1 /*
2  * Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8  *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License as published by the
14  * Free Software Foundation; either version 2 of the License, or (at your
15  * option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
20  * for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software Foundation,
24  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/dmapool.h>
29 #include <linux/kernel.h>
30 #include <linux/delay.h>
31 #include <linux/ioport.h>
32 #include <linux/sched.h>
33 #include <linux/vmalloc.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/hrtimer.h>
37 #include <linux/list.h>
38 #include <linux/interrupt.h>
39 #include <linux/usb.h>
40 #include <linux/usb/hcd.h>
41 #include <linux/moduleparam.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/debugfs.h>
44 #include <linux/slab.h>
45 #include <linux/uaccess.h>
46 #include <linux/platform_device.h>
47 #include <linux/io.h>
48 
49 #include <asm/byteorder.h>
50 #include <asm/irq.h>
51 #include <asm/unaligned.h>
52 
53 /*-------------------------------------------------------------------------*/
54 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
55 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
56 
57 static const char	hcd_name[] = "fotg210_hcd";
58 
59 #undef FOTG210_URB_TRACE
60 
61 #define FOTG210_STATS
62 
63 /* magic numbers that can affect system performance */
64 #define	FOTG210_TUNE_CERR		3 /* 0-3 qtd retries; 0 == don't stop */
65 #define	FOTG210_TUNE_RL_HS		4 /* nak throttle; see 4.9 */
66 #define	FOTG210_TUNE_RL_TT		0
67 #define	FOTG210_TUNE_MULT_HS	1	/* 1-3 transactions/uframe; 4.10.3 */
68 #define	FOTG210_TUNE_MULT_TT	1
69 /*
70  * Some drivers think it's safe to schedule isochronous transfers more than
71  * 256 ms into the future (partly as a result of an old bug in the scheduling
72  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
73  * length of 512 frames instead of 256.
74  */
75 #define	FOTG210_TUNE_FLS		1 /* (medium) 512-frame schedule */
76 
77 /* Initial IRQ latency:  faster than hw default */
78 static int log2_irq_thresh;		/* 0 to 6 */
79 module_param(log2_irq_thresh, int, S_IRUGO);
80 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
81 
82 /* initial park setting:  slower than hw default */
83 static unsigned park;
84 module_param(park, uint, S_IRUGO);
85 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
86 
87 /* for link power management(LPM) feature */
88 static unsigned int hird;
89 module_param(hird, int, S_IRUGO);
90 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
91 
92 #define	INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
93 
94 #include "fotg210.h"
95 
96 /*-------------------------------------------------------------------------*/
97 
98 #define fotg210_dbg(fotg210, fmt, args...) \
99 	dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
100 #define fotg210_err(fotg210, fmt, args...) \
101 	dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
102 #define fotg210_info(fotg210, fmt, args...) \
103 	dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
104 #define fotg210_warn(fotg210, fmt, args...) \
105 	dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
106 
107 /* check the values in the HCSPARAMS register
108  * (host controller _Structural_ parameters)
109  * see EHCI spec, Table 2-4 for each value
110  */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)111 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
112 {
113 	u32	params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
114 
115 	fotg210_dbg(fotg210,
116 		"%s hcs_params 0x%x ports=%d\n",
117 		label, params,
118 		HCS_N_PORTS(params)
119 		);
120 }
121 
122 /* check the values in the HCCPARAMS register
123  * (host controller _Capability_ parameters)
124  * see EHCI Spec, Table 2-5 for each value
125  * */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)126 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
127 {
128 	u32	params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
129 
130 	fotg210_dbg(fotg210,
131 		"%s hcc_params %04x uframes %s%s\n",
132 		label,
133 		params,
134 		HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
135 		HCC_CANPARK(params) ? " park" : "");
136 }
137 
138 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)139 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
140 {
141 	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
142 		hc32_to_cpup(fotg210, &qtd->hw_next),
143 		hc32_to_cpup(fotg210, &qtd->hw_alt_next),
144 		hc32_to_cpup(fotg210, &qtd->hw_token),
145 		hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
146 	if (qtd->hw_buf[1])
147 		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
148 			hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
149 			hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
150 			hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
151 			hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
152 }
153 
154 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)155 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
156 {
157 	struct fotg210_qh_hw *hw = qh->hw;
158 
159 	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label,
160 		qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current);
161 	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
162 }
163 
164 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)165 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
166 {
167 	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n",
168 		label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
169 		itd->urb);
170 	fotg210_dbg(fotg210,
171 		"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
172 		hc32_to_cpu(fotg210, itd->hw_transaction[0]),
173 		hc32_to_cpu(fotg210, itd->hw_transaction[1]),
174 		hc32_to_cpu(fotg210, itd->hw_transaction[2]),
175 		hc32_to_cpu(fotg210, itd->hw_transaction[3]),
176 		hc32_to_cpu(fotg210, itd->hw_transaction[4]),
177 		hc32_to_cpu(fotg210, itd->hw_transaction[5]),
178 		hc32_to_cpu(fotg210, itd->hw_transaction[6]),
179 		hc32_to_cpu(fotg210, itd->hw_transaction[7]));
180 	fotg210_dbg(fotg210,
181 		"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
182 		hc32_to_cpu(fotg210, itd->hw_bufp[0]),
183 		hc32_to_cpu(fotg210, itd->hw_bufp[1]),
184 		hc32_to_cpu(fotg210, itd->hw_bufp[2]),
185 		hc32_to_cpu(fotg210, itd->hw_bufp[3]),
186 		hc32_to_cpu(fotg210, itd->hw_bufp[4]),
187 		hc32_to_cpu(fotg210, itd->hw_bufp[5]),
188 		hc32_to_cpu(fotg210, itd->hw_bufp[6]));
189 	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
190 		itd->index[0], itd->index[1], itd->index[2],
191 		itd->index[3], itd->index[4], itd->index[5],
192 		itd->index[6], itd->index[7]);
193 }
194 
195 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)196 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
197 {
198 	return scnprintf(buf, len,
199 		"%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
200 		label, label[0] ? " " : "", status,
201 		(status & STS_ASS) ? " Async" : "",
202 		(status & STS_PSS) ? " Periodic" : "",
203 		(status & STS_RECL) ? " Recl" : "",
204 		(status & STS_HALT) ? " Halt" : "",
205 		(status & STS_IAA) ? " IAA" : "",
206 		(status & STS_FATAL) ? " FATAL" : "",
207 		(status & STS_FLR) ? " FLR" : "",
208 		(status & STS_PCD) ? " PCD" : "",
209 		(status & STS_ERR) ? " ERR" : "",
210 		(status & STS_INT) ? " INT" : ""
211 		);
212 }
213 
214 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)215 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
216 {
217 	return scnprintf(buf, len,
218 		"%s%sintrenable %02x%s%s%s%s%s%s",
219 		label, label[0] ? " " : "", enable,
220 		(enable & STS_IAA) ? " IAA" : "",
221 		(enable & STS_FATAL) ? " FATAL" : "",
222 		(enable & STS_FLR) ? " FLR" : "",
223 		(enable & STS_PCD) ? " PCD" : "",
224 		(enable & STS_ERR) ? " ERR" : "",
225 		(enable & STS_INT) ? " INT" : ""
226 		);
227 }
228 
229 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
230 
231 static int
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)232 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
233 {
234 	return scnprintf(buf, len,
235 		"%s%scommand %07x %s=%d ithresh=%d%s%s%s "
236 		"period=%s%s %s",
237 		label, label[0] ? " " : "", command,
238 		(command & CMD_PARK) ? " park" : "(park)",
239 		CMD_PARK_CNT(command),
240 		(command >> 16) & 0x3f,
241 		(command & CMD_IAAD) ? " IAAD" : "",
242 		(command & CMD_ASE) ? " Async" : "",
243 		(command & CMD_PSE) ? " Periodic" : "",
244 		fls_strings[(command >> 2) & 0x3],
245 		(command & CMD_RESET) ? " Reset" : "",
246 		(command & CMD_RUN) ? "RUN" : "HALT"
247 		);
248 }
249 
250 static char
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)251 *dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
252 {
253 	char	*sig;
254 
255 	/* signaling state */
256 	switch (status & (3 << 10)) {
257 	case 0 << 10:
258 		sig = "se0";
259 		break;
260 	case 1 << 10:
261 		sig = "k";
262 		break; /* low speed */
263 	case 2 << 10:
264 		sig = "j";
265 		break;
266 	default:
267 		sig = "?";
268 		break;
269 	}
270 
271 	scnprintf(buf, len,
272 		"%s%sport:%d status %06x %d "
273 		"sig=%s%s%s%s%s%s%s%s",
274 		label, label[0] ? " " : "", port, status,
275 		status>>25,/*device address */
276 		sig,
277 		(status & PORT_RESET) ? " RESET" : "",
278 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
279 		(status & PORT_RESUME) ? " RESUME" : "",
280 		(status & PORT_PEC) ? " PEC" : "",
281 		(status & PORT_PE) ? " PE" : "",
282 		(status & PORT_CSC) ? " CSC" : "",
283 		(status & PORT_CONNECT) ? " CONNECT" : "");
284 	return buf;
285 }
286 
287 /* functions have the "wrong" filename when they're output... */
288 #define dbg_status(fotg210, label, status) { \
289 	char _buf[80]; \
290 	dbg_status_buf(_buf, sizeof(_buf), label, status); \
291 	fotg210_dbg(fotg210, "%s\n", _buf); \
292 }
293 
294 #define dbg_cmd(fotg210, label, command) { \
295 	char _buf[80]; \
296 	dbg_command_buf(_buf, sizeof(_buf), label, command); \
297 	fotg210_dbg(fotg210, "%s\n", _buf); \
298 }
299 
300 #define dbg_port(fotg210, label, port, status) { \
301 	char _buf[80]; \
302 	fotg210_dbg(fotg210, "%s\n", dbg_port_buf(_buf, sizeof(_buf), label, port, status) ); \
303 }
304 
305 /*-------------------------------------------------------------------------*/
306 
307 /* troubleshooting help: expose state in debugfs */
308 
309 static int debug_async_open(struct inode *, struct file *);
310 static int debug_periodic_open(struct inode *, struct file *);
311 static int debug_registers_open(struct inode *, struct file *);
312 static int debug_async_open(struct inode *, struct file *);
313 
314 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
315 static int debug_close(struct inode *, struct file *);
316 
317 static const struct file_operations debug_async_fops = {
318 	.owner		= THIS_MODULE,
319 	.open		= debug_async_open,
320 	.read		= debug_output,
321 	.release	= debug_close,
322 	.llseek		= default_llseek,
323 };
324 static const struct file_operations debug_periodic_fops = {
325 	.owner		= THIS_MODULE,
326 	.open		= debug_periodic_open,
327 	.read		= debug_output,
328 	.release	= debug_close,
329 	.llseek		= default_llseek,
330 };
331 static const struct file_operations debug_registers_fops = {
332 	.owner		= THIS_MODULE,
333 	.open		= debug_registers_open,
334 	.read		= debug_output,
335 	.release	= debug_close,
336 	.llseek		= default_llseek,
337 };
338 
339 static struct dentry *fotg210_debug_root;
340 
341 struct debug_buffer {
342 	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
343 	struct usb_bus *bus;
344 	struct mutex mutex;	/* protect filling of buffer */
345 	size_t count;		/* number of characters filled into buffer */
346 	char *output_buf;
347 	size_t alloc_size;
348 };
349 
350 #define speed_char(info1)({ char tmp; \
351 		switch (info1 & (3 << 12)) { \
352 		case QH_FULL_SPEED:	\
353 			tmp = 'f'; break; \
354 		case QH_LOW_SPEED:	\
355 			tmp = 'l'; break; \
356 		case QH_HIGH_SPEED:	\
357 			tmp = 'h'; break; \
358 		default:		\
359 			tmp = '?'; break; \
360 		} tmp; })
361 
token_mark(struct fotg210_hcd * fotg210,__hc32 token)362 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
363 {
364 	__u32 v = hc32_to_cpu(fotg210, token);
365 
366 	if (v & QTD_STS_ACTIVE)
367 		return '*';
368 	if (v & QTD_STS_HALT)
369 		return '-';
370 	if (!IS_SHORT_READ(v))
371 		return ' ';
372 	/* tries to advance through hw_alt_next */
373 	return '/';
374 }
375 
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)376 static void qh_lines(
377 	struct fotg210_hcd *fotg210,
378 	struct fotg210_qh *qh,
379 	char **nextp,
380 	unsigned *sizep
381 )
382 {
383 	u32			scratch;
384 	u32			hw_curr;
385 	struct fotg210_qtd	*td;
386 	unsigned		temp;
387 	unsigned		size = *sizep;
388 	char			*next = *nextp;
389 	char			mark;
390 	__le32			list_end = FOTG210_LIST_END(fotg210);
391 	struct fotg210_qh_hw	*hw = qh->hw;
392 
393 	if (hw->hw_qtd_next == list_end)	/* NEC does this */
394 		mark = '@';
395 	else
396 		mark = token_mark(fotg210, hw->hw_token);
397 	if (mark == '/') {	/* qh_alt_next controls qh advance? */
398 		if ((hw->hw_alt_next & QTD_MASK(fotg210))
399 				== fotg210->async->hw->hw_alt_next)
400 			mark = '#';	/* blocked */
401 		else if (hw->hw_alt_next == list_end)
402 			mark = '.';	/* use hw_qtd_next */
403 		/* else alt_next points to some other qtd */
404 	}
405 	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
406 	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
407 	temp = scnprintf(next, size,
408 			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
409 			qh, scratch & 0x007f,
410 			speed_char(scratch),
411 			(scratch >> 8) & 0x000f,
412 			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
413 			hc32_to_cpup(fotg210, &hw->hw_token), mark,
414 			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
415 				? "data1" : "data0",
416 			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
417 	size -= temp;
418 	next += temp;
419 
420 	/* hc may be modifying the list as we read it ... */
421 	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
422 		scratch = hc32_to_cpup(fotg210, &td->hw_token);
423 		mark = ' ';
424 		if (hw_curr == td->qtd_dma)
425 			mark = '*';
426 		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
427 			mark = '+';
428 		else if (QTD_LENGTH(scratch)) {
429 			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
430 				mark = '#';
431 			else if (td->hw_alt_next != list_end)
432 				mark = '/';
433 		}
434 		temp = snprintf(next, size,
435 				"\n\t%p%c%s len=%d %08x urb %p",
436 				td, mark, ({ char *tmp;
437 				 switch ((scratch>>8)&0x03) {
438 				 case 0:
439 					tmp = "out";
440 					break;
441 				 case 1:
442 					tmp = "in";
443 					break;
444 				 case 2:
445 					tmp = "setup";
446 					break;
447 				 default:
448 					tmp = "?";
449 					break;
450 				 } tmp; }),
451 				(scratch >> 16) & 0x7fff,
452 				scratch,
453 				td->urb);
454 		if (size < temp)
455 			temp = size;
456 		size -= temp;
457 		next += temp;
458 		if (temp == size)
459 			goto done;
460 	}
461 
462 	temp = snprintf(next, size, "\n");
463 	if (size < temp)
464 		temp = size;
465 	size -= temp;
466 	next += temp;
467 
468 done:
469 	*sizep = size;
470 	*nextp = next;
471 }
472 
fill_async_buffer(struct debug_buffer * buf)473 static ssize_t fill_async_buffer(struct debug_buffer *buf)
474 {
475 	struct usb_hcd		*hcd;
476 	struct fotg210_hcd	*fotg210;
477 	unsigned long		flags;
478 	unsigned		temp, size;
479 	char			*next;
480 	struct fotg210_qh		*qh;
481 
482 	hcd = bus_to_hcd(buf->bus);
483 	fotg210 = hcd_to_fotg210(hcd);
484 	next = buf->output_buf;
485 	size = buf->alloc_size;
486 
487 	*next = 0;
488 
489 	/* dumps a snapshot of the async schedule.
490 	 * usually empty except for long-term bulk reads, or head.
491 	 * one QH per line, and TDs we know about
492 	 */
493 	spin_lock_irqsave(&fotg210->lock, flags);
494 	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
495 	     qh = qh->qh_next.qh)
496 		qh_lines(fotg210, qh, &next, &size);
497 	if (fotg210->async_unlink && size > 0) {
498 		temp = scnprintf(next, size, "\nunlink =\n");
499 		size -= temp;
500 		next += temp;
501 
502 		for (qh = fotg210->async_unlink; size > 0 && qh;
503 				qh = qh->unlink_next)
504 			qh_lines(fotg210, qh, &next, &size);
505 	}
506 	spin_unlock_irqrestore(&fotg210->lock, flags);
507 
508 	return strlen(buf->output_buf);
509 }
510 
511 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)512 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
513 {
514 	struct usb_hcd		*hcd;
515 	struct fotg210_hcd		*fotg210;
516 	unsigned long		flags;
517 	union fotg210_shadow	p, *seen;
518 	unsigned		temp, size, seen_count;
519 	char			*next;
520 	unsigned		i;
521 	__hc32			tag;
522 
523 	seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC);
524 	if (!seen)
525 		return 0;
526 	seen_count = 0;
527 
528 	hcd = bus_to_hcd(buf->bus);
529 	fotg210 = hcd_to_fotg210(hcd);
530 	next = buf->output_buf;
531 	size = buf->alloc_size;
532 
533 	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
534 	size -= temp;
535 	next += temp;
536 
537 	/* dump a snapshot of the periodic schedule.
538 	 * iso changes, interrupt usually doesn't.
539 	 */
540 	spin_lock_irqsave(&fotg210->lock, flags);
541 	for (i = 0; i < fotg210->periodic_size; i++) {
542 		p = fotg210->pshadow[i];
543 		if (likely(!p.ptr))
544 			continue;
545 		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
546 
547 		temp = scnprintf(next, size, "%4d: ", i);
548 		size -= temp;
549 		next += temp;
550 
551 		do {
552 			struct fotg210_qh_hw *hw;
553 
554 			switch (hc32_to_cpu(fotg210, tag)) {
555 			case Q_TYPE_QH:
556 				hw = p.qh->hw;
557 				temp = scnprintf(next, size, " qh%d-%04x/%p",
558 						p.qh->period,
559 						hc32_to_cpup(fotg210,
560 							&hw->hw_info2)
561 							/* uframe masks */
562 							& (QH_CMASK | QH_SMASK),
563 						p.qh);
564 				size -= temp;
565 				next += temp;
566 				/* don't repeat what follows this qh */
567 				for (temp = 0; temp < seen_count; temp++) {
568 					if (seen[temp].ptr != p.ptr)
569 						continue;
570 					if (p.qh->qh_next.ptr) {
571 						temp = scnprintf(next, size,
572 							" ...");
573 						size -= temp;
574 						next += temp;
575 					}
576 					break;
577 				}
578 				/* show more info the first time around */
579 				if (temp == seen_count) {
580 					u32	scratch = hc32_to_cpup(fotg210,
581 							&hw->hw_info1);
582 					struct fotg210_qtd	*qtd;
583 					char		*type = "";
584 
585 					/* count tds, get ep direction */
586 					temp = 0;
587 					list_for_each_entry(qtd,
588 							&p.qh->qtd_list,
589 							qtd_list) {
590 						temp++;
591 						switch (0x03 & (hc32_to_cpu(
592 							fotg210,
593 							qtd->hw_token) >> 8)) {
594 						case 0:
595 							type = "out";
596 							continue;
597 						case 1:
598 							type = "in";
599 							continue;
600 						}
601 					}
602 
603 					temp = scnprintf(next, size,
604 						"(%c%d ep%d%s "
605 						"[%d/%d] q%d p%d)",
606 						speed_char(scratch),
607 						scratch & 0x007f,
608 						(scratch >> 8) & 0x000f, type,
609 						p.qh->usecs, p.qh->c_usecs,
610 						temp,
611 						0x7ff & (scratch >> 16));
612 
613 					if (seen_count < DBG_SCHED_LIMIT)
614 						seen[seen_count++].qh = p.qh;
615 				} else
616 					temp = 0;
617 				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
618 				p = p.qh->qh_next;
619 				break;
620 			case Q_TYPE_FSTN:
621 				temp = scnprintf(next, size,
622 					" fstn-%8x/%p", p.fstn->hw_prev,
623 					p.fstn);
624 				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
625 				p = p.fstn->fstn_next;
626 				break;
627 			case Q_TYPE_ITD:
628 				temp = scnprintf(next, size,
629 					" itd/%p", p.itd);
630 				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
631 				p = p.itd->itd_next;
632 				break;
633 			}
634 			size -= temp;
635 			next += temp;
636 		} while (p.ptr);
637 
638 		temp = scnprintf(next, size, "\n");
639 		size -= temp;
640 		next += temp;
641 	}
642 	spin_unlock_irqrestore(&fotg210->lock, flags);
643 	kfree(seen);
644 
645 	return buf->alloc_size - size;
646 }
647 #undef DBG_SCHED_LIMIT
648 
rh_state_string(struct fotg210_hcd * fotg210)649 static const char *rh_state_string(struct fotg210_hcd *fotg210)
650 {
651 	switch (fotg210->rh_state) {
652 	case FOTG210_RH_HALTED:
653 		return "halted";
654 	case FOTG210_RH_SUSPENDED:
655 		return "suspended";
656 	case FOTG210_RH_RUNNING:
657 		return "running";
658 	case FOTG210_RH_STOPPING:
659 		return "stopping";
660 	}
661 	return "?";
662 }
663 
fill_registers_buffer(struct debug_buffer * buf)664 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
665 {
666 	struct usb_hcd		*hcd;
667 	struct fotg210_hcd	*fotg210;
668 	unsigned long		flags;
669 	unsigned		temp, size, i;
670 	char			*next, scratch[80];
671 	static const char	fmt[] = "%*s\n";
672 	static const char	label[] = "";
673 
674 	hcd = bus_to_hcd(buf->bus);
675 	fotg210 = hcd_to_fotg210(hcd);
676 	next = buf->output_buf;
677 	size = buf->alloc_size;
678 
679 	spin_lock_irqsave(&fotg210->lock, flags);
680 
681 	if (!HCD_HW_ACCESSIBLE(hcd)) {
682 		size = scnprintf(next, size,
683 			"bus %s, device %s\n"
684 			"%s\n"
685 			"SUSPENDED(no register access)\n",
686 			hcd->self.controller->bus->name,
687 			dev_name(hcd->self.controller),
688 			hcd->product_desc);
689 		goto done;
690 	}
691 
692 	/* Capability Registers */
693 	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
694 					      &fotg210->caps->hc_capbase));
695 	temp = scnprintf(next, size,
696 		"bus %s, device %s\n"
697 		"%s\n"
698 		"EHCI %x.%02x, rh state %s\n",
699 		hcd->self.controller->bus->name,
700 		dev_name(hcd->self.controller),
701 		hcd->product_desc,
702 		i >> 8, i & 0x0ff, rh_state_string(fotg210));
703 	size -= temp;
704 	next += temp;
705 
706 	/* FIXME interpret both types of params */
707 	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
708 	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
709 	size -= temp;
710 	next += temp;
711 
712 	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
713 	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
714 	size -= temp;
715 	next += temp;
716 
717 	/* Operational Registers */
718 	temp = dbg_status_buf(scratch, sizeof(scratch), label,
719 			fotg210_readl(fotg210, &fotg210->regs->status));
720 	temp = scnprintf(next, size, fmt, temp, scratch);
721 	size -= temp;
722 	next += temp;
723 
724 	temp = dbg_command_buf(scratch, sizeof(scratch), label,
725 			fotg210_readl(fotg210, &fotg210->regs->command));
726 	temp = scnprintf(next, size, fmt, temp, scratch);
727 	size -= temp;
728 	next += temp;
729 
730 	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
731 			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
732 	temp = scnprintf(next, size, fmt, temp, scratch);
733 	size -= temp;
734 	next += temp;
735 
736 	temp = scnprintf(next, size, "uframe %04x\n",
737 			fotg210_read_frame_index(fotg210));
738 	size -= temp;
739 	next += temp;
740 
741 	if (fotg210->async_unlink) {
742 		temp = scnprintf(next, size, "async unlink qh %p\n",
743 				fotg210->async_unlink);
744 		size -= temp;
745 		next += temp;
746 	}
747 
748 #ifdef FOTG210_STATS
749 	temp = scnprintf(next, size,
750 		"irq normal %ld err %ld iaa %ld(lost %ld)\n",
751 		fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
752 		fotg210->stats.lost_iaa);
753 	size -= temp;
754 	next += temp;
755 
756 	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
757 		fotg210->stats.complete, fotg210->stats.unlink);
758 	size -= temp;
759 	next += temp;
760 #endif
761 
762 done:
763 	spin_unlock_irqrestore(&fotg210->lock, flags);
764 
765 	return buf->alloc_size - size;
766 }
767 
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))768 static struct debug_buffer *alloc_buffer(struct usb_bus *bus,
769 				ssize_t (*fill_func)(struct debug_buffer *))
770 {
771 	struct debug_buffer *buf;
772 
773 	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
774 
775 	if (buf) {
776 		buf->bus = bus;
777 		buf->fill_func = fill_func;
778 		mutex_init(&buf->mutex);
779 		buf->alloc_size = PAGE_SIZE;
780 	}
781 
782 	return buf;
783 }
784 
fill_buffer(struct debug_buffer * buf)785 static int fill_buffer(struct debug_buffer *buf)
786 {
787 	int ret = 0;
788 
789 	if (!buf->output_buf)
790 		buf->output_buf = vmalloc(buf->alloc_size);
791 
792 	if (!buf->output_buf) {
793 		ret = -ENOMEM;
794 		goto out;
795 	}
796 
797 	ret = buf->fill_func(buf);
798 
799 	if (ret >= 0) {
800 		buf->count = ret;
801 		ret = 0;
802 	}
803 
804 out:
805 	return ret;
806 }
807 
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)808 static ssize_t debug_output(struct file *file, char __user *user_buf,
809 			    size_t len, loff_t *offset)
810 {
811 	struct debug_buffer *buf = file->private_data;
812 	int ret = 0;
813 
814 	mutex_lock(&buf->mutex);
815 	if (buf->count == 0) {
816 		ret = fill_buffer(buf);
817 		if (ret != 0) {
818 			mutex_unlock(&buf->mutex);
819 			goto out;
820 		}
821 	}
822 	mutex_unlock(&buf->mutex);
823 
824 	ret = simple_read_from_buffer(user_buf, len, offset,
825 				      buf->output_buf, buf->count);
826 
827 out:
828 	return ret;
829 
830 }
831 
debug_close(struct inode * inode,struct file * file)832 static int debug_close(struct inode *inode, struct file *file)
833 {
834 	struct debug_buffer *buf = file->private_data;
835 
836 	if (buf) {
837 		vfree(buf->output_buf);
838 		kfree(buf);
839 	}
840 
841 	return 0;
842 }
debug_async_open(struct inode * inode,struct file * file)843 static int debug_async_open(struct inode *inode, struct file *file)
844 {
845 	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
846 
847 	return file->private_data ? 0 : -ENOMEM;
848 }
849 
debug_periodic_open(struct inode * inode,struct file * file)850 static int debug_periodic_open(struct inode *inode, struct file *file)
851 {
852 	struct debug_buffer *buf;
853 	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
854 	if (!buf)
855 		return -ENOMEM;
856 
857 	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
858 	file->private_data = buf;
859 	return 0;
860 }
861 
debug_registers_open(struct inode * inode,struct file * file)862 static int debug_registers_open(struct inode *inode, struct file *file)
863 {
864 	file->private_data = alloc_buffer(inode->i_private,
865 					  fill_registers_buffer);
866 
867 	return file->private_data ? 0 : -ENOMEM;
868 }
869 
create_debug_files(struct fotg210_hcd * fotg210)870 static inline void create_debug_files(struct fotg210_hcd *fotg210)
871 {
872 	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
873 
874 	fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
875 						fotg210_debug_root);
876 	if (!fotg210->debug_dir)
877 		return;
878 
879 	if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
880 						&debug_async_fops))
881 		goto file_error;
882 
883 	if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
884 						&debug_periodic_fops))
885 		goto file_error;
886 
887 	if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
888 						    &debug_registers_fops))
889 		goto file_error;
890 
891 	return;
892 
893 file_error:
894 	debugfs_remove_recursive(fotg210->debug_dir);
895 }
896 
remove_debug_files(struct fotg210_hcd * fotg210)897 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
898 {
899 	debugfs_remove_recursive(fotg210->debug_dir);
900 }
901 
902 /*-------------------------------------------------------------------------*/
903 
904 /*
905  * handshake - spin reading hc until handshake completes or fails
906  * @ptr: address of hc register to be read
907  * @mask: bits to look at in result of read
908  * @done: value of those bits when handshake succeeds
909  * @usec: timeout in microseconds
910  *
911  * Returns negative errno, or zero on success
912  *
913  * Success happens when the "mask" bits have the specified value (hardware
914  * handshake done).  There are two failure modes:  "usec" have passed (major
915  * hardware flakeout), or the register reads as all-ones (hardware removed).
