1 /*
2 * Copyright © 2010-2015 Broadcom Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/version.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/platform_device.h>
20 #include <linux/err.h>
21 #include <linux/completion.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/ioport.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/bitops.h>
29 #include <linux/mm.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of.h>
34 #include <linux/of_mtd.h>
35 #include <linux/of_platform.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/log2.h>
39
40 #include "brcmnand.h"
41
42 /*
43 * This flag controls if WP stays on between erase/write commands to mitigate
44 * flash corruption due to power glitches. Values:
45 * 0: NAND_WP is not used or not available
46 * 1: NAND_WP is set by default, cleared for erase/write operations
47 * 2: NAND_WP is always cleared
48 */
49 static int wp_on = 1;
50 module_param(wp_on, int, 0444);
51
52 /***********************************************************************
53 * Definitions
54 ***********************************************************************/
55
56 #define DRV_NAME "brcmnand"
57
58 #define CMD_NULL 0x00
59 #define CMD_PAGE_READ 0x01
60 #define CMD_SPARE_AREA_READ 0x02
61 #define CMD_STATUS_READ 0x03
62 #define CMD_PROGRAM_PAGE 0x04
63 #define CMD_PROGRAM_SPARE_AREA 0x05
64 #define CMD_COPY_BACK 0x06
65 #define CMD_DEVICE_ID_READ 0x07
66 #define CMD_BLOCK_ERASE 0x08
67 #define CMD_FLASH_RESET 0x09
68 #define CMD_BLOCKS_LOCK 0x0a
69 #define CMD_BLOCKS_LOCK_DOWN 0x0b
70 #define CMD_BLOCKS_UNLOCK 0x0c
71 #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
72 #define CMD_PARAMETER_READ 0x0e
73 #define CMD_PARAMETER_CHANGE_COL 0x0f
74 #define CMD_LOW_LEVEL_OP 0x10
75
76 struct brcm_nand_dma_desc {
77 u32 next_desc;
78 u32 next_desc_ext;
79 u32 cmd_irq;
80 u32 dram_addr;
81 u32 dram_addr_ext;
82 u32 tfr_len;
83 u32 total_len;
84 u32 flash_addr;
85 u32 flash_addr_ext;
86 u32 cs;
87 u32 pad2[5];
88 u32 status_valid;
89 } __packed;
90
91 /* Bitfields for brcm_nand_dma_desc::status_valid */
92 #define FLASH_DMA_ECC_ERROR (1 << 8)
93 #define FLASH_DMA_CORR_ERROR (1 << 9)
94
95 /* 512B flash cache in the NAND controller HW */
96 #define FC_SHIFT 9U
97 #define FC_BYTES 512U
98 #define FC_WORDS (FC_BYTES >> 2)
99
100 #define BRCMNAND_MIN_PAGESIZE 512
101 #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
102 #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
103
104 /* Controller feature flags */
105 enum {
106 BRCMNAND_HAS_1K_SECTORS = BIT(0),
107 BRCMNAND_HAS_PREFETCH = BIT(1),
108 BRCMNAND_HAS_CACHE_MODE = BIT(2),
109 BRCMNAND_HAS_WP = BIT(3),
110 };
111
112 struct brcmnand_controller {
113 struct device *dev;
114 struct nand_hw_control controller;
115 void __iomem *nand_base;
116 void __iomem *nand_fc; /* flash cache */
117 void __iomem *flash_dma_base;
118 unsigned int irq;
119 unsigned int dma_irq;
120 int nand_version;
121
122 /* Some SoCs provide custom interrupt status register(s) */
123 struct brcmnand_soc *soc;
124
125 int cmd_pending;
126 bool dma_pending;
127 struct completion done;
128 struct completion dma_done;
129
130 /* List of NAND hosts (one for each chip-select) */
131 struct list_head host_list;
132
133 struct brcm_nand_dma_desc *dma_desc;
134 dma_addr_t dma_pa;
135
136 /* in-memory cache of the FLASH_CACHE, used only for some commands */
