;
457 
458 	while (len > offs) {
459 		cnt = min(len - offs, NFC_SRAM_SIZE);
460 
461 		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
462 		if (ret)
463 			break;
464 
465 		writel(cnt, nfc->regs + NFC_REG_CNT);
466 		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
467 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
468 		      NFC_ACCESS_DIR;
469 		writel(tmp, nfc->regs + NFC_REG_CMD);
470 
471 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
472 		if (ret)
473 			break;
474 
475 		offs += cnt;
476 	}
477 }
478 
sunxi_nfc_read_byte(struct mtd_info * mtd)479 static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
480 {
481 	uint8_t ret;
482 
483 	sunxi_nfc_read_buf(mtd, &ret, 1);
484 
485 	return ret;
486 }
487 
sunxi_nfc_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)488 static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
489 			       unsigned int ctrl)
490 {
491 	struct nand_chip *nand = mtd->priv;
492 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
493 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
494 	int ret;
495 	u32 tmp;
496 
497 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
498 	if (ret)
499 		return;
500 
501 	if (ctrl & NAND_CTRL_CHANGE) {
502 		tmp = readl(nfc->regs + NFC_REG_CTL);
503 		if (ctrl & NAND_NCE)
504 			tmp |= NFC_CE_CTL;
505 		else
506 			tmp &= ~NFC_CE_CTL;
507 		writel(tmp, nfc->regs + NFC_REG_CTL);
508 	}
509 
510 	if (dat == NAND_CMD_NONE)
511 		return;
512 
513 	if (ctrl & NAND_CLE) {
514 		writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
515 	} else {
516 		writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
517 		writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
518 	}
519 
520 	sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
521 }
522 
sunxi_nfc_hw_ecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)523 static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
524 				      struct nand_chip *chip, uint8_t *buf,
525 				      int oob_required, int page)
526 {
527 	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
528 	struct nand_ecc_ctrl *ecc = &chip->ecc;
529 	struct nand_ecclayout *layout = ecc->layout;
530 	struct sunxi_nand_hw_ecc *data = ecc->priv;
531 	unsigned int max_bitflips = 0;
532 	int offset;
533 	int ret;
534 	u32 tmp;
535 	int i;
536 	int cnt;
537 
538 	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
539 	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
540 	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
541 	       NFC_ECC_EXCEPTION;
542 
543 	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
544 
545 	for (i = 0; i < ecc->steps; i++) {
546 		if (i)
547 			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1);
548 
549 		offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4;
550 
551 		chip->read_buf(mtd, NULL, ecc->size);
552 
553 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
554 
555 		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
556 		if (ret)
557 			return ret;
558 
559 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
560 		writel(tmp, nfc->regs + NFC_REG_CMD);
561 
562 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
563 		if (ret)
564 			return ret;
565 
566 		memcpy_fromio(buf + (i * ecc->size),
567 			      nfc->regs + NFC_RAM0_BASE, ecc->size);
568 
569 		if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
570 			mtd->ecc_stats.failed++;
571 		} else {
572 			tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
573 			mtd->ecc_stats.corrected += tmp;
574 			max_bitflips = max_t(unsigned int, max_bitflips, tmp);
575 		}
576 
577 		if (oob_required) {
578 			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
579 
580 			ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
581 			if (ret)
582 				return ret;
583 
584 			offset -= mtd->writesize;
585 			chip->read_buf(mtd, chip->oob_poi + offset,
586 				      ecc->bytes + 4);
587 		}
588 	}
589 
590 	if (oob_required) {
591 		cnt = ecc->layout->oobfree[ecc->steps].length;
592 		if (cnt > 0) {
593 			offset = mtd->writesize +
594 				 ecc->layout->oobfree[ecc->steps].offset;
595 			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
596 			offset -= mtd->writesize;