916  *
917  * That last failure should_only happen in cases like physical cardbus eject
918  * before driver shutdown. But it also seems to be caused by bugs in cardbus
919  * bridge shutdown:  shutting down the bridge before the devices using it.
920  */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)921 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
922 		      u32 mask, u32 done, int usec)
923 {
924 	u32	result;
925 
926 	do {
927 		result = fotg210_readl(fotg210, ptr);
928 		if (result == ~(u32)0)		/* card removed */
929 			return -ENODEV;
930 		result &= mask;
931 		if (result == done)
932 			return 0;
933 		udelay(1);
934 		usec--;
935 	} while (usec > 0);
936 	return -ETIMEDOUT;
937 }
938 
939 /*
940  * Force HC to halt state from unknown (EHCI spec section 2.3).
941  * Must be called with interrupts enabled and the lock not held.
942  */
fotg210_halt(struct fotg210_hcd * fotg210)943 static int fotg210_halt(struct fotg210_hcd *fotg210)
944 {
945 	u32	temp;
946 
947 	spin_lock_irq(&fotg210->lock);
948 
949 	/* disable any irqs left enabled by previous code */
950 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
951 
952 	/*
953 	 * This routine gets called during probe before fotg210->command
954 	 * has been initialized, so we can't rely on its value.
955 	 */
956 	fotg210->command &= ~CMD_RUN;
957 	temp = fotg210_readl(fotg210, &fotg210->regs->command);
958 	temp &= ~(CMD_RUN | CMD_IAAD);
959 	fotg210_writel(fotg210, temp, &fotg210->regs->command);
960 
961 	spin_unlock_irq(&fotg210->lock);
962 	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
963 
964 	return handshake(fotg210, &fotg210->regs->status,
965 			  STS_HALT, STS_HALT, 16 * 125);
966 }
967 
968 /*
969  * Reset a non-running (STS_HALT == 1) controller.
970  * Must be called with interrupts enabled and the lock not held.
971  */
fotg210_reset(struct fotg210_hcd * fotg210)972 static int fotg210_reset(struct fotg210_hcd *fotg210)
973 {
974 	int	retval;
975 	u32	command = fotg210_readl(fotg210, &fotg210->regs->command);
976 
977 	/* If the EHCI debug controller is active, special care must be
978 	 * taken before and after a host controller reset */
979 	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
980 		fotg210->debug = NULL;
981 
982 	command |= CMD_RESET;
983 	dbg_cmd(fotg210, "reset", command);
984 	fotg210_writel(fotg210, command, &fotg210->regs->command);
985 	fotg210->rh_state = FOTG210_RH_HALTED;
986 	fotg210->next_statechange = jiffies;
987 	retval = handshake(fotg210, &fotg210->regs->command,
988 			    CMD_RESET, 0, 250 * 1000);
989 
990 	if (retval)
991 		return retval;
992 
993 	if (fotg210->debug)
994 		dbgp_external_startup(fotg210_to_hcd(fotg210));
995 
996 	fotg210->port_c_suspend = fotg210->suspended_ports =
997 			fotg210->resuming_ports = 0;
998 	return retval;
999 }
1000 
1001 /*
1002  * Idle the controller (turn off the schedules).
1003  * Must be called with interrupts enabled and the lock not held.
1004  */
fotg210_quiesce(struct fotg210_hcd * fotg210)1005 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
1006 {
1007 	u32	temp;
1008 
1009 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1010 		return;
1011 
1012 	/* wait for any schedule enables/disables to take effect */
1013 	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
1014 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
1015 		  16 * 125);
1016 
1017 	/* then disable anything that's still active */
1018 	spin_lock_irq(&fotg210->lock);
1019 	fotg210->command &= ~(CMD_ASE | CMD_PSE);
1020 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1021 	spin_unlock_irq(&fotg210->lock);
1022 
1023 	/* hardware can take 16 microframes to turn off ... */
1024 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1025 		  16 * 125);
1026 }
1027 
1028 /*-------------------------------------------------------------------------*/
1029 
1030 static void end_unlink_async(struct fotg210_hcd *fotg210);
1031 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1032 static void fotg210_work(struct fotg210_hcd *fotg210);
1033 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1034 			      struct fotg210_qh *qh);
1035 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1036 
1037 /*-------------------------------------------------------------------------*/
1038 
1039 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)1040 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1041 {
1042 	fotg210->command |= bit;
1043 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1044 
1045 	/* unblock posted write */
1046 	fotg210_readl(fotg210, &fotg210->regs->command);
1047 }
1048 
1049 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1050 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1051 {
1052 	fotg210->command &= ~bit;
1053 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1054 
1055 	/* unblock posted write */
1056 	fotg210_readl(fotg210, &fotg210->regs->command);
1057 }
1058 
1059 /*-------------------------------------------------------------------------*/
1060 
1061 /*
1062  * EHCI timer support...  Now using hrtimers.
1063  *
1064  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1065  * the timer routine runs, it checks each possible event; events that are
1066  * currently enabled and whose expiration time has passed get handled.
1067  * The set of enabled events is stored as a collection of bitflags in
1068  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1069  * increasing delay values (ranging between 1 ms and 100 ms).
1070  *
1071  * Rather than implementing a sorted list or tree of all pending events,
1072  * we keep track only of the lowest-numbered pending event, in
1073  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1074  * expiration time is set to the timeout value for this event.
1075  *
1076  * As a result, events might not get handled right away; the actual delay
1077  * could be anywhere up to twice the requested delay.  This doesn't
1078  * matter, because none of the events are especially time-critical.  The
1079  * ones that matter most all have a delay of 1 ms, so they will be
1080  * handled after 2 ms at most, which is okay.  In addition to this, we
1081  * allow for an expiration range of 1 ms.
1082  */
1083 
1084 /*
1085  * Delay lengths for the hrtimer event types.
1086  * Keep this list sorted by delay length, in the same order as
1087  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1088  */
1089 static unsigned event_delays_ns[] = {
1090 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1091 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1092 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1093 	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1094 	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1095 	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1096 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1097 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1098 	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1099 	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1100 };
1101 
1102 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1103 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1104 		bool resched)
1105 {
1106 	ktime_t		*timeout = &fotg210->hr_timeouts[event];
1107 
1108 	if (resched)
1109 		*timeout = ktime_add(ktime_get(),
1110 				ktime_set(0, event_delays_ns[event]));
1111 	fotg210->enabled_hrtimer_events |= (1 << event);
1112 
1113 	/* Track only the lowest-numbered pending event */
1114 	if (event < fotg210->next_hrtimer_event) {
1115 		fotg210->next_hrtimer_event = event;
1116 		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1117 				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1118 	}
1119 }
1120 
1121 
1122 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1123 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1124 {
1125 	unsigned	actual, want;
1126 
1127 	/* Don't enable anything if the controller isn't running (e.g., died) */
1128 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1129 		return;
1130 
1131 	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1132 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1133 
1134 	if (want != actual) {
1135 
1136 		/* Poll again later, but give up after about 20 ms */
1137 		if (fotg210->ASS_poll_count++ < 20) {
1138 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1139 					     true);
1140 			return;
1141 		}
1142 		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1143 				want, actual);
1144 	}
1145 	fotg210->ASS_poll_count = 0;
1146 
1147 	/* The status is up-to-date; restart or stop the schedule as needed */
1148 	if (want == 0) {	/* Stopped */
1149 		if (fotg210->async_count > 0)
1150 			fotg210_set_command_bit(fotg210, CMD_ASE);
1151 
1152 	} else {		/* Running */
1153 		if (fotg210->async_count == 0) {
1154 
1155 			/* Turn off the schedule after a while */
1156 			fotg210_enable_event(fotg210,
1157 					     FOTG210_HRTIMER_DISABLE_ASYNC,
1158 					     true);
1159 		}
1160 	}
1161 }
1162 
1163 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1164 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1165 {
1166 	fotg210_clear_command_bit(fotg210, CMD_ASE);
1167 }
1168 
1169 
1170 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1171 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1172 {
1173 	unsigned	actual, want;
1174 
1175 	/* Don't do anything if the controller isn't running (e.g., died) */
1176 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1177 		return;
1178 
1179 	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1180 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1181 
1182 	if (want != actual) {
1183 
1184 		/* Poll again later, but give up after about 20 ms */
1185 		if (fotg210->PSS_poll_count++ < 20) {
1186 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1187 					     true);
1188 			return;
1189 		}
1190 		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1191 				want, actual);
1192 	}
1193 	fotg210->PSS_poll_count = 0;
1194 
1195 	/* The status is up-to-date; restart or stop the schedule as needed */
1196 	if (want == 0) {	/* Stopped */
1197 		if (fotg210->periodic_count > 0)
1198 			fotg210_set_command_bit(fotg210, CMD_PSE);
1199 
1200 	} else {		/* Running */
1201 		if (fotg210->periodic_count == 0) {
1202 
1203 			/* Turn off the schedule after a while */
1204 			fotg210_enable_event(fotg210,
1205 					     FOTG210_HRTIMER_DISABLE_PERIODIC,
1206 					     true);
1207 		}
1208 	}
1209 }
1210 
1211 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1212 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1213 {
1214 	fotg210_clear_command_bit(fotg210, CMD_PSE);
1215 }
1216 
1217 
1218 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1219 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1220 {
1221 	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1222 
1223 		/* Give up after a few milliseconds */
1224 		if (fotg210->died_poll_count++ < 5) {
1225 			/* Try again later */
1226 			fotg210_enable_event(fotg210,
1227 					     FOTG210_HRTIMER_POLL_DEAD, true);
1228 			return;
1229 		}
1230 		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1231 	}
1232 
1233 	/* Clean up the mess */
1234 	fotg210->rh_state = FOTG210_RH_HALTED;
1235 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1236 	fotg210_work(fotg210);
1237 	end_unlink_async(fotg210);
1238 
1239 	/* Not in process context, so don't try to reset the controller */
1240 }
1241 
1242 
1243 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1244 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1245 {
1246 	bool		stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1247 
1248 	/*
1249 	 * Process all the QHs on the intr_unlink list that were added
1250 	 * before the current unlink cycle began.  The list is in
1251 	 * temporal order, so stop when we reach the first entry in the
1252 	 * current cycle.  But if the root hub isn't running then
1253 	 * process all the QHs on the list.
1254 	 */
1255 	fotg210->intr_unlinking = true;
1256 	while (fotg210->intr_unlink) {
1257 		struct fotg210_qh	*qh = fotg210->intr_unlink;
1258 
1259 		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1260 			break;
1261 		fotg210->intr_unlink = qh->unlink_next;
1262 		qh->unlink_next = NULL;
1263 		end_unlink_intr(fotg210, qh);
1264 	}
1265 
1266 	/* Handle remaining entries later */
1267 	if (fotg210->intr_unlink) {
1268 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1269 				     true);
1270 		++fotg210->intr_unlink_cycle;
1271 	}
1272 	fotg210->intr_unlinking = false;
1273 }
1274 
1275 
1276 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1277 static void start_free_itds(struct fotg210_hcd *fotg210)
1278 {
1279 	if (!(fotg210->enabled_hrtimer_events &
1280 			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1281 		fotg210->last_itd_to_free = list_entry(
1282 				fotg210->cached_itd_list.prev,
1283 				struct fotg210_itd, itd_list);
1284 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1285 	}
1286 }
1287 
1288 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1289 static void end_free_itds(struct fotg210_hcd *fotg210)
1290 {
1291 	struct fotg210_itd		*itd, *n;
1292 
1293 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1294 		fotg210->last_itd_to_free = NULL;
1295 
1296 	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1297 		list_del(&itd->itd_list);
1298 		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1299 		if (itd == fotg210->last_itd_to_free)
1300 			break;
1301 	}
1302 
1303 	if (!list_empty(&fotg210->cached_itd_list))
1304 		start_free_itds(fotg210);
1305 }
1306 
1307 
1308 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1309 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1310 {
1311 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1312 		return;
1313 
1314 	/*
1315 	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1316 	 * So we need this watchdog, but must protect it against both
1317 	 * (a) SMP races against real IAA firing and retriggering, and
1318 	 * (b) clean HC shutdown, when IAA watchdog was pending.
1319 	 */
1320 	if (fotg210->async_iaa) {
1321 		u32 cmd, status;
1322 
1323 		/* If we get here, IAA is *REALLY* late.  It's barely
1324 		 * conceivable that the system is so busy that CMD_IAAD
1325 		 * is still legitimately set, so let's be sure it's
1326 		 * clear before we read STS_IAA.  (The HC should clear
1327 		 * CMD_IAAD when it sets STS_IAA.)
1328 		 */
1329 		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1330 
1331 		/*
1332 		 * If IAA is set here it either legitimately triggered
1333 		 * after the watchdog timer expired (_way_ late, so we'll
1334 		 * still count it as lost) ... or a silicon erratum:
1335 		 * - VIA seems to set IAA without triggering the IRQ;
1336 		 * - IAAD potentially cleared without setting IAA.
1337 		 */
1338 		status = fotg210_readl(fotg210, &fotg210->regs->status);
1339 		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1340 			COUNT(fotg210->stats.lost_iaa);
1341 			fotg210_writel(fotg210, STS_IAA,
1342 				       &fotg210->regs->status);
1343 		}
1344 
1345 		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1346 				status, cmd);
1347 		end_unlink_async(fotg210);
1348 	}
1349 }
1350 
1351 
1352 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1353 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1354 {
1355 	/* Not needed if the controller isn't running or it's already enabled */
1356 	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1357 			(fotg210->enabled_hrtimer_events &
1358 				BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1359 		return;
1360 
1361 	/*
1362 	 * Isochronous transfers always need the watchdog.
1363 	 * For other sorts we use it only if the flag is set.
1364 	 */
1365 	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1366 			fotg210->async_count + fotg210->intr_count > 0))
1367 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1368 				     true);
1369 }
1370 
1371 
1372 /*
1373  * Handler functions for the hrtimer event types.
1374  * Keep this array in the same order as the event types indexed by
1375  * enum fotg210_hrtimer_event in fotg210.h.
1376  */
1377 static void (*event_handlers[])(struct fotg210_hcd *) = {
1378 	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1379 	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1380 	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1381 	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1382 	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1383 	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1384 	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1385 	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1386 	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1387 	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1388 };
1389 
fotg210_hrtimer_func(struct hrtimer * t)1390 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1391 {
1392 	struct fotg210_hcd *fotg210 =
1393 			container_of(t, struct fotg210_hcd, hrtimer);
1394 	ktime_t		now;
1395 	unsigned long	events;
1396 	unsigned long	flags;
1397 	unsigned	e;
1398 
1399 	spin_lock_irqsave(&fotg210->lock, flags);
1400 
1401 	events = fotg210->enabled_hrtimer_events;
1402 	fotg210->enabled_hrtimer_events = 0;
1403 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1404 
1405 	/*
1406 	 * Check each pending event.  If its time has expired, handle
1407 	 * the event; otherwise re-enable it.
1408 	 */
1409 	now = ktime_get();
1410 	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1411 		if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1412 			event_handlers[e](fotg210);
1413 		else
1414 			fotg210_enable_event(fotg210, e, false);
1415 	}
1416 
1417 	spin_unlock_irqrestore(&fotg210->lock, flags);
1418 	return HRTIMER_NORESTART;
1419 }
1420 
1421 /*-------------------------------------------------------------------------*/
1422 
1423 #define fotg210_bus_suspend	NULL
1424 #define fotg210_bus_resume	NULL
1425 
1426 /*-------------------------------------------------------------------------*/
1427 
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1428 static int check_reset_complete(
1429 	struct fotg210_hcd	*fotg210,
1430 	int		index,
1431 	u32 __iomem	*status_reg,
1432 	int		port_status
1433 ) {
1434 	if (!(port_status & PORT_CONNECT))
1435 		return port_status;
1436 
1437 	/* if reset finished and it's still not enabled -- handoff */
1438 	if (!(port_status & PORT_PE)) {
1439 		/* with integrated TT, there's nobody to hand it to! */
1440 		fotg210_dbg(fotg210,
1441 			"Failed to enable port %d on root hub TT\n",
1442 			index+1);
1443 		return port_status;
1444 	} else {
1445 		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1446 			index + 1);
1447 	}
1448 
1449 	return port_status;
1450 }
1451 
1452 /*-------------------------------------------------------------------------*/
1453 
1454 
1455 /* build "status change" packet (one or two bytes) from HC registers */
1456 
1457 static int
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1458 fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1459 {
1460 	struct fotg210_hcd	*fotg210 = hcd_to_fotg210(hcd);
1461 	u32		temp, status;
1462 	u32		mask;
1463 	int		retval = 1;
1464 	unsigned long	flags;
1465 
1466 	/* init status to no-changes */
1467 	buf[0] = 0;
1468 
1469 	/* Inform the core about resumes-in-progress by returning
1470 	 * a non-zero value even if there are no status changes.
1471 	 */
1472 	status = fotg210->resuming_ports;
1473 
1474 	mask = PORT_CSC | PORT_PEC;
1475 	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1476 
1477 	/* no hub change reports (bit 0) for now (power, ...) */
1478 
1479 	/* port N changes (bit N)? */
1480 	spin_lock_irqsave(&fotg210->lock, flags);
1481 
1482 	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1483 
1484 	/*
1485 	 * Return status information even for ports with OWNER set.
1486 	 * Otherwise hub_wq wouldn't see the disconnect event when a
1487 	 * high-speed device is switched over to the companion
1488 	 * controller by the user.
1489 	 */
1490 
1491 	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend)
1492 			|| (fotg210->reset_done[0] && time_after_eq(
1493 				jiffies, fotg210->reset_done[0]))) {
1494 		buf[0] |= 1 << 1;
1495 		status = STS_PCD;
1496 	}
1497 	/* FIXME autosuspend idle root hubs */
1498 	spin_unlock_irqrestore(&fotg210->lock, flags);
1499 	return status ? retval : 0;
1500 }
1501 
1502 /*-------------------------------------------------------------------------*/
1503 
1504 static void
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1505 fotg210_hub_descriptor(
1506 	struct fotg210_hcd		*fotg210,
1507 	struct usb_hub_descriptor	*desc
1508 ) {
1509 	int		ports = HCS_N_PORTS(fotg210->hcs_params);
1510 	u16		temp;
1511 
1512 	desc->bDescriptorType = USB_DT_HUB;
1513 	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1514 	desc->bHubContrCurrent = 0;
1515 
1516 	desc->bNbrPorts = ports;
1517 	temp = 1 + (ports / 8);
1518 	desc->bDescLength = 7 + 2 * temp;
1519 
1520 	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1521 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1522 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1523 
1524 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1525 	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1526 	desc->wHubCharacteristics = cpu_to_le16(temp);
1527 }
1528 
1529 /*-------------------------------------------------------------------------*/
1530 
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1531 static int fotg210_hub_control(
1532 	struct usb_hcd	*hcd,
1533 	u16		typeReq,
1534 	u16		wValue,
1535 	u16		wIndex,
1536 	char		*buf,
1537 	u16		wLength
1538 ) {
1539 	struct fotg210_hcd	*fotg210 = hcd_to_fotg210(hcd);
1540 	int		ports = HCS_N_PORTS(fotg210->hcs_params);
1541 	u32 __iomem	*status_reg = &fotg210->regs->port_status;
1542 	u32		temp, temp1, status;
1543 	unsigned long	flags;
1544 	int		retval = 0;
1545 	unsigned	selector;
1546 
1547 	/*
1548 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1549 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1550 	 * (track current state ourselves) ... blink for diagnostics,
1551 	 * power, "this is the one", etc.  EHCI spec supports this.
1552 	 */
1553 
1554 	spin_lock_irqsave(&fotg210->lock, flags);
1555 	switch (typeReq) {
1556 	case ClearHubFeature:
1557 		switch (wValue) {
1558 		case C_HUB_LOCAL_POWER:
1559 		case C_HUB_OVER_CURRENT:
1560 			/* no hub-wide feature/status flags */
1561 			break;
1562 		default:
1563 			goto error;
1564 		}
1565 		break;
1566 	case ClearPortFeature:
1567 		if (!wIndex || wIndex > ports)
1568 			goto error;
1569 		wIndex--;
1570 		temp = fotg210_readl(fotg210, status_reg);
1571 		temp &= ~PORT_RWC_BITS;
1572 
1573 		/*
1574 		 * Even if OWNER is set, so the port is owned by the
1575 		 * companion controller, hub_wq needs to be able to clear
1576 		 * the port-change status bits (especially
1577 		 * USB_PORT_STAT_C_CONNECTION).
