1 /*
2  * Copyright © 2010-2015 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/version.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/platform_device.h>
20 #include <linux/err.h>
21 #include <linux/completion.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/ioport.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/bitops.h>
29 #include <linux/mm.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of.h>
34 #include <linux/of_mtd.h>
35 #include <linux/of_platform.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/log2.h>
39 
40 #include "brcmnand.h"
41 
42 /*
43  * This flag controls if WP stays on between erase/write commands to mitigate
44  * flash corruption due to power glitches. Values:
45  * 0: NAND_WP is not used or not available
46  * 1: NAND_WP is set by default, cleared for erase/write operations
47  * 2: NAND_WP is always cleared
48  */
49 static int wp_on = 1;
50 module_param(wp_on, int, 0444);
51 
52 /***********************************************************************
53  * Definitions
54  ***********************************************************************/
55 
56 #define DRV_NAME			"brcmnand"
57 
58 #define CMD_NULL			0x00
59 #define CMD_PAGE_READ			0x01
60 #define CMD_SPARE_AREA_READ		0x02
61 #define CMD_STATUS_READ			0x03
62 #define CMD_PROGRAM_PAGE		0x04
63 #define CMD_PROGRAM_SPARE_AREA		0x05
64 #define CMD_COPY_BACK			0x06
65 #define CMD_DEVICE_ID_READ		0x07
66 #define CMD_BLOCK_ERASE			0x08
67 #define CMD_FLASH_RESET			0x09
68 #define CMD_BLOCKS_LOCK			0x0a
69 #define CMD_BLOCKS_LOCK_DOWN		0x0b
70 #define CMD_BLOCKS_UNLOCK		0x0c
71 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
72 #define CMD_PARAMETER_READ		0x0e
73 #define CMD_PARAMETER_CHANGE_COL	0x0f
74 #define CMD_LOW_LEVEL_OP		0x10
75 
76 struct brcm_nand_dma_desc {
77 	u32 next_desc;
78 	u32 next_desc_ext;
79 	u32 cmd_irq;
80 	u32 dram_addr;
81 	u32 dram_addr_ext;
82 	u32 tfr_len;
83 	u32 total_len;
84 	u32 flash_addr;
85 	u32 flash_addr_ext;
86 	u32 cs;
87 	u32 pad2[5];
88 	u32 status_valid;
89 } __packed;
90 
91 /* Bitfields for brcm_nand_dma_desc::status_valid */
92 #define FLASH_DMA_ECC_ERROR	(1 << 8)
93 #define FLASH_DMA_CORR_ERROR	(1 << 9)
94 
95 /* 512B flash cache in the NAND controller HW */
96 #define FC_SHIFT		9U
97 #define FC_BYTES		512U
98 #define FC_WORDS		(FC_BYTES >> 2)
99 
100 #define BRCMNAND_MIN_PAGESIZE	512
101 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
102 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
103 
104 /* Controller feature flags */
105 enum {
106 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
107 	BRCMNAND_HAS_PREFETCH			= BIT(1),
108 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
109 	BRCMNAND_HAS_WP				= BIT(3),
110 };
111 
112 struct brcmnand_controller {
113 	struct device		*dev;
114 	struct nand_hw_control	controller;
115 	void __iomem		*nand_base;
116 	void __iomem		*nand_fc; /* flash cache */
117 	void __iomem		*flash_dma_base;
118 	unsigned int		irq;
119 	unsigned int		dma_irq;
120 	int			nand_version;
121 
122 	/* Some SoCs provide custom interrupt status register(s) */
123 	struct brcmnand_soc	*soc;
124 
125 	int			cmd_pending;
126 	bool			dma_pending;
127 	struct completion	done;
128 	struct completion	dma_done;
129 
130 	/* List of NAND hosts (one for each chip-select) */
131 	struct list_head host_list;
132 
133 	struct brcm_nand_dma_desc *dma_desc;
134 	dma_addr_t		dma_pa;
135 
136 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
137 	u32			flash_cache[FC_WORDS];
138 
139 	/* Controller revision details */
140 	const u16		*reg_offsets;
141 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
142 	const u8		*cs_offsets; /* within each chip-select */
143 	const u8		*cs0_offsets; /* within CS0, if different */
144 	unsigned int		max_block_size;
145 	const unsigned int	*block_sizes;
146 	unsigned int		max_page_size;
147 	const unsigned int	*page_sizes;
148 	unsigned int		max_oob;
149 	u32			features;
150 
151 	/* for low-power standby/resume only */
152 	u32			nand_cs_nand_select;
153 	u32			nand_cs_nand_xor;
154 	u32			corr_stat_threshold;
155 	u32			flash_dma_mode;
156 };
157 
158 struct brcmnand_cfg {
159 	u64			device_size;
160 	unsigned int		block_size;
161 	unsigned int		page_size;
162 	unsigned int		spare_area_size;
163 	unsigned int		device_width;
164 	unsigned int		col_adr_bytes;
165 	unsigned int		blk_adr_bytes;
166 	unsigned int		ful_adr_bytes;
167 	unsigned int		sector_size_1k;
168 	unsigned int		ecc_level;
169 	/* use for low-power standby/resume only */
170 	u32			acc_control;
171 	u32			config;
172 	u32			config_ext;
173 	u32			timing_1;
174 	u32			timing_2;
175 };
176 
177 struct brcmnand_host {
178 	struct list_head	node;
179 	struct device_node	*of_node;
180 
181 	struct nand_chip	chip;
182 	struct mtd_info		mtd;
183 	struct platform_device	*pdev;
184 	int			cs;
185 
186 	unsigned int		last_cmd;
187 	unsigned int		last_byte;
188 	u64			last_addr;
189 	struct brcmnand_cfg	hwcfg;
190 	struct brcmnand_controller *ctrl;
191 };
192 
193 enum brcmnand_reg {
194 	BRCMNAND_CMD_START = 0,
195 	BRCMNAND_CMD_EXT_ADDRESS,
196 	BRCMNAND_CMD_ADDRESS,
197 	BRCMNAND_INTFC_STATUS,
198 	BRCMNAND_CS_SELECT,
199 	BRCMNAND_CS_XOR,
200 	BRCMNAND_LL_OP,
201 	BRCMNAND_CS0_BASE,
202 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
203 	BRCMNAND_CORR_THRESHOLD,
204 	BRCMNAND_CORR_THRESHOLD_EXT,
205 	BRCMNAND_UNCORR_COUNT,
206 	BRCMNAND_CORR_COUNT,
207 	BRCMNAND_CORR_EXT_ADDR,
208 	BRCMNAND_CORR_ADDR,
209 	BRCMNAND_UNCORR_EXT_ADDR,
210 	BRCMNAND_UNCORR_ADDR,
211 	BRCMNAND_SEMAPHORE,
212 	BRCMNAND_ID,
213 	BRCMNAND_ID_EXT,
214 	BRCMNAND_LL_RDATA,
215 	BRCMNAND_OOB_READ_BASE,
216 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
217 	BRCMNAND_OOB_WRITE_BASE,
218 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
219 	BRCMNAND_FC_BASE,
220 };
221 
222 /* BRCMNAND v4.0 */
223 static const u16 brcmnand_regs_v40[] = {
224 	[BRCMNAND_CMD_START]		=  0x04,
225 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
226 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
227 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
228 	[BRCMNAND_CS_SELECT]		=  0x14,
229 	[BRCMNAND_CS_XOR]		=  0x18,
230 	[BRCMNAND_LL_OP]		= 0x178,
231 	[BRCMNAND_CS0_BASE]		=  0x40,
232 	[BRCMNAND_CS1_BASE]		=  0xd0,
233 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
234 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
235 	[BRCMNAND_UNCORR_COUNT]		=     0,
236 	[BRCMNAND_CORR_COUNT]		=     0,
237 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
238 	[BRCMNAND_CORR_ADDR]		=  0x74,
239 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
240 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
241 	[BRCMNAND_SEMAPHORE]		=  0x58,
242 	[BRCMNAND_ID]			=  0x60,
243 	[BRCMNAND_ID_EXT]		=  0x64,
244 	[BRCMNAND_LL_RDATA]		= 0x17c,
245 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
246 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
247 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
248 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
249 	[BRCMNAND_FC_BASE]		= 0x200,
250 };
251 
252 /* BRCMNAND v5.0 */
253 static const u16 brcmnand_regs_v50[] = {
254 	[BRCMNAND_CMD_START]		=  0x04,
255 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
256 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
257 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
258 	[BRCMNAND_CS_SELECT]		=  0x14,
259 	[BRCMNAND_CS_XOR]		=  0x18,
260 	[BRCMNAND_LL_OP]		= 0x178,
261 	[BRCMNAND_CS0_BASE]		=  0x40,
262 	[BRCMNAND_CS1_BASE]		=  0xd0,
263 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
264 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
265 	[BRCMNAND_UNCORR_COUNT]		=     0,
266 	[BRCMNAND_CORR_COUNT]		=     0,
267 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
268 	[BRCMNAND_CORR_ADDR]		=  0x74,
269 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
270 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
271 	[BRCMNAND_SEMAPHORE]		=  0x58,
272 	[BRCMNAND_ID]			=  0x60,
273 	[BRCMNAND_ID_EXT]		=  0x64,
274 	[BRCMNAND_LL_RDATA]		= 0x17c,
275 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
276 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
277 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
278 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
279 	[BRCMNAND_FC_BASE]		= 0x200,
280 };
281 
282 /* BRCMNAND v6.0 - v7.1 */
283 static const u16 brcmnand_regs_v60[] = {
284 	[BRCMNAND_CMD_START]		=  0x04,
285 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
286 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
287 	[BRCMNAND_INTFC_STATUS]		=  0x14,
288 	[BRCMNAND_CS_SELECT]		=  0x18,
289 	[BRCMNAND_CS_XOR]		=  0x1c,
290 	[BRCMNAND_LL_OP]		=  0x20,
291 	[BRCMNAND_CS0_BASE]		=  0x50,
292 	[BRCMNAND_CS1_BASE]		=     0,
293 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
294 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
295 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
296 	[BRCMNAND_CORR_COUNT]		= 0x100,
297 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
298 	[BRCMNAND_CORR_ADDR]		= 0x110,
299 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
300 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
301 	[BRCMNAND_SEMAPHORE]		= 0x150,
302 	[BRCMNAND_ID]			= 0x194,
303 	[BRCMNAND_ID_EXT]		= 0x198,
304 	[BRCMNAND_LL_RDATA]		= 0x19c,
305 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
306 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
307 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
308 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
309 	[BRCMNAND_FC_BASE]		= 0x400,
310 };
311 
312 /* BRCMNAND v7.1 */
313 static const u16 brcmnand_regs_v71[] = {
314 	[BRCMNAND_CMD_START]		=  0x04,
315 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
316 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
317 	[BRCMNAND_INTFC_STATUS]		=  0x14,