597 			chip->read_buf(mtd, chip->oob_poi + offset, cnt);
598 		}
599 	}
600 
601 	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
602 	tmp &= ~NFC_ECC_EN;
603 
604 	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
605 
606 	return max_bitflips;
607 }
608 
sunxi_nfc_hw_ecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)609 static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
610 				       struct nand_chip *chip,
611 				       const uint8_t *buf, int oob_required)
612 {
613 	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
614 	struct nand_ecc_ctrl *ecc = &chip->ecc;
615 	struct nand_ecclayout *layout = ecc->layout;
616 	struct sunxi_nand_hw_ecc *data = ecc->priv;
617 	int offset;
618 	int ret;
619 	u32 tmp;
620 	int i;
621 	int cnt;
622 
623 	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
624 	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
625 	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
626 	       NFC_ECC_EXCEPTION;
627 
628 	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
629 
630 	for (i = 0; i < ecc->steps; i++) {
631 		if (i)
632 			chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1);
633 
634 		chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
635 
636 		offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize;
637 
638 		/* Fill OOB data in */
639 		writel(NFC_BUF_TO_USER_DATA(chip->oob_poi +
640 					    layout->oobfree[i].offset),
641 		       nfc->regs + NFC_REG_USER_DATA_BASE);
642 
643 		chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
644 
645 		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
646 		if (ret)
647 			return ret;
648 
649 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
650 		      (1 << 30);
651 		writel(tmp, nfc->regs + NFC_REG_CMD);
652 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
653 		if (ret)
654 			return ret;
655 	}
656 
657 	if (oob_required) {
658 		cnt = ecc->layout->oobfree[i].length;
659 		if (cnt > 0) {
660 			offset = mtd->writesize +
661 				 ecc->layout->oobfree[i].offset;
662 			chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
663 			offset -= mtd->writesize;
664 			chip->write_buf(mtd, chip->oob_poi + offset, cnt);
665 		}
666 	}
667 
668 	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
669 	tmp &= ~NFC_ECC_EN;
670 
671 	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
672 
673 	return 0;
674 }
675 
sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)676 static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
677 					       struct nand_chip *chip,
678 					       uint8_t *buf, int oob_required,
679 					       int page)
680 {
681 	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
682 	struct nand_ecc_ctrl *ecc = &chip->ecc;
683 	struct sunxi_nand_hw_ecc *data = ecc->priv;
684 	unsigned int max_bitflips = 0;
685 	uint8_t *oob = chip->oob_poi;
686 	int offset = 0;
687 	int ret;
688 	int cnt;
689 	u32 tmp;
690 	int i;
691 
692 	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
693 	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
694 	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
695 	       NFC_ECC_EXCEPTION;
696 
697 	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
698 
699 	for (i = 0; i < ecc->steps; i++) {
700 		chip->read_buf(mtd, NULL, ecc->size);
701 
702 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
703 		writel(tmp, nfc->regs + NFC_REG_CMD);
704 
705 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
706 		if (ret)
707 			return ret;
708 
709 		memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size);
710 		buf += ecc->size;
711 		offset += ecc->size;
712 
713 		if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
714 			mtd->ecc_stats.failed++;
715 		} else {
716 			tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
717 			mtd->ecc_stats.corrected += tmp;
718 			max_bitflips = max_t(unsigned int, max_bitflips, tmp);
719 		}
720 
721 		if (oob_required) {
722 			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
723 			chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad);
724 			oob += ecc->bytes + ecc->prepad;
725 		}
726 
727 		offset += ecc->bytes + ecc->prepad;
728 	}