1578 		 */
1579 
1580 		switch (wValue) {
1581 		case USB_PORT_FEAT_ENABLE:
1582 			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1583 			break;
1584 		case USB_PORT_FEAT_C_ENABLE:
1585 			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1586 			break;
1587 		case USB_PORT_FEAT_SUSPEND:
1588 			if (temp & PORT_RESET)
1589 				goto error;
1590 			if (!(temp & PORT_SUSPEND))
1591 				break;
1592 			if ((temp & PORT_PE) == 0)
1593 				goto error;
1594 
1595 			/* resume signaling for 20 msec */
1596 			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1597 			fotg210->reset_done[wIndex] = jiffies
1598 					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1599 			break;
1600 		case USB_PORT_FEAT_C_SUSPEND:
1601 			clear_bit(wIndex, &fotg210->port_c_suspend);
1602 			break;
1603 		case USB_PORT_FEAT_C_CONNECTION:
1604 			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1605 			break;
1606 		case USB_PORT_FEAT_C_OVER_CURRENT:
1607 			fotg210_writel(fotg210, temp | OTGISR_OVC,
1608 				       &fotg210->regs->otgisr);
1609 			break;
1610 		case USB_PORT_FEAT_C_RESET:
1611 			/* GetPortStatus clears reset */
1612 			break;
1613 		default:
1614 			goto error;
1615 		}
1616 		fotg210_readl(fotg210, &fotg210->regs->command);
1617 		break;
1618 	case GetHubDescriptor:
1619 		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1620 			buf);
1621 		break;
1622 	case GetHubStatus:
1623 		/* no hub-wide feature/status flags */
1624 		memset(buf, 0, 4);
1625 		/*cpu_to_le32s ((u32 *) buf); */
1626 		break;
1627 	case GetPortStatus:
1628 		if (!wIndex || wIndex > ports)
1629 			goto error;
1630 		wIndex--;
1631 		status = 0;
1632 		temp = fotg210_readl(fotg210, status_reg);
1633 
1634 		/* wPortChange bits */
1635 		if (temp & PORT_CSC)
1636 			status |= USB_PORT_STAT_C_CONNECTION << 16;
1637 		if (temp & PORT_PEC)
1638 			status |= USB_PORT_STAT_C_ENABLE << 16;
1639 
1640 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1641 		if (temp1 & OTGISR_OVC)
1642 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1643 
1644 		/* whoever resumes must GetPortStatus to complete it!! */
1645 		if (temp & PORT_RESUME) {
1646 
1647 			/* Remote Wakeup received? */
1648 			if (!fotg210->reset_done[wIndex]) {
1649 				/* resume signaling for 20 msec */
1650 				fotg210->reset_done[wIndex] = jiffies
1651 						+ msecs_to_jiffies(20);
1652 				/* check the port again */
1653 				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1654 						fotg210->reset_done[wIndex]);
1655 			}
1656 
1657 			/* resume completed? */
1658 			else if (time_after_eq(jiffies,
1659 					fotg210->reset_done[wIndex])) {
1660 				clear_bit(wIndex, &fotg210->suspended_ports);
1661 				set_bit(wIndex, &fotg210->port_c_suspend);
1662 				fotg210->reset_done[wIndex] = 0;
1663 
1664 				/* stop resume signaling */
1665 				temp = fotg210_readl(fotg210, status_reg);
1666 				fotg210_writel(fotg210,
1667 					temp & ~(PORT_RWC_BITS | PORT_RESUME),
1668 					status_reg);
1669 				clear_bit(wIndex, &fotg210->resuming_ports);
1670 				retval = handshake(fotg210, status_reg,
1671 					   PORT_RESUME, 0, 2000 /* 2msec */);
1672 				if (retval != 0) {
1673 					fotg210_err(fotg210,
1674 						"port %d resume error %d\n",
1675 						wIndex + 1, retval);
1676 					goto error;
1677 				}
1678 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1679 			}
1680 		}
1681 
1682 		/* whoever resets must GetPortStatus to complete it!! */
1683 		if ((temp & PORT_RESET)
1684 				&& time_after_eq(jiffies,
1685 					fotg210->reset_done[wIndex])) {
1686 			status |= USB_PORT_STAT_C_RESET << 16;
1687 			fotg210->reset_done[wIndex] = 0;
1688 			clear_bit(wIndex, &fotg210->resuming_ports);
1689 
1690 			/* force reset to complete */
1691 			fotg210_writel(fotg210,
1692 				       temp & ~(PORT_RWC_BITS | PORT_RESET),
1693 				       status_reg);
1694 			/* REVISIT:  some hardware needs 550+ usec to clear
1695 			 * this bit; seems too long to spin routinely...
1696 			 */
1697 			retval = handshake(fotg210, status_reg,
1698 					PORT_RESET, 0, 1000);
1699 			if (retval != 0) {
1700 				fotg210_err(fotg210, "port %d reset error %d\n",
1701 					wIndex + 1, retval);
1702 				goto error;
1703 			}
1704 
1705 			/* see what we found out */
1706 			temp = check_reset_complete(fotg210, wIndex, status_reg,
1707 					fotg210_readl(fotg210, status_reg));
1708 		}
1709 
1710 		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1711 			fotg210->reset_done[wIndex] = 0;
1712 			clear_bit(wIndex, &fotg210->resuming_ports);
1713 		}
1714 
1715 		/* transfer dedicated ports to the companion hc */
1716 		if ((temp & PORT_CONNECT) &&
1717 				test_bit(wIndex, &fotg210->companion_ports)) {
1718 			temp &= ~PORT_RWC_BITS;
1719 			fotg210_writel(fotg210, temp, status_reg);
1720 			fotg210_dbg(fotg210, "port %d --> companion\n",
1721 				    wIndex + 1);
1722 			temp = fotg210_readl(fotg210, status_reg);
1723 		}
1724 
1725 		/*
1726 		 * Even if OWNER is set, there's no harm letting hub_wq
1727 		 * see the wPortStatus values (they should all be 0 except
1728 		 * for PORT_POWER anyway).
1729 		 */
1730 
1731 		if (temp & PORT_CONNECT) {
1732 			status |= USB_PORT_STAT_CONNECTION;
1733 			status |= fotg210_port_speed(fotg210, temp);
1734 		}
1735 		if (temp & PORT_PE)
1736 			status |= USB_PORT_STAT_ENABLE;
1737 
1738 		/* maybe the port was unsuspended without our knowledge */
1739 		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1740 			status |= USB_PORT_STAT_SUSPEND;
1741 		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1742 			clear_bit(wIndex, &fotg210->suspended_ports);
1743 			clear_bit(wIndex, &fotg210->resuming_ports);
1744 			fotg210->reset_done[wIndex] = 0;
1745 			if (temp & PORT_PE)
1746 				set_bit(wIndex, &fotg210->port_c_suspend);
1747 		}
1748 
1749 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1750 		if (temp1 & OTGISR_OVC)
1751 			status |= USB_PORT_STAT_OVERCURRENT;
1752 		if (temp & PORT_RESET)
1753 			status |= USB_PORT_STAT_RESET;
1754 		if (test_bit(wIndex, &fotg210->port_c_suspend))
1755 			status |= USB_PORT_STAT_C_SUSPEND << 16;
1756 
1757 		if (status & ~0xffff)	/* only if wPortChange is interesting */
1758 			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1759 		put_unaligned_le32(status, buf);
1760 		break;
1761 	case SetHubFeature:
1762 		switch (wValue) {
1763 		case C_HUB_LOCAL_POWER:
1764 		case C_HUB_OVER_CURRENT:
1765 			/* no hub-wide feature/status flags */
1766 			break;
1767 		default:
1768 			goto error;
1769 		}
1770 		break;
1771 	case SetPortFeature:
1772 		selector = wIndex >> 8;
1773 		wIndex &= 0xff;
1774 
1775 		if (!wIndex || wIndex > ports)
1776 			goto error;
1777 		wIndex--;
1778 		temp = fotg210_readl(fotg210, status_reg);
1779 		temp &= ~PORT_RWC_BITS;
1780 		switch (wValue) {
1781 		case USB_PORT_FEAT_SUSPEND:
1782 			if ((temp & PORT_PE) == 0
1783 					|| (temp & PORT_RESET) != 0)
1784 				goto error;
1785 
1786 			/* After above check the port must be connected.
1787 			 * Set appropriate bit thus could put phy into low power
1788 			 * mode if we have hostpc feature
1789 			 */
1790 			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1791 				       status_reg);
1792 			set_bit(wIndex, &fotg210->suspended_ports);
1793 			break;
1794 		case USB_PORT_FEAT_RESET:
1795 			if (temp & PORT_RESUME)
1796 				goto error;
1797 			/* line status bits may report this as low speed,
1798 			 * which can be fine if this root hub has a
1799 			 * transaction translator built in.
1800 			 */
1801 			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1802 			temp |= PORT_RESET;
1803 			temp &= ~PORT_PE;
1804 
1805 			/*
1806 			 * caller must wait, then call GetPortStatus
1807 			 * usb 2.0 spec says 50 ms resets on root
1808 			 */
1809 			fotg210->reset_done[wIndex] = jiffies
1810 					+ msecs_to_jiffies(50);
1811 			fotg210_writel(fotg210, temp, status_reg);
1812 			break;
1813 
1814 		/* For downstream facing ports (these):  one hub port is put
1815 		 * into test mode according to USB2 11.24.2.13, then the hub
1816 		 * must be reset (which for root hub now means rmmod+modprobe,
1817 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1818 		 * about the EHCI-specific stuff.
1819 		 */
1820 		case USB_PORT_FEAT_TEST:
1821 			if (!selector || selector > 5)
1822 				goto error;
1823 			spin_unlock_irqrestore(&fotg210->lock, flags);
1824 			fotg210_quiesce(fotg210);
1825 			spin_lock_irqsave(&fotg210->lock, flags);
1826 
1827 			/* Put all enabled ports into suspend */
1828 			temp = fotg210_readl(fotg210, status_reg) &
1829 				~PORT_RWC_BITS;
1830 			if (temp & PORT_PE)
1831 				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1832 						status_reg);
1833 
1834 			spin_unlock_irqrestore(&fotg210->lock, flags);
1835 			fotg210_halt(fotg210);
1836 			spin_lock_irqsave(&fotg210->lock, flags);
1837 
1838 			temp = fotg210_readl(fotg210, status_reg);
1839 			temp |= selector << 16;
1840 			fotg210_writel(fotg210, temp, status_reg);
1841 			break;
1842 
1843 		default:
1844 			goto error;
1845 		}
1846 		fotg210_readl(fotg210, &fotg210->regs->command);
1847 		break;
1848 
1849 	default:
1850 error:
1851 		/* "stall" on error */
1852 		retval = -EPIPE;
1853 	}
1854 	spin_unlock_irqrestore(&fotg210->lock, flags);
1855 	return retval;
1856 }
1857 
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1858 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1859 		int portnum)
1860 {
1861 	return;
1862 }
1863 
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1864 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1865 		int portnum)
1866 {
1867 	return 0;
1868 }
1869 /*-------------------------------------------------------------------------*/
1870 /*
1871  * There's basically three types of memory:
1872  *	- data used only by the HCD ... kmalloc is fine
1873  *	- async and periodic schedules, shared by HC and HCD ... these
1874  *	  need to use dma_pool or dma_alloc_coherent
1875  *	- driver buffers, read/written by HC ... single shot DMA mapped
1876  *
1877  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1878  * No memory seen by this driver is pageable.
1879  */
1880 
1881 /*-------------------------------------------------------------------------*/
1882 
1883 /* Allocate the key transfer structures from the previously allocated pool */
1884 
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1885 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1886 				    struct fotg210_qtd *qtd, dma_addr_t dma)
1887 {
1888 	memset(qtd, 0, sizeof(*qtd));
1889 	qtd->qtd_dma = dma;
1890 	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1891 	qtd->hw_next = FOTG210_LIST_END(fotg210);
1892 	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1893 	INIT_LIST_HEAD(&qtd->qtd_list);
1894 }
1895 
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1896 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1897 					     gfp_t flags)
1898 {
1899 	struct fotg210_qtd		*qtd;
1900 	dma_addr_t		dma;
1901 
1902 	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1903 	if (qtd != NULL)
1904 		fotg210_qtd_init(fotg210, qtd, dma);
1905 
1906 	return qtd;
1907 }
1908 
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1909 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1910 				    struct fotg210_qtd *qtd)
1911 {
1912 	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1913 }
1914 
1915 
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1916 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1917 {
1918 	/* clean qtds first, and know this is not linked */
1919 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1920 		fotg210_dbg(fotg210, "unused qh not empty!\n");
1921 		BUG();
1922 	}
1923 	if (qh->dummy)
1924 		fotg210_qtd_free(fotg210, qh->dummy);
1925 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1926 	kfree(qh);
1927 }
1928 
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1929 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1930 					   gfp_t flags)
1931 {
1932 	struct fotg210_qh		*qh;
1933 	dma_addr_t		dma;
1934 
1935 	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1936 	if (!qh)
1937 		goto done;
1938 	qh->hw = (struct fotg210_qh_hw *)
1939 		dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1940 	if (!qh->hw)
1941 		goto fail;
1942 	memset(qh->hw, 0, sizeof(*qh->hw));
1943 	qh->qh_dma = dma;
1944 	INIT_LIST_HEAD(&qh->qtd_list);
1945 
1946 	/* dummy td enables safe urb queuing */
1947 	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1948 	if (qh->dummy == NULL) {
1949 		fotg210_dbg(fotg210, "no dummy td\n");
1950 		goto fail1;
1951 	}
1952 done:
1953 	return qh;
1954 fail1:
1955 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1956 fail:
1957 	kfree(qh);
1958 	return NULL;
1959 }
1960 
1961 /*-------------------------------------------------------------------------*/
1962 
1963 /* The queue heads and transfer descriptors are managed from pools tied
1964  * to each of the "per device" structures.
1965  * This is the initialisation and cleanup code.
1966  */
1967 
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1968 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1969 {
1970 	if (fotg210->async)
1971 		qh_destroy(fotg210, fotg210->async);
1972 	fotg210->async = NULL;
1973 
1974 	if (fotg210->dummy)
1975 		qh_destroy(fotg210, fotg210->dummy);
1976 	fotg210->dummy = NULL;
1977 
1978 	/* DMA consistent memory and pools */
1979 	if (fotg210->qtd_pool)
1980 		dma_pool_destroy(fotg210->qtd_pool);
1981 	fotg210->qtd_pool = NULL;
1982 
1983 	if (fotg210->qh_pool) {
1984 		dma_pool_destroy(fotg210->qh_pool);
1985 		fotg210->qh_pool = NULL;
1986 	}
1987 
1988 	if (fotg210->itd_pool)
1989 		dma_pool_destroy(fotg210->itd_pool);
1990 	fotg210->itd_pool = NULL;
1991 
1992 	if (fotg210->periodic)
1993 		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1994 			fotg210->periodic_size * sizeof(u32),
1995 			fotg210->periodic, fotg210->periodic_dma);
1996 	fotg210->periodic = NULL;
1997 
1998 	/* shadow periodic table */
1999 	kfree(fotg210->pshadow);
2000 	fotg210->pshadow = NULL;
2001 }
2002 
2003 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)2004 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
2005 {
2006 	int i;
2007 
2008 	/* QTDs for control/bulk/intr transfers */
2009 	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
2010 			fotg210_to_hcd(fotg210)->self.controller,
2011 			sizeof(struct fotg210_qtd),
2012 			32 /* byte alignment (for hw parts) */,
2013 			4096 /* can't cross 4K */);
2014 	if (!fotg210->qtd_pool)
2015 		goto fail;
2016 
2017 	/* QHs for control/bulk/intr transfers */
2018 	fotg210->qh_pool = dma_pool_create("fotg210_qh",
2019 			fotg210_to_hcd(fotg210)->self.controller,
2020 			sizeof(struct fotg210_qh_hw),
2021 			32 /* byte alignment (for hw parts) */,
2022 			4096 /* can't cross 4K */);
2023 	if (!fotg210->qh_pool)
2024 		goto fail;
2025 
2026 	fotg210->async = fotg210_qh_alloc(fotg210, flags);
2027 	if (!fotg210->async)
2028 		goto fail;
2029 
2030 	/* ITD for high speed ISO transfers */
2031 	fotg210->itd_pool = dma_pool_create("fotg210_itd",
2032 			fotg210_to_hcd(fotg210)->self.controller,
2033 			sizeof(struct fotg210_itd),
2034 			64 /* byte alignment (for hw parts) */,
2035 			4096 /* can't cross 4K */);
2036 	if (!fotg210->itd_pool)
2037 		goto fail;
2038 
2039 	/* Hardware periodic table */
2040 	fotg210->periodic = (__le32 *)
2041 		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
2042 			fotg210->periodic_size * sizeof(__le32),
2043 			&fotg210->periodic_dma, 0);
2044 	if (fotg210->periodic == NULL)
2045 		goto fail;
2046 
2047 	for (i = 0; i < fotg210->periodic_size; i++)
2048 		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
2049 
2050 	/* software shadow of hardware table */
2051 	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
2052 				   flags);
2053 	if (fotg210->pshadow != NULL)
2054 		return 0;
2055 
2056 fail:
2057 	fotg210_dbg(fotg210, "couldn't init memory\n");
2058 	fotg210_mem_cleanup(fotg210);
2059 	return -ENOMEM;
2060 }
2061 /*-------------------------------------------------------------------------*/
2062 /*
2063  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
2064  *
2065  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2066  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2067  * buffers needed for the larger number).  We use one QH per endpoint, queue
2068  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2069  *
2070  * ISO traffic uses "ISO TD" (itd) records, and (along with
2071  * interrupts) needs careful scheduling.  Performance improvements can be
2072  * an ongoing challenge.  That's in "ehci-sched.c".
2073  *
2074  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2075  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2076  * (b) special fields in qh entries or (c) split iso entries.  TTs will
2077  * buffer low/full speed data so the host collects it at high speed.
2078  */
2079 
2080 /*-------------------------------------------------------------------------*/
2081 
2082 /* fill a qtd, returning how much of the buffer we were able to queue up */
2083 
2084 static int
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)2085 qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf,
2086 		  size_t len, int token, int maxpacket)
2087 {
2088 	int	i, count;
2089 	u64	addr = buf;
2090 
2091 	/* one buffer entry per 4K ... first might be short or unaligned */
2092 	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2093 	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2094 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2095 	if (likely(len < count))		/* ... iff needed */
2096 		count = len;
2097 	else {
2098 		buf +=  0x1000;
2099 		buf &= ~0x0fff;
2100 
2101 		/* per-qtd limit: from 16K to 20K (best alignment) */
2102 		for (i = 1; count < len && i < 5; i++) {
2103 			addr = buf;
2104 			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2105 			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2106 					(u32)(addr >> 32));
2107 			buf += 0x1000;
2108 			if ((count + 0x1000) < len)
2109 				count += 0x1000;
2110 			else
2111 				count = len;
2112 		}
2113 
2114 		/* short packets may only terminate transfers */
2115 		if (count != len)
2116 			count -= (count % maxpacket);
2117 	}
2118 	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2119 	qtd->length = count;
2120 
2121 	return count;
2122 }
2123 
2124 /*-------------------------------------------------------------------------*/
2125 
2126 static inline void
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2127 qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
2128 	  struct fotg210_qtd *qtd)
2129 {
2130 	struct fotg210_qh_hw *hw = qh->hw;
2131 
2132 	/* writes to an active overlay are unsafe */
2133 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2134 
2135 	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2136 	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2137 
2138 	/* Except for control endpoints, we make hardware maintain data
2139 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2140 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2141 	 * ever clear it.
2142 	 */
2143 	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2144 		unsigned	is_out, epnum;
2145 
2146 		is_out = qh->is_out;
2147 		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2148 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2149 			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2150 			usb_settoggle(qh->dev, epnum, is_out, 1);
2151 		}
2152 	}
2153 
2154 	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2155 }
2156 
2157 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2158  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2159  * recovery (including urb dequeue) would need software changes to a QH...
2160  */
2161 static void
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2162 qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2163 {
2164 	struct fotg210_qtd *qtd;
2165 
2166 	if (list_empty(&qh->qtd_list))
2167 		qtd = qh->dummy;
2168 	else {
2169 		qtd = list_entry(qh->qtd_list.next,
2170 				struct fotg210_qtd, qtd_list);
2171 		/*
2172 		 * first qtd may already be partially processed.
2173 		 * If we come here during unlink, the QH overlay region
2174 		 * might have reference to the just unlinked qtd. The
2175 		 * qtd is updated in qh_completions(). Update the QH
2176 		 * overlay here.
2177 		 */
2178 		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2179 			qh->hw->hw_qtd_next = qtd->hw_next;
2180 			qtd = NULL;
2181 		}
2182 	}
2183 
2184 	if (qtd)
2185 		qh_update(fotg210, qh, qtd);
2186 }
2187 
2188 /*-------------------------------------------------------------------------*/
2189 
2190 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2191 
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2192 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2193 		struct usb_host_endpoint *ep)
2194 {
2195 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
2196 	struct fotg210_qh		*qh = ep->hcpriv;
2197 	unsigned long		flags;
2198 
2199 	spin_lock_irqsave(&fotg210->lock, flags);
2200 	qh->clearing_tt = 0;
2201 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2202 			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2203 		qh_link_async(fotg210, qh);
2204 	spin_unlock_irqrestore(&fotg210->lock, flags);
2205 }
2206 
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2207 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2208 				    struct fotg210_qh *qh,
2209 				    struct urb *urb, u32 token)
2210 {
2211 
2212 	/* If an async split transaction gets an error or is unlinked,
2213 	 * the TT buffer may be left in an indeterminate state.  We
2214 	 * have to clear the TT buffer.
2215 	 *
2216 	 * Note: this routine is never called for Isochronous transfers.
2217 	 */
2218 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2219 		struct usb_device *tt = urb->dev->tt->hub;
2220 		dev_dbg(&tt->dev,
2221 			"clear tt buffer port %d, a%d ep%d t%08x\n",
2222 			urb->dev->ttport, urb->dev->devnum,
2223 			usb_pipeendpoint(urb->pipe), token);
2224 
2225 		if (urb->dev->tt->hub !=
2226 		    fotg210_to_hcd(fotg210)->self.root_hub) {
2227 			if (usb_hub_clear_tt_buffer(urb) == 0)
2228 				qh->clearing_tt = 1;
2229 		}
2230 	}
2231 }
2232 
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2233 static int qtd_copy_status(
2234 	struct fotg210_hcd *fotg210,
2235 	struct urb *urb,
2236 	size_t length,
2237 	u32 token
2238 )
2239 {
2240 	int	status = -EINPROGRESS;
2241 
2242 	/* count IN/OUT bytes, not SETUP (even short packets) */
2243 	if (likely(QTD_PID(token) != 2))
2244 		urb->actual_length += length - QTD_LENGTH(token);
2245 
2246 	/* don't modify error codes */
2247 	if (unlikely(urb->unlinked))
2248 		return status;
2249 
2250 	/* force cleanup after short read; not always an error */
2251 	if (unlikely(IS_SHORT_READ(token)))
2252 		status = -EREMOTEIO;
2253 
2254 	/* serious "can't proceed" faults reported by the hardware */
2255 	if (token & QTD_STS_HALT) {
2256 		if (token & QTD_STS_BABBLE) {
2257 			/* FIXME "must" disable babbling device's port too */
2258 			status = -EOVERFLOW;
2259 		/* CERR nonzero + halt --> stall */
2260 		} else if (QTD_CERR(token)) {
2261 			status = -EPIPE;
2262 
2263 		/* In theory, more than one of the following bits can be set
2264 		 * since they are sticky and the transaction is retried.
2265 		 * Which to test first is rather arbitrary.
2266 		 */
2267 		} else if (token & QTD_STS_MMF) {
2268 			/* fs/ls interrupt xfer missed the complete-split */
2269 			status = -EPROTO;
2270 		} else if (token & QTD_STS_DBE) {
2271 			status = (QTD_PID(token) == 1) /* IN ? */
2272 				? -ENOSR  /* hc couldn't read data */
2273 				: -ECOMM; /* hc couldn't write data */
2274 		} else if (token & QTD_STS_XACT) {
2275 			/* timeout, bad CRC, wrong PID, etc */
2276 			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2277 				urb->dev->devpath,
2278 				usb_pipeendpoint(urb->pipe),
2279 				usb_pipein(urb->pipe) ? "in" : "out");
2280 			status = -EPROTO;
2281 		} else {	/* unknown */
2282 			status = -EPROTO;
2283 		}
2284 
2285 		fotg210_dbg(fotg210,
2286 			"dev%d ep%d%s qtd token %08x --> status %d\n",
2287 			usb_pipedevice(urb->pipe),
2288 			usb_pipeendpoint(urb->pipe),
2289 			usb_pipein(urb->pipe) ? "in" : "out",
2290 			token, status);
2291 	}
2292 
2293 	return status;
2294 }
2295 
2296 static void
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2297 fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status)
2298 __releases(fotg210->lock)
2299 __acquires(fotg210->lock)
2300 {
2301 	if (likely(urb->hcpriv != NULL)) {
2302 		struct fotg210_qh	*qh = (struct fotg210_qh *) urb->hcpriv;
2303 
2304 		/* S-mask in a QH means it's an interrupt urb */
2305 		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2306 
2307 			/* ... update hc-wide periodic stats (for usbfs) */
2308 			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2309 		}
2310 	}
2311 
2312 	if (unlikely(urb->unlinked)) {
2313 		COUNT(fotg210->stats.unlink);
2314 	} else {
2315 		/* report non-error and short read status as zero */
2316 		if (status == -EINPROGRESS || status == -EREMOTEIO)
2317 			status = 0;
2318 		COUNT(fotg210->stats.complete);
2319 	}
2320 
2321 #ifdef FOTG210_URB_TRACE
2322 	fotg210_dbg(fotg210,
2323 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
2324 		__func__, urb->dev->devpath, urb,
2325 		usb_pipeendpoint(urb->pipe),
2326 		usb_pipein(urb->pipe) ? "in" : "out",
2327 		status,
2328 		urb->actual_length, urb->transfer_buffer_length);
2329 #endif
2330 
2331 	/* complete() can reenter this HCD */
2332 	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2333 	spin_unlock(&fotg210->lock);
2334 	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2335 	spin_lock(&fotg210->lock);
2336 }
2337 
2338 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2339 
2340 /*
2341  * Process and free completed qtds for a qh, returning URBs to drivers.