318 	[BRCMNAND_CS_SELECT]		=  0x18,
319 	[BRCMNAND_CS_XOR]		=  0x1c,
320 	[BRCMNAND_LL_OP]		=  0x20,
321 	[BRCMNAND_CS0_BASE]		=  0x50,
322 	[BRCMNAND_CS1_BASE]		=     0,
323 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
324 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
325 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
326 	[BRCMNAND_CORR_COUNT]		= 0x100,
327 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
328 	[BRCMNAND_CORR_ADDR]		= 0x110,
329 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
330 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
331 	[BRCMNAND_SEMAPHORE]		= 0x150,
332 	[BRCMNAND_ID]			= 0x194,
333 	[BRCMNAND_ID_EXT]		= 0x198,
334 	[BRCMNAND_LL_RDATA]		= 0x19c,
335 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
336 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
337 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
338 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
339 	[BRCMNAND_FC_BASE]		= 0x400,
340 };
341 
342 enum brcmnand_cs_reg {
343 	BRCMNAND_CS_CFG_EXT = 0,
344 	BRCMNAND_CS_CFG,
345 	BRCMNAND_CS_ACC_CONTROL,
346 	BRCMNAND_CS_TIMING1,
347 	BRCMNAND_CS_TIMING2,
348 };
349 
350 /* Per chip-select offsets for v7.1 */
351 static const u8 brcmnand_cs_offsets_v71[] = {
352 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
353 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
354 	[BRCMNAND_CS_CFG]		= 0x08,
355 	[BRCMNAND_CS_TIMING1]		= 0x0c,
356 	[BRCMNAND_CS_TIMING2]		= 0x10,
357 };
358 
359 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
360 static const u8 brcmnand_cs_offsets[] = {
361 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
362 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
363 	[BRCMNAND_CS_CFG]		= 0x04,
364 	[BRCMNAND_CS_TIMING1]		= 0x08,
365 	[BRCMNAND_CS_TIMING2]		= 0x0c,
366 };
367 
368 /* Per chip-select offset for <= v5.0 on CS0 only */
369 static const u8 brcmnand_cs_offsets_cs0[] = {
370 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
371 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
372 	[BRCMNAND_CS_CFG]		= 0x08,
373 	[BRCMNAND_CS_TIMING1]		= 0x10,
374 	[BRCMNAND_CS_TIMING2]		= 0x14,
375 };
376 
377 /*
378  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
379  * one config register, but once the bitfields overflowed, newer controllers
380  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
381  */
382 enum {
383 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
384 	CFG_COL_ADR_BYTES_SHIFT		= 12,
385 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
386 	CFG_BUS_WIDTH_SHIFT		= 23,
387 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
388 	CFG_DEVICE_SIZE_SHIFT		= 24,
389 
390 	/* Only for pre-v7.1 (with no CFG_EXT register) */
391 	CFG_PAGE_SIZE_SHIFT		= 20,
392 	CFG_BLK_SIZE_SHIFT		= 28,
393 
394 	/* Only for v7.1+ (with CFG_EXT register) */
395 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
396 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
397 };
398 
399 /* BRCMNAND_INTFC_STATUS */
400 enum {
401 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
402 
403 	INTFC_ERASED			= BIT(27),
404 	INTFC_OOB_VALID			= BIT(28),
405 	INTFC_CACHE_VALID		= BIT(29),
406 	INTFC_FLASH_READY		= BIT(30),
407 	INTFC_CTLR_READY		= BIT(31),
408 };
409 
nand_readreg(struct brcmnand_controller * ctrl,u32 offs)410 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
411 {
412 	return brcmnand_readl(ctrl->nand_base + offs);
413 }
414 
nand_writereg(struct brcmnand_controller * ctrl,u32 offs,u32 val)415 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
416 				 u32 val)
417 {
418 	brcmnand_writel(val, ctrl->nand_base + offs);
419 }
420 
brcmnand_revision_init(struct brcmnand_controller * ctrl)421 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
422 {
423 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
424 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
425 	static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
426 
427 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
428 
429 	/* Only support v4.0+? */
430 	if (ctrl->nand_version < 0x0400) {
431 		dev_err(ctrl->dev, "version %#x not supported\n",
432 			ctrl->nand_version);
433 		return -ENODEV;
434 	}
435 
436 	/* Register offsets */
437 	if (ctrl->nand_version >= 0x0701)
438 		ctrl->reg_offsets = brcmnand_regs_v71;
439 	else if (ctrl->nand_version >= 0x0600)
440 		ctrl->reg_offsets = brcmnand_regs_v60;
441 	else if (ctrl->nand_version >= 0x0500)
442 		ctrl->reg_offsets = brcmnand_regs_v50;
443 	else if (ctrl->nand_version >= 0x0400)
444 		ctrl->reg_offsets = brcmnand_regs_v40;
445 
446 	/* Chip-select stride */
447 	if (ctrl->nand_version >= 0x0701)
448 		ctrl->reg_spacing = 0x14;
449 	else
450 		ctrl->reg_spacing = 0x10;
451 
452 	/* Per chip-select registers */
453 	if (ctrl->nand_version >= 0x0701) {
454 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
455 	} else {
456 		ctrl->cs_offsets = brcmnand_cs_offsets;
457 
458 		/* v5.0 and earlier has a different CS0 offset layout */
459 		if (ctrl->nand_version <= 0x0500)
460 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
461 	}
462 
463 	/* Page / block sizes */
464 	if (ctrl->nand_version >= 0x0701) {
465 		/* >= v7.1 use nice power-of-2 values! */
466 		ctrl->max_page_size = 16 * 1024;
467 		ctrl->max_block_size = 2 * 1024 * 1024;
468 	} else {
469 		ctrl->page_sizes = page_sizes;
470 		if (ctrl->nand_version >= 0x0600)
471 			ctrl->block_sizes = block_sizes_v6;
472 		else
473 			ctrl->block_sizes = block_sizes_v4;
474 
475 		if (ctrl->nand_version < 0x0400) {
476 			ctrl->max_page_size = 4096;
477 			ctrl->max_block_size = 512 * 1024;
478 		}
479 	}
480 
481 	/* Maximum spare area sector size (per 512B) */
482 	if (ctrl->nand_version >= 0x0600)
483 		ctrl->max_oob = 64;
484 	else if (ctrl->nand_version >= 0x0500)
485 		ctrl->max_oob = 32;
486 	else
487 		ctrl->max_oob = 16;
488 
489 	/* v6.0 and newer (except v6.1) have prefetch support */
490 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
491 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
492 
493 	/*
494 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
495 	 * now.
496 	 */
497 	if (ctrl->nand_version >= 0x0700)
498 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
499 
500 	if (ctrl->nand_version >= 0x0500)
501 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
502 
503 	if (ctrl->nand_version >= 0x0700)
504 		ctrl->features |= BRCMNAND_HAS_WP;
505 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
506 		ctrl->features |= BRCMNAND_HAS_WP;
507 
508 	return 0;
509 }
510 
brcmnand_read_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg)511 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
512 		enum brcmnand_reg reg)
513 {
514 	u16 offs = ctrl->reg_offsets[reg];
515 
516 	if (offs)
517 		return nand_readreg(ctrl, offs);
518 	else
519 		return 0;
520 }
521 
brcmnand_write_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 val)522 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
523 				      enum brcmnand_reg reg, u32 val)
524 {
525 	u16 offs = ctrl->reg_offsets[reg];
526 
527 	if (offs)
528 		nand_writereg(ctrl, offs, val);
529 }
530 
brcmnand_rmw_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 mask,unsigned int shift,u32 val)531 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
532 				    enum brcmnand_reg reg, u32 mask, unsigned
533 				    int shift, u32 val)
534 {
535 	u32 tmp = brcmnand_read_reg(ctrl, reg);
536 
537 	tmp &= ~mask;
538 	tmp |= val << shift;
539 	brcmnand_write_reg(ctrl, reg, tmp);
540 }
541 
brcmnand_read_fc(struct brcmnand_controller * ctrl,int word)542 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
543 {
544 	return __raw_readl(ctrl->nand_fc + word * 4);
545 }
546 
brcmnand_write_fc(struct brcmnand_controller * ctrl,int word,u32 val)547 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
548 				     int word, u32 val)
549 {
550 	__raw_writel(val, ctrl->nand_fc + word * 4);
551 }
552 
brcmnand_cs_offset(struct brcmnand_controller * ctrl,int cs,enum brcmnand_cs_reg reg)553 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
554 				     enum brcmnand_cs_reg reg)
555 {
556 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
557 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
558 	u8 cs_offs;
559 
560 	if (cs == 0 && ctrl->cs0_offsets)
561 		cs_offs = ctrl->cs0_offsets[reg];
562 	else
563 		cs_offs = ctrl->cs_offsets[reg];
564 
565 	if (cs && offs_cs1)
566 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
567 
568 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
569 }
570 
brcmnand_count_corrected(struct brcmnand_controller * ctrl)571 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
572 {
573 	if (ctrl->nand_version < 0x0600)
574 		return 1;
575 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
576 }
577 
brcmnand_wr_corr_thresh(struct brcmnand_host * host,u8 val)578 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
579 {
580 	struct brcmnand_controller *ctrl = host->ctrl;
581 	unsigned int shift = 0, bits;
582 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
583 	int cs = host->cs;
584 
585 	if (ctrl->nand_version >= 0x0600)
586 		bits = 6;
587 	else if (ctrl->nand_version >= 0x0500)
588 		bits = 5;
589 	else
590 		bits = 4;
591 
592 	if (ctrl->nand_version >= 0x0600) {
593 		if (cs >= 5)
594 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
595 		shift = (cs % 5) * bits;
596 	}
597 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
598 }
599 
brcmnand_cmd_shift(struct brcmnand_controller * ctrl)600 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
601 {
602 	if (ctrl->nand_version < 0x0700)
603 		return 24;
604 	return 0;
605 }
606 
607 /***********************************************************************
608  * NAND ACC CONTROL bitfield
609  *
610  * Some bits have remained constant throughout hardware revision, while
611  * others have shifted around.
