1 /*
2  *
3  *  linux/arch/cris/kernel/setup.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (c) 2001  Axis Communications AB
7  */
8 
9 /*
10  * This file handles the architecture-dependent parts of initialization
11  */
12 
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <asm/pgtable.h>
17 #include <linux/seq_file.h>
18 #include <linux/screen_info.h>
19 #include <linux/utsname.h>
20 #include <linux/pfn.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/of_platform.h>
25 #include <asm/setup.h>
26 #include <arch/system.h>
27 
28 /*
29  * Setup options
30  */
31 struct screen_info screen_info;
32 
33 extern int root_mountflags;
34 extern char _etext, _edata, _end;
35 
36 char __initdata cris_command_line[COMMAND_LINE_SIZE] = { 0, };
37 
38 extern const unsigned long text_start, edata; /* set by the linker script */
39 extern unsigned long dram_start, dram_end;
40 
41 extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */
42 
43 static struct cpu cpu_devices[NR_CPUS];
44 
45 extern void show_etrax_copyright(void);		/* arch-vX/kernel/setup.c */
46 
47 /* This mainly sets up the memory area, and can be really confusing.
48  *
49  * The physical DRAM is virtually mapped into dram_start to dram_end
50  * (usually c0000000 to c0000000 + DRAM size). The physical address is
51  * given by the macro __pa().
52  *
53  * In this DRAM, the kernel code and data is loaded, in the beginning.
54  * It really starts at c0004000 to make room for some special pages -
55  * the start address is text_start. The kernel data ends at _end. After
56  * this the ROM filesystem is appended (if there is any).
57  *
58  * Between this address and dram_end, we have RAM pages usable to the
59  * boot code and the system.
60  *
61  */
62 
setup_arch(char ** cmdline_p)63 void __init setup_arch(char **cmdline_p)
64 {
65 	extern void init_etrax_debug(void);
66 	unsigned long bootmap_size;
67 	unsigned long start_pfn, max_pfn;
68 	unsigned long memory_start;
69 
70 #ifdef CONFIG_OF
71 	early_init_dt_scan(__dtb_start);
72 #endif
73 
74 	/* register an initial console printing routine for printk's */
75 
76 	init_etrax_debug();
77 
78 	/* we should really poll for DRAM size! */
79 
80 	high_memory = &dram_end;
81 
82 	if(romfs_in_flash || !romfs_length) {
83 		/* if we have the romfs in flash, or if there is no rom filesystem,
84 		 * our free area starts directly after the BSS
85 		 */
86 		memory_start = (unsigned long) &_end;
87 	} else {
88 		/* otherwise the free area starts after the ROM filesystem */
89 		printk("ROM fs in RAM, size %lu bytes\n", romfs_length);
90 		memory_start = romfs_start + romfs_length;
91 	}
92 
93 	/* process 1's initial memory region is the kernel code/data */
94 
95 	init_mm.start_code = (unsigned long) &text_start;
96 	init_mm.end_code =   (unsigned long) &_etext;
97 	init_mm.end_data =   (unsigned long) &_edata;
98 	init_mm.brk =        (unsigned long) &_end;
99 
100 	/* min_low_pfn points to the start of DRAM, start_pfn points
101 	 * to the first DRAM pages after the kernel, and max_low_pfn
102 	 * to the end of DRAM.
103 	 */
104 
105         /*
106          * partially used pages are not usable - thus
107          * we are rounding upwards:
108          */
109 
110         start_pfn = PFN_UP(memory_start);  /* usually c0000000 + kernel + romfs */
111 	max_pfn =   PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */
112 
113         /*
114          * Initialize the boot-time allocator (start, end)
115 	 *
116 	 * We give it access to all our DRAM, but we could as well just have
117 	 * given it a small slice. No point in doing that though, unless we
118 	 * have non-contiguous memory and want the boot-stuff to be in, say,
119 	 * the smallest area.
120 	 *
121 	 * It will put a bitmap of the allocated pages in the beginning
122 	 * of the range we give it, but it won't mark the bitmaps pages
123 	 * as reserved. We have to do that ourselves below.
124 	 *
125 	 * We need to use init_bootmem_node instead of init_bootmem
126 	 * because our map starts at a quite high address (min_low_pfn).
127          */
128 
129 	max_low_pfn = max_pfn;
130 	min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT;
131 
132 	bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
133 					 min_low_pfn,
134 					 max_low_pfn);
135 
136 	/* And free all memory not belonging to the kernel (addr, size) */
137 
138 	free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn));
139 
140         /*
141          * Reserve the bootmem bitmap itself as well. We do this in two
142          * steps (first step was init_bootmem()) because this catches
143          * the (very unlikely) case of us accidentally initializing the
144          * bootmem allocator with an invalid RAM area.
145 	 *
146 	 * Arguments are start, size
147          */
148 
149 	reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size, BOOTMEM_DEFAULT);
150 
151 	unflatten_and_copy_device_tree();
152 
153 	/* paging_init() sets up the MMU and marks all pages as reserved */
154 
155 	paging_init();
156 
157 	*cmdline_p = cris_command_line;
158 
159 #ifdef CONFIG_ETRAX_CMDLINE
160         if (!strcmp(cris_command_line, "")) {
161 		strlcpy(cris_command_line, CONFIG_ETRAX_CMDLINE, COMMAND_LINE_SIZE);
162 		cris_command_line[COMMAND_LINE_SIZE - 1] = '\0';
163 	}
164 #endif
165 
166 	/* Save command line for future references. */
167 	memcpy(boot_command_line, cris_command_line, COMMAND_LINE_SIZE);
168 	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
169 
170 	/* give credit for the CRIS port */
171 	show_etrax_copyright();
172 
173 	/* Setup utsname */
174 	strcpy(init_utsname()->machine, cris_machine_name);
175 }
176 
177 #ifdef CONFIG_PROC_FS
c_start(struct seq_file * m,loff_t * pos)178 static void *c_start(struct seq_file *m, loff_t *pos)
179 {
180 	return *pos < nr_cpu_ids ? (void *)(int)(*pos + 1) : NULL;
181 }
182 
c_next(struct seq_file * m,void * v,loff_t * pos)183 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
184 {
185 	++*pos;
186 	return c_start(m, pos);
187 }
188 
c_stop(struct seq_file * m,void * v)189 static void c_stop(struct seq_file *m, void *v)
190 {
191 }
192 
193 extern int show_cpuinfo(struct seq_file *m, void *v);
194 
195 const struct seq_operations cpuinfo_op = {
196 	.start = c_start,
197 	.next  = c_next,
198 	.stop  = c_stop,
199 	.show  = show_cpuinfo,
200 };
201 #endif /* CONFIG_PROC_FS */
202 
topology_init(void)203 static int __init topology_init(void)
204 {
205 	int i;
206 
207 	for_each_possible_cpu(i) {
208 		 return register_cpu(&cpu_devices[i], i);
209 	}
210 
211 	return 0;
212 }
213 
214 subsys_initcall(topology_init);
215 
cris_of_init(void)216 static int __init cris_of_init(void)
217 {
218 	of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
219 	return 0;
220 }
221 core_initcall(cris_of_init);
222