2342  * Chases up to qh->hw_current.  Returns number of completions called,
2343  * indicating how much "real" work we did.
2344  */
2345 static unsigned
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2346 qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2347 {
2348 	struct fotg210_qtd		*last, *end = qh->dummy;
2349 	struct list_head	*entry, *tmp;
2350 	int			last_status;
2351 	int			stopped;
2352 	unsigned		count = 0;
2353 	u8			state;
2354 	struct fotg210_qh_hw	*hw = qh->hw;
2355 
2356 	if (unlikely(list_empty(&qh->qtd_list)))
2357 		return count;
2358 
2359 	/* completions (or tasks on other cpus) must never clobber HALT
2360 	 * till we've gone through and cleaned everything up, even when
2361 	 * they add urbs to this qh's queue or mark them for unlinking.
2362 	 *
2363 	 * NOTE:  unlinking expects to be done in queue order.
2364 	 *
2365 	 * It's a bug for qh->qh_state to be anything other than
2366 	 * QH_STATE_IDLE, unless our caller is scan_async() or
2367 	 * scan_intr().
2368 	 */
2369 	state = qh->qh_state;
2370 	qh->qh_state = QH_STATE_COMPLETING;
2371 	stopped = (state == QH_STATE_IDLE);
2372 
2373  rescan:
2374 	last = NULL;
2375 	last_status = -EINPROGRESS;
2376 	qh->needs_rescan = 0;
2377 
2378 	/* remove de-activated QTDs from front of queue.
2379 	 * after faults (including short reads), cleanup this urb
2380 	 * then let the queue advance.
2381 	 * if queue is stopped, handles unlinks.
2382 	 */
2383 	list_for_each_safe(entry, tmp, &qh->qtd_list) {
2384 		struct fotg210_qtd	*qtd;
2385 		struct urb	*urb;
2386 		u32		token = 0;
2387 
2388 		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2389 		urb = qtd->urb;
2390 
2391 		/* clean up any state from previous QTD ...*/
2392 		if (last) {
2393 			if (likely(last->urb != urb)) {
2394 				fotg210_urb_done(fotg210, last->urb,
2395 						 last_status);
2396 				count++;
2397 				last_status = -EINPROGRESS;
2398 			}
2399 			fotg210_qtd_free(fotg210, last);
2400 			last = NULL;
2401 		}
2402 
2403 		/* ignore urbs submitted during completions we reported */
2404 		if (qtd == end)
2405 			break;
2406 
2407 		/* hardware copies qtd out of qh overlay */
2408 		rmb();
2409 		token = hc32_to_cpu(fotg210, qtd->hw_token);
2410 
2411 		/* always clean up qtds the hc de-activated */
2412  retry_xacterr:
2413 		if ((token & QTD_STS_ACTIVE) == 0) {
2414 
2415 			/* Report Data Buffer Error: non-fatal but useful */
2416 			if (token & QTD_STS_DBE)
2417 				fotg210_dbg(fotg210,
2418 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2419 					urb,
2420 					usb_endpoint_num(&urb->ep->desc),
2421 					usb_endpoint_dir_in(&urb->ep->desc)
2422 						? "in" : "out",
2423 					urb->transfer_buffer_length,
2424 					qtd,
2425 					qh);
2426 
2427 			/* on STALL, error, and short reads this urb must
2428 			 * complete and all its qtds must be recycled.
2429 			 */
2430 			if ((token & QTD_STS_HALT) != 0) {
2431 
2432 				/* retry transaction errors until we
2433 				 * reach the software xacterr limit
2434 				 */
2435 				if ((token & QTD_STS_XACT) &&
2436 					QTD_CERR(token) == 0 &&
2437 					++qh->xacterrs < QH_XACTERR_MAX &&
2438 					!urb->unlinked) {
2439 					fotg210_dbg(fotg210,
2440 	"detected XactErr len %zu/%zu retry %d\n",
2441 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
2442 
2443 					/* reset the token in the qtd and the
2444 					 * qh overlay (which still contains
2445 					 * the qtd) so that we pick up from
2446 					 * where we left off
2447 					 */
2448 					token &= ~QTD_STS_HALT;
2449 					token |= QTD_STS_ACTIVE |
2450 						 (FOTG210_TUNE_CERR << 10);
2451 					qtd->hw_token = cpu_to_hc32(fotg210,
2452 							token);
2453 					wmb();
2454 					hw->hw_token = cpu_to_hc32(fotg210,
2455 							token);
2456 					goto retry_xacterr;
2457 				}
2458 				stopped = 1;
2459 
2460 			/* magic dummy for some short reads; qh won't advance.
2461 			 * that silicon quirk can kick in with this dummy too.
2462 			 *
2463 			 * other short reads won't stop the queue, including
2464 			 * control transfers (status stage handles that) or
2465 			 * most other single-qtd reads ... the queue stops if
2466 			 * URB_SHORT_NOT_OK was set so the driver submitting
2467 			 * the urbs could clean it up.
2468 			 */
2469 			} else if (IS_SHORT_READ(token)
2470 					&& !(qtd->hw_alt_next
2471 						& FOTG210_LIST_END(fotg210))) {
2472 				stopped = 1;
2473 			}
2474 
2475 		/* stop scanning when we reach qtds the hc is using */
2476 		} else if (likely(!stopped
2477 				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2478 			break;
2479 
2480 		/* scan the whole queue for unlinks whenever it stops */
2481 		} else {
2482 			stopped = 1;
2483 
2484 			/* cancel everything if we halt, suspend, etc */
2485 			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2486 				last_status = -ESHUTDOWN;
2487 
2488 			/* this qtd is active; skip it unless a previous qtd
2489 			 * for its urb faulted, or its urb was canceled.
2490 			 */
2491 			else if (last_status == -EINPROGRESS && !urb->unlinked)
2492 				continue;
2493 
2494 			/* qh unlinked; token in overlay may be most current */
2495 			if (state == QH_STATE_IDLE
2496 					&& cpu_to_hc32(fotg210, qtd->qtd_dma)
2497 						== hw->hw_current) {
2498 				token = hc32_to_cpu(fotg210, hw->hw_token);
2499 
2500 				/* An unlink may leave an incomplete
2501 				 * async transaction in the TT buffer.
2502 				 * We have to clear it.
2503 				 */
2504 				fotg210_clear_tt_buffer(fotg210, qh, urb,
2505 							token);
2506 			}
2507 		}
2508 
2509 		/* unless we already know the urb's status, collect qtd status
2510 		 * and update count of bytes transferred.  in common short read
2511 		 * cases with only one data qtd (including control transfers),
2512 		 * queue processing won't halt.  but with two or more qtds (for
2513 		 * example, with a 32 KB transfer), when the first qtd gets a
2514 		 * short read the second must be removed by hand.
2515 		 */
2516 		if (last_status == -EINPROGRESS) {
2517 			last_status = qtd_copy_status(fotg210, urb,
2518 					qtd->length, token);
2519 			if (last_status == -EREMOTEIO
2520 					&& (qtd->hw_alt_next
2521 						& FOTG210_LIST_END(fotg210)))
2522 				last_status = -EINPROGRESS;
2523 
2524 			/* As part of low/full-speed endpoint-halt processing
2525 			 * we must clear the TT buffer (11.17.5).
2526 			 */
2527 			if (unlikely(last_status != -EINPROGRESS &&
2528 					last_status != -EREMOTEIO)) {
2529 				/* The TT's in some hubs malfunction when they
2530 				 * receive this request following a STALL (they
2531 				 * stop sending isochronous packets).  Since a
2532 				 * STALL can't leave the TT buffer in a busy
2533 				 * state (if you believe Figures 11-48 - 11-51
2534 				 * in the USB 2.0 spec), we won't clear the TT
2535 				 * buffer in this case.  Strictly speaking this
2536 				 * is a violation of the spec.
2537 				 */
2538 				if (last_status != -EPIPE)
2539 					fotg210_clear_tt_buffer(fotg210, qh,
2540 								urb, token);
2541 			}
2542 		}
2543 
2544 		/* if we're removing something not at the queue head,
2545 		 * patch the hardware queue pointer.
2546 		 */
2547 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2548 			last = list_entry(qtd->qtd_list.prev,
2549 					struct fotg210_qtd, qtd_list);
2550 			last->hw_next = qtd->hw_next;
2551 		}
2552 
2553 		/* remove qtd; it's recycled after possible urb completion */
2554 		list_del(&qtd->qtd_list);
2555 		last = qtd;
2556 
2557 		/* reinit the xacterr counter for the next qtd */
2558 		qh->xacterrs = 0;
2559 	}
2560 
2561 	/* last urb's completion might still need calling */
2562 	if (likely(last != NULL)) {
2563 		fotg210_urb_done(fotg210, last->urb, last_status);
2564 		count++;
2565 		fotg210_qtd_free(fotg210, last);
2566 	}
2567 
2568 	/* Do we need to rescan for URBs dequeued during a giveback? */
2569 	if (unlikely(qh->needs_rescan)) {
2570 		/* If the QH is already unlinked, do the rescan now. */
2571 		if (state == QH_STATE_IDLE)
2572 			goto rescan;
2573 
2574 		/* Otherwise we have to wait until the QH is fully unlinked.
2575 		 * Our caller will start an unlink if qh->needs_rescan is
2576 		 * set.  But if an unlink has already started, nothing needs
2577 		 * to be done.
2578 		 */
2579 		if (state != QH_STATE_LINKED)
2580 			qh->needs_rescan = 0;
2581 	}
2582 
2583 	/* restore original state; caller must unlink or relink */
2584 	qh->qh_state = state;
2585 
2586 	/* be sure the hardware's done with the qh before refreshing
2587 	 * it after fault cleanup, or recovering from silicon wrongly
2588 	 * overlaying the dummy qtd (which reduces DMA chatter).
2589 	 */
2590 	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2591 		switch (state) {
2592 		case QH_STATE_IDLE:
2593 			qh_refresh(fotg210, qh);
2594 			break;
2595 		case QH_STATE_LINKED:
2596 			/* We won't refresh a QH that's linked (after the HC
2597 			 * stopped the queue).  That avoids a race:
2598 			 *  - HC reads first part of QH;
2599 			 *  - CPU updates that first part and the token;
2600 			 *  - HC reads rest of that QH, including token
2601 			 * Result:  HC gets an inconsistent image, and then
2602 			 * DMAs to/from the wrong memory (corrupting it).
2603 			 *
2604 			 * That should be rare for interrupt transfers,
2605 			 * except maybe high bandwidth ...
2606 			 */
2607 
2608 			/* Tell the caller to start an unlink */
2609 			qh->needs_rescan = 1;
2610 			break;
2611 		/* otherwise, unlink already started */
2612 		}
2613 	}
2614 
2615 	return count;
2616 }
2617 
2618 /*-------------------------------------------------------------------------*/
2619 
2620 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2621 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2622 /* ... and packet size, for any kind of endpoint descriptor */
2623 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2624 
2625 /*
2626  * reverse of qh_urb_transaction:  free a list of TDs.
2627  * used for cleanup after errors, before HC sees an URB's TDs.
2628  */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list)2629 static void qtd_list_free(
2630 	struct fotg210_hcd		*fotg210,
2631 	struct urb		*urb,
2632 	struct list_head	*qtd_list
2633 ) {
2634 	struct list_head	*entry, *temp;
2635 
2636 	list_for_each_safe(entry, temp, qtd_list) {
2637 		struct fotg210_qtd	*qtd;
2638 
2639 		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2640 		list_del(&qtd->qtd_list);
2641 		fotg210_qtd_free(fotg210, qtd);
2642 	}
2643 }
2644 
2645 /*
2646  * create a list of filled qtds for this URB; won't link into qh.
2647  */
2648 static struct list_head *
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2649 qh_urb_transaction(
2650 	struct fotg210_hcd		*fotg210,
2651 	struct urb		*urb,
2652 	struct list_head	*head,
2653 	gfp_t			flags
2654 ) {
2655 	struct fotg210_qtd		*qtd, *qtd_prev;
2656 	dma_addr_t		buf;
2657 	int			len, this_sg_len, maxpacket;
2658 	int			is_input;
2659 	u32			token;
2660 	int			i;
2661 	struct scatterlist	*sg;
2662 
2663 	/*
2664 	 * URBs map to sequences of QTDs:  one logical transaction
2665 	 */
2666 	qtd = fotg210_qtd_alloc(fotg210, flags);
2667 	if (unlikely(!qtd))
2668 		return NULL;
2669 	list_add_tail(&qtd->qtd_list, head);
2670 	qtd->urb = urb;
2671 
2672 	token = QTD_STS_ACTIVE;
2673 	token |= (FOTG210_TUNE_CERR << 10);
2674 	/* for split transactions, SplitXState initialized to zero */
2675 
2676 	len = urb->transfer_buffer_length;
2677 	is_input = usb_pipein(urb->pipe);
2678 	if (usb_pipecontrol(urb->pipe)) {
2679 		/* SETUP pid */
2680 		qtd_fill(fotg210, qtd, urb->setup_dma,
2681 				sizeof(struct usb_ctrlrequest),
2682 				token | (2 /* "setup" */ << 8), 8);
2683 
2684 		/* ... and always at least one more pid */
2685 		token ^= QTD_TOGGLE;
2686 		qtd_prev = qtd;
2687 		qtd = fotg210_qtd_alloc(fotg210, flags);
2688 		if (unlikely(!qtd))
2689 			goto cleanup;
2690 		qtd->urb = urb;
2691 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2692 		list_add_tail(&qtd->qtd_list, head);
2693 
2694 		/* for zero length DATA stages, STATUS is always IN */
2695 		if (len == 0)
2696 			token |= (1 /* "in" */ << 8);
2697 	}
2698 
2699 	/*
2700 	 * data transfer stage:  buffer setup
2701 	 */
2702 	i = urb->num_mapped_sgs;
2703 	if (len > 0 && i > 0) {
2704 		sg = urb->sg;
2705 		buf = sg_dma_address(sg);
2706 
2707 		/* urb->transfer_buffer_length may be smaller than the
2708 		 * size of the scatterlist (or vice versa)
2709 		 */
2710 		this_sg_len = min_t(int, sg_dma_len(sg), len);
2711 	} else {
2712 		sg = NULL;
2713 		buf = urb->transfer_dma;
2714 		this_sg_len = len;
2715 	}
2716 
2717 	if (is_input)
2718 		token |= (1 /* "in" */ << 8);
2719 	/* else it's already initted to "out" pid (0 << 8) */
2720 
2721 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2722 
2723 	/*
2724 	 * buffer gets wrapped in one or more qtds;
2725 	 * last one may be "short" (including zero len)
2726 	 * and may serve as a control status ack
2727 	 */
2728 	for (;;) {
2729 		int this_qtd_len;
2730 
2731 		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2732 				maxpacket);
2733 		this_sg_len -= this_qtd_len;
2734 		len -= this_qtd_len;
2735 		buf += this_qtd_len;
2736 
2737 		/*
2738 		 * short reads advance to a "magic" dummy instead of the next
2739 		 * qtd ... that forces the queue to stop, for manual cleanup.
2740 		 * (this will usually be overridden later.)
2741 		 */
2742 		if (is_input)
2743 			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2744 
2745 		/* qh makes control packets use qtd toggle; maybe switch it */
2746 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2747 			token ^= QTD_TOGGLE;
2748 
2749 		if (likely(this_sg_len <= 0)) {
2750 			if (--i <= 0 || len <= 0)
2751 				break;
2752 			sg = sg_next(sg);
2753 			buf = sg_dma_address(sg);
2754 			this_sg_len = min_t(int, sg_dma_len(sg), len);
2755 		}
2756 
2757 		qtd_prev = qtd;
2758 		qtd = fotg210_qtd_alloc(fotg210, flags);
2759 		if (unlikely(!qtd))
2760 			goto cleanup;
2761 		qtd->urb = urb;
2762 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2763 		list_add_tail(&qtd->qtd_list, head);
2764 	}
2765 
2766 	/*
2767 	 * unless the caller requires manual cleanup after short reads,
2768 	 * have the alt_next mechanism keep the queue running after the
2769 	 * last data qtd (the only one, for control and most other cases).
2770 	 */
2771 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
2772 				|| usb_pipecontrol(urb->pipe)))
2773 		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2774 
2775 	/*
2776 	 * control requests may need a terminating data "status" ack;
2777 	 * other OUT ones may need a terminating short packet
2778 	 * (zero length).
2779 	 */
2780 	if (likely(urb->transfer_buffer_length != 0)) {
2781 		int	one_more = 0;
2782 
2783 		if (usb_pipecontrol(urb->pipe)) {
2784 			one_more = 1;
2785 			token ^= 0x0100;	/* "in" <--> "out"  */
2786 			token |= QTD_TOGGLE;	/* force DATA1 */
2787 		} else if (usb_pipeout(urb->pipe)
2788 				&& (urb->transfer_flags & URB_ZERO_PACKET)
2789 				&& !(urb->transfer_buffer_length % maxpacket)) {
2790 			one_more = 1;
2791 		}
2792 		if (one_more) {
2793 			qtd_prev = qtd;
2794 			qtd = fotg210_qtd_alloc(fotg210, flags);
2795 			if (unlikely(!qtd))
2796 				goto cleanup;
2797 			qtd->urb = urb;
2798 			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2799 			list_add_tail(&qtd->qtd_list, head);
2800 
2801 			/* never any data in such packets */
2802 			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2803 		}
2804 	}
2805 
2806 	/* by default, enable interrupt on urb completion */
2807 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2808 		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2809 	return head;
2810 
2811 cleanup:
2812 	qtd_list_free(fotg210, urb, head);
2813 	return NULL;
2814 }
2815 
2816 /*-------------------------------------------------------------------------*/
2817 /*
2818  * Would be best to create all qh's from config descriptors,
2819  * when each interface/altsetting is established.  Unlink
2820  * any previous qh and cancel its urbs first; endpoints are
2821  * implicitly reset then (data toggle too).
2822  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2823 */
2824 
2825 
2826 /*
2827  * Each QH holds a qtd list; a QH is used for everything except iso.
2828  *
2829  * For interrupt urbs, the scheduler must set the microframe scheduling
2830  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2831  * just one microframe in the s-mask.  For split interrupt transactions
2832  * there are additional complications: c-mask, maybe FSTNs.
2833  */
2834 static struct fotg210_qh *
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2835 qh_make(
2836 	struct fotg210_hcd		*fotg210,
2837 	struct urb		*urb,
2838 	gfp_t			flags
2839 ) {
2840 	struct fotg210_qh		*qh = fotg210_qh_alloc(fotg210, flags);
2841 	u32			info1 = 0, info2 = 0;
2842 	int			is_input, type;
2843 	int			maxp = 0;
2844 	struct usb_tt		*tt = urb->dev->tt;
2845 	struct fotg210_qh_hw	*hw;
2846 
2847 	if (!qh)
2848 		return qh;
2849 
2850 	/*
2851 	 * init endpoint/device data for this QH
2852 	 */
2853 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2854 	info1 |= usb_pipedevice(urb->pipe) << 0;
2855 
2856 	is_input = usb_pipein(urb->pipe);
2857 	type = usb_pipetype(urb->pipe);
2858 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2859 
2860 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2861 	 * acts like up to 3KB, but is built from smaller packets.
2862 	 */
2863 	if (max_packet(maxp) > 1024) {
2864 		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2865 			    max_packet(maxp));
2866 		goto done;
2867 	}
2868 
2869 	/* Compute interrupt scheduling parameters just once, and save.
2870 	 * - allowing for high bandwidth, how many nsec/uframe are used?
2871 	 * - split transactions need a second CSPLIT uframe; same question
2872 	 * - splits also need a schedule gap (for full/low speed I/O)
2873 	 * - qh has a polling interval
2874 	 *
2875 	 * For control/bulk requests, the HC or TT handles these.
2876 	 */
2877 	if (type == PIPE_INTERRUPT) {
2878 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2879 				is_input, 0,
2880 				hb_mult(maxp) * max_packet(maxp)));
2881 		qh->start = NO_FRAME;
2882 
2883 		if (urb->dev->speed == USB_SPEED_HIGH) {
2884 			qh->c_usecs = 0;
2885 			qh->gap_uf = 0;
2886 
2887 			qh->period = urb->interval >> 3;
2888 			if (qh->period == 0 && urb->interval != 1) {
2889 				/* NOTE interval 2 or 4 uframes could work.
2890 				 * But interval 1 scheduling is simpler, and
2891 				 * includes high bandwidth.
2892 				 */
2893 				urb->interval = 1;
2894 			} else if (qh->period > fotg210->periodic_size) {
2895 				qh->period = fotg210->periodic_size;
2896 				urb->interval = qh->period << 3;
2897 			}
2898 		} else {
2899 			int		think_time;
2900 
2901 			/* gap is f(FS/LS transfer times) */
2902 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2903 					is_input, 0, maxp) / (125 * 1000);
2904 
2905 			/* FIXME this just approximates SPLIT/CSPLIT times */
2906 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2907 				qh->c_usecs = qh->usecs + HS_USECS(0);
2908 				qh->usecs = HS_USECS(1);
2909 			} else {		/* SPLIT+DATA, gap, CSPLIT */
2910 				qh->usecs += HS_USECS(1);
2911 				qh->c_usecs = HS_USECS(0);
2912 			}
2913 
2914 			think_time = tt ? tt->think_time : 0;
2915 			qh->tt_usecs = NS_TO_US(think_time +
2916 					usb_calc_bus_time(urb->dev->speed,
2917 					is_input, 0, max_packet(maxp)));
2918 			qh->period = urb->interval;
2919 			if (qh->period > fotg210->periodic_size) {
2920 				qh->period = fotg210->periodic_size;
2921 				urb->interval = qh->period;
2922 			}
2923 		}
2924 	}
2925 
2926 	/* support for tt scheduling, and access to toggles */
2927 	qh->dev = urb->dev;
2928 
2929 	/* using TT? */
2930 	switch (urb->dev->speed) {
2931 	case USB_SPEED_LOW:
2932 		info1 |= QH_LOW_SPEED;
2933 		/* FALL THROUGH */
2934 
2935 	case USB_SPEED_FULL:
2936 		/* EPS 0 means "full" */
2937 		if (type != PIPE_INTERRUPT)
2938 			info1 |= (FOTG210_TUNE_RL_TT << 28);
2939 		if (type == PIPE_CONTROL) {
2940 			info1 |= QH_CONTROL_EP;		/* for TT */
2941 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2942 		}
2943 		info1 |= maxp << 16;
2944 
2945 		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2946 
2947 		/* Some Freescale processors have an erratum in which the
2948 		 * port number in the queue head was 0..N-1 instead of 1..N.
2949 		 */
2950 		if (fotg210_has_fsl_portno_bug(fotg210))
2951 			info2 |= (urb->dev->ttport-1) << 23;
2952 		else
2953 			info2 |= urb->dev->ttport << 23;
2954 
2955 		/* set the address of the TT; for TDI's integrated
2956 		 * root hub tt, leave it zeroed.
2957 		 */
2958 		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2959 			info2 |= tt->hub->devnum << 16;
2960 
2961 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2962 
2963 		break;
2964 
2965 	case USB_SPEED_HIGH:		/* no TT involved */
2966 		info1 |= QH_HIGH_SPEED;
2967 		if (type == PIPE_CONTROL) {
2968 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2969 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2970 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2971 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2972 		} else if (type == PIPE_BULK) {
2973 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2974 			/* The USB spec says that high speed bulk endpoints
2975 			 * always use 512 byte maxpacket.  But some device
2976 			 * vendors decided to ignore that, and MSFT is happy
2977 			 * to help them do so.  So now people expect to use
2978 			 * such nonconformant devices with Linux too; sigh.
2979 			 */
2980 			info1 |= max_packet(maxp) << 16;
2981 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2982 		} else {		/* PIPE_INTERRUPT */
2983 			info1 |= max_packet(maxp) << 16;
2984 			info2 |= hb_mult(maxp) << 30;
2985 		}
2986 		break;
2987 	default:
2988 		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2989 			urb->dev->speed);
2990 done:
2991 		qh_destroy(fotg210, qh);
2992 		return NULL;
2993 	}
2994 
2995 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2996 
2997 	/* init as live, toggle clear, advance to dummy */
2998 	qh->qh_state = QH_STATE_IDLE;
2999 	hw = qh->hw;
3000 	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
3001 	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
3002 	qh->is_out = !is_input;
3003 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
3004 	qh_refresh(fotg210, qh);
3005 	return qh;
3006 }
3007 
3008 /*-------------------------------------------------------------------------*/
3009 
enable_async(struct fotg210_hcd * fotg210)3010 static void enable_async(struct fotg210_hcd *fotg210)
3011 {
3012 	if (fotg210->async_count++)
3013 		return;
3014 
3015 	/* Stop waiting to turn off the async schedule */
3016 	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
3017 
3018 	/* Don't start the schedule until ASS is 0 */
3019 	fotg210_poll_ASS(fotg210);
3020 	turn_on_io_watchdog(fotg210);
3021 }
3022 
disable_async(struct fotg210_hcd * fotg210)3023 static void disable_async(struct fotg210_hcd *fotg210)
3024 {
3025 	if (--fotg210->async_count)
3026 		return;
3027 
3028 	/* The async schedule and async_unlink list are supposed to be empty */
3029 	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
3030 
3031 	/* Don't turn off the schedule until ASS is 1 */
3032 	fotg210_poll_ASS(fotg210);
3033 }
3034 
3035 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
3036 
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3037 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3038 {
3039 	__hc32		dma = QH_NEXT(fotg210, qh->qh_dma);
3040 	struct fotg210_qh	*head;
3041 
3042 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
3043 	if (unlikely(qh->clearing_tt))
3044 		return;
3045 
3046 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
3047 
3048 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
3049 	qh_refresh(fotg210, qh);
3050 
3051 	/* splice right after start */
3052 	head = fotg210->async;
3053 	qh->qh_next = head->qh_next;
3054 	qh->hw->hw_next = head->hw->hw_next;
3055 	wmb();
3056 
3057 	head->qh_next.qh = qh;
3058 	head->hw->hw_next = dma;
3059 
3060 	qh->xacterrs = 0;
3061 	qh->qh_state = QH_STATE_LINKED;
3062 	/* qtd completions reported later by interrupt */
3063 
3064 	enable_async(fotg210);
3065 }
3066 
3067 /*-------------------------------------------------------------------------*/
3068 
3069 /*
3070  * For control/bulk/interrupt, return QH with these TDs appended.