612  ***********************************************************************/
613 
614 /* Constant for all versions (where supported) */
615 enum {
616 	/* See BRCMNAND_HAS_CACHE_MODE */
617 	ACC_CONTROL_CACHE_MODE				= BIT(22),
618 
619 	/* See BRCMNAND_HAS_PREFETCH */
620 	ACC_CONTROL_PREFETCH				= BIT(23),
621 
622 	ACC_CONTROL_PAGE_HIT				= BIT(24),
623 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
624 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
625 	ACC_CONTROL_RD_ERASED				= BIT(27),
626 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
627 	ACC_CONTROL_WR_ECC				= BIT(30),
628 	ACC_CONTROL_RD_ECC				= BIT(31),
629 };
630 
brcmnand_spare_area_mask(struct brcmnand_controller * ctrl)631 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
632 {
633 	if (ctrl->nand_version >= 0x0600)
634 		return GENMASK(6, 0);
635 	else
636 		return GENMASK(5, 0);
637 }
638 
639 #define NAND_ACC_CONTROL_ECC_SHIFT	16
640 
brcmnand_ecc_level_mask(struct brcmnand_controller * ctrl)641 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
642 {
643 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
644 
645 	return mask << NAND_ACC_CONTROL_ECC_SHIFT;
646 }
647 
brcmnand_set_ecc_enabled(struct brcmnand_host * host,int en)648 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
649 {
650 	struct brcmnand_controller *ctrl = host->ctrl;
651 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
652 	u32 acc_control = nand_readreg(ctrl, offs);
653 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
654 
655 	if (en) {
656 		acc_control |= ecc_flags; /* enable RD/WR ECC */
657 		acc_control |= host->hwcfg.ecc_level
658 			       << NAND_ACC_CONTROL_ECC_SHIFT;
659 	} else {
660 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
661 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
662 	}
663 
664 	nand_writereg(ctrl, offs, acc_control);
665 }
666 
brcmnand_sector_1k_shift(struct brcmnand_controller * ctrl)667 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
668 {
669 	if (ctrl->nand_version >= 0x0600)
670 		return 7;
671 	else if (ctrl->nand_version >= 0x0500)
672 		return 6;
673 	else
674 		return -1;
675 }
676 
brcmnand_get_sector_size_1k(struct brcmnand_host * host)677 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
678 {
679 	struct brcmnand_controller *ctrl = host->ctrl;
680 	int shift = brcmnand_sector_1k_shift(ctrl);
681 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
682 						  BRCMNAND_CS_ACC_CONTROL);
683 
684 	if (shift < 0)
685 		return 0;
686 
687 	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
688 }
689 
brcmnand_set_sector_size_1k(struct brcmnand_host * host,int val)690 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
691 {
692 	struct brcmnand_controller *ctrl = host->ctrl;
693 	int shift = brcmnand_sector_1k_shift(ctrl);
694 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
695 						  BRCMNAND_CS_ACC_CONTROL);
696 	u32 tmp;
697 
698 	if (shift < 0)
699 		return;
700 
701 	tmp = nand_readreg(ctrl, acc_control_offs);
702 	tmp &= ~(1 << shift);
703 	tmp |= (!!val) << shift;
704 	nand_writereg(ctrl, acc_control_offs, tmp);
705 }
706 
707 /***********************************************************************
708  * CS_NAND_SELECT
709  ***********************************************************************/
710 
711 enum {
712 	CS_SELECT_NAND_WP			= BIT(29),
713 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
714 };
715 
brcmnand_set_wp(struct brcmnand_controller * ctrl,bool en)716 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
717 {
718 	u32 val = en ? CS_SELECT_NAND_WP : 0;
719 
720 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
721 }
722 
723 /***********************************************************************
724  * Flash DMA
725  ***********************************************************************/
726 
727 enum flash_dma_reg {
728 	FLASH_DMA_REVISION		= 0x00,
729 	FLASH_DMA_FIRST_DESC		= 0x04,
730 	FLASH_DMA_FIRST_DESC_EXT	= 0x08,
731 	FLASH_DMA_CTRL			= 0x0c,
732 	FLASH_DMA_MODE			= 0x10,
733 	FLASH_DMA_STATUS		= 0x14,
734 	FLASH_DMA_INTERRUPT_DESC	= 0x18,
735 	FLASH_DMA_INTERRUPT_DESC_EXT	= 0x1c,
736 	FLASH_DMA_ERROR_STATUS		= 0x20,
737 	FLASH_DMA_CURRENT_DESC		= 0x24,
738 	FLASH_DMA_CURRENT_DESC_EXT	= 0x28,
739 };
740 
has_flash_dma(struct brcmnand_controller * ctrl)741 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
742 {
743 	return ctrl->flash_dma_base;
744 }
745 
flash_dma_buf_ok(const void * buf)746 static inline bool flash_dma_buf_ok(const void *buf)
747 {
748 	return buf && !is_vmalloc_addr(buf) &&
749 		likely(IS_ALIGNED((uintptr_t)buf, 4));
750 }
751 
flash_dma_writel(struct brcmnand_controller * ctrl,u8 offs,u32 val)752 static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
753 				    u32 val)
754 {
755 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
756 }
757 
flash_dma_readl(struct brcmnand_controller * ctrl,u8 offs)758 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
759 {
760 	return brcmnand_readl(ctrl->flash_dma_base + offs);
761 }
762 
763 /* Low-level operation types: command, address, write, or read */
764 enum brcmnand_llop_type {
765 	LL_OP_CMD,
766 	LL_OP_ADDR,
767 	LL_OP_WR,
768 	LL_OP_RD,
769 };
770 
771 /***********************************************************************
772  * Internal support functions
773  ***********************************************************************/
774 
is_hamming_ecc(struct brcmnand_cfg * cfg)775 static inline bool is_hamming_ecc(struct brcmnand_cfg *cfg)
776 {
777 	return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
778 		cfg->ecc_level == 15;
779 }
780 
781 /*
782  * Returns a nand_ecclayout strucutre for the given layout/configuration.
783  * Returns NULL on failure.
784  */
brcmnand_create_layout(int ecc_level,struct brcmnand_host * host)785 static struct nand_ecclayout *brcmnand_create_layout(int ecc_level,
786 						     struct brcmnand_host *host)
787 {
788 	struct brcmnand_cfg *cfg = &host->hwcfg;
789 	int i, j;
790 	struct nand_ecclayout *layout;
791 	int req;
792 	int sectors;
793 	int sas;
794 	int idx1, idx2;
795 
796 	layout = devm_kzalloc(&host->pdev->dev, sizeof(*layout), GFP_KERNEL);
797 	if (!layout)
798 		return NULL;
799 
800 	sectors = cfg->page_size / (512 << cfg->sector_size_1k);
801 	sas = cfg->spare_area_size << cfg->sector_size_1k;
802 
803 	/* Hamming */
804 	if (is_hamming_ecc(cfg)) {
805 		for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
806 			/* First sector of each page may have BBI */
807 			if (i == 0) {
808 				layout->oobfree[idx2].offset = i * sas + 1;
809 				/* Small-page NAND use byte 6 for BBI */
810 				if (cfg->page_size == 512)
811 					layout->oobfree[idx2].offset--;
812 				layout->oobfree[idx2].length = 5;
813 			} else {
814 				layout->oobfree[idx2].offset = i * sas;
815 				layout->oobfree[idx2].length = 6;
816 			}
817 			idx2++;
818 			layout->eccpos[idx1++] = i * sas + 6;
819 			layout->eccpos[idx1++] = i * sas + 7;
820 			layout->eccpos[idx1++] = i * sas + 8;
821 			layout->oobfree[idx2].offset = i * sas + 9;
822 			layout->oobfree[idx2].length = 7;
823 			idx2++;
824 			/* Leave zero-terminated entry for OOBFREE */
825 			if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
826 				    idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
827 				break;
828 		}
829 		goto out;
830 	}
831 
832 	/*
833 	 * CONTROLLER_VERSION:
834 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
835 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
836 	 * But we will just be conservative.