137 u32 flash_cache[FC_WORDS];
138
139 /* Controller revision details */
140 const u16 *reg_offsets;
141 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
142 const u8 *cs_offsets; /* within each chip-select */
143 const u8 *cs0_offsets; /* within CS0, if different */
144 unsigned int max_block_size;
145 const unsigned int *block_sizes;
146 unsigned int max_page_size;
147 const unsigned int *page_sizes;
148 unsigned int max_oob;
149 u32 features;
150
151 /* for low-power standby/resume only */
152 u32 nand_cs_nand_select;
153 u32 nand_cs_nand_xor;
154 u32 corr_stat_threshold;
155 u32 flash_dma_mode;
156 };
157
158 struct brcmnand_cfg {
159 u64 device_size;
160 unsigned int block_size;
161 unsigned int page_size;
162 unsigned int spare_area_size;
163 unsigned int device_width;
164 unsigned int col_adr_bytes;
165 unsigned int blk_adr_bytes;
166 unsigned int ful_adr_bytes;
167 unsigned int sector_size_1k;
168 unsigned int ecc_level;
169 /* use for low-power standby/resume only */
170 u32 acc_control;
171 u32 config;
172 u32 config_ext;
173 u32 timing_1;
174 u32 timing_2;
175 };
176
177 struct brcmnand_host {
178 struct list_head node;
179 struct device_node *of_node;
180
181 struct nand_chip chip;
182 struct mtd_info mtd;
183 struct platform_device *pdev;
184 int cs;
185
186 unsigned int last_cmd;
187 unsigned int last_byte;
188 u64 last_addr;
189 struct brcmnand_cfg hwcfg;
190 struct brcmnand_controller *ctrl;
191 };
192
193 enum brcmnand_reg {
194 BRCMNAND_CMD_START = 0,
195 BRCMNAND_CMD_EXT_ADDRESS,
196 BRCMNAND_CMD_ADDRESS,
197 BRCMNAND_INTFC_STATUS,
198 BRCMNAND_CS_SELECT,
199 BRCMNAND_CS_XOR,
200 BRCMNAND_LL_OP,
201 BRCMNAND_CS0_BASE,
202 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
203 BRCMNAND_CORR_THRESHOLD,
204 BRCMNAND_CORR_THRESHOLD_EXT,
205 BRCMNAND_UNCORR_COUNT,
206 BRCMNAND_CORR_COUNT,
207 BRCMNAND_CORR_EXT_ADDR,
208 BRCMNAND_CORR_ADDR,
209 BRCMNAND_UNCORR_EXT_ADDR,
210 BRCMNAND_UNCORR_ADDR,
211 BRCMNAND_SEMAPHORE,
212 BRCMNAND_ID,
213 BRCMNAND_ID_EXT,
214 BRCMNAND_LL_RDATA,
215 BRCMNAND_OOB_READ_BASE,
216 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
217 BRCMNAND_OOB_WRITE_BASE,
218 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
219 BRCMNAND_FC_BASE,
220 };
221
222 /* BRCMNAND v4.0 */
223 static const u16 brcmnand_regs_v40[] = {
224 [BRCMNAND_CMD_START] = 0x04,
225 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
226 [BRCMNAND_CMD_ADDRESS] = 0x0c,
227 [BRCMNAND_INTFC_STATUS] = 0x6c,
228 [BRCMNAND_CS_SELECT] = 0x14,
229 [BRCMNAND_CS_XOR] = 0x18,
230 [BRCMNAND_LL_OP] = 0x178,
231 [BRCMNAND_CS0_BASE] = 0x40,
232 [BRCMNAND_CS1_BASE] = 0xd0,
233 [BRCMNAND_CORR_THRESHOLD] = 0x84,
234 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
235 [BRCMNAND_UNCORR_COUNT] = 0,
236 [BRCMNAND_CORR_COUNT] = 0,
237 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
238 [BRCMNAND_CORR_ADDR] = 0x74,
239 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
240 [BRCMNAND_UNCORR_ADDR] = 0x7c,
241 [BRCMNAND_SEMAPHORE] = 0x58,
242 [BRCMNAND_ID] = 0x60,
243 [BRCMNAND_ID_EXT] = 0x64,
244 [BRCMNAND_LL_RDATA] = 0x17c,
245 [BRCMNAND_OOB_READ_BASE] = 0x20,
246 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
247 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
248 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
249 [BRCMNAND_FC_BASE] = 0x200,