729 
730 	if (oob_required) {
731 		cnt = mtd->oobsize - (oob - chip->oob_poi);
732 		if (cnt > 0) {
733 			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
734 			chip->read_buf(mtd, oob, cnt);
735 		}
736 	}
737 
738 	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
739 	       nfc->regs + NFC_REG_ECC_CTL);
740 
741 	return max_bitflips;
742 }
743 
sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)744 static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
745 						struct nand_chip *chip,
746 						const uint8_t *buf,
747 						int oob_required)
748 {
749 	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
750 	struct nand_ecc_ctrl *ecc = &chip->ecc;
751 	struct sunxi_nand_hw_ecc *data = ecc->priv;
752 	uint8_t *oob = chip->oob_poi;
753 	int offset = 0;
754 	int ret;
755 	int cnt;
756 	u32 tmp;
757 	int i;
758 
759 	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
760 	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
761 	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
762 	       NFC_ECC_EXCEPTION;
763 
764 	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
765 
766 	for (i = 0; i < ecc->steps; i++) {
767 		chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
768 		offset += ecc->size;
769 
770 		/* Fill OOB data in */
771 		writel(NFC_BUF_TO_USER_DATA(oob),
772 		       nfc->regs + NFC_REG_USER_DATA_BASE);
773 
774 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
775 		      (1 << 30);
776 		writel(tmp, nfc->regs + NFC_REG_CMD);
777 
778 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
779 		if (ret)
780 			return ret;
781 
782 		offset += ecc->bytes + ecc->prepad;
783 		oob += ecc->bytes + ecc->prepad;
784 	}
785 
786 	if (oob_required) {
787 		cnt = mtd->oobsize - (oob - chip->oob_poi);
788 		if (cnt > 0) {
789 			chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
790 			chip->write_buf(mtd, oob, cnt);
791 		}
792 	}
793 
794 	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
795 	tmp &= ~NFC_ECC_EN;
796 
797 	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
798 
799 	return 0;
800 }
801 
sunxi_nand_chip_set_timings(struct sunxi_nand_chip * chip,const struct nand_sdr_timings * timings)802 static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
803 				       const struct nand_sdr_timings *timings)
804 {
805 	u32 min_clk_period = 0;
806 
807 	/* T1 <=> tCLS */
808 	if (timings->tCLS_min > min_clk_period)
809 		min_clk_period = timings->tCLS_min;
810 
811 	/* T2 <=> tCLH */
812 	if (timings->tCLH_min > min_clk_period)
813 		min_clk_period = timings->tCLH_min;
814 
815 	/* T3 <=> tCS */
816 	if (timings->tCS_min > min_clk_period)
817 		min_clk_period = timings->tCS_min;
818 
819 	/* T4 <=> tCH */
820 	if (timings->tCH_min > min_clk_period)
821 		min_clk_period = timings->tCH_min;
822 
823 	/* T5 <=> tWP */
824 	if (timings->tWP_min > min_clk_period)
825 		min_clk_period = timings->tWP_min;
826 
827 	/* T6 <=> tWH */
828 	if (timings->tWH_min > min_clk_period)
829 		min_clk_period = timings->tWH_min;
830 
831 	/* T7 <=> tALS */
832 	if (timings->tALS_min > min_clk_period)
833 		min_clk_period = timings->tALS_min;
834 
835 	/* T8 <=> tDS */
836 	if (timings->tDS_min > min_clk_period)
837 		min_clk_period = timings->tDS_min;
838 
839 	/* T9 <=> tDH */
840 	if (timings->tDH_min > min_clk_period)
841 		min_clk_period = timings->tDH_min;
842 
843 	/* T10 <=> tRR */
844 	if (timings->tRR_min > (min_clk_period * 3))
845 		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
846 
847 	/* T11 <=> tALH */
848 	if (timings->tALH_min > min_clk_period)
849 		min_clk_period = timings->tALH_min;
850 
851 	/* T12 <=> tRP */
852 	if (timings->tRP_min > min_clk_period)
853 		min_clk_period = timings->tRP_min;
854 
855 	/* T13 <=> tREH */
856 	if (timings->tREH_min > min_clk_period)
857 		min_clk_period = timings->tREH_min;
858 
859 	/* T14 <=> tRC */
860 	if (timings->tRC_min > (min_clk_period * 2))
861 		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
862 
863 	/* T15 <=> tWC */
864 	if (timings->tWC_min > (min_clk_period * 2))
865 		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
866 
867 
868 	/* Convert min_clk_period from picoseconds to nanoseconds */