837 	 */
838 	req = DIV_ROUND_UP(ecc_level * 14, 8);
839 	if (req >= sas) {
840 		dev_err(&host->pdev->dev,
841 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
842 			req, sas);
843 		return NULL;
844 	}
845 
846 	layout->eccbytes = req * sectors;
847 	for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
848 		for (j = sas - req; j < sas && idx1 <
849 				MTD_MAX_ECCPOS_ENTRIES_LARGE; j++, idx1++)
850 			layout->eccpos[idx1] = i * sas + j;
851 
852 		/* First sector of each page may have BBI */
853 		if (i == 0) {
854 			if (cfg->page_size == 512 && (sas - req >= 6)) {
855 				/* Small-page NAND use byte 6 for BBI */
856 				layout->oobfree[idx2].offset = 0;
857 				layout->oobfree[idx2].length = 5;
858 				idx2++;
859 				if (sas - req > 6) {
860 					layout->oobfree[idx2].offset = 6;
861 					layout->oobfree[idx2].length =
862 						sas - req - 6;
863 					idx2++;
864 				}
865 			} else if (sas > req + 1) {
866 				layout->oobfree[idx2].offset = i * sas + 1;
867 				layout->oobfree[idx2].length = sas - req - 1;
868 				idx2++;
869 			}
870 		} else if (sas > req) {
871 			layout->oobfree[idx2].offset = i * sas;
872 			layout->oobfree[idx2].length = sas - req;
873 			idx2++;
874 		}
875 		/* Leave zero-terminated entry for OOBFREE */
876 		if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
877 				idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
878 			break;
879 	}
880 out:
881 	/* Sum available OOB */
882 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE; i++)
883 		layout->oobavail += layout->oobfree[i].length;
884 	return layout;
885 }
886 
brcmstb_choose_ecc_layout(struct brcmnand_host * host)887 static struct nand_ecclayout *brcmstb_choose_ecc_layout(
888 		struct brcmnand_host *host)
889 {
890 	struct nand_ecclayout *layout;
891 	struct brcmnand_cfg *p = &host->hwcfg;
892 	unsigned int ecc_level = p->ecc_level;
893 
894 	if (p->sector_size_1k)
895 		ecc_level <<= 1;
896 
897 	layout = brcmnand_create_layout(ecc_level, host);
898 	if (!layout) {
899 		dev_err(&host->pdev->dev,
900 				"no proper ecc_layout for this NAND cfg\n");
901 		return NULL;
902 	}
903 
904 	return layout;
905 }
906 
brcmnand_wp(struct mtd_info * mtd,int wp)907 static void brcmnand_wp(struct mtd_info *mtd, int wp)
908 {
909 	struct nand_chip *chip = mtd->priv;
910 	struct brcmnand_host *host = chip->priv;
911 	struct brcmnand_controller *ctrl = host->ctrl;
912 
913 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
914 		static int old_wp = -1;
915 
916 		if (old_wp != wp) {
917 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
918 			old_wp = wp;
919 		}
920 		brcmnand_set_wp(ctrl, wp);
921 	}
922 }
923 
924 /* Helper functions for reading and writing OOB registers */
oob_reg_read(struct brcmnand_controller * ctrl,u32 offs)925 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
926 {
927 	u16 offset0, offset10, reg_offs;
928 
929 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
930 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
931 
932 	if (offs >= ctrl->max_oob)
933 		return 0x77;
934 
935 	if (offs >= 16 && offset10)
936 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
937 	else
938 		reg_offs = offset0 + (offs & ~0x03);
939 
940 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
941 }
942 
oob_reg_write(struct brcmnand_controller * ctrl,u32 offs,u32 data)943 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
944 				 u32 data)
945 {
946 	u16 offset0, offset10, reg_offs;
947 
948 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
949 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
950 
951 	if (offs >= ctrl->max_oob)
952 		return;
953 
954 	if (offs >= 16 && offset10)
955 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
956 	else
957 		reg_offs = offset0 + (offs & ~0x03);
958 
959 	nand_writereg(ctrl, reg_offs, data);
960 }
961 
962 /*
963  * read_oob_from_regs - read data from OOB registers
964  * @ctrl: NAND controller
965  * @i: sub-page sector index
966  * @oob: buffer to read to
967  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
968  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
969  */
read_oob_from_regs(struct brcmnand_controller * ctrl,int i,u8 * oob,int sas,int sector_1k)970 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
971 			      int sas, int sector_1k)
972 {
973 	int tbytes = sas << sector_1k;
974 	int j;
975 
976 	/* Adjust OOB values for 1K sector size */
977 	if (sector_1k && (i & 0x01))
978 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
979 	tbytes = min_t(int, tbytes, ctrl->max_oob);
980 
981 	for (j = 0; j < tbytes; j++)
982 		oob[j] = oob_reg_read(ctrl, j);
983 	return tbytes;
984 }
985 
986 /*
987  * write_oob_to_regs - write data to OOB registers
988  * @i: sub-page sector index
989  * @oob: buffer to write from
990  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
991  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
992  */
write_oob_to_regs(struct brcmnand_controller * ctrl,int i,const u8 * oob,int sas,int sector_1k)993 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
994 			     const u8 *oob, int sas, int sector_1k)
995 {
996 	int tbytes = sas << sector_1k;
997 	int j;
998 
999 	/* Adjust OOB values for 1K sector size */
1000 	if (sector_1k && (i & 0x01))
1001 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1002 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1003 
1004 	for (j = 0; j < tbytes; j += 4)
1005 		oob_reg_write(ctrl, j,
1006 				(oob[j + 0] << 24) |
1007 				(oob[j + 1] << 16) |
1008 				(oob[j + 2] <<  8) |
1009 				(oob[j + 3] <<  0));
1010 	return tbytes;
1011 }
1012 
brcmnand_ctlrdy_irq(int irq,void * data)1013 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1014 {
1015 	struct brcmnand_controller *ctrl = data;
1016 
1017 	/* Discard all NAND_CTLRDY interrupts during DMA */
1018 	if (ctrl->dma_pending)
1019 		return IRQ_HANDLED;
1020 
1021 	complete(&ctrl->done);
1022 	return IRQ_HANDLED;
1023 }
1024 
1025 /* Handle SoC-specific interrupt hardware */
brcmnand_irq(int irq,void * data)1026 static irqreturn_t brcmnand_irq(int irq, void *data)
1027 {
1028 	struct brcmnand_controller *ctrl = data;
1029 
1030 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1031 		return brcmnand_ctlrdy_irq(irq, data);
1032 
1033 	return IRQ_NONE;
1034 }
1035 
brcmnand_dma_irq(int irq,void * data)1036 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1037 {
1038 	struct brcmnand_controller *ctrl = data;
1039 
1040 	complete(&ctrl->dma_done);
1041 
1042 	return IRQ_HANDLED;
1043 }
1044 
brcmnand_send_cmd(struct brcmnand_host * host,int cmd)1045 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1046 {
1047 	struct brcmnand_controller *ctrl = host->ctrl;
1048 	u32 intfc;
1049 
1050 	dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
1051 		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
1052 	BUG_ON(ctrl->cmd_pending != 0);
1053 	ctrl->cmd_pending = cmd;
1054 
1055 	intfc = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1056 	BUG_ON(!(intfc & INTFC_CTLR_READY));
1057 
1058 	mb(); /* flush previous writes */
1059 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1060 			   cmd << brcmnand_cmd_shift(ctrl));
1061 }
1062 
1063 /***********************************************************************
1064  * NAND MTD API: read/program/erase
1065  ***********************************************************************/
1066 
brcmnand_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)1067 static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
1068 	unsigned int ctrl)
1069 {
1070 	/* intentionally left blank */
1071 }
1072 
brcmnand_waitfunc(struct mtd_info * mtd,struct nand_chip * this)1073 static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1074 {
1075 	struct nand_chip *chip = mtd->priv;
1076 	struct brcmnand_host *host = chip->priv;
1077 	struct brcmnand_controller *ctrl = host->ctrl;
1078 	unsigned long timeo = msecs_to_jiffies(100);
1079 
1080 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1081 	if (ctrl->cmd_pending &&
1082 			wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
1083 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1084 					>> brcmnand_cmd_shift(ctrl);
1085 
1086 		dev_err_ratelimited(ctrl->dev,
1087 			"timeout waiting for command %#02x\n", cmd);
1088 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1089 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1090 	}
1091 	ctrl->cmd_pending = 0;
1092 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1093 				 INTFC_FLASH_STATUS;
1094 }
1095 
1096 enum {
1097 	LLOP_RE				= BIT(16),
1098 	LLOP_WE				= BIT(17),
1099 	LLOP_ALE			= BIT(18),
1100 	LLOP_CLE			= BIT(19),
1101 	LLOP_RETURN_IDLE		= BIT(31),
1102 
1103 	LLOP_DATA_MASK			= GENMASK(15, 0),
1104 };
1105 
brcmnand_low_level_op(struct brcmnand_host * host,enum brcmnand_llop_type type,u32 data,bool last_op)1106 static int brcmnand_low_level_op(struct brcmnand_host *host,
1107 				 enum brcmnand_llop_type type, u32 data,
1108 				 bool last_op)
1109 {
1110 	struct mtd_info *mtd = &host->mtd;
1111 	struct nand_chip *chip = &host->chip;
1112 	struct brcmnand_controller *ctrl = host->ctrl;
1113 	u32 tmp;
1114 
1115 	tmp = data & LLOP_DATA_MASK;
1116 	switch (type) {
1117 	case LL_OP_CMD:
1118 		tmp |= LLOP_WE | LLOP_CLE;
1119 		break;
1120 	case LL_OP_ADDR:
1121 		/* WE | ALE */
1122 		tmp |= LLOP_WE | LLOP_ALE;
1123 		break;
1124 	case LL_OP_WR:
1125 		/* WE */
1126 		tmp |= LLOP_WE;
1127 		break;
1128 	case LL_OP_RD:
1129 		/* RE */
1130 		tmp |= LLOP_RE;
1131 		break;
1132 	}
1133 	if (last_op)
1134 		/* RETURN_IDLE */
1135 		tmp |= LLOP_RETURN_IDLE;
1136 
1137 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1138 
1139 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1140 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1141 