3071  * Allocates and initializes the QH if necessary.
3072  * Returns null if it can't allocate a QH it needs to.
3073  * If the QH has TDs (urbs) already, that's great.
3074  */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)3075 static struct fotg210_qh *qh_append_tds(
3076 	struct fotg210_hcd		*fotg210,
3077 	struct urb		*urb,
3078 	struct list_head	*qtd_list,
3079 	int			epnum,
3080 	void			**ptr
3081 )
3082 {
3083 	struct fotg210_qh		*qh = NULL;
3084 	__hc32			qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
3085 
3086 	qh = (struct fotg210_qh *) *ptr;
3087 	if (unlikely(qh == NULL)) {
3088 		/* can't sleep here, we have fotg210->lock... */
3089 		qh = qh_make(fotg210, urb, GFP_ATOMIC);
3090 		*ptr = qh;
3091 	}
3092 	if (likely(qh != NULL)) {
3093 		struct fotg210_qtd	*qtd;
3094 
3095 		if (unlikely(list_empty(qtd_list)))
3096 			qtd = NULL;
3097 		else
3098 			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
3099 					qtd_list);
3100 
3101 		/* control qh may need patching ... */
3102 		if (unlikely(epnum == 0)) {
3103 			/* usb_reset_device() briefly reverts to address 0 */
3104 			if (usb_pipedevice(urb->pipe) == 0)
3105 				qh->hw->hw_info1 &= ~qh_addr_mask;
3106 		}
3107 
3108 		/* just one way to queue requests: swap with the dummy qtd.
3109 		 * only hc or qh_refresh() ever modify the overlay.
3110 		 */
3111 		if (likely(qtd != NULL)) {
3112 			struct fotg210_qtd		*dummy;
3113 			dma_addr_t		dma;
3114 			__hc32			token;
3115 
3116 			/* to avoid racing the HC, use the dummy td instead of
3117 			 * the first td of our list (becomes new dummy).  both
3118 			 * tds stay deactivated until we're done, when the
3119 			 * HC is allowed to fetch the old dummy (4.10.2).
3120 			 */
3121 			token = qtd->hw_token;
3122 			qtd->hw_token = HALT_BIT(fotg210);
3123 
3124 			dummy = qh->dummy;
3125 
3126 			dma = dummy->qtd_dma;
3127 			*dummy = *qtd;
3128 			dummy->qtd_dma = dma;
3129 
3130 			list_del(&qtd->qtd_list);
3131 			list_add(&dummy->qtd_list, qtd_list);
3132 			list_splice_tail(qtd_list, &qh->qtd_list);
3133 
3134 			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3135 			qh->dummy = qtd;
3136 
3137 			/* hc must see the new dummy at list end */
3138 			dma = qtd->qtd_dma;
3139 			qtd = list_entry(qh->qtd_list.prev,
3140 					struct fotg210_qtd, qtd_list);
3141 			qtd->hw_next = QTD_NEXT(fotg210, dma);
3142 
3143 			/* let the hc process these next qtds */
3144 			wmb();
3145 			dummy->hw_token = token;
3146 
3147 			urb->hcpriv = qh;
3148 		}
3149 	}
3150 	return qh;
3151 }
3152 
3153 /*-------------------------------------------------------------------------*/
3154 
3155 static int
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3156 submit_async(
3157 	struct fotg210_hcd		*fotg210,
3158 	struct urb		*urb,
3159 	struct list_head	*qtd_list,
3160 	gfp_t			mem_flags
3161 ) {
3162 	int			epnum;
3163 	unsigned long		flags;
3164 	struct fotg210_qh		*qh = NULL;
3165 	int			rc;
3166 
3167 	epnum = urb->ep->desc.bEndpointAddress;
3168 
3169 #ifdef FOTG210_URB_TRACE
3170 	{
3171 		struct fotg210_qtd *qtd;
3172 		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3173 		fotg210_dbg(fotg210,
3174 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3175 			 __func__, urb->dev->devpath, urb,
3176 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
3177 			 urb->transfer_buffer_length,
3178 			 qtd, urb->ep->hcpriv);
3179 	}
3180 #endif
3181 
3182 	spin_lock_irqsave(&fotg210->lock, flags);
3183 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3184 		rc = -ESHUTDOWN;
3185 		goto done;
3186 	}
3187 	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3188 	if (unlikely(rc))
3189 		goto done;
3190 
3191 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3192 	if (unlikely(qh == NULL)) {
3193 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3194 		rc = -ENOMEM;
3195 		goto done;
3196 	}
3197 
3198 	/* Control/bulk operations through TTs don't need scheduling,
3199 	 * the HC and TT handle it when the TT has a buffer ready.
3200 	 */
3201 	if (likely(qh->qh_state == QH_STATE_IDLE))
3202 		qh_link_async(fotg210, qh);
3203  done:
3204 	spin_unlock_irqrestore(&fotg210->lock, flags);
3205 	if (unlikely(qh == NULL))
3206 		qtd_list_free(fotg210, urb, qtd_list);
3207 	return rc;
3208 }
3209 
3210 /*-------------------------------------------------------------------------*/
3211 
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3212 static void single_unlink_async(struct fotg210_hcd *fotg210,
3213 				struct fotg210_qh *qh)
3214 {
3215 	struct fotg210_qh		*prev;
3216 
3217 	/* Add to the end of the list of QHs waiting for the next IAAD */
3218 	qh->qh_state = QH_STATE_UNLINK;
3219 	if (fotg210->async_unlink)
3220 		fotg210->async_unlink_last->unlink_next = qh;
3221 	else
3222 		fotg210->async_unlink = qh;
3223 	fotg210->async_unlink_last = qh;
3224 
3225 	/* Unlink it from the schedule */
3226 	prev = fotg210->async;
3227 	while (prev->qh_next.qh != qh)
3228 		prev = prev->qh_next.qh;
3229 
3230 	prev->hw->hw_next = qh->hw->hw_next;
3231 	prev->qh_next = qh->qh_next;
3232 	if (fotg210->qh_scan_next == qh)
3233 		fotg210->qh_scan_next = qh->qh_next.qh;
3234 }
3235 
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3236 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3237 {
3238 	/*
3239 	 * Do nothing if an IAA cycle is already running or
3240 	 * if one will be started shortly.
3241 	 */
3242 	if (fotg210->async_iaa || fotg210->async_unlinking)
3243 		return;
3244 
3245 	/* Do all the waiting QHs at once */
3246 	fotg210->async_iaa = fotg210->async_unlink;
3247 	fotg210->async_unlink = NULL;
3248 
3249 	/* If the controller isn't running, we don't have to wait for it */
3250 	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3251 		if (!nested)		/* Avoid recursion */
3252 			end_unlink_async(fotg210);
3253 
3254 	/* Otherwise start a new IAA cycle */
3255 	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3256 		/* Make sure the unlinks are all visible to the hardware */
3257 		wmb();
3258 
3259 		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3260 				&fotg210->regs->command);
3261 		fotg210_readl(fotg210, &fotg210->regs->command);
3262 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3263 				     true);
3264 	}
3265 }
3266 
3267 /* the async qh for the qtds being unlinked are now gone from the HC */
3268 
end_unlink_async(struct fotg210_hcd * fotg210)3269 static void end_unlink_async(struct fotg210_hcd *fotg210)
3270 {
3271 	struct fotg210_qh		*qh;
3272 
3273 	/* Process the idle QHs */
3274  restart:
3275 	fotg210->async_unlinking = true;
3276 	while (fotg210->async_iaa) {
3277 		qh = fotg210->async_iaa;
3278 		fotg210->async_iaa = qh->unlink_next;
3279 		qh->unlink_next = NULL;
3280 
3281 		qh->qh_state = QH_STATE_IDLE;
3282 		qh->qh_next.qh = NULL;
3283 
3284 		qh_completions(fotg210, qh);
3285 		if (!list_empty(&qh->qtd_list) &&
3286 				fotg210->rh_state == FOTG210_RH_RUNNING)
3287 			qh_link_async(fotg210, qh);
3288 		disable_async(fotg210);
3289 	}
3290 	fotg210->async_unlinking = false;
3291 
3292 	/* Start a new IAA cycle if any QHs are waiting for it */
3293 	if (fotg210->async_unlink) {
3294 		start_iaa_cycle(fotg210, true);
3295 		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3296 			goto restart;
3297 	}
3298 }
3299 
unlink_empty_async(struct fotg210_hcd * fotg210)3300 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3301 {
3302 	struct fotg210_qh *qh, *next;
3303 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3304 	bool check_unlinks_later = false;
3305 
3306 	/* Unlink all the async QHs that have been empty for a timer cycle */
3307 	next = fotg210->async->qh_next.qh;
3308 	while (next) {
3309 		qh = next;
3310 		next = qh->qh_next.qh;
3311 
3312 		if (list_empty(&qh->qtd_list) &&
3313 				qh->qh_state == QH_STATE_LINKED) {
3314 			if (!stopped && qh->unlink_cycle ==
3315 					fotg210->async_unlink_cycle)
3316 				check_unlinks_later = true;
3317 			else
3318 				single_unlink_async(fotg210, qh);
3319 		}
3320 	}
3321 
3322 	/* Start a new IAA cycle if any QHs are waiting for it */
3323 	if (fotg210->async_unlink)
3324 		start_iaa_cycle(fotg210, false);
3325 
3326 	/* QHs that haven't been empty for long enough will be handled later */
3327 	if (check_unlinks_later) {
3328 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3329 				     true);
3330 		++fotg210->async_unlink_cycle;
3331 	}
3332 }
3333 
3334 /* makes sure the async qh will become idle */
3335 /* caller must own fotg210->lock */
3336 
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3337 static void start_unlink_async(struct fotg210_hcd *fotg210,
3338 			       struct fotg210_qh *qh)
3339 {
3340 	/*
3341 	 * If the QH isn't linked then there's nothing we can do
3342 	 * unless we were called during a giveback, in which case
3343 	 * qh_completions() has to deal with it.
3344 	 */
3345 	if (qh->qh_state != QH_STATE_LINKED) {
3346 		if (qh->qh_state == QH_STATE_COMPLETING)
3347 			qh->needs_rescan = 1;
3348 		return;
3349 	}
3350 
3351 	single_unlink_async(fotg210, qh);
3352 	start_iaa_cycle(fotg210, false);
3353 }
3354 
3355 /*-------------------------------------------------------------------------*/
3356 
scan_async(struct fotg210_hcd * fotg210)3357 static void scan_async(struct fotg210_hcd *fotg210)
3358 {
3359 	struct fotg210_qh		*qh;
3360 	bool			check_unlinks_later = false;
3361 
3362 	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3363 	while (fotg210->qh_scan_next) {
3364 		qh = fotg210->qh_scan_next;
3365 		fotg210->qh_scan_next = qh->qh_next.qh;
3366  rescan:
3367 		/* clean any finished work for this qh */
3368 		if (!list_empty(&qh->qtd_list)) {
3369 			int temp;
3370 
3371 			/*
3372 			 * Unlinks could happen here; completion reporting
3373 			 * drops the lock.  That's why fotg210->qh_scan_next
3374 			 * always holds the next qh to scan; if the next qh
3375 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3376 			 * in single_unlink_async().
3377 			 */
3378 			temp = qh_completions(fotg210, qh);
3379 			if (qh->needs_rescan) {
3380 				start_unlink_async(fotg210, qh);
3381 			} else if (list_empty(&qh->qtd_list)
3382 					&& qh->qh_state == QH_STATE_LINKED) {
3383 				qh->unlink_cycle = fotg210->async_unlink_cycle;
3384 				check_unlinks_later = true;
3385 			} else if (temp != 0)
3386 				goto rescan;
3387 		}
3388 	}
3389 
3390 	/*
3391 	 * Unlink empty entries, reducing DMA usage as well
3392 	 * as HCD schedule-scanning costs.  Delay for any qh
3393 	 * we just scanned, there's a not-unusual case that it
3394 	 * doesn't stay idle for long.
3395 	 */
3396 	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3397 			!(fotg210->enabled_hrtimer_events &
3398 				BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3399 		fotg210_enable_event(fotg210,
3400 				     FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3401 		++fotg210->async_unlink_cycle;
3402 	}
3403 }
3404 /*-------------------------------------------------------------------------*/
3405 /*
3406  * EHCI scheduled transaction support:  interrupt, iso, split iso
3407  * These are called "periodic" transactions in the EHCI spec.
3408  *
3409  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3410  * with the "asynchronous" transaction support (control/bulk transfers).
3411  * The only real difference is in how interrupt transfers are scheduled.
3412  *
3413  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3414  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3415  * pre-calculated schedule data to make appending to the queue be quick.
3416  */
3417 
3418 static int fotg210_get_frame(struct usb_hcd *hcd);
3419 
3420 /*-------------------------------------------------------------------------*/
3421 
3422 /*
3423  * periodic_next_shadow - return "next" pointer on shadow list
3424  * @periodic: host pointer to qh/itd
3425  * @tag: hardware tag for type of this record
3426  */
3427 static union fotg210_shadow *
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3428 periodic_next_shadow(struct fotg210_hcd *fotg210,
3429 		     union fotg210_shadow *periodic, __hc32 tag)
3430 {
3431 	switch (hc32_to_cpu(fotg210, tag)) {
3432 	case Q_TYPE_QH:
3433 		return &periodic->qh->qh_next;
3434 	case Q_TYPE_FSTN:
3435 		return &periodic->fstn->fstn_next;
3436 	default:
3437 		return &periodic->itd->itd_next;
3438 	}
3439 }
3440 
3441 static __hc32 *
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3442 shadow_next_periodic(struct fotg210_hcd *fotg210,
3443 		     union fotg210_shadow *periodic, __hc32 tag)
3444 {
3445 	switch (hc32_to_cpu(fotg210, tag)) {
3446 	/* our fotg210_shadow.qh is actually software part */
3447 	case Q_TYPE_QH:
3448 		return &periodic->qh->hw->hw_next;
3449 	/* others are hw parts */
3450 	default:
3451 		return periodic->hw_next;
3452 	}
3453 }
3454 
3455 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3456 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3457 			    void *ptr)
3458 {
3459 	union fotg210_shadow	*prev_p = &fotg210->pshadow[frame];
3460 	__hc32			*hw_p = &fotg210->periodic[frame];
3461 	union fotg210_shadow	here = *prev_p;
3462 
3463 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3464 	while (here.ptr && here.ptr != ptr) {
3465 		prev_p = periodic_next_shadow(fotg210, prev_p,
3466 				Q_NEXT_TYPE(fotg210, *hw_p));
3467 		hw_p = shadow_next_periodic(fotg210, &here,
3468 				Q_NEXT_TYPE(fotg210, *hw_p));
3469 		here = *prev_p;
3470 	}
3471 	/* an interrupt entry (at list end) could have been shared */
3472 	if (!here.ptr)
3473 		return;
3474 
3475 	/* update shadow and hardware lists ... the old "next" pointers
3476 	 * from ptr may still be in use, the caller updates them.
3477 	 */
3478 	*prev_p = *periodic_next_shadow(fotg210, &here,
3479 			Q_NEXT_TYPE(fotg210, *hw_p));
3480 
3481 	*hw_p = *shadow_next_periodic(fotg210, &here,
3482 				Q_NEXT_TYPE(fotg210, *hw_p));
3483 }
3484 
3485 /* how many of the uframe's 125 usecs are allocated? */
3486 static unsigned short
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3487 periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe)
3488 {
3489 	__hc32			*hw_p = &fotg210->periodic[frame];
3490 	union fotg210_shadow	*q = &fotg210->pshadow[frame];
3491 	unsigned		usecs = 0;
3492 	struct fotg210_qh_hw	*hw;
3493 
3494 	while (q->ptr) {
3495 		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3496 		case Q_TYPE_QH:
3497 			hw = q->qh->hw;
3498 			/* is it in the S-mask? */
3499 			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3500 				usecs += q->qh->usecs;
3501 			/* ... or C-mask? */
3502 			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3503 					1 << (8 + uframe)))
3504 				usecs += q->qh->c_usecs;
3505 			hw_p = &hw->hw_next;
3506 			q = &q->qh->qh_next;
3507 			break;
3508 		/* case Q_TYPE_FSTN: */
3509 		default:
3510 			/* for "save place" FSTNs, count the relevant INTR
3511 			 * bandwidth from the previous frame
3512 			 */
3513 			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3514 				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3515 
3516 			hw_p = &q->fstn->hw_next;
3517 			q = &q->fstn->fstn_next;
3518 			break;
3519 		case Q_TYPE_ITD:
3520 			if (q->itd->hw_transaction[uframe])
3521 				usecs += q->itd->stream->usecs;
3522 			hw_p = &q->itd->hw_next;
3523 			q = &q->itd->itd_next;
3524 			break;
3525 		}
3526 	}
3527 	if (usecs > fotg210->uframe_periodic_max)
3528 		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3529 			frame * 8 + uframe, usecs);
3530 	return usecs;
3531 }
3532 
3533 /*-------------------------------------------------------------------------*/
3534 
same_tt(struct usb_device * dev1,struct usb_device * dev2)3535 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3536 {
3537 	if (!dev1->tt || !dev2->tt)
3538 		return 0;
3539 	if (dev1->tt != dev2->tt)
3540 		return 0;
3541 	if (dev1->tt->multi)
3542 		return dev1->ttport == dev2->ttport;
3543 	else
3544 		return 1;
3545 }
3546 
3547 /* return true iff the device's transaction translator is available
3548  * for a periodic transfer starting at the specified frame, using
3549  * all the uframes in the mask.
3550  */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3551 static int tt_no_collision(
3552 	struct fotg210_hcd		*fotg210,
3553 	unsigned		period,
3554 	struct usb_device	*dev,
3555 	unsigned		frame,
3556 	u32			uf_mask
3557 )
3558 {
3559 	if (period == 0)	/* error */
3560 		return 0;
3561 
3562 	/* note bandwidth wastage:  split never follows csplit
3563 	 * (different dev or endpoint) until the next uframe.
3564 	 * calling convention doesn't make that distinction.
3565 	 */
3566 	for (; frame < fotg210->periodic_size; frame += period) {
3567 		union fotg210_shadow	here;
3568 		__hc32			type;
3569 		struct fotg210_qh_hw	*hw;
3570 
3571 		here = fotg210->pshadow[frame];
3572 		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3573 		while (here.ptr) {
3574 			switch (hc32_to_cpu(fotg210, type)) {
3575 			case Q_TYPE_ITD:
3576 				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3577 				here = here.itd->itd_next;
3578 				continue;
3579 			case Q_TYPE_QH:
3580 				hw = here.qh->hw;
3581 				if (same_tt(dev, here.qh->dev)) {
3582 					u32		mask;
3583 
3584 					mask = hc32_to_cpu(fotg210,
3585 							hw->hw_info2);
3586 					/* "knows" no gap is needed */
3587 					mask |= mask >> 8;
3588 					if (mask & uf_mask)
3589 						break;
3590 				}
3591 				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3592 				here = here.qh->qh_next;
3593 				continue;
3594 			/* case Q_TYPE_FSTN: */
3595 			default:
3596 				fotg210_dbg(fotg210,
3597 					"periodic frame %d bogus type %d\n",
3598 					frame, type);
3599 			}
3600 
3601 			/* collision or error */
3602 			return 0;
3603 		}
3604 	}
3605 
3606 	/* no collision */
3607 	return 1;
3608 }
3609 
3610 /*-------------------------------------------------------------------------*/
3611 
enable_periodic(struct fotg210_hcd * fotg210)3612 static void enable_periodic(struct fotg210_hcd *fotg210)
3613 {
3614 	if (fotg210->periodic_count++)
3615 		return;
3616 
3617 	/* Stop waiting to turn off the periodic schedule */
3618 	fotg210->enabled_hrtimer_events &=
3619 		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3620 
3621 	/* Don't start the schedule until PSS is 0 */
3622 	fotg210_poll_PSS(fotg210);
3623 	turn_on_io_watchdog(fotg210);
3624 }
3625 
disable_periodic(struct fotg210_hcd * fotg210)3626 static void disable_periodic(struct fotg210_hcd *fotg210)
3627 {
3628 	if (--fotg210->periodic_count)
3629 		return;
3630 
3631 	/* Don't turn off the schedule until PSS is 1 */
3632 	fotg210_poll_PSS(fotg210);
3633 }
3634 
3635 /*-------------------------------------------------------------------------*/
3636 
3637 /* periodic schedule slots have iso tds (normal or split) first, then a
3638  * sparse tree for active interrupt transfers.
3639  *
3640  * this just links in a qh; caller guarantees uframe masks are set right.
3641  * no FSTN support (yet; fotg210 0.96+)
3642  */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3643 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644 {
3645 	unsigned	i;
3646 	unsigned	period = qh->period;
3647 
3648 	dev_dbg(&qh->dev->dev,
3649 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
3650 		period, hc32_to_cpup(fotg210, &qh->hw->hw_info2)
3651 			& (QH_CMASK | QH_SMASK),
3652 		qh, qh->start, qh->usecs, qh->c_usecs);
3653 
3654 	/* high bandwidth, or otherwise every microframe */
3655 	if (period == 0)
3656 		period = 1;
3657 
3658 	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3659 		union fotg210_shadow	*prev = &fotg210->pshadow[i];
3660 		__hc32			*hw_p = &fotg210->periodic[i];
3661 		union fotg210_shadow	here = *prev;
3662 		__hc32			type = 0;
3663 
3664 		/* skip the iso nodes at list head */
3665 		while (here.ptr) {
3666 			type = Q_NEXT_TYPE(fotg210, *hw_p);
3667 			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3668 				break;
3669 			prev = periodic_next_shadow(fotg210, prev, type);
3670 			hw_p = shadow_next_periodic(fotg210, &here, type);
3671 			here = *prev;
3672 		}
3673 
3674 		/* sorting each branch by period (slow-->fast)
3675 		 * enables sharing interior tree nodes
3676 		 */
3677 		while (here.ptr && qh != here.qh) {
3678 			if (qh->period > here.qh->period)
3679 				break;
3680 			prev = &here.qh->qh_next;
3681 			hw_p = &here.qh->hw->hw_next;
3682 			here = *prev;
3683 		}
3684 		/* link in this qh, unless some earlier pass did that */
3685 		if (qh != here.qh) {
3686 			qh->qh_next = here;
3687 			if (here.qh)
3688 				qh->hw->hw_next = *hw_p;
3689 			wmb();
3690 			prev->qh = qh;
3691 			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3692 		}
3693 	}
3694 	qh->qh_state = QH_STATE_LINKED;
3695 	qh->xacterrs = 0;
3696 
3697 	/* update per-qh bandwidth for usbfs */
3698 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3699 		? ((qh->usecs + qh->c_usecs) / qh->period)
3700 		: (qh->usecs * 8);
3701 
3702 	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3703 
3704 	/* maybe enable periodic schedule processing */
3705 	++fotg210->intr_count;
3706 	enable_periodic(fotg210);
3707 }
3708 
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3709 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3710 			       struct fotg210_qh *qh)
3711 {
3712 	unsigned	i;
3713 	unsigned	period;
3714 
3715 	/*
3716 	 * If qh is for a low/full-speed device, simply unlinking it
3717 	 * could interfere with an ongoing split transaction.  To unlink
3718 	 * it safely would require setting the QH_INACTIVATE bit and
3719 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3720 	 *
3721 	 * We won't bother with any of this.  Instead, we assume that the
3722 	 * only reason for unlinking an interrupt QH while the current URB
3723 	 * is still active is to dequeue all the URBs (flush the whole
3724 	 * endpoint queue).
3725 	 *
3726 	 * If rebalancing the periodic schedule is ever implemented, this
3727 	 * approach will no longer be valid.