869 	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
870 
871 	/*
872 	 * Convert min_clk_period into a clk frequency, then get the
873 	 * appropriate rate for the NAND controller IP given this formula
874 	 * (specified in the datasheet):
875 	 * nand clk_rate = 2 * min_clk_rate
876 	 */
877 	chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
878 
879 	/* TODO: configure T16-T19 */
880 
881 	return 0;
882 }
883 
sunxi_nand_chip_init_timings(struct sunxi_nand_chip * chip,struct device_node * np)884 static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
885 					struct device_node *np)
886 {
887 	const struct nand_sdr_timings *timings;
888 	int ret;
889 	int mode;
890 
891 	mode = onfi_get_async_timing_mode(&chip->nand);
892 	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
893 		mode = chip->nand.onfi_timing_mode_default;
894 	} else {
895 		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
896 
897 		mode = fls(mode) - 1;
898 		if (mode < 0)
899 			mode = 0;
900 
901 		feature[0] = mode;
902 		ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand,
903 						ONFI_FEATURE_ADDR_TIMING_MODE,
904 						feature);
905 		if (ret)
906 			return ret;
907 	}
908 
909 	timings = onfi_async_timing_mode_to_sdr_timings(mode);
910 	if (IS_ERR(timings))
911 		return PTR_ERR(timings);
912 
913 	return sunxi_nand_chip_set_timings(chip, timings);
914 }
915 
sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc,struct device_node * np)916 static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
917 					      struct nand_ecc_ctrl *ecc,
918 					      struct device_node *np)
919 {
920 	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
921 	struct nand_chip *nand = mtd->priv;
922 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
923 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
924 	struct sunxi_nand_hw_ecc *data;
925 	struct nand_ecclayout *layout;
926 	int nsectors;
927 	int ret;
928 	int i;
929 
930 	data = kzalloc(sizeof(*data), GFP_KERNEL);
931 	if (!data)
932 		return -ENOMEM;
933 
934 	/* Add ECC info retrieval from DT */
935 	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
936 		if (ecc->strength <= strengths[i])
937 			break;
938 	}
939 
940 	if (i >= ARRAY_SIZE(strengths)) {
941 		dev_err(nfc->dev, "unsupported strength\n");
942 		ret = -ENOTSUPP;
943 		goto err;
944 	}
945 
946 	data->mode = i;
947 
948 	/* HW ECC always request ECC bytes for 1024 bytes blocks */
949 	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
950 
951 	/* HW ECC always work with even numbers of ECC bytes */
952 	ecc->bytes = ALIGN(ecc->bytes, 2);
953 
954 	layout = &data->layout;
955 	nsectors = mtd->writesize / ecc->size;
956 
957 	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
958 		ret = -EINVAL;
959 		goto err;
960 	}
961 
962 	layout->eccbytes = (ecc->bytes * nsectors);
963 
964 	ecc->layout = layout;
965 	ecc->priv = data;
966 
967 	return 0;
968 
969 err:
970 	kfree(data);
971 
972 	return ret;
973 }
974 
sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl * ecc)975 static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
976 {
977 	kfree(ecc->priv);
978 }
979 
sunxi_nand_hw_ecc_ctrl_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc,struct device_node * np)980 static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
981 				       struct nand_ecc_ctrl *ecc,
982 				       struct device_node *np)
983 {
984 	struct nand_ecclayout *layout;
985 	int nsectors;
986 	int i, j;
987 	int ret;
988 
989 	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
990 	if (ret)
991 		return ret;
992 
993 	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
994 	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
995 	layout = ecc->layout;
996 	nsectors = mtd->writesize / ecc->size;
997 
998 	for (i = 0; i < nsectors; i++) {
999 		if (i) {
1000 			layout->oobfree[i].offset =
1001 				layout->oobfree[i - 1].offset +
1002 				layout->oobfree[i - 1].length +
1003 				ecc->bytes;
1004 			layout->oobfree[i].length = 4;
1005 		} else {
1006 			/*
1007 			 * The first 2 bytes are used for BB markers, hence we
1008 			 * only have 2 bytes available in the first user data
1009 			 * section.