250 };
251
252 /* BRCMNAND v5.0 */
253 static const u16 brcmnand_regs_v50[] = {
254 [BRCMNAND_CMD_START] = 0x04,
255 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
256 [BRCMNAND_CMD_ADDRESS] = 0x0c,
257 [BRCMNAND_INTFC_STATUS] = 0x6c,
258 [BRCMNAND_CS_SELECT] = 0x14,
259 [BRCMNAND_CS_XOR] = 0x18,
260 [BRCMNAND_LL_OP] = 0x178,
261 [BRCMNAND_CS0_BASE] = 0x40,
262 [BRCMNAND_CS1_BASE] = 0xd0,
263 [BRCMNAND_CORR_THRESHOLD] = 0x84,
264 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
265 [BRCMNAND_UNCORR_COUNT] = 0,
266 [BRCMNAND_CORR_COUNT] = 0,
267 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
268 [BRCMNAND_CORR_ADDR] = 0x74,
269 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
270 [BRCMNAND_UNCORR_ADDR] = 0x7c,
271 [BRCMNAND_SEMAPHORE] = 0x58,
272 [BRCMNAND_ID] = 0x60,
273 [BRCMNAND_ID_EXT] = 0x64,
274 [BRCMNAND_LL_RDATA] = 0x17c,
275 [BRCMNAND_OOB_READ_BASE] = 0x20,
276 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
277 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
278 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
279 [BRCMNAND_FC_BASE] = 0x200,
280 };
281
282 /* BRCMNAND v6.0 - v7.1 */
283 static const u16 brcmnand_regs_v60[] = {
284 [BRCMNAND_CMD_START] = 0x04,
285 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
286 [BRCMNAND_CMD_ADDRESS] = 0x0c,
287 [BRCMNAND_INTFC_STATUS] = 0x14,
288 [BRCMNAND_CS_SELECT] = 0x18,
289 [BRCMNAND_CS_XOR] = 0x1c,
290 [BRCMNAND_LL_OP] = 0x20,
291 [BRCMNAND_CS0_BASE] = 0x50,
292 [BRCMNAND_CS1_BASE] = 0,
293 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
294 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
295 [BRCMNAND_UNCORR_COUNT] = 0xfc,
296 [BRCMNAND_CORR_COUNT] = 0x100,
297 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
298 [BRCMNAND_CORR_ADDR] = 0x110,
299 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
300 [BRCMNAND_UNCORR_ADDR] = 0x118,
301 [BRCMNAND_SEMAPHORE] = 0x150,
302 [BRCMNAND_ID] = 0x194,
303 [BRCMNAND_ID_EXT] = 0x198,
304 [BRCMNAND_LL_RDATA] = 0x19c,
305 [BRCMNAND_OOB_READ_BASE] = 0x200,
306 [BRCMNAND_OOB_READ_10_BASE] = 0,
307 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
308 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
309 [BRCMNAND_FC_BASE] = 0x400,
310 };
311
312 /* BRCMNAND v7.1 */
313 static const u16 brcmnand_regs_v71[] = {
314 [BRCMNAND_CMD_START] = 0x04,
315 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
316 [BRCMNAND_CMD_ADDRESS] = 0x0c,
317 [BRCMNAND_INTFC_STATUS] = 0x14,
318 [BRCMNAND_CS_SELECT] = 0x18,
319 [BRCMNAND_CS_XOR] = 0x1c,
320 [BRCMNAND_LL_OP] = 0x20,
321 [BRCMNAND_CS0_BASE] = 0x50,
322 [BRCMNAND_CS1_BASE] = 0,
323 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
324 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
325 [BRCMNAND_UNCORR_COUNT] = 0xfc,
326 [BRCMNAND_CORR_COUNT] = 0x100,
327 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
328 [BRCMNAND_CORR_ADDR] = 0x110,
329 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
330 [BRCMNAND_UNCORR_ADDR] = 0x118,
331 [BRCMNAND_SEMAPHORE] = 0x150,
332 [BRCMNAND_ID] = 0x194,
333 [BRCMNAND_ID_EXT] = 0x198,
334 [BRCMNAND_LL_RDATA] = 0x19c,
335 [BRCMNAND_OOB_READ_BASE] = 0x200,
336 [BRCMNAND_OOB_READ_10_BASE] = 0,
337 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
338 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
339 [BRCMNAND_FC_BASE] = 0x400,
340 };
341