1142 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1143 	return brcmnand_waitfunc(mtd, chip);
1144 }
1145 
brcmnand_cmdfunc(struct mtd_info * mtd,unsigned command,int column,int page_addr)1146 static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
1147 			     int column, int page_addr)
1148 {
1149 	struct nand_chip *chip = mtd->priv;
1150 	struct brcmnand_host *host = chip->priv;
1151 	struct brcmnand_controller *ctrl = host->ctrl;
1152 	u64 addr = (u64)page_addr << chip->page_shift;
1153 	int native_cmd = 0;
1154 
1155 	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1156 			command == NAND_CMD_RNDOUT)
1157 		addr = (u64)column;
1158 	/* Avoid propagating a negative, don't-care address */
1159 	else if (page_addr < 0)
1160 		addr = 0;
1161 
1162 	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1163 		(unsigned long long)addr);
1164 
1165 	host->last_cmd = command;
1166 	host->last_byte = 0;
1167 	host->last_addr = addr;
1168 
1169 	switch (command) {
1170 	case NAND_CMD_RESET:
1171 		native_cmd = CMD_FLASH_RESET;
1172 		break;
1173 	case NAND_CMD_STATUS:
1174 		native_cmd = CMD_STATUS_READ;
1175 		break;
1176 	case NAND_CMD_READID:
1177 		native_cmd = CMD_DEVICE_ID_READ;
1178 		break;
1179 	case NAND_CMD_READOOB:
1180 		native_cmd = CMD_SPARE_AREA_READ;
1181 		break;
1182 	case NAND_CMD_ERASE1:
1183 		native_cmd = CMD_BLOCK_ERASE;
1184 		brcmnand_wp(mtd, 0);
1185 		break;
1186 	case NAND_CMD_PARAM:
1187 		native_cmd = CMD_PARAMETER_READ;
1188 		break;
1189 	case NAND_CMD_SET_FEATURES:
1190 	case NAND_CMD_GET_FEATURES:
1191 		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1192 		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1193 		break;
1194 	case NAND_CMD_RNDOUT:
1195 		native_cmd = CMD_PARAMETER_CHANGE_COL;
1196 		addr &= ~((u64)(FC_BYTES - 1));
1197 		/*
1198 		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1199 		 * NB: hwcfg.sector_size_1k may not be initialized yet
1200 		 */
1201 		if (brcmnand_get_sector_size_1k(host)) {
1202 			host->hwcfg.sector_size_1k =
1203 				brcmnand_get_sector_size_1k(host);
1204 			brcmnand_set_sector_size_1k(host, 0);
1205 		}
1206 		break;
1207 	}
1208 
1209 	if (!native_cmd)
1210 		return;
1211 
1212 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1213 		(host->cs << 16) | ((addr >> 32) & 0xffff));
1214 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1215 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
1216 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1217 
1218 	brcmnand_send_cmd(host, native_cmd);
1219 	brcmnand_waitfunc(mtd, chip);
1220 
1221 	if (native_cmd == CMD_PARAMETER_READ ||
1222 			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1223 		int i;
1224 
1225 		brcmnand_soc_data_bus_prepare(ctrl->soc);
1226 
1227 		/*
1228 		 * Must cache the FLASH_CACHE now, since changes in
1229 		 * SECTOR_SIZE_1K may invalidate it
1230 		 */
1231 		for (i = 0; i < FC_WORDS; i++)
1232 			ctrl->flash_cache[i] = brcmnand_read_fc(ctrl, i);
1233 
1234 		brcmnand_soc_data_bus_unprepare(ctrl->soc);
1235 
1236 		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1237 		if (host->hwcfg.sector_size_1k)
1238 			brcmnand_set_sector_size_1k(host,
1239 						    host->hwcfg.sector_size_1k);
1240 	}
1241 
1242 	/* Re-enable protection is necessary only after erase */
1243 	if (command == NAND_CMD_ERASE1)
1244 		brcmnand_wp(mtd, 1);
1245 }
1246 
brcmnand_read_byte(struct mtd_info * mtd)1247 static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
1248 {
1249 	struct nand_chip *chip = mtd->priv;
1250 	struct brcmnand_host *host = chip->priv;
1251 	struct brcmnand_controller *ctrl = host->ctrl;
1252 	uint8_t ret = 0;
1253 	int addr, offs;
1254 
1255 	switch (host->last_cmd) {
1256 	case NAND_CMD_READID:
1257 		if (host->last_byte < 4)
1258 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1259 				(24 - (host->last_byte << 3));
1260 		else if (host->last_byte < 8)
1261 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1262 				(56 - (host->last_byte << 3));
1263 		break;
1264 
1265 	case NAND_CMD_READOOB:
1266 		ret = oob_reg_read(ctrl, host->last_byte);
1267 		break;
1268 
1269 	case NAND_CMD_STATUS:
1270 		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1271 					INTFC_FLASH_STATUS;
1272 		if (wp_on) /* hide WP status */
1273 			ret |= NAND_STATUS_WP;
1274 		break;
1275 
1276 	case NAND_CMD_PARAM:
1277 	case NAND_CMD_RNDOUT:
1278 		addr = host->last_addr + host->last_byte;
1279 		offs = addr & (FC_BYTES - 1);
1280 
1281 		/* At FC_BYTES boundary, switch to next column */
1282 		if (host->last_byte > 0 && offs == 0)
1283 			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, addr, -1);
1284 
1285 		ret = ctrl->flash_cache[offs >> 2] >>
1286 					(24 - ((offs & 0x03) << 3));
1287 		break;
1288 	case NAND_CMD_GET_FEATURES:
1289 		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1290 			ret = 0;
1291 		} else {
1292 			bool last = host->last_byte ==
1293 				ONFI_SUBFEATURE_PARAM_LEN - 1;
1294 			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1295 			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1296 		}
1297 	}
1298 
1299 	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1300 	host->last_byte++;
1301 
1302 	return ret;
1303 }
1304 
brcmnand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)1305 static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1306 {
1307 	int i;
1308 
1309 	for (i = 0; i < len; i++, buf++)
1310 		*buf = brcmnand_read_byte(mtd);
1311 }
1312 
brcmnand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)1313 static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1314 				   int len)
1315 {
1316 	int i;
1317 	struct nand_chip *chip = mtd->priv;
1318 	struct brcmnand_host *host = chip->priv;
1319 
1320 	switch (host->last_cmd) {
1321 	case NAND_CMD_SET_FEATURES:
1322 		for (i = 0; i < len; i++)
1323 			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1324 						  (i + 1) == len);
1325 		break;
1326 	default:
1327 		BUG();
1328 		break;
1329 	}
1330 }
1331 
1332 /**
1333  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1334  * following ahead of time:
1335  *  - Is this descriptor the beginning or end of a linked list?
1336  *  - What is the (DMA) address of the next descriptor in the linked list?
1337  */
brcmnand_fill_dma_desc(struct brcmnand_host * host,struct brcm_nand_dma_desc * desc,u64 addr,dma_addr_t buf,u32 len,u8 dma_cmd,bool begin,bool end,dma_addr_t next_desc)1338 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1339 				  struct brcm_nand_dma_desc *desc, u64 addr,
1340 				  dma_addr_t buf, u32 len, u8 dma_cmd,
1341 				  bool begin, bool end,
1342 				  dma_addr_t next_desc)
1343 {
1344 	memset(desc, 0, sizeof(*desc));
1345 	/* Descriptors are written in native byte order (wordwise) */
1346 	desc->next_desc = lower_32_bits(next_desc);
1347 	desc->next_desc_ext = upper_32_bits(next_desc);
1348 	desc->cmd_irq = (dma_cmd << 24) |
1349 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1350 		(!!begin) | ((!!end) << 1); /* head, tail */
1351 #ifdef CONFIG_CPU_BIG_ENDIAN
1352 	desc->cmd_irq |= 0x01 << 12;
1353 #endif
1354 	desc->dram_addr = lower_32_bits(buf);
1355 	desc->dram_addr_ext = upper_32_bits(buf);
1356 	desc->tfr_len = len;
1357 	desc->total_len = len;
1358 	desc->flash_addr = lower_32_bits(addr);
1359 	desc->flash_addr_ext = upper_32_bits(addr);
1360 	desc->cs = host->cs;
1361 	desc->status_valid = 0x01;
1362 	return 0;
1363 }
1364 
1365 /**
1366  * Kick the FLASH_DMA engine, with a given DMA descriptor
1367  */
brcmnand_dma_run(struct brcmnand_host * host,dma_addr_t desc)1368 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1369 {
1370 	struct brcmnand_controller *ctrl = host->ctrl;
1371 	unsigned long timeo = msecs_to_jiffies(100);
1372 
1373 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1374 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1375 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1376 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1377 
1378 	/* Start FLASH_DMA engine */
1379 	ctrl->dma_pending = true;
1380 	mb(); /* flush previous writes */
1381 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1382 
1383 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1384 		dev_err(ctrl->dev,
1385 				"timeout waiting for DMA; status %#x, error status %#x\n",
1386 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1387 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1388 	}
1389 	ctrl->dma_pending = false;
1390 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1391 }
1392 
brcmnand_dma_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u32 len,u8 dma_cmd)1393 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1394 			      u32 len, u8 dma_cmd)
1395 {
1396 	struct brcmnand_controller *ctrl = host->ctrl;
1397 	dma_addr_t buf_pa;
1398 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1399 
1400 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1401 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
1402 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1403 		return -ENOMEM;
1404 	}
1405 
1406 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1407 				   dma_cmd, true, true, 0);
1408 
1409 	brcmnand_dma_run(host, ctrl->dma_pa);
1410 
1411 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1412 
1413 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1414 		return -EBADMSG;
1415 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1416 		return -EUCLEAN;
1417 
1418 	return 0;
1419 }
1420 
1421 /*
1422  * Assumes proper CS is already set
1423  */
brcmnand_read_by_pio(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob,u64 * err_addr)1424 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1425 				u64 addr, unsigned int trans, u32 *buf,
1426 				u8 *oob, u64 *err_addr)
1427 {
1428 	struct brcmnand_host *host = chip->priv;
1429 	struct brcmnand_controller *ctrl = host->ctrl;
1430 	int i, j, ret = 0;