1010 			 */
1011 			layout->oobfree[i].length = 2;
1012 			layout->oobfree[i].offset = 2;
1013 		}
1014 
1015 		for (j = 0; j < ecc->bytes; j++)
1016 			layout->eccpos[(ecc->bytes * i) + j] =
1017 					layout->oobfree[i].offset +
1018 					layout->oobfree[i].length + j;
1019 	}
1020 
1021 	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1022 		layout->oobfree[nsectors].offset =
1023 				layout->oobfree[nsectors - 1].offset +
1024 				layout->oobfree[nsectors - 1].length +
1025 				ecc->bytes;
1026 		layout->oobfree[nsectors].length = mtd->oobsize -
1027 				((ecc->bytes + 4) * nsectors);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc,struct device_node * np)1033 static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1034 						struct nand_ecc_ctrl *ecc,
1035 						struct device_node *np)
1036 {
1037 	struct nand_ecclayout *layout;
1038 	int nsectors;
1039 	int i;
1040 	int ret;
1041 
1042 	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1043 	if (ret)
1044 		return ret;
1045 
1046 	ecc->prepad = 4;
1047 	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1048 	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1049 
1050 	layout = ecc->layout;
1051 	nsectors = mtd->writesize / ecc->size;
1052 
1053 	for (i = 0; i < (ecc->bytes * nsectors); i++)
1054 		layout->eccpos[i] = i;
1055 
1056 	layout->oobfree[0].length = mtd->oobsize - i;
1057 	layout->oobfree[0].offset = i;
1058 
1059 	return 0;
1060 }
1061 
sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl * ecc)1062 static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1063 {
1064 	switch (ecc->mode) {
1065 	case NAND_ECC_HW:
1066 	case NAND_ECC_HW_SYNDROME:
1067 		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1068 		break;
1069 	case NAND_ECC_NONE:
1070 		kfree(ecc->layout);
1071 	default:
1072 		break;
1073 	}
1074 }
1075 
sunxi_nand_ecc_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc,struct device_node * np)1076 static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1077 			       struct device_node *np)
1078 {
1079 	struct nand_chip *nand = mtd->priv;
1080 	int strength;
1081 	int blk_size;
1082 	int ret;
1083 
1084 	blk_size = of_get_nand_ecc_step_size(np);
1085 	strength = of_get_nand_ecc_strength(np);
1086 	if (blk_size > 0 && strength > 0) {
1087 		ecc->size = blk_size;
1088 		ecc->strength = strength;
1089 	} else {
1090 		ecc->size = nand->ecc_step_ds;
1091 		ecc->strength = nand->ecc_strength_ds;
1092 	}
1093 
1094 	if (!ecc->size || !ecc->strength)
1095 		return -EINVAL;
1096 
1097 	ecc->mode = NAND_ECC_HW;
1098 
1099 	ret = of_get_nand_ecc_mode(np);
1100 	if (ret >= 0)
1101 		ecc->mode = ret;
1102 
1103 	switch (ecc->mode) {
1104 	case NAND_ECC_SOFT_BCH:
1105 		break;
1106 	case NAND_ECC_HW:
1107 		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1108 		if (ret)
1109 			return ret;
1110 		break;
1111 	case NAND_ECC_HW_SYNDROME:
1112 		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1113 		if (ret)
1114 			return ret;
1115 		break;
1116 	case NAND_ECC_NONE:
1117 		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1118 		if (!ecc->layout)
1119 			return -ENOMEM;
1120 		ecc->layout->oobfree[0].length = mtd->oobsize;
1121 	case NAND_ECC_SOFT:
1122 		break;
1123 	default:
1124 		return -EINVAL;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
sunxi_nand_chip_init(struct device * dev,struct sunxi_nfc * nfc,struct device_node * np)1130 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1131 				struct device_node *np)
1132 {
1133 	const struct nand_sdr_timings *timings;
1134 	struct sunxi_nand_chip *chip;
1135 	struct mtd_part_parser_data ppdata;
1136 	struct mtd_info *mtd;
1137 	struct nand_chip *nand;
1138 	int nsels;
1139 	int ret;
1140 	int i;
1141 	u32 tmp;
1142 
1143 	if (!of_get_property(np, "reg", &nsels))
1144 		return -EINVAL;
1145 
1146 	nsels /= sizeof(u32);
1147 	if (!nsels) {