3728 	 */
3729 
3730 	/* high bandwidth, or otherwise part of every microframe */
3731 	period = qh->period;
3732 	if (!period)
3733 		period = 1;
3734 
3735 	for (i = qh->start; i < fotg210->periodic_size; i += period)
3736 		periodic_unlink(fotg210, i, qh);
3737 
3738 	/* update per-qh bandwidth for usbfs */
3739 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3740 		? ((qh->usecs + qh->c_usecs) / qh->period)
3741 		: (qh->usecs * 8);
3742 
3743 	dev_dbg(&qh->dev->dev,
3744 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3745 		qh->period,
3746 		hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3747 		(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs);
3748 
3749 	/* qh->qh_next still "live" to HC */
3750 	qh->qh_state = QH_STATE_UNLINK;
3751 	qh->qh_next.ptr = NULL;
3752 
3753 	if (fotg210->qh_scan_next == qh)
3754 		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3755 				struct fotg210_qh, intr_node);
3756 	list_del(&qh->intr_node);
3757 }
3758 
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3759 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3760 			      struct fotg210_qh *qh)
3761 {
3762 	/* If the QH isn't linked then there's nothing we can do
3763 	 * unless we were called during a giveback, in which case
3764 	 * qh_completions() has to deal with it.
3765 	 */
3766 	if (qh->qh_state != QH_STATE_LINKED) {
3767 		if (qh->qh_state == QH_STATE_COMPLETING)
3768 			qh->needs_rescan = 1;
3769 		return;
3770 	}
3771 
3772 	qh_unlink_periodic(fotg210, qh);
3773 
3774 	/* Make sure the unlinks are visible before starting the timer */
3775 	wmb();
3776 
3777 	/*
3778 	 * The EHCI spec doesn't say how long it takes the controller to
3779 	 * stop accessing an unlinked interrupt QH.  The timer delay is
3780 	 * 9 uframes; presumably that will be long enough.
3781 	 */
3782 	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3783 
3784 	/* New entries go at the end of the intr_unlink list */
3785 	if (fotg210->intr_unlink)
3786 		fotg210->intr_unlink_last->unlink_next = qh;
3787 	else
3788 		fotg210->intr_unlink = qh;
3789 	fotg210->intr_unlink_last = qh;
3790 
3791 	if (fotg210->intr_unlinking)
3792 		;	/* Avoid recursive calls */
3793 	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3794 		fotg210_handle_intr_unlinks(fotg210);
3795 	else if (fotg210->intr_unlink == qh) {
3796 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3797 				     true);
3798 		++fotg210->intr_unlink_cycle;
3799 	}
3800 }
3801 
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3802 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3803 {
3804 	struct fotg210_qh_hw	*hw = qh->hw;
3805 	int			rc;
3806 
3807 	qh->qh_state = QH_STATE_IDLE;
3808 	hw->hw_next = FOTG210_LIST_END(fotg210);
3809 
3810 	qh_completions(fotg210, qh);
3811 
3812 	/* reschedule QH iff another request is queued */
3813 	if (!list_empty(&qh->qtd_list) &&
3814 	    fotg210->rh_state == FOTG210_RH_RUNNING) {
3815 		rc = qh_schedule(fotg210, qh);
3816 
3817 		/* An error here likely indicates handshake failure
3818 		 * or no space left in the schedule.  Neither fault
3819 		 * should happen often ...
3820 		 *
3821 		 * FIXME kill the now-dysfunctional queued urbs
3822 		 */
3823 		if (rc != 0)
3824 			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3825 					qh, rc);
3826 	}
3827 
3828 	/* maybe turn off periodic schedule */
3829 	--fotg210->intr_count;
3830 	disable_periodic(fotg210);
3831 }
3832 
3833 /*-------------------------------------------------------------------------*/
3834 
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3835 static int check_period(
3836 	struct fotg210_hcd *fotg210,
3837 	unsigned	frame,
3838 	unsigned	uframe,
3839 	unsigned	period,
3840 	unsigned	usecs
3841 ) {
3842 	int		claimed;
3843 
3844 	/* complete split running into next frame?
3845 	 * given FSTN support, we could sometimes check...
3846 	 */
3847 	if (uframe >= 8)
3848 		return 0;
3849 
3850 	/* convert "usecs we need" to "max already claimed" */
3851 	usecs = fotg210->uframe_periodic_max - usecs;
3852 
3853 	/* we "know" 2 and 4 uframe intervals were rejected; so
3854 	 * for period 0, check _every_ microframe in the schedule.
3855 	 */
3856 	if (unlikely(period == 0)) {
3857 		do {
3858 			for (uframe = 0; uframe < 7; uframe++) {
3859 				claimed = periodic_usecs(fotg210, frame,
3860 							 uframe);
3861 				if (claimed > usecs)
3862 					return 0;
3863 			}
3864 		} while ((frame += 1) < fotg210->periodic_size);
3865 
3866 	/* just check the specified uframe, at that period */
3867 	} else {
3868 		do {
3869 			claimed = periodic_usecs(fotg210, frame, uframe);
3870 			if (claimed > usecs)
3871 				return 0;
3872 		} while ((frame += period) < fotg210->periodic_size);
3873 	}
3874 
3875 	/* success! */
3876 	return 1;
3877 }
3878 
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3879 static int check_intr_schedule(
3880 	struct fotg210_hcd		*fotg210,
3881 	unsigned		frame,
3882 	unsigned		uframe,
3883 	const struct fotg210_qh	*qh,
3884 	__hc32			*c_maskp
3885 )
3886 {
3887 	int		retval = -ENOSPC;
3888 	u8		mask = 0;
3889 
3890 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3891 		goto done;
3892 
3893 	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3894 		goto done;
3895 	if (!qh->c_usecs) {
3896 		retval = 0;
3897 		*c_maskp = 0;
3898 		goto done;
3899 	}
3900 
3901 	/* Make sure this tt's buffer is also available for CSPLITs.
3902 	 * We pessimize a bit; probably the typical full speed case
3903 	 * doesn't need the second CSPLIT.
3904 	 *
3905 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3906 	 * one smart pass...
3907 	 */
3908 	mask = 0x03 << (uframe + qh->gap_uf);
3909 	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3910 
3911 	mask |= 1 << uframe;
3912 	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3913 		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3914 					qh->period, qh->c_usecs))
3915 			goto done;
3916 		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3917 					qh->period, qh->c_usecs))
3918 			goto done;
3919 		retval = 0;
3920 	}
3921 done:
3922 	return retval;
3923 }
3924 
3925 /* "first fit" scheduling policy used the first time through,
3926  * or when the previous schedule slot can't be re-used.
3927  */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3928 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3929 {
3930 	int		status;
3931 	unsigned	uframe;
3932 	__hc32		c_mask;
3933 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
3934 	struct fotg210_qh_hw	*hw = qh->hw;
3935 
3936 	qh_refresh(fotg210, qh);
3937 	hw->hw_next = FOTG210_LIST_END(fotg210);
3938 	frame = qh->start;
3939 
3940 	/* reuse the previous schedule slots, if we can */
3941 	if (frame < qh->period) {
3942 		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3943 		status = check_intr_schedule(fotg210, frame, --uframe,
3944 				qh, &c_mask);
3945 	} else {
3946 		uframe = 0;
3947 		c_mask = 0;
3948 		status = -ENOSPC;
3949 	}
3950 
3951 	/* else scan the schedule to find a group of slots such that all
3952 	 * uframes have enough periodic bandwidth available.
3953 	 */
3954 	if (status) {
3955 		/* "normal" case, uframing flexible except with splits */
3956 		if (qh->period) {
3957 			int		i;
3958 
3959 			for (i = qh->period; status && i > 0; --i) {
3960 				frame = ++fotg210->random_frame % qh->period;
3961 				for (uframe = 0; uframe < 8; uframe++) {
3962 					status = check_intr_schedule(fotg210,
3963 							frame, uframe, qh,
3964 							&c_mask);
3965 					if (status == 0)
3966 						break;
3967 				}
3968 			}
3969 
3970 		/* qh->period == 0 means every uframe */
3971 		} else {
3972 			frame = 0;
3973 			status = check_intr_schedule(fotg210, 0, 0, qh,
3974 						     &c_mask);
3975 		}
3976 		if (status)
3977 			goto done;
3978 		qh->start = frame;
3979 
3980 		/* reset S-frame and (maybe) C-frame masks */
3981 		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3982 		hw->hw_info2 |= qh->period
3983 			? cpu_to_hc32(fotg210, 1 << uframe)
3984 			: cpu_to_hc32(fotg210, QH_SMASK);
3985 		hw->hw_info2 |= c_mask;
3986 	} else
3987 		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3988 
3989 	/* stuff into the periodic schedule */
3990 	qh_link_periodic(fotg210, qh);
3991 done:
3992 	return status;
3993 }
3994 
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3995 static int intr_submit(
3996 	struct fotg210_hcd		*fotg210,
3997 	struct urb		*urb,
3998 	struct list_head	*qtd_list,
3999 	gfp_t			mem_flags
4000 ) {
4001 	unsigned		epnum;
4002 	unsigned long		flags;
4003 	struct fotg210_qh		*qh;
4004 	int			status;
4005 	struct list_head	empty;
4006 
4007 	/* get endpoint and transfer/schedule data */
4008 	epnum = urb->ep->desc.bEndpointAddress;
4009 
4010 	spin_lock_irqsave(&fotg210->lock, flags);
4011 
4012 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4013 		status = -ESHUTDOWN;
4014 		goto done_not_linked;
4015 	}
4016 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4017 	if (unlikely(status))
4018 		goto done_not_linked;
4019 
4020 	/* get qh and force any scheduling errors */
4021 	INIT_LIST_HEAD(&empty);
4022 	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
4023 	if (qh == NULL) {
4024 		status = -ENOMEM;
4025 		goto done;
4026 	}
4027 	if (qh->qh_state == QH_STATE_IDLE) {
4028 		status = qh_schedule(fotg210, qh);
4029 		if (status)
4030 			goto done;
4031 	}
4032 
4033 	/* then queue the urb's tds to the qh */
4034 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
4035 	BUG_ON(qh == NULL);
4036 
4037 	/* ... update usbfs periodic stats */
4038 	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
4039 
4040 done:
4041 	if (unlikely(status))
4042 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4043 done_not_linked:
4044 	spin_unlock_irqrestore(&fotg210->lock, flags);
4045 	if (status)
4046 		qtd_list_free(fotg210, urb, qtd_list);
4047 
4048 	return status;
4049 }
4050 
scan_intr(struct fotg210_hcd * fotg210)4051 static void scan_intr(struct fotg210_hcd *fotg210)
4052 {
4053 	struct fotg210_qh		*qh;
4054 
4055 	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
4056 				 &fotg210->intr_qh_list, intr_node) {
4057  rescan:
4058 		/* clean any finished work for this qh */
4059 		if (!list_empty(&qh->qtd_list)) {
4060 			int temp;
4061 
4062 			/*
4063 			 * Unlinks could happen here; completion reporting
4064 			 * drops the lock.  That's why fotg210->qh_scan_next
4065 			 * always holds the next qh to scan; if the next qh
4066 			 * gets unlinked then fotg210->qh_scan_next is adjusted
4067 			 * in qh_unlink_periodic().
4068 			 */
4069 			temp = qh_completions(fotg210, qh);
4070 			if (unlikely(qh->needs_rescan ||
4071 					(list_empty(&qh->qtd_list) &&
4072 					 qh->qh_state == QH_STATE_LINKED)))
4073 				start_unlink_intr(fotg210, qh);
4074 			else if (temp != 0)
4075 				goto rescan;
4076 		}
4077 	}
4078 }
4079 
4080 /*-------------------------------------------------------------------------*/
4081 
4082 /* fotg210_iso_stream ops work with both ITD and SITD */
4083 
4084 static struct fotg210_iso_stream *
iso_stream_alloc(gfp_t mem_flags)4085 iso_stream_alloc(gfp_t mem_flags)
4086 {
4087 	struct fotg210_iso_stream *stream;
4088 
4089 	stream = kzalloc(sizeof(*stream), mem_flags);
4090 	if (likely(stream != NULL)) {
4091 		INIT_LIST_HEAD(&stream->td_list);
4092 		INIT_LIST_HEAD(&stream->free_list);
4093 		stream->next_uframe = -1;
4094 	}
4095 	return stream;
4096 }
4097 
4098 static void
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)4099 iso_stream_init(
4100 	struct fotg210_hcd		*fotg210,
4101 	struct fotg210_iso_stream	*stream,
4102 	struct usb_device	*dev,
4103 	int			pipe,
4104 	unsigned		interval
4105 )
4106 {
4107 	u32			buf1;
4108 	unsigned		epnum, maxp;
4109 	int			is_input;
4110 	long			bandwidth;
4111 	unsigned		multi;
4112 
4113 	/*
4114 	 * this might be a "high bandwidth" highspeed endpoint,
4115 	 * as encoded in the ep descriptor's wMaxPacket field
4116 	 */
4117 	epnum = usb_pipeendpoint(pipe);
4118 	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
4119 	maxp = usb_maxpacket(dev, pipe, !is_input);
4120 	if (is_input)
4121 		buf1 = (1 << 11);
4122 	else
4123 		buf1 = 0;
4124 
4125 	maxp = max_packet(maxp);
4126 	multi = hb_mult(maxp);
4127 	buf1 |= maxp;
4128 	maxp *= multi;
4129 
4130 	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
4131 	stream->buf1 = cpu_to_hc32(fotg210, buf1);
4132 	stream->buf2 = cpu_to_hc32(fotg210, multi);
4133 
4134 	/* usbfs wants to report the average usecs per frame tied up
4135 	 * when transfers on this endpoint are scheduled ...
4136 	 */
4137 	if (dev->speed == USB_SPEED_FULL) {
4138 		interval <<= 3;
4139 		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
4140 				is_input, 1, maxp));
4141 		stream->usecs /= 8;
4142 	} else {
4143 		stream->highspeed = 1;
4144 		stream->usecs = HS_USECS_ISO(maxp);
4145 	}
4146 	bandwidth = stream->usecs * 8;
4147 	bandwidth /= interval;
4148 
4149 	stream->bandwidth = bandwidth;
4150 	stream->udev = dev;
4151 	stream->bEndpointAddress = is_input | epnum;
4152 	stream->interval = interval;
4153 	stream->maxp = maxp;
4154 }
4155 
4156 static struct fotg210_iso_stream *
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)4157 iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb)
4158 {
4159 	unsigned		epnum;
4160 	struct fotg210_iso_stream	*stream;
4161 	struct usb_host_endpoint *ep;
4162 	unsigned long		flags;
4163 
4164 	epnum = usb_pipeendpoint(urb->pipe);
4165 	if (usb_pipein(urb->pipe))
4166 		ep = urb->dev->ep_in[epnum];
4167 	else
4168 		ep = urb->dev->ep_out[epnum];
4169 
4170 	spin_lock_irqsave(&fotg210->lock, flags);
4171 	stream = ep->hcpriv;
4172 
4173 	if (unlikely(stream == NULL)) {
4174 		stream = iso_stream_alloc(GFP_ATOMIC);
4175 		if (likely(stream != NULL)) {
4176 			ep->hcpriv = stream;
4177 			stream->ep = ep;
4178 			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4179 					urb->interval);
4180 		}
4181 
4182 	/* if dev->ep[epnum] is a QH, hw is set */
4183 	} else if (unlikely(stream->hw != NULL)) {
4184 		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4185 			urb->dev->devpath, epnum,
4186 			usb_pipein(urb->pipe) ? "in" : "out");
4187 		stream = NULL;
4188 	}
4189 
4190 	spin_unlock_irqrestore(&fotg210->lock, flags);
4191 	return stream;
4192 }
4193 
4194 /*-------------------------------------------------------------------------*/
4195 
4196 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4197 
4198 static struct fotg210_iso_sched *
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4199 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
4200 {
4201 	struct fotg210_iso_sched	*iso_sched;
4202 	int			size = sizeof(*iso_sched);
4203 
4204 	size += packets * sizeof(struct fotg210_iso_packet);
4205 	iso_sched = kzalloc(size, mem_flags);
4206 	if (likely(iso_sched != NULL))
4207 		INIT_LIST_HEAD(&iso_sched->td_list);
4208 
4209 	return iso_sched;
4210 }
4211 
4212 static inline void
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4213 itd_sched_init(
4214 	struct fotg210_hcd		*fotg210,
4215 	struct fotg210_iso_sched	*iso_sched,
4216 	struct fotg210_iso_stream	*stream,
4217 	struct urb		*urb
4218 )
4219 {
4220 	unsigned	i;
4221 	dma_addr_t	dma = urb->transfer_dma;
4222 
4223 	/* how many uframes are needed for these transfers */
4224 	iso_sched->span = urb->number_of_packets * stream->interval;
4225 
4226 	/* figure out per-uframe itd fields that we'll need later
4227 	 * when we fit new itds into the schedule.
4228 	 */
4229 	for (i = 0; i < urb->number_of_packets; i++) {
4230 		struct fotg210_iso_packet	*uframe = &iso_sched->packet[i];
4231 		unsigned		length;
4232 		dma_addr_t		buf;
4233 		u32			trans;
4234 
4235 		length = urb->iso_frame_desc[i].length;
4236 		buf = dma + urb->iso_frame_desc[i].offset;
4237 
4238 		trans = FOTG210_ISOC_ACTIVE;
4239 		trans |= buf & 0x0fff;
4240 		if (unlikely(((i + 1) == urb->number_of_packets))
4241 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4242 			trans |= FOTG210_ITD_IOC;
4243 		trans |= length << 16;
4244 		uframe->transaction = cpu_to_hc32(fotg210, trans);
4245 
4246 		/* might need to cross a buffer page within a uframe */
4247 		uframe->bufp = (buf & ~(u64)0x0fff);
4248 		buf += length;
4249 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4250 			uframe->cross = 1;
4251 	}
4252 }
4253 
4254 static void
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4255 iso_sched_free(
4256 	struct fotg210_iso_stream	*stream,
4257 	struct fotg210_iso_sched	*iso_sched
4258 )
4259 {
4260 	if (!iso_sched)
4261 		return;
4262 	/* caller must hold fotg210->lock!*/
4263 	list_splice(&iso_sched->td_list, &stream->free_list);
4264 	kfree(iso_sched);
4265 }
4266 
4267 static int
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4268 itd_urb_transaction(
4269 	struct fotg210_iso_stream	*stream,
4270 	struct fotg210_hcd		*fotg210,
4271 	struct urb		*urb,
4272 	gfp_t			mem_flags
4273 )
4274 {
4275 	struct fotg210_itd		*itd;
4276 	dma_addr_t		itd_dma;
4277 	int			i;
4278 	unsigned		num_itds;
4279 	struct fotg210_iso_sched	*sched;
4280 	unsigned long		flags;
4281 
4282 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4283 	if (unlikely(sched == NULL))
4284 		return -ENOMEM;
4285 
4286 	itd_sched_init(fotg210, sched, stream, urb);
4287 
4288 	if (urb->interval < 8)
4289 		num_itds = 1 + (sched->span + 7) / 8;
4290 	else
4291 		num_itds = urb->number_of_packets;
4292 
4293 	/* allocate/init ITDs */
4294 	spin_lock_irqsave(&fotg210->lock, flags);
4295 	for (i = 0; i < num_itds; i++) {
4296 
4297 		/*
4298 		 * Use iTDs from the free list, but not iTDs that may
4299 		 * still be in use by the hardware.
4300 		 */
4301 		if (likely(!list_empty(&stream->free_list))) {
4302 			itd = list_first_entry(&stream->free_list,
4303 					struct fotg210_itd, itd_list);
4304 			if (itd->frame == fotg210->now_frame)
4305 				goto alloc_itd;
4306 			list_del(&itd->itd_list);
4307 			itd_dma = itd->itd_dma;
4308 		} else {
4309  alloc_itd:
4310 			spin_unlock_irqrestore(&fotg210->lock, flags);
4311 			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4312 					&itd_dma);
4313 			spin_lock_irqsave(&fotg210->lock, flags);
4314 			if (!itd) {
4315 				iso_sched_free(stream, sched);
4316 				spin_unlock_irqrestore(&fotg210->lock, flags);
4317 				return -ENOMEM;
4318 			}
4319 		}
4320 
4321 		memset(itd, 0, sizeof(*itd));
4322 		itd->itd_dma = itd_dma;
4323 		list_add(&itd->itd_list, &sched->td_list);
4324 	}
4325 	spin_unlock_irqrestore(&fotg210->lock, flags);
4326 
4327 	/* temporarily store schedule info in hcpriv */
4328 	urb->hcpriv = sched;
4329 	urb->error_count = 0;
4330 	return 0;
4331 }
4332 
4333 /*-------------------------------------------------------------------------*/
4334 
4335 static inline int
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4336 itd_slot_ok(
4337 	struct fotg210_hcd		*fotg210,
4338 	u32			mod,
4339 	u32			uframe,
4340 	u8			usecs,
4341 	u32			period
4342 )
4343 {
4344 	uframe %= period;
4345 	do {
4346 		/* can't commit more than uframe_periodic_max usec */
4347 		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4348 				> (fotg210->uframe_periodic_max - usecs))
4349 			return 0;
4350 
4351 		/* we know urb->interval is 2^N uframes */
4352 		uframe += period;
4353 	} while (uframe < mod);
4354 	return 1;
4355 }
4356 
4357 /*
4358  * This scheduler plans almost as far into the future as it has actual
4359  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4360  * "as small as possible" to be cache-friendlier.)  That limits the size
4361  * transfers you can stream reliably; avoid more than 64 msec per urb.
4362  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4363  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4364  * and other factors); or more than about 230 msec total (for portability,
4365  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4366  */
4367 
4368 #define SCHEDULE_SLOP	80	/* microframes */
4369 
4370 static int
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4371 iso_stream_schedule(
4372 	struct fotg210_hcd		*fotg210,
4373 	struct urb		*urb,
4374 	struct fotg210_iso_stream	*stream
4375 )
4376 {
4377 	u32			now, next, start, period, span;
4378 	int			status;
4379 	unsigned		mod = fotg210->periodic_size << 3;
4380 	struct fotg210_iso_sched	*sched = urb->hcpriv;
4381 
4382 	period = urb->interval;
4383 	span = sched->span;
4384 
4385 	if (span > mod - SCHEDULE_SLOP) {
4386 		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4387 		status = -EFBIG;
4388 		goto fail;
4389 	}
4390 
4391 	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4392 
4393 	/* Typical case: reuse current schedule, stream is still active.
4394 	 * Hopefully there are no gaps from the host falling behind
4395 	 * (irq delays etc), but if there are we'll take the next
4396 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4397 	 */
4398 	if (likely(!list_empty(&stream->td_list))) {
4399 		u32	excess;
4400 
4401 		/* For high speed devices, allow scheduling within the
4402 		 * isochronous scheduling threshold.  For full speed devices
4403 		 * and Intel PCI-based controllers, don't (work around for
4404 		 * Intel ICH9 bug).
4405 		 */
4406 		if (!stream->highspeed && fotg210->fs_i_thresh)
4407 			next = now + fotg210->i_thresh;
4408 		else
4409 			next = now;
4410 
4411 		/* Fell behind (by up to twice the slop amount)?
4412 		 * We decide based on the time of the last currently-scheduled
4413 		 * slot, not the time of the next available slot.
4414 		 */
4415 		excess = (stream->next_uframe - period - next) & (mod - 1);
4416 		if (excess >= mod - 2 * SCHEDULE_SLOP)
4417 			start = next + excess - mod + period *
4418 					DIV_ROUND_UP(mod - excess, period);
4419 		else
4420 			start = next + excess + period;
4421 		if (start - now >= mod) {
4422 			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4423 					urb, start - now - period, period,
4424 					mod);
4425 			status = -EFBIG;
4426 			goto fail;
4427 		}
4428 	}
4429 
4430 	/* need to schedule; when's the next (u)frame we could start?
4431 	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4432 	 * isn't free, the slop should handle reasonably slow cpus.  it
4433 	 * can also help high bandwidth if the dma and irq loads don't
4434 	 * jump until after the queue is primed.
4435 	 */
4436 	else {
4437 		int done = 0;
4438 		start = SCHEDULE_SLOP + (now & ~0x07);
4439 
4440 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4441 
4442 		/* find a uframe slot with enough bandwidth.
4443 		 * Early uframes are more precious because full-speed
4444 		 * iso IN transfers can't use late uframes,
4445 		 * and therefore they should be allocated last.