1431 
1432 	/* Clear error addresses */
1433 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
1434 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
1435 
1436 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1437 			(host->cs << 16) | ((addr >> 32) & 0xffff));
1438 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1439 
1440 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
1441 		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1442 				   lower_32_bits(addr));
1443 		(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1444 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1445 		brcmnand_send_cmd(host, CMD_PAGE_READ);
1446 		brcmnand_waitfunc(mtd, chip);
1447 
1448 		if (likely(buf)) {
1449 			brcmnand_soc_data_bus_prepare(ctrl->soc);
1450 
1451 			for (j = 0; j < FC_WORDS; j++, buf++)
1452 				*buf = brcmnand_read_fc(ctrl, j);
1453 
1454 			brcmnand_soc_data_bus_unprepare(ctrl->soc);
1455 		}
1456 
1457 		if (oob)
1458 			oob += read_oob_from_regs(ctrl, i, oob,
1459 					mtd->oobsize / trans,
1460 					host->hwcfg.sector_size_1k);
1461 
1462 		if (!ret) {
1463 			*err_addr = brcmnand_read_reg(ctrl,
1464 					BRCMNAND_UNCORR_ADDR) |
1465 				((u64)(brcmnand_read_reg(ctrl,
1466 						BRCMNAND_UNCORR_EXT_ADDR)
1467 					& 0xffff) << 32);
1468 			if (*err_addr)
1469 				ret = -EBADMSG;
1470 		}
1471 
1472 		if (!ret) {
1473 			*err_addr = brcmnand_read_reg(ctrl,
1474 					BRCMNAND_CORR_ADDR) |
1475 				((u64)(brcmnand_read_reg(ctrl,
1476 						BRCMNAND_CORR_EXT_ADDR)
1477 					& 0xffff) << 32);
1478 			if (*err_addr)
1479 				ret = -EUCLEAN;
1480 		}
1481 	}
1482 
1483 	return ret;
1484 }
1485 
brcmnand_read(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob)1486 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1487 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1488 {
1489 	struct brcmnand_host *host = chip->priv;
1490 	struct brcmnand_controller *ctrl = host->ctrl;
1491 	u64 err_addr = 0;
1492 	int err;
1493 
1494 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1495 
1496 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
1497 
1498 	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1499 		err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1500 					     CMD_PAGE_READ);
1501 		if (err) {
1502 			if (mtd_is_bitflip_or_eccerr(err))
1503 				err_addr = addr;
1504 			else
1505 				return -EIO;
1506 		}
1507 	} else {
1508 		if (oob)
1509 			memset(oob, 0x99, mtd->oobsize);
1510 
1511 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1512 					       oob, &err_addr);
1513 	}
1514 
1515 	if (mtd_is_eccerr(err)) {
1516 		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1517 			(unsigned long long)err_addr);
1518 		mtd->ecc_stats.failed++;
1519 		/* NAND layer expects zero on ECC errors */
1520 		return 0;
1521 	}
1522 
1523 	if (mtd_is_bitflip(err)) {
1524 		unsigned int corrected = brcmnand_count_corrected(ctrl);
1525 
1526 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1527 			(unsigned long long)err_addr);
1528 		mtd->ecc_stats.corrected += corrected;
1529 		/* Always exceed the software-imposed threshold */
1530 		return max(mtd->bitflip_threshold, corrected);
1531 	}
1532 
1533 	return 0;
1534 }
1535 
brcmnand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1536 static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1537 			      uint8_t *buf, int oob_required, int page)
1538 {
1539 	struct brcmnand_host *host = chip->priv;
1540 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1541 
1542 	return brcmnand_read(mtd, chip, host->last_addr,
1543 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1544 }
1545 
brcmnand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1546 static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1547 				  uint8_t *buf, int oob_required, int page)
1548 {
1549 	struct brcmnand_host *host = chip->priv;
1550 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1551 	int ret;
1552 
1553 	brcmnand_set_ecc_enabled(host, 0);
1554 	ret = brcmnand_read(mtd, chip, host->last_addr,
1555 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1556 	brcmnand_set_ecc_enabled(host, 1);
1557 	return ret;
1558 }
1559 
brcmnand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1560 static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1561 			     int page)
1562 {
1563 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1564 			mtd->writesize >> FC_SHIFT,
1565 			NULL, (u8 *)chip->oob_poi);
1566 }
1567 
brcmnand_read_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1568 static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1569 				 int page)
1570 {
1571 	struct brcmnand_host *host = chip->priv;
1572 
1573 	brcmnand_set_ecc_enabled(host, 0);
1574 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1575 		mtd->writesize >> FC_SHIFT,
1576 		NULL, (u8 *)chip->oob_poi);
1577 	brcmnand_set_ecc_enabled(host, 1);
1578 	return 0;
1579 }
1580 
brcmnand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)1581 static int brcmnand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1582 				 uint32_t data_offs, uint32_t readlen,
1583 				 uint8_t *bufpoi, int page)
1584 {
1585 	struct brcmnand_host *host = chip->priv;
1586 
1587 	return brcmnand_read(mtd, chip, host->last_addr + data_offs,
1588 			readlen >> FC_SHIFT, (u32 *)bufpoi, NULL);
1589 }
1590 
brcmnand_write(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,const u32 * buf,u8 * oob)1591 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1592 			  u64 addr, const u32 *buf, u8 *oob)
1593 {
1594 	struct brcmnand_host *host = chip->priv;
1595 	struct brcmnand_controller *ctrl = host->ctrl;
1596 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1597 	int status, ret = 0;
1598 
1599 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1600 
1601 	if (unlikely((unsigned long)buf & 0x03)) {
1602 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1603 		buf = (u32 *)((unsigned long)buf & ~0x03);
1604 	}
1605 
1606 	brcmnand_wp(mtd, 0);
1607 
1608 	for (i = 0; i < ctrl->max_oob; i += 4)
1609 		oob_reg_write(ctrl, i, 0xffffffff);
1610 
1611 	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1612 		if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1613 					mtd->writesize, CMD_PROGRAM_PAGE))
1614 			ret = -EIO;
1615 		goto out;
1616 	}
1617 
1618 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1619 			(host->cs << 16) | ((addr >> 32) & 0xffff));
1620 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1621 
1622 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
1623 		/* full address MUST be set before populating FC */
1624 		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1625 				   lower_32_bits(addr));
1626 		(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1627 
1628 		if (buf) {
1629 			brcmnand_soc_data_bus_prepare(ctrl->soc);
1630 
1631 			for (j = 0; j < FC_WORDS; j++, buf++)
1632 				brcmnand_write_fc(ctrl, j, *buf);
1633 
1634 			brcmnand_soc_data_bus_unprepare(ctrl->soc);
1635 		} else if (oob) {
1636 			for (j = 0; j < FC_WORDS; j++)
1637 				brcmnand_write_fc(ctrl, j, 0xffffffff);
1638 		}
1639 
1640 		if (oob) {
1641 			oob += write_oob_to_regs(ctrl, i, oob,
1642 					mtd->oobsize / trans,
1643 					host->hwcfg.sector_size_1k);
1644 		}
1645 
1646 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
1647 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
1648 		status = brcmnand_waitfunc(mtd, chip);
1649 
1650 		if (status & NAND_STATUS_FAIL) {
1651 			dev_info(ctrl->dev, "program failed at %llx\n",
1652 				(unsigned long long)addr);
1653 			ret = -EIO;
1654 			goto out;
1655 		}
1656 	}
1657 out:
1658 	brcmnand_wp(mtd, 1);
1659 	return ret;
1660 }
1661 
brcmnand_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1662 static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1663 			       const uint8_t *buf, int oob_required, int page)
1664 {
1665 	struct brcmnand_host *host = chip->priv;
1666 	void *oob = oob_required ? chip->oob_poi : NULL;
1667 
1668 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1669 	return 0;
1670 }
1671 
brcmnand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1672 static int brcmnand_write_page_raw(struct mtd_info *mtd,
1673 				   struct nand_chip *chip, const uint8_t *buf,
1674 				   int oob_required, int page)
1675 {
1676 	struct brcmnand_host *host = chip->priv;
1677 	void *oob = oob_required ? chip->oob_poi : NULL;
1678 
1679 	brcmnand_set_ecc_enabled(host, 0);
1680 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1681 	brcmnand_set_ecc_enabled(host, 1);
1682 	return 0;
1683 }
1684 
brcmnand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1685 static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1686 				  int page)
1687 {
1688 	return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
1689 				  NULL, chip->oob_poi);
1690 }
1691 
brcmnand_write_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1692 static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1693 				  int page)
1694 {
1695 	struct brcmnand_host *host = chip->priv;
1696 	int ret;
1697 
1698 	brcmnand_set_ecc_enabled(host, 0);
1699 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
1700 				 (u8 *)chip->oob_poi);
1701 	brcmnand_set_ecc_enabled(host, 1);
1702 
1703 	return ret;
1704 }
1705 
1706 /***********************************************************************
1707  * Per-CS setup (1 NAND device)
1708  ***********************************************************************/
1709 
brcmnand_set_cfg(struct brcmnand_host * host,struct brcmnand_cfg * cfg)1710 static int brcmnand_set_cfg(struct brcmnand_host *host,
1711 			    struct brcmnand_cfg *cfg)
1712 {
1713 	struct brcmnand_controller *ctrl = host->ctrl;
1714 	struct nand_chip *chip = &host->chip;
1715 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1716 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