342 enum brcmnand_cs_reg {
343 BRCMNAND_CS_CFG_EXT = 0,
344 BRCMNAND_CS_CFG,
345 BRCMNAND_CS_ACC_CONTROL,
346 BRCMNAND_CS_TIMING1,
347 BRCMNAND_CS_TIMING2,
348 };
349
350 /* Per chip-select offsets for v7.1 */
351 static const u8 brcmnand_cs_offsets_v71[] = {
352 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
353 [BRCMNAND_CS_CFG_EXT] = 0x04,
354 [BRCMNAND_CS_CFG] = 0x08,
355 [BRCMNAND_CS_TIMING1] = 0x0c,
356 [BRCMNAND_CS_TIMING2] = 0x10,
357 };
358
359 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
360 static const u8 brcmnand_cs_offsets[] = {
361 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
362 [BRCMNAND_CS_CFG_EXT] = 0x04,
363 [BRCMNAND_CS_CFG] = 0x04,
364 [BRCMNAND_CS_TIMING1] = 0x08,
365 [BRCMNAND_CS_TIMING2] = 0x0c,
366 };
367
368 /* Per chip-select offset for <= v5.0 on CS0 only */
369 static const u8 brcmnand_cs_offsets_cs0[] = {
370 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
371 [BRCMNAND_CS_CFG_EXT] = 0x08,
372 [BRCMNAND_CS_CFG] = 0x08,
373 [BRCMNAND_CS_TIMING1] = 0x10,
374 [BRCMNAND_CS_TIMING2] = 0x14,
375 };
376
377 /*
378 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
379 * one config register, but once the bitfields overflowed, newer controllers
380 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
381 */
382 enum {
383 CFG_BLK_ADR_BYTES_SHIFT = 8,
384 CFG_COL_ADR_BYTES_SHIFT = 12,
385 CFG_FUL_ADR_BYTES_SHIFT = 16,
386 CFG_BUS_WIDTH_SHIFT = 23,
387 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
388 CFG_DEVICE_SIZE_SHIFT = 24,
389
390 /* Only for pre-v7.1 (with no CFG_EXT register) */
391 CFG_PAGE_SIZE_SHIFT = 20,
392 CFG_BLK_SIZE_SHIFT = 28,
393
394 /* Only for v7.1+ (with CFG_EXT register) */
395 CFG_EXT_PAGE_SIZE_SHIFT = 0,
396 CFG_EXT_BLK_SIZE_SHIFT = 4,
397 };
398
399 /* BRCMNAND_INTFC_STATUS */
400 enum {
401 INTFC_FLASH_STATUS = GENMASK(7, 0),
402
403 INTFC_ERASED = BIT(27),
404 INTFC_OOB_VALID = BIT(28),
405 INTFC_CACHE_VALID = BIT(29),
406 INTFC_FLASH_READY = BIT(30),
407 INTFC_CTLR_READY = BIT(31),
408 };
409
nand_readreg(struct brcmnand_controller * ctrl,u32 offs)410 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
411 {
412 return brcmnand_readl(ctrl->nand_base + offs);
413 }
414
nand_writereg(struct brcmnand_controller * ctrl,u32 offs,u32 val)415 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
416 u32 val)
417 {
418 brcmnand_writel(val, ctrl->nand_base + offs);
419 }
420
brcmnand_revision_init(struct brcmnand_controller * ctrl)421 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
422 {
423 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
424 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
425 static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
426
427 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
428
429 /* Only support v4.0+? */
430 if (ctrl->nand_version < 0x0400) {
431 dev_err(ctrl->dev, "version %#x not supported\n",
432 ctrl->nand_version);
433 return -ENODEV;
434 }
435
436 /* Register offsets */
437 if (ctrl->nand_version >= 0x0701)
438 ctrl->reg_offsets = brcmnand_regs_v71;
439 else if (ctrl->nand_version >= 0x0600)
440 ctrl->reg_offsets = brcmnand_regs_v60;
441 else if (ctrl->nand_version >= 0x0500)
442 ctrl->reg_offsets = brcmnand_regs_v50;
443 else if (ctrl->nand_version >= 0x0400)
444 ctrl->reg_offsets = brcmnand_regs_v40;
445
446 /* Chip-select stride */