4446 		 */
4447 		next = start;
4448 		start += period;
4449 		do {
4450 			start--;
4451 			/* check schedule: enough space? */
4452 			if (itd_slot_ok(fotg210, mod, start,
4453 					stream->usecs, period))
4454 				done = 1;
4455 		} while (start > next && !done);
4456 
4457 		/* no room in the schedule */
4458 		if (!done) {
4459 			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4460 				urb, now, now + mod);
4461 			status = -ENOSPC;
4462 			goto fail;
4463 		}
4464 	}
4465 
4466 	/* Tried to schedule too far into the future? */
4467 	if (unlikely(start - now + span - period
4468 				>= mod - 2 * SCHEDULE_SLOP)) {
4469 		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4470 				urb, start - now, span - period,
4471 				mod - 2 * SCHEDULE_SLOP);
4472 		status = -EFBIG;
4473 		goto fail;
4474 	}
4475 
4476 	stream->next_uframe = start & (mod - 1);
4477 
4478 	/* report high speed start in uframes; full speed, in frames */
4479 	urb->start_frame = stream->next_uframe;
4480 	if (!stream->highspeed)
4481 		urb->start_frame >>= 3;
4482 
4483 	/* Make sure scan_isoc() sees these */
4484 	if (fotg210->isoc_count == 0)
4485 		fotg210->next_frame = now >> 3;
4486 	return 0;
4487 
4488  fail:
4489 	iso_sched_free(stream, sched);
4490 	urb->hcpriv = NULL;
4491 	return status;
4492 }
4493 
4494 /*-------------------------------------------------------------------------*/
4495 
4496 static inline void
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4497 itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream,
4498 		struct fotg210_itd *itd)
4499 {
4500 	int i;
4501 
4502 	/* it's been recently zeroed */
4503 	itd->hw_next = FOTG210_LIST_END(fotg210);
4504 	itd->hw_bufp[0] = stream->buf0;
4505 	itd->hw_bufp[1] = stream->buf1;
4506 	itd->hw_bufp[2] = stream->buf2;
4507 
4508 	for (i = 0; i < 8; i++)
4509 		itd->index[i] = -1;
4510 
4511 	/* All other fields are filled when scheduling */
4512 }
4513 
4514 static inline void
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4515 itd_patch(
4516 	struct fotg210_hcd		*fotg210,
4517 	struct fotg210_itd		*itd,
4518 	struct fotg210_iso_sched	*iso_sched,
4519 	unsigned		index,
4520 	u16			uframe
4521 )
4522 {
4523 	struct fotg210_iso_packet	*uf = &iso_sched->packet[index];
4524 	unsigned		pg = itd->pg;
4525 
4526 	uframe &= 0x07;
4527 	itd->index[uframe] = index;
4528 
4529 	itd->hw_transaction[uframe] = uf->transaction;
4530 	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4531 	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4532 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4533 
4534 	/* iso_frame_desc[].offset must be strictly increasing */
4535 	if (unlikely(uf->cross)) {
4536 		u64	bufp = uf->bufp + 4096;
4537 
4538 		itd->pg = ++pg;
4539 		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4540 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4541 	}
4542 }
4543 
4544 static inline void
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4545 itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd)
4546 {
4547 	union fotg210_shadow	*prev = &fotg210->pshadow[frame];
4548 	__hc32			*hw_p = &fotg210->periodic[frame];
4549 	union fotg210_shadow	here = *prev;
4550 	__hc32			type = 0;
4551 
4552 	/* skip any iso nodes which might belong to previous microframes */
4553 	while (here.ptr) {
4554 		type = Q_NEXT_TYPE(fotg210, *hw_p);
4555 		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4556 			break;
4557 		prev = periodic_next_shadow(fotg210, prev, type);
4558 		hw_p = shadow_next_periodic(fotg210, &here, type);
4559 		here = *prev;
4560 	}
4561 
4562 	itd->itd_next = here;
4563 	itd->hw_next = *hw_p;
4564 	prev->itd = itd;
4565 	itd->frame = frame;
4566 	wmb();
4567 	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4568 }
4569 
4570 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4571 static void itd_link_urb(
4572 	struct fotg210_hcd		*fotg210,
4573 	struct urb		*urb,
4574 	unsigned		mod,
4575 	struct fotg210_iso_stream	*stream
4576 )
4577 {
4578 	int			packet;
4579 	unsigned		next_uframe, uframe, frame;
4580 	struct fotg210_iso_sched	*iso_sched = urb->hcpriv;
4581 	struct fotg210_itd		*itd;
4582 
4583 	next_uframe = stream->next_uframe & (mod - 1);
4584 
4585 	if (unlikely(list_empty(&stream->td_list))) {
4586 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4587 				+= stream->bandwidth;
4588 		fotg210_dbg(fotg210,
4589 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4590 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4591 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4592 			urb->interval,
4593 			next_uframe >> 3, next_uframe & 0x7);
4594 	}
4595 
4596 	/* fill iTDs uframe by uframe */
4597 	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4598 		if (itd == NULL) {
4599 			/* ASSERT:  we have all necessary itds */
4600 
4601 			/* ASSERT:  no itds for this endpoint in this uframe */
4602 
4603 			itd = list_entry(iso_sched->td_list.next,
4604 					struct fotg210_itd, itd_list);
4605 			list_move_tail(&itd->itd_list, &stream->td_list);
4606 			itd->stream = stream;
4607 			itd->urb = urb;
4608 			itd_init(fotg210, stream, itd);
4609 		}
4610 
4611 		uframe = next_uframe & 0x07;
4612 		frame = next_uframe >> 3;
4613 
4614 		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4615 
4616 		next_uframe += stream->interval;
4617 		next_uframe &= mod - 1;
4618 		packet++;
4619 
4620 		/* link completed itds into the schedule */
4621 		if (((next_uframe >> 3) != frame)
4622 				|| packet == urb->number_of_packets) {
4623 			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4624 				 itd);
4625 			itd = NULL;
4626 		}
4627 	}
4628 	stream->next_uframe = next_uframe;
4629 
4630 	/* don't need that schedule data any more */
4631 	iso_sched_free(stream, iso_sched);
4632 	urb->hcpriv = NULL;
4633 
4634 	++fotg210->isoc_count;
4635 	enable_periodic(fotg210);
4636 }
4637 
4638 #define	ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4639 		  FOTG210_ISOC_XACTERR)
4640 
4641 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4642  * and hence its completion callback probably added things to the hardware
4643  * schedule.
4644  *
4645  * Note that we carefully avoid recycling this descriptor until after any
4646  * completion callback runs, so that it won't be reused quickly.  That is,
4647  * assuming (a) no more than two urbs per frame on this endpoint, and also
4648  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4649  * corrupts things if you reuse completed descriptors very quickly...
4650  */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4651 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4652 {
4653 	struct urb				*urb = itd->urb;
4654 	struct usb_iso_packet_descriptor	*desc;
4655 	u32					t;
4656 	unsigned				uframe;
4657 	int					urb_index = -1;
4658 	struct fotg210_iso_stream			*stream = itd->stream;
4659 	struct usb_device			*dev;
4660 	bool					retval = false;
4661 
4662 	/* for each uframe with a packet */
4663 	for (uframe = 0; uframe < 8; uframe++) {
4664 		if (likely(itd->index[uframe] == -1))
4665 			continue;
4666 		urb_index = itd->index[uframe];
4667 		desc = &urb->iso_frame_desc[urb_index];
4668 
4669 		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4670 		itd->hw_transaction[uframe] = 0;
4671 
4672 		/* report transfer status */
4673 		if (unlikely(t & ISO_ERRS)) {
4674 			urb->error_count++;
4675 			if (t & FOTG210_ISOC_BUF_ERR)
4676 				desc->status = usb_pipein(urb->pipe)
4677 					? -ENOSR  /* hc couldn't read */
4678 					: -ECOMM; /* hc couldn't write */
4679 			else if (t & FOTG210_ISOC_BABBLE)
4680 				desc->status = -EOVERFLOW;
4681 			else /* (t & FOTG210_ISOC_XACTERR) */
4682 				desc->status = -EPROTO;
4683 
4684 			/* HC need not update length with this error */
4685 			if (!(t & FOTG210_ISOC_BABBLE)) {
4686 				desc->actual_length =
4687 					fotg210_itdlen(urb, desc, t);
4688 				urb->actual_length += desc->actual_length;
4689 			}
4690 		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4691 			desc->status = 0;
4692 			desc->actual_length = fotg210_itdlen(urb, desc, t);
4693 			urb->actual_length += desc->actual_length;
4694 		} else {
4695 			/* URB was too late */
4696 			desc->status = -EXDEV;
4697 		}
4698 	}
4699 
4700 	/* handle completion now? */
4701 	if (likely((urb_index + 1) != urb->number_of_packets))
4702 		goto done;
4703 
4704 	/* ASSERT: it's really the last itd for this urb
4705 	list_for_each_entry (itd, &stream->td_list, itd_list)
4706 		BUG_ON (itd->urb == urb);
4707 	 */
4708 
4709 	/* give urb back to the driver; completion often (re)submits */
4710 	dev = urb->dev;
4711 	fotg210_urb_done(fotg210, urb, 0);
4712 	retval = true;
4713 	urb = NULL;
4714 
4715 	--fotg210->isoc_count;
4716 	disable_periodic(fotg210);
4717 
4718 	if (unlikely(list_is_singular(&stream->td_list))) {
4719 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4720 				-= stream->bandwidth;
4721 		fotg210_dbg(fotg210,
4722 			"deschedule devp %s ep%d%s-iso\n",
4723 			dev->devpath, stream->bEndpointAddress & 0x0f,
4724 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4725 	}
4726 
4727 done:
4728 	itd->urb = NULL;
4729 
4730 	/* Add to the end of the free list for later reuse */
4731 	list_move_tail(&itd->itd_list, &stream->free_list);
4732 
4733 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4734 	if (list_empty(&stream->td_list)) {
4735 		list_splice_tail_init(&stream->free_list,
4736 				&fotg210->cached_itd_list);
4737 		start_free_itds(fotg210);
4738 	}
4739 
4740 	return retval;
4741 }
4742 
4743 /*-------------------------------------------------------------------------*/
4744 
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4745 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4746 	gfp_t mem_flags)
4747 {
4748 	int			status = -EINVAL;
4749 	unsigned long		flags;
4750 	struct fotg210_iso_stream	*stream;
4751 
4752 	/* Get iso_stream head */
4753 	stream = iso_stream_find(fotg210, urb);
4754 	if (unlikely(stream == NULL)) {
4755 		fotg210_dbg(fotg210, "can't get iso stream\n");
4756 		return -ENOMEM;
4757 	}
4758 	if (unlikely(urb->interval != stream->interval &&
4759 		      fotg210_port_speed(fotg210, 0) ==
4760 				USB_PORT_STAT_HIGH_SPEED)) {
4761 			fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4762 				stream->interval, urb->interval);
4763 			goto done;
4764 	}
4765 
4766 #ifdef FOTG210_URB_TRACE
4767 	fotg210_dbg(fotg210,
4768 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4769 		__func__, urb->dev->devpath, urb,
4770 		usb_pipeendpoint(urb->pipe),
4771 		usb_pipein(urb->pipe) ? "in" : "out",
4772 		urb->transfer_buffer_length,
4773 		urb->number_of_packets, urb->interval,
4774 		stream);
4775 #endif
4776 
4777 	/* allocate ITDs w/o locking anything */
4778 	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4779 	if (unlikely(status < 0)) {
4780 		fotg210_dbg(fotg210, "can't init itds\n");
4781 		goto done;
4782 	}
4783 
4784 	/* schedule ... need to lock */
4785 	spin_lock_irqsave(&fotg210->lock, flags);
4786 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4787 		status = -ESHUTDOWN;
4788 		goto done_not_linked;
4789 	}
4790 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4791 	if (unlikely(status))
4792 		goto done_not_linked;
4793 	status = iso_stream_schedule(fotg210, urb, stream);
4794 	if (likely(status == 0))
4795 		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4796 	else
4797 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4798  done_not_linked:
4799 	spin_unlock_irqrestore(&fotg210->lock, flags);
4800  done:
4801 	return status;
4802 }
4803 
4804 /*-------------------------------------------------------------------------*/
4805 
scan_isoc(struct fotg210_hcd * fotg210)4806 static void scan_isoc(struct fotg210_hcd *fotg210)
4807 {
4808 	unsigned	uf, now_frame, frame;
4809 	unsigned	fmask = fotg210->periodic_size - 1;
4810 	bool		modified, live;
4811 
4812 	/*
4813 	 * When running, scan from last scan point up to "now"
4814 	 * else clean up by scanning everything that's left.
4815 	 * Touches as few pages as possible:  cache-friendly.
4816 	 */
4817 	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4818 		uf = fotg210_read_frame_index(fotg210);
4819 		now_frame = (uf >> 3) & fmask;
4820 		live = true;
4821 	} else  {
4822 		now_frame = (fotg210->next_frame - 1) & fmask;
4823 		live = false;
4824 	}
4825 	fotg210->now_frame = now_frame;
4826 
4827 	frame = fotg210->next_frame;
4828 	for (;;) {
4829 		union fotg210_shadow	q, *q_p;
4830 		__hc32			type, *hw_p;
4831 
4832 restart:
4833 		/* scan each element in frame's queue for completions */
4834 		q_p = &fotg210->pshadow[frame];
4835 		hw_p = &fotg210->periodic[frame];
4836 		q.ptr = q_p->ptr;
4837 		type = Q_NEXT_TYPE(fotg210, *hw_p);
4838 		modified = false;
4839 
4840 		while (q.ptr != NULL) {
4841 			switch (hc32_to_cpu(fotg210, type)) {
4842 			case Q_TYPE_ITD:
4843 				/* If this ITD is still active, leave it for
4844 				 * later processing ... check the next entry.
4845 				 * No need to check for activity unless the
4846 				 * frame is current.
4847 				 */
4848 				if (frame == now_frame && live) {
4849 					rmb();
4850 					for (uf = 0; uf < 8; uf++) {
4851 						if (q.itd->hw_transaction[uf] &
4852 							    ITD_ACTIVE(fotg210))
4853 							break;
4854 					}
4855 					if (uf < 8) {
4856 						q_p = &q.itd->itd_next;
4857 						hw_p = &q.itd->hw_next;
4858 						type = Q_NEXT_TYPE(fotg210,
4859 							q.itd->hw_next);
4860 						q = *q_p;
4861 						break;
4862 					}
4863 				}
4864 
4865 				/* Take finished ITDs out of the schedule
4866 				 * and process them:  recycle, maybe report
4867 				 * URB completion.  HC won't cache the
4868 				 * pointer for much longer, if at all.
4869 				 */
4870 				*q_p = q.itd->itd_next;
4871 				*hw_p = q.itd->hw_next;
4872 				type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4873 				wmb();
4874 				modified = itd_complete(fotg210, q.itd);
4875 				q = *q_p;
4876 				break;
4877 			default:
4878 				fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4879 					type, frame, q.ptr);
4880 				/* FALL THROUGH */
4881 			case Q_TYPE_QH:
4882 			case Q_TYPE_FSTN:
4883 				/* End of the iTDs and siTDs */
4884 				q.ptr = NULL;
4885 				break;
4886 			}
4887 
4888 			/* assume completion callbacks modify the queue */
4889 			if (unlikely(modified && fotg210->isoc_count > 0))
4890 				goto restart;
4891 		}
4892 
4893 		/* Stop when we have reached the current frame */
4894 		if (frame == now_frame)
4895 			break;
4896 		frame = (frame + 1) & fmask;
4897 	}
4898 	fotg210->next_frame = now_frame;
4899 }
4900 /*-------------------------------------------------------------------------*/
4901 /*
4902  * Display / Set uframe_periodic_max
4903  */
show_uframe_periodic_max(struct device * dev,struct device_attribute * attr,char * buf)4904 static ssize_t show_uframe_periodic_max(struct device *dev,
4905 					struct device_attribute *attr,
4906 					char *buf)
4907 {
4908 	struct fotg210_hcd		*fotg210;
4909 	int			n;
4910 
4911 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4912 	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4913 	return n;
4914 }
4915 
4916 
store_uframe_periodic_max(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4917 static ssize_t store_uframe_periodic_max(struct device *dev,
4918 					struct device_attribute *attr,
4919 					const char *buf, size_t count)
4920 {
4921 	struct fotg210_hcd	*fotg210;
4922 	unsigned		uframe_periodic_max;
4923 	unsigned		frame, uframe;
4924 	unsigned short		allocated_max;
4925 	unsigned long		flags;
4926 	ssize_t			ret;
4927 
4928 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4929 	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4930 		return -EINVAL;
4931 
4932 	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4933 		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4934 			     uframe_periodic_max);
4935 		return -EINVAL;
4936 	}
4937 
4938 	ret = -EINVAL;
4939 
4940 	/*
4941 	 * lock, so that our checking does not race with possible periodic
4942 	 * bandwidth allocation through submitting new urbs.
4943 	 */
4944 	spin_lock_irqsave(&fotg210->lock, flags);
4945 
4946 	/*
4947 	 * for request to decrease max periodic bandwidth, we have to check
4948 	 * every microframe in the schedule to see whether the decrease is
4949 	 * possible.
4950 	 */
4951 	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4952 		allocated_max = 0;
4953 
4954 		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4955 			for (uframe = 0; uframe < 7; ++uframe)
4956 				allocated_max = max(allocated_max,
4957 						    periodic_usecs(fotg210, frame, uframe));
4958 
4959 		if (allocated_max > uframe_periodic_max) {
4960 			fotg210_info(fotg210,
4961 				"cannot decrease uframe_periodic_max because "
4962 				"periodic bandwidth is already allocated "
4963 				"(%u > %u)\n",
4964 				allocated_max, uframe_periodic_max);
4965 			goto out_unlock;
4966 		}
4967 	}
4968 
4969 	/* increasing is always ok */
4970 
4971 	fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4972 		     100 * uframe_periodic_max/125, uframe_periodic_max);
4973 
4974 	if (uframe_periodic_max != 100)
4975 		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4976 
4977 	fotg210->uframe_periodic_max = uframe_periodic_max;
4978 	ret = count;
4979 
4980 out_unlock:
4981 	spin_unlock_irqrestore(&fotg210->lock, flags);
4982 	return ret;
4983 }
4984 
4985 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4986 		   store_uframe_periodic_max);
4987 
create_sysfs_files(struct fotg210_hcd * fotg210)4988 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4989 {
4990 	struct device	*controller = fotg210_to_hcd(fotg210)->self.controller;
4991 	int	i = 0;
4992 
4993 	if (i)
4994 		goto out;
4995 
4996 	i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4997 out:
4998 	return i;
4999 }
5000 
remove_sysfs_files(struct fotg210_hcd * fotg210)5001 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
5002 {
5003 	struct device	*controller = fotg210_to_hcd(fotg210)->self.controller;
5004 
5005 	device_remove_file(controller, &dev_attr_uframe_periodic_max);
5006 }
5007 /*-------------------------------------------------------------------------*/
5008 
5009 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
5010  * The firmware seems to think that powering off is a wakeup event!
5011  * This routine turns off remote wakeup and everything else, on all ports.
5012  */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)5013 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
5014 {
5015 	u32 __iomem *status_reg = &fotg210->regs->port_status;
5016 
5017 	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
5018 }
5019 
5020 /*
5021  * Halt HC, turn off all ports, and let the BIOS use the companion controllers.
5022  * Must be called with interrupts enabled and the lock not held.
5023  */
fotg210_silence_controller(struct fotg210_hcd * fotg210)5024 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
5025 {
5026 	fotg210_halt(fotg210);
5027 
5028 	spin_lock_irq(&fotg210->lock);
5029 	fotg210->rh_state = FOTG210_RH_HALTED;
5030 	fotg210_turn_off_all_ports(fotg210);
5031 	spin_unlock_irq(&fotg210->lock);
5032 }
5033 
5034 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
5035  * This forcibly disables dma and IRQs, helping kexec and other cases
5036  * where the next system software may expect clean state.
5037  */
fotg210_shutdown(struct usb_hcd * hcd)5038 static void fotg210_shutdown(struct usb_hcd *hcd)
5039 {
5040 	struct fotg210_hcd	*fotg210 = hcd_to_fotg210(hcd);
5041 
5042 	spin_lock_irq(&fotg210->lock);
5043 	fotg210->shutdown = true;
5044 	fotg210->rh_state = FOTG210_RH_STOPPING;
5045 	fotg210->enabled_hrtimer_events = 0;
5046 	spin_unlock_irq(&fotg210->lock);
5047 
5048 	fotg210_silence_controller(fotg210);
5049 
5050 	hrtimer_cancel(&fotg210->hrtimer);
5051 }
5052 
5053 /*-------------------------------------------------------------------------*/
5054 
5055 /*
5056  * fotg210_work is called from some interrupts, timers, and so on.
5057  * it calls driver completion functions, after dropping fotg210->lock.
5058  */
fotg210_work(struct fotg210_hcd * fotg210)5059 static void fotg210_work(struct fotg210_hcd *fotg210)
5060 {
5061 	/* another CPU may drop fotg210->lock during a schedule scan while
5062 	 * it reports urb completions.  this flag guards against bogus
5063 	 * attempts at re-entrant schedule scanning.
5064 	 */
5065 	if (fotg210->scanning) {
5066 		fotg210->need_rescan = true;
5067 		return;
5068 	}
5069 	fotg210->scanning = true;
5070 
5071  rescan:
5072 	fotg210->need_rescan = false;
5073 	if (fotg210->async_count)
5074 		scan_async(fotg210);
5075 	if (fotg210->intr_count > 0)
5076 		scan_intr(fotg210);
5077 	if (fotg210->isoc_count > 0)
5078 		scan_isoc(fotg210);
5079 	if (fotg210->need_rescan)
5080 		goto rescan;
5081 	fotg210->scanning = false;
5082 
5083 	/* the IO watchdog guards against hardware or driver bugs that
5084 	 * misplace IRQs, and should let us run completely without IRQs.
5085 	 * such lossage has been observed on both VT6202 and VT8235.
5086 	 */
5087 	turn_on_io_watchdog(fotg210);
5088 }
5089 
5090 /*
5091  * Called when the fotg210_hcd module is removed.
5092  */
fotg210_stop(struct usb_hcd * hcd)5093 static void fotg210_stop(struct usb_hcd *hcd)
5094 {
5095 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5096 
5097 	fotg210_dbg(fotg210, "stop\n");
5098 
5099 	/* no more interrupts ... */
5100 
5101 	spin_lock_irq(&fotg210->lock);
5102 	fotg210->enabled_hrtimer_events = 0;
5103 	spin_unlock_irq(&fotg210->lock);
5104 
5105 	fotg210_quiesce(fotg210);
5106 	fotg210_silence_controller(fotg210);
5107 	fotg210_reset(fotg210);
5108 
5109 	hrtimer_cancel(&fotg210->hrtimer);
5110 	remove_sysfs_files(fotg210);
5111 	remove_debug_files(fotg210);
5112 
5113 	/* root hub is shut down separately (first, when possible) */
5114 	spin_lock_irq(&fotg210->lock);
5115 	end_free_itds(fotg210);
5116 	spin_unlock_irq(&fotg210->lock);
5117 	fotg210_mem_cleanup(fotg210);
5118 
5119 #ifdef	FOTG210_STATS
5120 	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
5121 		fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
5122 		fotg210->stats.lost_iaa);
5123 	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
5124 		fotg210->stats.complete, fotg210->stats.unlink);
5125 #endif
5126 
5127 	dbg_status(fotg210, "fotg210_stop completed",
5128 		    fotg210_readl(fotg210, &fotg210->regs->status));
5129 }
5130 
5131 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)5132 static int hcd_fotg210_init(struct usb_hcd *hcd)
5133 {
5134 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5135 	u32			temp;
5136 	int			retval;
5137 	u32			hcc_params;
5138 	struct fotg210_qh_hw	*hw;
5139 
5140 	spin_lock_init(&fotg210->lock);
5141 
5142 	/*
5143 	 * keep io watchdog by default, those good HCDs could turn off it later
5144 	 */
5145 	fotg210->need_io_watchdog = 1;
5146 
5147 	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
5148 	fotg210->hrtimer.function = fotg210_hrtimer_func;
5149 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
5150 
5151 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5152 
5153 	/*
5154 	 * by default set standard 80% (== 100 usec/uframe) max periodic
5155 	 * bandwidth as required by USB 2.0
5156 	 */
5157 	fotg210->uframe_periodic_max = 100;
5158 
5159 	/*
5160 	 * hw default: 1K periodic list heads, one per frame.
5161 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
5162 	 */
5163 	fotg210->periodic_size = DEFAULT_I_TDPS;
5164 	INIT_LIST_HEAD(&fotg210->intr_qh_list);
5165 	INIT_LIST_HEAD(&fotg210->cached_itd_list);
5166 
5167 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5168 		/* periodic schedule size can be smaller than default */
5169 		switch (FOTG210_TUNE_FLS) {
5170 		case 0:
5171 			fotg210->periodic_size = 1024;
5172 			break;
5173 		case 1:
5174 			fotg210->periodic_size = 512;
5175 			break;
5176 		case 2:
5177 			fotg210->periodic_size = 256;
5178 			break;
5179 		default:
5180 			BUG();
5181 		}
5182 	}
5183 	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
5184 	if (retval < 0)
5185 		return retval;
5186 
5187 	/* controllers may cache some of the periodic schedule ... */
5188 	fotg210->i_thresh = 2;
5189 
5190 	/*
5191 	 * dedicate a qh for the async ring head, since we couldn't unlink
5192 	 * a 'real' qh without stopping the async schedule [4.8].  use it
5193 	 * as the 'reclamation list head' too.
5194 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5195 	 * from automatically advancing to the next td after short reads.
5196 	 */
5197 	fotg210->async->qh_next.qh = NULL;
5198 	hw = fotg210->async->hw;
5199 	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5200 	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5201 	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5202 	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5203 	fotg210->async->qh_state = QH_STATE_LINKED;
5204 	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5205 
5206 	/* clear interrupt enables, set irq latency */
5207 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5208 		log2_irq_thresh = 0;
5209 	temp = 1 << (16 + log2_irq_thresh);
5210 	if (HCC_CANPARK(hcc_params)) {
5211 		/* HW default park == 3, on hardware that supports it (like
5212 		 * NVidia and ALI silicon), maximizes throughput on the async
5213 		 * schedule by avoiding QH fetches between transfers.