1148 		dev_err(dev, "invalid reg property size\n");
1149 		return -EINVAL;
1150 	}
1151 
1152 	chip = devm_kzalloc(dev,
1153 			    sizeof(*chip) +
1154 			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
1155 			    GFP_KERNEL);
1156 	if (!chip) {
1157 		dev_err(dev, "could not allocate chip\n");
1158 		return -ENOMEM;
1159 	}
1160 
1161 	chip->nsels = nsels;
1162 	chip->selected = -1;
1163 
1164 	for (i = 0; i < nsels; i++) {
1165 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1166 		if (ret) {
1167 			dev_err(dev, "could not retrieve reg property: %d\n",
1168 				ret);
1169 			return ret;
1170 		}
1171 
1172 		if (tmp > NFC_MAX_CS) {
1173 			dev_err(dev,
1174 				"invalid reg value: %u (max CS = 7)\n",
1175 				tmp);
1176 			return -EINVAL;
1177 		}
1178 
1179 		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1180 			dev_err(dev, "CS %d already assigned\n", tmp);
1181 			return -EINVAL;
1182 		}
1183 
1184 		chip->sels[i].cs = tmp;
1185 
1186 		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1187 		    tmp < 2) {
1188 			chip->sels[i].rb.type = RB_NATIVE;
1189 			chip->sels[i].rb.info.nativeid = tmp;
1190 		} else {
1191 			ret = of_get_named_gpio(np, "rb-gpios", i);
1192 			if (ret >= 0) {
1193 				tmp = ret;
1194 				chip->sels[i].rb.type = RB_GPIO;
1195 				chip->sels[i].rb.info.gpio = tmp;
1196 				ret = devm_gpio_request(dev, tmp, "nand-rb");
1197 				if (ret)
1198 					return ret;
1199 
1200 				ret = gpio_direction_input(tmp);
1201 				if (ret)
1202 					return ret;
1203 			} else {
1204 				chip->sels[i].rb.type = RB_NONE;
1205 			}
1206 		}
1207 	}
1208 
1209 	timings = onfi_async_timing_mode_to_sdr_timings(0);
1210 	if (IS_ERR(timings)) {
1211 		ret = PTR_ERR(timings);
1212 		dev_err(dev,
1213 			"could not retrieve timings for ONFI mode 0: %d\n",
1214 			ret);
1215 		return ret;
1216 	}
1217 
1218 	ret = sunxi_nand_chip_set_timings(chip, timings);
1219 	if (ret) {
1220 		dev_err(dev, "could not configure chip timings: %d\n", ret);
1221 		return ret;
1222 	}
1223 
1224 	nand = &chip->nand;
1225 	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1226 	nand->chip_delay = 200;
1227 	nand->controller = &nfc->controller;
1228 	nand->select_chip = sunxi_nfc_select_chip;
1229 	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1230 	nand->read_buf = sunxi_nfc_read_buf;
1231 	nand->write_buf = sunxi_nfc_write_buf;
1232 	nand->read_byte = sunxi_nfc_read_byte;
1233 
1234 	if (of_get_nand_on_flash_bbt(np))
1235 		nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1236 
1237 	mtd = &chip->mtd;
1238 	mtd->dev.parent = dev;
1239 	mtd->priv = nand;
1240 	mtd->owner = THIS_MODULE;
1241 
1242 	ret = nand_scan_ident(mtd, nsels, NULL);
1243 	if (ret)
1244 		return ret;
1245 
1246 	ret = sunxi_nand_chip_init_timings(chip, np);
1247 	if (ret) {
1248 		dev_err(dev, "could not configure chip timings: %d\n", ret);
1249 		return ret;
1250 	}
1251 
1252 	ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1253 	if (ret) {
1254 		dev_err(dev, "ECC init failed: %d\n", ret);
1255 		return ret;
1256 	}
1257 
1258 	ret = nand_scan_tail(mtd);
1259 	if (ret) {
1260 		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1261 		return ret;
1262 	}
1263 
1264 	ppdata.of_node = np;
1265 	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1266 	if (ret) {
1267 		dev_err(dev, "failed to register mtd device: %d\n", ret);
1268 		nand_release(mtd);
1269 		return ret;
1270 	}
1271 
1272 	list_add_tail(&chip->node, &nfc->chips);
1273 
1274 	return 0;
1275 }
1276 
sunxi_nand_chips_init(struct device * dev,struct sunxi_nfc * nfc)1277 static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1278 {
1279 	struct device_node *np = dev->of_node;
1280 	struct device_node *nand_np;
1281 	int nchips = of_get_child_count(np);
1282 	int ret;
1283 
1284 	if (nchips > 8) {
1285 		dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1286 		return -EINVAL;