1717 			BRCMNAND_CS_CFG_EXT);
1718 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1719 			BRCMNAND_CS_ACC_CONTROL);
1720 	u8 block_size = 0, page_size = 0, device_size = 0;
1721 	u32 tmp;
1722 
1723 	if (ctrl->block_sizes) {
1724 		int i, found;
1725 
1726 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
1727 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
1728 				block_size = i;
1729 				found = 1;
1730 			}
1731 		if (!found) {
1732 			dev_warn(ctrl->dev, "invalid block size %u\n",
1733 					cfg->block_size);
1734 			return -EINVAL;
1735 		}
1736 	} else {
1737 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
1738 	}
1739 
1740 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
1741 				cfg->block_size > ctrl->max_block_size)) {
1742 		dev_warn(ctrl->dev, "invalid block size %u\n",
1743 				cfg->block_size);
1744 		block_size = 0;
1745 	}
1746 
1747 	if (ctrl->page_sizes) {
1748 		int i, found;
1749 
1750 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
1751 			if (ctrl->page_sizes[i] == cfg->page_size) {
1752 				page_size = i;
1753 				found = 1;
1754 			}
1755 		if (!found) {
1756 			dev_warn(ctrl->dev, "invalid page size %u\n",
1757 					cfg->page_size);
1758 			return -EINVAL;
1759 		}
1760 	} else {
1761 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
1762 	}
1763 
1764 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
1765 				cfg->page_size > ctrl->max_page_size)) {
1766 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
1767 		return -EINVAL;
1768 	}
1769 
1770 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
1771 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
1772 			(unsigned long long)cfg->device_size);
1773 		return -EINVAL;
1774 	}
1775 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
1776 
1777 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
1778 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
1779 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
1780 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
1781 		(device_size << CFG_DEVICE_SIZE_SHIFT);
1782 	if (cfg_offs == cfg_ext_offs) {
1783 		tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
1784 		       (block_size << CFG_BLK_SIZE_SHIFT);
1785 		nand_writereg(ctrl, cfg_offs, tmp);
1786 	} else {
1787 		nand_writereg(ctrl, cfg_offs, tmp);
1788 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
1789 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
1790 		nand_writereg(ctrl, cfg_ext_offs, tmp);
1791 	}
1792 
1793 	tmp = nand_readreg(ctrl, acc_control_offs);
1794 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
1795 	tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
1796 	tmp &= ~brcmnand_spare_area_mask(ctrl);
1797 	tmp |= cfg->spare_area_size;
1798 	nand_writereg(ctrl, acc_control_offs, tmp);
1799 
1800 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
1801 
1802 	/* threshold = ceil(BCH-level * 0.75) */
1803 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
1804 
1805 	return 0;
1806 }
1807 
brcmnand_print_cfg(char * buf,struct brcmnand_cfg * cfg)1808 static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg)
1809 {
1810 	buf += sprintf(buf,
1811 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
1812 		(unsigned long long)cfg->device_size >> 20,
1813 		cfg->block_size >> 10,
1814 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
1815 		cfg->page_size >= 1024 ? "KiB" : "B",
1816 		cfg->spare_area_size, cfg->device_width);
1817 
1818 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
1819 	if (is_hamming_ecc(cfg))
1820 		sprintf(buf, ", Hamming ECC");
1821 	else if (cfg->sector_size_1k)
1822 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
1823 	else
1824 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
1825 }
1826 
1827 /*
1828  * Minimum number of bytes to address a page. Calculated as:
1829  *     roundup(log2(size / page-size) / 8)
1830  *
1831  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
1832  *     OK because many other things will break if 'size' is irregular...
1833  */
get_blk_adr_bytes(u64 size,u32 writesize)1834 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
1835 {
1836 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
1837 }
1838 
brcmnand_setup_dev(struct brcmnand_host * host)1839 static int brcmnand_setup_dev(struct brcmnand_host *host)
1840 {
1841 	struct mtd_info *mtd = &host->mtd;
1842 	struct nand_chip *chip = &host->chip;
1843 	struct brcmnand_controller *ctrl = host->ctrl;
1844 	struct brcmnand_cfg *cfg = &host->hwcfg;
1845 	char msg[128];
1846 	u32 offs, tmp, oob_sector;
1847 	int ret;
1848 
1849 	memset(cfg, 0, sizeof(*cfg));
1850 
1851 	ret = of_property_read_u32(chip->flash_node,
1852 				   "brcm,nand-oob-sector-size",
1853 				   &oob_sector);
1854 	if (ret) {
1855 		/* Use detected size */
1856 		cfg->spare_area_size = mtd->oobsize /
1857 					(mtd->writesize >> FC_SHIFT);
1858 	} else {
1859 		cfg->spare_area_size = oob_sector;
1860 	}
1861 	if (cfg->spare_area_size > ctrl->max_oob)
1862 		cfg->spare_area_size = ctrl->max_oob;
1863 	/*
1864 	 * Set oobsize to be consistent with controller's spare_area_size, as
1865 	 * the rest is inaccessible.
1866 	 */
1867 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
1868 
1869 	cfg->device_size = mtd->size;
1870 	cfg->block_size = mtd->erasesize;
1871 	cfg->page_size = mtd->writesize;
1872 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
1873 	cfg->col_adr_bytes = 2;
1874 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
1875 
1876 	switch (chip->ecc.size) {
1877 	case 512:
1878 		if (chip->ecc.strength == 1) /* Hamming */
1879 			cfg->ecc_level = 15;
1880 		else
1881 			cfg->ecc_level = chip->ecc.strength;
1882 		cfg->sector_size_1k = 0;
1883 		break;
1884 	case 1024:
1885 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
1886 			dev_err(ctrl->dev, "1KB sectors not supported\n");
1887 			return -EINVAL;
1888 		}
1889 		if (chip->ecc.strength & 0x1) {
1890 			dev_err(ctrl->dev,
1891 				"odd ECC not supported with 1KB sectors\n");
1892 			return -EINVAL;
1893 		}
1894 
1895 		cfg->ecc_level = chip->ecc.strength >> 1;
1896 		cfg->sector_size_1k = 1;
1897 		break;
1898 	default:
1899 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
1900 			chip->ecc.size);
1901 		return -EINVAL;
1902 	}
1903 
1904 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
1905 	if (mtd->writesize > 512)
1906 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
1907 	else
1908 		cfg->ful_adr_bytes += 1;
1909 
1910 	ret = brcmnand_set_cfg(host, cfg);
1911 	if (ret)
1912 		return ret;
1913 
1914 	brcmnand_set_ecc_enabled(host, 1);
1915 
1916 	brcmnand_print_cfg(msg, cfg);
1917 	dev_info(ctrl->dev, "detected %s\n", msg);
1918 
1919 	/* Configure ACC_CONTROL */
1920 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1921 	tmp = nand_readreg(ctrl, offs);
1922 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
1923 	tmp &= ~ACC_CONTROL_RD_ERASED;
1924 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
1925 	if (ctrl->features & BRCMNAND_HAS_PREFETCH) {
1926 		/*
1927 		 * FIXME: Flash DMA + prefetch may see spurious erased-page ECC
1928 		 * errors
1929 		 */
1930 		if (has_flash_dma(ctrl))
1931 			tmp &= ~ACC_CONTROL_PREFETCH;
1932 		else
1933 			tmp |= ACC_CONTROL_PREFETCH;
1934 	}
1935 	nand_writereg(ctrl, offs, tmp);
1936 
1937 	return 0;
1938 }
1939 
brcmnand_init_cs(struct brcmnand_host * host)1940 static int brcmnand_init_cs(struct brcmnand_host *host)
1941 {
1942 	struct brcmnand_controller *ctrl = host->ctrl;
1943 	struct device_node *dn = host->of_node;
1944 	struct platform_device *pdev = host->pdev;
1945 	struct mtd_info *mtd;
1946 	struct nand_chip *chip;
1947 	int ret;
1948 	u16 cfg_offs;
1949 	struct mtd_part_parser_data ppdata = { .of_node = dn };
1950 
1951 	ret = of_property_read_u32(dn, "reg", &host->cs);
1952 	if (ret) {
1953 		dev_err(&pdev->dev, "can't get chip-select\n");
1954 		return -ENXIO;
1955 	}
1956 
1957 	mtd = &host->mtd;
1958 	chip = &host->chip;
1959 
1960 	chip->flash_node = dn;
1961 	chip->priv = host;
1962 	mtd->priv = chip;
1963 	mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
1964 				   host->cs);
1965 	mtd->owner = THIS_MODULE;
1966 	mtd->dev.parent = &pdev->dev;
1967 
1968 	chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
1969 	chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
1970 
1971 	chip->cmd_ctrl = brcmnand_cmd_ctrl;
1972 	chip->cmdfunc = brcmnand_cmdfunc;
1973 	chip->waitfunc = brcmnand_waitfunc;
1974 	chip->read_byte = brcmnand_read_byte;
1975 	chip->read_buf = brcmnand_read_buf;
1976 	chip->write_buf = brcmnand_write_buf;
1977 
1978 	chip->ecc.mode = NAND_ECC_HW;
1979 	chip->ecc.read_page = brcmnand_read_page;
1980 	chip->ecc.read_subpage = brcmnand_read_subpage;
1981 	chip->ecc.write_page = brcmnand_write_page;
1982 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
1983 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
1984 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
1985 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
1986 	chip->ecc.read_oob = brcmnand_read_oob;
1987 	chip->ecc.write_oob = brcmnand_write_oob;
1988 
1989 	chip->controller = &ctrl->controller;
1990 
1991 	/*
1992 	 * The bootloader might have configured 16bit mode but
1993 	 * NAND READID command only works in 8bit mode. We force
1994 	 * 8bit mode here to ensure that NAND READID commands works.
1995 	 */
1996 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1997 	nand_writereg(ctrl, cfg_offs,
1998 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
1999 
2000 	if (nand_scan_ident(mtd, 1, NULL))
2001 		return -ENXIO;
2002 
2003 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2004 	/*
2005 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2006 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2007 	 * needed.