5214 		 *
5215 		 * With fast usb storage devices and NForce2, "park" seems to
5216 		 * make problems:  throughput reduction (!), data errors...
5217 		 */
5218 		if (park) {
5219 			park = min_t(unsigned, park, 3);
5220 			temp |= CMD_PARK;
5221 			temp |= park << 8;
5222 		}
5223 		fotg210_dbg(fotg210, "park %d\n", park);
5224 	}
5225 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5226 		/* periodic schedule size can be smaller than default */
5227 		temp &= ~(3 << 2);
5228 		temp |= (FOTG210_TUNE_FLS << 2);
5229 	}
5230 	fotg210->command = temp;
5231 
5232 	/* Accept arbitrarily long scatter-gather lists */
5233 	if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5234 		hcd->self.sg_tablesize = ~0;
5235 	return 0;
5236 }
5237 
5238 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5239 static int fotg210_run(struct usb_hcd *hcd)
5240 {
5241 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5242 	u32			temp;
5243 	u32			hcc_params;
5244 
5245 	hcd->uses_new_polling = 1;
5246 
5247 	/* EHCI spec section 4.1 */
5248 
5249 	fotg210_writel(fotg210, fotg210->periodic_dma,
5250 		       &fotg210->regs->frame_list);
5251 	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5252 		       &fotg210->regs->async_next);
5253 
5254 	/*
5255 	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5256 	 * be used; it constrains QH/ITD/SITD and QTD locations.
5257 	 * pci_pool consistent memory always uses segment zero.
5258 	 * streaming mappings for I/O buffers, like pci_map_single(),
5259 	 * can return segments above 4GB, if the device allows.
5260 	 *
5261 	 * NOTE:  the dma mask is visible through dma_supported(), so
5262 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5263 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5264 	 * host side drivers though.
5265 	 */
5266 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5267 
5268 	/*
5269 	 * Philips, Intel, and maybe others need CMD_RUN before the
5270 	 * root hub will detect new devices (why?); NEC doesn't
5271 	 */
5272 	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5273 	fotg210->command |= CMD_RUN;
5274 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5275 	dbg_cmd(fotg210, "init", fotg210->command);
5276 
5277 	/*
5278 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5279 	 * are explicitly handed to companion controller(s), so no TT is
5280 	 * involved with the root hub.  (Except where one is integrated,
5281 	 * and there's no companion controller unless maybe for USB OTG.)
5282 	 *
5283 	 * Turning on the CF flag will transfer ownership of all ports
5284 	 * from the companions to the EHCI controller.  If any of the
5285 	 * companions are in the middle of a port reset at the time, it
5286 	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5287 	 * guarantees that no resets are in progress.  After we set CF,
5288 	 * a short delay lets the hardware catch up; new resets shouldn't
5289 	 * be started before the port switching actions could complete.
5290 	 */
5291 	down_write(&ehci_cf_port_reset_rwsem);
5292 	fotg210->rh_state = FOTG210_RH_RUNNING;
5293 	/* unblock posted writes */
5294 	fotg210_readl(fotg210, &fotg210->regs->command);
5295 	msleep(5);
5296 	up_write(&ehci_cf_port_reset_rwsem);
5297 	fotg210->last_periodic_enable = ktime_get_real();
5298 
5299 	temp = HC_VERSION(fotg210,
5300 			  fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5301 	fotg210_info(fotg210,
5302 		"USB %x.%x started, EHCI %x.%02x\n",
5303 		((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f),
5304 		temp >> 8, temp & 0xff);
5305 
5306 	fotg210_writel(fotg210, INTR_MASK,
5307 		    &fotg210->regs->intr_enable); /* Turn On Interrupts */
5308 
5309 	/* GRR this is run-once init(), being done every time the HC starts.
5310 	 * So long as they're part of class devices, we can't do it init()
5311 	 * since the class device isn't created that early.
5312 	 */
5313 	create_debug_files(fotg210);
5314 	create_sysfs_files(fotg210);
5315 
5316 	return 0;
5317 }
5318 
fotg210_setup(struct usb_hcd * hcd)5319 static int fotg210_setup(struct usb_hcd *hcd)
5320 {
5321 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5322 	int retval;
5323 
5324 	fotg210->regs = (void __iomem *)fotg210->caps +
5325 	    HC_LENGTH(fotg210,
5326 		      fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5327 	dbg_hcs_params(fotg210, "reset");
5328 	dbg_hcc_params(fotg210, "reset");
5329 
5330 	/* cache this readonly data; minimize chip reads */
5331 	fotg210->hcs_params = fotg210_readl(fotg210,
5332 					    &fotg210->caps->hcs_params);
5333 
5334 	fotg210->sbrn = HCD_USB2;
5335 
5336 	/* data structure init */
5337 	retval = hcd_fotg210_init(hcd);
5338 	if (retval)
5339 		return retval;
5340 
5341 	retval = fotg210_halt(fotg210);
5342 	if (retval)
5343 		return retval;
5344 
5345 	fotg210_reset(fotg210);
5346 
5347 	return 0;
5348 }
5349 
5350 /*-------------------------------------------------------------------------*/
5351 
fotg210_irq(struct usb_hcd * hcd)5352 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5353 {
5354 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5355 	u32			status, masked_status, pcd_status = 0, cmd;
5356 	int			bh;
5357 
5358 	spin_lock(&fotg210->lock);
5359 
5360 	status = fotg210_readl(fotg210, &fotg210->regs->status);
5361 
5362 	/* e.g. cardbus physical eject */
5363 	if (status == ~(u32) 0) {
5364 		fotg210_dbg(fotg210, "device removed\n");
5365 		goto dead;
5366 	}
5367 
5368 	/*
5369 	 * We don't use STS_FLR, but some controllers don't like it to
5370 	 * remain on, so mask it out along with the other status bits.
5371 	 */
5372 	masked_status = status & (INTR_MASK | STS_FLR);
5373 
5374 	/* Shared IRQ? */
5375 	if (!masked_status ||
5376 	    unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5377 		spin_unlock(&fotg210->lock);
5378 		return IRQ_NONE;
5379 	}
5380 
5381 	/* clear (just) interrupts */
5382 	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5383 	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5384 	bh = 0;
5385 
5386 	/* unrequested/ignored: Frame List Rollover */
5387 	dbg_status(fotg210, "irq", status);
5388 
5389 	/* INT, ERR, and IAA interrupt rates can be throttled */
5390 
5391 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5392 	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5393 		if (likely((status & STS_ERR) == 0))
5394 			COUNT(fotg210->stats.normal);
5395 		else
5396 			COUNT(fotg210->stats.error);
5397 		bh = 1;
5398 	}
5399 
5400 	/* complete the unlinking of some qh [4.15.2.3] */
5401 	if (status & STS_IAA) {
5402 
5403 		/* Turn off the IAA watchdog */
5404 		fotg210->enabled_hrtimer_events &=
5405 			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5406 
5407 		/*
5408 		 * Mild optimization: Allow another IAAD to reset the
5409 		 * hrtimer, if one occurs before the next expiration.
5410 		 * In theory we could always cancel the hrtimer, but
5411 		 * tests show that about half the time it will be reset
5412 		 * for some other event anyway.
5413 		 */
5414 		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5415 			++fotg210->next_hrtimer_event;
5416 
5417 		/* guard against (alleged) silicon errata */
5418 		if (cmd & CMD_IAAD)
5419 			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5420 		if (fotg210->async_iaa) {
5421 			COUNT(fotg210->stats.iaa);
5422 			end_unlink_async(fotg210);
5423 		} else
5424 			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5425 	}
5426 
5427 	/* remote wakeup [4.3.1] */
5428 	if (status & STS_PCD) {
5429 		int pstatus;
5430 		u32 __iomem *status_reg = &fotg210->regs->port_status;
5431 
5432 		/* kick root hub later */
5433 		pcd_status = status;
5434 
5435 		/* resume root hub? */
5436 		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5437 			usb_hcd_resume_root_hub(hcd);
5438 
5439 		pstatus = fotg210_readl(fotg210, status_reg);
5440 
5441 		if (test_bit(0, &fotg210->suspended_ports) &&
5442 				((pstatus & PORT_RESUME) ||
5443 					!(pstatus & PORT_SUSPEND)) &&
5444 				(pstatus & PORT_PE) &&
5445 				fotg210->reset_done[0] == 0) {
5446 
5447 			/* start 20 msec resume signaling from this port,
5448 			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5449 			 * stop that signaling.  Use 5 ms extra for safety,
5450 			 * like usb_port_resume() does.
5451 			 */
5452 			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5453 			set_bit(0, &fotg210->resuming_ports);
5454 			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5455 			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5456 		}
5457 	}
5458 
5459 	/* PCI errors [4.15.2.4] */
5460 	if (unlikely((status & STS_FATAL) != 0)) {
5461 		fotg210_err(fotg210, "fatal error\n");
5462 		dbg_cmd(fotg210, "fatal", cmd);
5463 		dbg_status(fotg210, "fatal", status);
5464 dead:
5465 		usb_hc_died(hcd);
5466 
5467 		/* Don't let the controller do anything more */
5468 		fotg210->shutdown = true;
5469 		fotg210->rh_state = FOTG210_RH_STOPPING;
5470 		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5471 		fotg210_writel(fotg210, fotg210->command,
5472 			       &fotg210->regs->command);
5473 		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5474 		fotg210_handle_controller_death(fotg210);
5475 
5476 		/* Handle completions when the controller stops */
5477 		bh = 0;
5478 	}
5479 
5480 	if (bh)
5481 		fotg210_work(fotg210);
5482 	spin_unlock(&fotg210->lock);
5483 	if (pcd_status)
5484 		usb_hcd_poll_rh_status(hcd);
5485 	return IRQ_HANDLED;
5486 }
5487 
5488 /*-------------------------------------------------------------------------*/
5489 
5490 /*
5491  * non-error returns are a promise to giveback() the urb later
5492  * we drop ownership so next owner (or urb unlink) can get it
5493  *
5494  * urb + dev is in hcd.self.controller.urb_list
5495  * we're queueing TDs onto software and hardware lists
5496  *
5497  * hcd-specific init for hcpriv hasn't been done yet
5498  *
5499  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5500  * to a (possibly active) QH, and the same QH scanning code.
5501  */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5502 static int fotg210_urb_enqueue(
5503 	struct usb_hcd	*hcd,
5504 	struct urb	*urb,
5505 	gfp_t		mem_flags
5506 ) {
5507 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5508 	struct list_head	qtd_list;
5509 
5510 	INIT_LIST_HEAD(&qtd_list);
5511 
5512 	switch (usb_pipetype(urb->pipe)) {
5513 	case PIPE_CONTROL:
5514 		/* qh_completions() code doesn't handle all the fault cases
5515 		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5516 		 */
5517 		if (urb->transfer_buffer_length > (16 * 1024))
5518 			return -EMSGSIZE;
5519 		/* FALLTHROUGH */
5520 	/* case PIPE_BULK: */
5521 	default:
5522 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5523 			return -ENOMEM;
5524 		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5525 
5526 	case PIPE_INTERRUPT:
5527 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5528 			return -ENOMEM;
5529 		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5530 
5531 	case PIPE_ISOCHRONOUS:
5532 		return itd_submit(fotg210, urb, mem_flags);
5533 	}
5534 }
5535 
5536 /* remove from hardware lists
5537  * completions normally happen asynchronously
5538  */
5539 
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5540 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5541 {
5542 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5543 	struct fotg210_qh		*qh;
5544 	unsigned long		flags;
5545 	int			rc;
5546 
5547 	spin_lock_irqsave(&fotg210->lock, flags);
5548 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5549 	if (rc)
5550 		goto done;
5551 
5552 	switch (usb_pipetype(urb->pipe)) {
5553 	/* case PIPE_CONTROL: */
5554 	/* case PIPE_BULK:*/
5555 	default:
5556 		qh = (struct fotg210_qh *) urb->hcpriv;
5557 		if (!qh)
5558 			break;
5559 		switch (qh->qh_state) {
5560 		case QH_STATE_LINKED:
5561 		case QH_STATE_COMPLETING:
5562 			start_unlink_async(fotg210, qh);
5563 			break;
5564 		case QH_STATE_UNLINK:
5565 		case QH_STATE_UNLINK_WAIT:
5566 			/* already started */
5567 			break;
5568 		case QH_STATE_IDLE:
5569 			/* QH might be waiting for a Clear-TT-Buffer */
5570 			qh_completions(fotg210, qh);
5571 			break;
5572 		}
5573 		break;
5574 
5575 	case PIPE_INTERRUPT:
5576 		qh = (struct fotg210_qh *) urb->hcpriv;
5577 		if (!qh)
5578 			break;
5579 		switch (qh->qh_state) {
5580 		case QH_STATE_LINKED:
5581 		case QH_STATE_COMPLETING:
5582 			start_unlink_intr(fotg210, qh);
5583 			break;
5584 		case QH_STATE_IDLE:
5585 			qh_completions(fotg210, qh);
5586 			break;
5587 		default:
5588 			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5589 					qh, qh->qh_state);
5590 			goto done;
5591 		}
5592 		break;
5593 
5594 	case PIPE_ISOCHRONOUS:
5595 		/* itd... */
5596 
5597 		/* wait till next completion, do it then. */
5598 		/* completion irqs can wait up to 1024 msec, */
5599 		break;
5600 	}
5601 done:
5602 	spin_unlock_irqrestore(&fotg210->lock, flags);
5603 	return rc;
5604 }
5605 
5606 /*-------------------------------------------------------------------------*/
5607 
5608 /* bulk qh holds the data toggle */
5609 
5610 static void
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5611 fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5612 {
5613 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5614 	unsigned long		flags;
5615 	struct fotg210_qh		*qh, *tmp;
5616 
5617 	/* ASSERT:  any requests/urbs are being unlinked */
5618 	/* ASSERT:  nobody can be submitting urbs for this any more */
5619 
5620 rescan:
5621 	spin_lock_irqsave(&fotg210->lock, flags);
5622 	qh = ep->hcpriv;
5623 	if (!qh)
5624 		goto done;
5625 
5626 	/* endpoints can be iso streams.  for now, we don't
5627 	 * accelerate iso completions ... so spin a while.
5628 	 */
5629 	if (qh->hw == NULL) {
5630 		struct fotg210_iso_stream	*stream = ep->hcpriv;
5631 
5632 		if (!list_empty(&stream->td_list))
5633 			goto idle_timeout;
5634 
5635 		/* BUG_ON(!list_empty(&stream->free_list)); */
5636 		kfree(stream);
5637 		goto done;
5638 	}
5639 
5640 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5641 		qh->qh_state = QH_STATE_IDLE;
5642 	switch (qh->qh_state) {
5643 	case QH_STATE_LINKED:
5644 	case QH_STATE_COMPLETING:
5645 		for (tmp = fotg210->async->qh_next.qh;
5646 				tmp && tmp != qh;
5647 				tmp = tmp->qh_next.qh)
5648 			continue;
5649 		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5650 		 * may already be unlinked.
5651 		 */
5652 		if (tmp)
5653 			start_unlink_async(fotg210, qh);
5654 		/* FALL THROUGH */
5655 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5656 	case QH_STATE_UNLINK_WAIT:
5657 idle_timeout:
5658 		spin_unlock_irqrestore(&fotg210->lock, flags);
5659 		schedule_timeout_uninterruptible(1);
5660 		goto rescan;
5661 	case QH_STATE_IDLE:		/* fully unlinked */
5662 		if (qh->clearing_tt)
5663 			goto idle_timeout;
5664 		if (list_empty(&qh->qtd_list)) {
5665 			qh_destroy(fotg210, qh);
5666 			break;
5667 		}
5668 		/* else FALL THROUGH */
5669 	default:
5670 		/* caller was supposed to have unlinked any requests;
5671 		 * that's not our job.  just leak this memory.
5672 		 */
5673 		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5674 			qh, ep->desc.bEndpointAddress, qh->qh_state,
5675 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
5676 		break;
5677 	}
5678  done:
5679 	ep->hcpriv = NULL;
5680 	spin_unlock_irqrestore(&fotg210->lock, flags);
5681 }
5682 
5683 static void
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5684 fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5685 {
5686 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5687 	struct fotg210_qh		*qh;
5688 	int			eptype = usb_endpoint_type(&ep->desc);
5689 	int			epnum = usb_endpoint_num(&ep->desc);
5690 	int			is_out = usb_endpoint_dir_out(&ep->desc);
5691 	unsigned long		flags;
5692 
5693 	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5694 		return;
5695 
5696 	spin_lock_irqsave(&fotg210->lock, flags);
5697 	qh = ep->hcpriv;
5698 
5699 	/* For Bulk and Interrupt endpoints we maintain the toggle state
5700 	 * in the hardware; the toggle bits in udev aren't used at all.
5701 	 * When an endpoint is reset by usb_clear_halt() we must reset
5702 	 * the toggle bit in the QH.
5703 	 */
5704 	if (qh) {
5705 		usb_settoggle(qh->dev, epnum, is_out, 0);
5706 		if (!list_empty(&qh->qtd_list)) {
5707 			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5708 		} else if (qh->qh_state == QH_STATE_LINKED ||
5709 				qh->qh_state == QH_STATE_COMPLETING) {
5710 
5711 			/* The toggle value in the QH can't be updated
5712 			 * while the QH is active.  Unlink it now;
5713 			 * re-linking will call qh_refresh().
5714 			 */
5715 			if (eptype == USB_ENDPOINT_XFER_BULK)
5716 				start_unlink_async(fotg210, qh);
5717 			else
5718 				start_unlink_intr(fotg210, qh);
5719 		}
5720 	}
5721 	spin_unlock_irqrestore(&fotg210->lock, flags);
5722 }
5723 
fotg210_get_frame(struct usb_hcd * hcd)5724 static int fotg210_get_frame(struct usb_hcd *hcd)
5725 {
5726 	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5727 	return (fotg210_read_frame_index(fotg210) >> 3) %
5728 		fotg210->periodic_size;
5729 }
5730 
5731 /*-------------------------------------------------------------------------*/
5732 
5733 /*
5734  * The EHCI in ChipIdea HDRC cannot be a separate module or device,
5735  * because its registers (and irq) are shared between host/gadget/otg
5736  * functions  and in order to facilitate role switching we cannot
5737  * give the fotg210 driver exclusive access to those.
5738  */
5739 MODULE_DESCRIPTION(DRIVER_DESC);
5740 MODULE_AUTHOR(DRIVER_AUTHOR);
5741 MODULE_LICENSE("GPL");
5742 
5743 static const struct hc_driver fotg210_fotg210_hc_driver = {
5744 	.description		= hcd_name,
5745 	.product_desc		= "Faraday USB2.0 Host Controller",
5746 	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5747 
5748 	/*
5749 	 * generic hardware linkage
5750 	 */
5751 	.irq			= fotg210_irq,
5752 	.flags			= HCD_MEMORY | HCD_USB2,
5753 
5754 	/*
5755 	 * basic lifecycle operations
5756 	 */
5757 	.reset			= hcd_fotg210_init,
5758 	.start			= fotg210_run,
5759 	.stop			= fotg210_stop,
5760 	.shutdown		= fotg210_shutdown,
5761 
5762 	/*
5763 	 * managing i/o requests and associated device resources
5764 	 */
5765 	.urb_enqueue		= fotg210_urb_enqueue,
5766 	.urb_dequeue		= fotg210_urb_dequeue,
5767 	.endpoint_disable	= fotg210_endpoint_disable,
5768 	.endpoint_reset		= fotg210_endpoint_reset,
5769 
5770 	/*
5771 	 * scheduling support
5772 	 */
5773 	.get_frame_number	= fotg210_get_frame,
5774 
5775 	/*
5776 	 * root hub support
5777 	 */
5778 	.hub_status_data	= fotg210_hub_status_data,
5779 	.hub_control		= fotg210_hub_control,
5780 	.bus_suspend		= fotg210_bus_suspend,
5781 	.bus_resume		= fotg210_bus_resume,
5782 
5783 	.relinquish_port	= fotg210_relinquish_port,
5784 	.port_handed_over	= fotg210_port_handed_over,
5785 
5786 	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5787 };
5788 
fotg210_init(struct fotg210_hcd * fotg210)5789 static void fotg210_init(struct fotg210_hcd *fotg210)
5790 {
5791 	u32 value;
5792 
5793 	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5794 		  &fotg210->regs->gmir);
5795 
5796 	value = ioread32(&fotg210->regs->otgcsr);
5797 	value &= ~OTGCSR_A_BUS_DROP;
5798 	value |= OTGCSR_A_BUS_REQ;
5799 	iowrite32(value, &fotg210->regs->otgcsr);
5800 }
5801 
5802 /**
5803  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5804  *
5805  * Allocates basic resources for this USB host controller, and
5806  * then invokes the start() method for the HCD associated with it
5807  * through the hotplug entry's driver_data.
5808  */
fotg210_hcd_probe(struct platform_device * pdev)5809 static int fotg210_hcd_probe(struct platform_device *pdev)
5810 {
5811 	struct device			*dev = &pdev->dev;
5812 	struct usb_hcd			*hcd;
5813 	struct resource			*res;
5814 	int				irq;
5815 	int				retval = -ENODEV;
5816 	struct fotg210_hcd		*fotg210;
5817 
5818 	if (usb_disabled())
5819 		return -ENODEV;
5820 
5821 	pdev->dev.power.power_state = PMSG_ON;
5822 
5823 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5824 	if (!res) {
5825 		dev_err(dev,
5826 			"Found HC with no IRQ. Check %s setup!\n",
5827 			dev_name(dev));
5828 		return -ENODEV;
5829 	}
5830 
5831 	irq = res->start;
5832 
5833 	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5834 			dev_name(dev));
5835 	if (!hcd) {
5836 		dev_err(dev, "failed to create hcd with err %d\n", retval);
5837 		retval = -ENOMEM;
5838 		goto fail_create_hcd;
5839 	}
5840 
5841 	hcd->has_tt = 1;
5842 
5843 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5844 	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5845 	if (IS_ERR(hcd->regs)) {
5846 		retval = PTR_ERR(hcd->regs);
5847 		goto failed;
5848 	}
5849 
5850 	hcd->rsrc_start = res->start;
5851 	hcd->rsrc_len = resource_size(res);
5852 
5853 	fotg210 = hcd_to_fotg210(hcd);
5854 
5855 	fotg210->caps = hcd->regs;
5856 
5857 	retval = fotg210_setup(hcd);
5858 	if (retval)
5859 		goto failed;
5860 
5861 	fotg210_init(fotg210);
5862 
5863 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5864 	if (retval) {
5865 		dev_err(dev, "failed to add hcd with err %d\n", retval);
5866 		goto failed;
5867 	}
5868 	device_wakeup_enable(hcd->self.controller);
5869 
5870 	return retval;
5871 
5872 failed:
5873 	usb_put_hcd(hcd);
5874 fail_create_hcd:
5875 	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5876 	return retval;
5877 }
5878 
5879 /**
5880  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5881  * @dev: USB Host Controller being removed
5882  *
5883  */
fotg210_hcd_remove(struct platform_device * pdev)5884 static int fotg210_hcd_remove(struct platform_device *pdev)
5885 {
5886 	struct device *dev	= &pdev->dev;
5887 	struct usb_hcd *hcd	= dev_get_drvdata(dev);
5888 
5889 	if (!hcd)
5890 		return 0;
5891 
5892 	usb_remove_hcd(hcd);
5893 	usb_put_hcd(hcd);
5894 
5895 	return 0;
5896 }
5897 
5898 static struct platform_driver fotg210_hcd_driver = {
5899 	.driver = {
5900 		.name   = "fotg210-hcd",
5901 	},
5902 	.probe  = fotg210_hcd_probe,
5903 	.remove = fotg210_hcd_remove,
5904 };
5905 
fotg210_hcd_init(void)5906 static int __init fotg210_hcd_init(void)
5907 {
5908 	int retval = 0;
5909 
5910 	if (usb_disabled())
5911 		return -ENODEV;
5912 
5913 	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5914 	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5915 	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5916 			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5917 		pr_warn(KERN_WARNING "Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5918 
5919 	pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5920 		 hcd_name,
5921 		 sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd),
5922 		 sizeof(struct fotg210_itd));
5923 
5924 	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5925 	if (!fotg210_debug_root) {
5926 		retval = -ENOENT;
5927 		goto err_debug;
5928 	}
5929 
5930 	retval = platform_driver_register(&fotg210_hcd_driver);
5931 	if (retval < 0)
5932 		goto clean;
5933 	return retval;
5934 
5935 	platform_driver_unregister(&fotg210_hcd_driver);
5936 clean:
5937 	debugfs_remove(fotg210_debug_root);
5938 	fotg210_debug_root = NULL;
5939 err_debug:
5940 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5941 	return retval;
5942 }
5943 module_init(fotg210_hcd_init);
5944 
fotg210_hcd_cleanup(void)5945 static void __exit fotg210_hcd_cleanup(void)
5946 {
5947 	platform_driver_unregister(&fotg210_hcd_driver);
5948 	debugfs_remove(fotg210_debug_root);
5949 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5950 }
5951 module_exit(fotg210_hcd_cleanup);
5952