1287 	}
1288 
1289 	for_each_child_of_node(np, nand_np) {
1290 		ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1291 		if (ret)
1292 			return ret;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
sunxi_nand_chips_cleanup(struct sunxi_nfc * nfc)1298 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1299 {
1300 	struct sunxi_nand_chip *chip;
1301 
1302 	while (!list_empty(&nfc->chips)) {
1303 		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1304 					node);
1305 		nand_release(&chip->mtd);
1306 		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1307 		list_del(&chip->node);
1308 	}
1309 }
1310 
sunxi_nfc_probe(struct platform_device * pdev)1311 static int sunxi_nfc_probe(struct platform_device *pdev)
1312 {
1313 	struct device *dev = &pdev->dev;
1314 	struct resource *r;
1315 	struct sunxi_nfc *nfc;
1316 	int irq;
1317 	int ret;
1318 
1319 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1320 	if (!nfc)
1321 		return -ENOMEM;
1322 
1323 	nfc->dev = dev;
1324 	spin_lock_init(&nfc->controller.lock);
1325 	init_waitqueue_head(&nfc->controller.wq);
1326 	INIT_LIST_HEAD(&nfc->chips);
1327 
1328 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1329 	nfc->regs = devm_ioremap_resource(dev, r);
1330 	if (IS_ERR(nfc->regs))
1331 		return PTR_ERR(nfc->regs);
1332 
1333 	irq = platform_get_irq(pdev, 0);
1334 	if (irq < 0) {
1335 		dev_err(dev, "failed to retrieve irq\n");
1336 		return irq;
1337 	}
1338 
1339 	nfc->ahb_clk = devm_clk_get(dev, "ahb");
1340 	if (IS_ERR(nfc->ahb_clk)) {
1341 		dev_err(dev, "failed to retrieve ahb clk\n");
1342 		return PTR_ERR(nfc->ahb_clk);
1343 	}
1344 
1345 	ret = clk_prepare_enable(nfc->ahb_clk);
1346 	if (ret)
1347 		return ret;
1348 
1349 	nfc->mod_clk = devm_clk_get(dev, "mod");
1350 	if (IS_ERR(nfc->mod_clk)) {
1351 		dev_err(dev, "failed to retrieve mod clk\n");
1352 		ret = PTR_ERR(nfc->mod_clk);
1353 		goto out_ahb_clk_unprepare;
1354 	}
1355 
1356 	ret = clk_prepare_enable(nfc->mod_clk);
1357 	if (ret)
1358 		goto out_ahb_clk_unprepare;
1359 
1360 	ret = sunxi_nfc_rst(nfc);
1361 	if (ret)
1362 		goto out_mod_clk_unprepare;
1363 
1364 	writel(0, nfc->regs + NFC_REG_INT);
1365 	ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1366 			       0, "sunxi-nand", nfc);
1367 	if (ret)
1368 		goto out_mod_clk_unprepare;
1369 
1370 	platform_set_drvdata(pdev, nfc);
1371 
1372 	/*
1373 	 * TODO: replace these magic values with proper flags as soon as we
1374 	 * know what they are encoding.
1375 	 */
1376 	writel(0x100, nfc->regs + NFC_REG_TIMING_CTL);
1377 	writel(0x7ff, nfc->regs + NFC_REG_TIMING_CFG);
1378 
1379 	ret = sunxi_nand_chips_init(dev, nfc);
1380 	if (ret) {
1381 		dev_err(dev, "failed to init nand chips\n");
1382 		goto out_mod_clk_unprepare;
1383 	}
1384 
1385 	return 0;
1386 
1387 out_mod_clk_unprepare:
1388 	clk_disable_unprepare(nfc->mod_clk);
1389 out_ahb_clk_unprepare:
1390 	clk_disable_unprepare(nfc->ahb_clk);
1391 
1392 	return ret;
1393 }
1394 
sunxi_nfc_remove(struct platform_device * pdev)1395 static int sunxi_nfc_remove(struct platform_device *pdev)
1396 {
1397 	struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1398 
1399 	sunxi_nand_chips_cleanup(nfc);
1400 
1401 	return 0;
1402 }
1403 
1404 static const struct of_device_id sunxi_nfc_ids[] = {
1405 	{ .compatible = "allwinner,sun4i-a10-nand" },
1406 	{ /* sentinel */ }
1407 };
1408 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1409 
1410 static struct platform_driver sunxi_nfc_driver = {
1411 	.driver = {
1412 		.name = "sunxi_nand",
1413 		.of_match_table = sunxi_nfc_ids,
1414 	},
1415 	.probe = sunxi_nfc_probe,
1416 	.remove = sunxi_nfc_remove,
1417 };
1418 module_platform_driver(sunxi_nfc_driver);
1419 
1420 MODULE_LICENSE("GPL v2");
1421 MODULE_AUTHOR("Boris BREZILLON");
1422 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1423 MODULE_ALIAS("platform:sunxi_nand");
1424