2008 	 */
2009 	chip->options |= NAND_USE_BOUNCE_BUFFER;
2010 
2011 	if (of_get_nand_on_flash_bbt(dn))
2012 		chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
2013 
2014 	if (brcmnand_setup_dev(host))
2015 		return -ENXIO;
2016 
2017 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2018 	/* only use our internal HW threshold */
2019 	mtd->bitflip_threshold = 1;
2020 
2021 	chip->ecc.layout = brcmstb_choose_ecc_layout(host);
2022 	if (!chip->ecc.layout)
2023 		return -ENXIO;
2024 
2025 	if (nand_scan_tail(mtd))
2026 		return -ENXIO;
2027 
2028 	return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
2029 }
2030 
brcmnand_save_restore_cs_config(struct brcmnand_host * host,int restore)2031 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2032 					    int restore)
2033 {
2034 	struct brcmnand_controller *ctrl = host->ctrl;
2035 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2036 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2037 			BRCMNAND_CS_CFG_EXT);
2038 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2039 			BRCMNAND_CS_ACC_CONTROL);
2040 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2041 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2042 
2043 	if (restore) {
2044 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2045 		if (cfg_offs != cfg_ext_offs)
2046 			nand_writereg(ctrl, cfg_ext_offs,
2047 				      host->hwcfg.config_ext);
2048 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2049 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2050 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2051 	} else {
2052 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2053 		if (cfg_offs != cfg_ext_offs)
2054 			host->hwcfg.config_ext =
2055 				nand_readreg(ctrl, cfg_ext_offs);
2056 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2057 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2058 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2059 	}
2060 }
2061 
brcmnand_suspend(struct device * dev)2062 static int brcmnand_suspend(struct device *dev)
2063 {
2064 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2065 	struct brcmnand_host *host;
2066 
2067 	list_for_each_entry(host, &ctrl->host_list, node)
2068 		brcmnand_save_restore_cs_config(host, 0);
2069 
2070 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2071 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2072 	ctrl->corr_stat_threshold =
2073 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2074 
2075 	if (has_flash_dma(ctrl))
2076 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2077 
2078 	return 0;
2079 }
2080 
brcmnand_resume(struct device * dev)2081 static int brcmnand_resume(struct device *dev)
2082 {
2083 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2084 	struct brcmnand_host *host;
2085 
2086 	if (has_flash_dma(ctrl)) {
2087 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2088 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2089 	}
2090 
2091 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2092 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2093 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2094 			ctrl->corr_stat_threshold);
2095 	if (ctrl->soc) {
2096 		/* Clear/re-enable interrupt */
2097 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2098 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2099 	}
2100 
2101 	list_for_each_entry(host, &ctrl->host_list, node) {
2102 		struct mtd_info *mtd = &host->mtd;
2103 		struct nand_chip *chip = mtd->priv;
2104 
2105 		brcmnand_save_restore_cs_config(host, 1);
2106 
2107 		/* Reset the chip, required by some chips after power-up */
2108 		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 const struct dev_pm_ops brcmnand_pm_ops = {
2115 	.suspend		= brcmnand_suspend,
2116 	.resume			= brcmnand_resume,
2117 };
2118 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2119 
2120 static const struct of_device_id brcmnand_of_match[] = {
2121 	{ .compatible = "brcm,brcmnand-v4.0" },
2122 	{ .compatible = "brcm,brcmnand-v5.0" },
2123 	{ .compatible = "brcm,brcmnand-v6.0" },
2124 	{ .compatible = "brcm,brcmnand-v6.1" },
2125 	{ .compatible = "brcm,brcmnand-v7.0" },
2126 	{ .compatible = "brcm,brcmnand-v7.1" },
2127 	{},
2128 };
2129 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2130 
2131 /***********************************************************************
2132  * Platform driver setup (per controller)
2133  ***********************************************************************/
2134 
brcmnand_probe(struct platform_device * pdev,struct brcmnand_soc * soc)2135 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2136 {
2137 	struct device *dev = &pdev->dev;
2138 	struct device_node *dn = dev->of_node, *child;
2139 	struct brcmnand_controller *ctrl;
2140 	struct resource *res;
2141 	int ret;
2142 
2143 	/* We only support device-tree instantiation */
2144 	if (!dn)
2145 		return -ENODEV;
2146 
2147 	if (!of_match_node(brcmnand_of_match, dn))
2148 		return -ENODEV;
2149 
2150 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2151 	if (!ctrl)
2152 		return -ENOMEM;
2153 
2154 	dev_set_drvdata(dev, ctrl);
2155 	ctrl->dev = dev;
2156 
2157 	init_completion(&ctrl->done);
2158 	init_completion(&ctrl->dma_done);
2159 	spin_lock_init(&ctrl->controller.lock);
2160 	init_waitqueue_head(&ctrl->controller.wq);
2161 	INIT_LIST_HEAD(&ctrl->host_list);
2162 
2163 	/* NAND register range */
2164 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2165 	ctrl->nand_base = devm_ioremap_resource(dev, res);
2166 	if (IS_ERR(ctrl->nand_base))
2167 		return PTR_ERR(ctrl->nand_base);
2168 
2169 	/* Initialize NAND revision */
2170 	ret = brcmnand_revision_init(ctrl);
2171 	if (ret)
2172 		return ret;
2173 
2174 	/*
2175 	 * Most chips have this cache at a fixed offset within 'nand' block.
2176 	 * Some must specify this region separately.
2177 	 */
2178 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2179 	if (res) {
2180 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
2181 		if (IS_ERR(ctrl->nand_fc))
2182 			return PTR_ERR(ctrl->nand_fc);
2183 	} else {
2184 		ctrl->nand_fc = ctrl->nand_base +
2185 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
2186 	}
2187 
2188 	/* FLASH_DMA */
2189 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2190 	if (res) {
2191 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2192 		if (IS_ERR(ctrl->flash_dma_base))
2193 			return PTR_ERR(ctrl->flash_dma_base);
2194 
2195 		flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
2196 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2197 
2198 		/* Allocate descriptor(s) */
2199 		ctrl->dma_desc = dmam_alloc_coherent(dev,
2200 						     sizeof(*ctrl->dma_desc),
2201 						     &ctrl->dma_pa, GFP_KERNEL);
2202 		if (!ctrl->dma_desc)
2203 			return -ENOMEM;
2204 
2205 		ctrl->dma_irq = platform_get_irq(pdev, 1);
2206 		if ((int)ctrl->dma_irq < 0) {
2207 			dev_err(dev, "missing FLASH_DMA IRQ\n");
2208 			return -ENODEV;
2209 		}
2210 
2211 		ret = devm_request_irq(dev, ctrl->dma_irq,
2212 				brcmnand_dma_irq, 0, DRV_NAME,
2213 				ctrl);
2214 		if (ret < 0) {
2215 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
2216 					ctrl->dma_irq, ret);
2217 			return ret;
2218 		}
2219 
2220 		dev_info(dev, "enabling FLASH_DMA\n");
2221 	}
2222 
2223 	/* Disable automatic device ID config, direct addressing */
2224 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2225 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2226 	/* Disable XOR addressing */
2227 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2228 
2229 	if (ctrl->features & BRCMNAND_HAS_WP) {
2230 		/* Permanently disable write protection */
2231 		if (wp_on == 2)
2232 			brcmnand_set_wp(ctrl, false);
2233 	} else {
2234 		wp_on = 0;
2235 	}
2236 
2237 	/* IRQ */
2238 	ctrl->irq = platform_get_irq(pdev, 0);
2239 	if ((int)ctrl->irq < 0) {
2240 		dev_err(dev, "no IRQ defined\n");
2241 		return -ENODEV;
2242 	}
2243 
2244 	/*
2245 	 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2246 	 * interesting ways
2247 	 */
2248 	if (soc) {
2249 		ctrl->soc = soc;
2250 
2251 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2252 				       DRV_NAME, ctrl);
2253 
2254 		/* Enable interrupt */
2255 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2256 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2257 	} else {
2258 		/* Use standard interrupt infrastructure */
2259 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2260 				       DRV_NAME, ctrl);
2261 	}
2262 	if (ret < 0) {
2263 		dev_err(dev, "can't allocate IRQ %d: error %d\n",
2264 			ctrl->irq, ret);
2265 		return ret;
2266 	}
2267 
2268 	for_each_available_child_of_node(dn, child) {
2269 		if (of_device_is_compatible(child, "brcm,nandcs")) {
2270 			struct brcmnand_host *host;
2271 
2272 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2273 			if (!host)
2274 				return -ENOMEM;
2275 			host->pdev = pdev;
2276 			host->ctrl = ctrl;
2277 			host->of_node = child;
2278 
2279 			ret = brcmnand_init_cs(host);
2280 			if (ret)
2281 				continue; /* Try all chip-selects */
2282 
2283 			list_add_tail(&host->node, &ctrl->host_list);
2284 		}
2285 	}
2286 
2287 	/* No chip-selects could initialize properly */
2288 	if (list_empty(&ctrl->host_list))
2289 		return -ENODEV;
2290 
2291 	return 0;
2292 }
2293 EXPORT_SYMBOL_GPL(brcmnand_probe);
2294 
brcmnand_remove(struct platform_device * pdev)2295 int brcmnand_remove(struct platform_device *pdev)
2296 {
2297 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2298 	struct brcmnand_host *host;
2299 
2300 	list_for_each_entry(host, &ctrl->host_list, node)
2301 		nand_release(&host->mtd);
2302 
2303 	dev_set_drvdata(&pdev->dev, NULL);
2304 
2305 	return 0;
2306 }
2307 EXPORT_SYMBOL_GPL(brcmnand_remove);
2308 
2309 MODULE_LICENSE("GPL v2");
2310 MODULE_AUTHOR("Kevin Cernekee");
2311 MODULE_AUTHOR("Brian Norris");
2312 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2313 MODULE_ALIAS("platform:brcmnand");
2314