447 if (ctrl->nand_version >= 0x0701)
448 ctrl->reg_spacing = 0x14;
449 else
450 ctrl->reg_spacing = 0x10;
451
452 /* Per chip-select registers */
453 if (ctrl->nand_version >= 0x0701) {
454 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
455 } else {
456 ctrl->cs_offsets = brcmnand_cs_offsets;
457
458 /* v5.0 and earlier has a different CS0 offset layout */
459 if (ctrl->nand_version <= 0x0500)
460 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
461 }
462
463 /* Page / block sizes */
464 if (ctrl->nand_version >= 0x0701) {
465 /* >= v7.1 use nice power-of-2 values! */
466 ctrl->max_page_size = 16 * 1024;
467 ctrl->max_block_size = 2 * 1024 * 1024;
468 } else {
469 ctrl->page_sizes = page_sizes;
470 if (ctrl->nand_version >= 0x0600)
471 ctrl->block_sizes = block_sizes_v6;
472 else
473 ctrl->block_sizes = block_sizes_v4;
474
475 if (ctrl->nand_version < 0x0400) {
476 ctrl->max_page_size = 4096;
477 ctrl->max_block_size = 512 * 1024;
478 }
479 }
480
481 /* Maximum spare area sector size (per 512B) */
482 if (ctrl->nand_version >= 0x0600)
483 ctrl->max_oob = 64;
484 else if (ctrl->nand_version >= 0x0500)
485 ctrl->max_oob = 32;
486 else
487 ctrl->max_oob = 16;
488
489 /* v6.0 and newer (except v6.1) have prefetch support */
490 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
491 ctrl->features |= BRCMNAND_HAS_PREFETCH;
492
493 /*
494 * v6.x has cache mode, but it's implemented differently. Ignore it for
495 * now.
496 */
497 if (ctrl->nand_version >= 0x0700)
498 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
499
500 if (ctrl->nand_version >= 0x0500)
501 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
502
503 if (ctrl->nand_version >= 0x0700)
504 ctrl->features |= BRCMNAND_HAS_WP;
505 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
506 ctrl->features |= BRCMNAND_HAS_WP;
507
508 return 0;
509 }
510
brcmnand_read_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg)511 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
512 enum brcmnand_reg reg)
513 {
514 u16 offs = ctrl->reg_offsets[reg];
515
516 if (offs)
517 return nand_readreg(ctrl, offs);
518 else
519 return 0;
520 }
521
brcmnand_write_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 val)522 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
523 enum brcmnand_reg reg, u32 val)
524 {
525 u16 offs = ctrl->reg_offsets[reg];
526
527 if (offs)
528 nand_writereg(ctrl, offs, val);
529 }
530
brcmnand_rmw_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 mask,unsigned int shift,u32 val)531 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
532 enum brcmnand_reg reg, u32 mask, unsigned
533 int shift, u32 val)
534 {
535 u32 tmp = brcmnand_read_reg(ctrl, reg);
536
537 tmp &= ~mask;
538 tmp |= val << shift;
539 brcmnand_write_reg(ctrl, reg, tmp);
540 }
541
brcmnand_read_fc(struct brcmnand_controller * ctrl,int word)542 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
543 {
544 return __raw_readl(ctrl->nand_fc + word * 4);
545 }
546
brcmnand_write_fc(struct brcmnand_controller * ctrl,int word,u32 val)547 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
548 int word, u32 val)
549 {
550 __raw_writel(val, ctrl->nand_fc + word * 4);
551 }
552
brcmnand_cs_offset(struct brcmnand_controller * ctrl,int cs,enum brcmnand_cs_reg reg)553 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
554 enum brcmnand_cs_reg reg)
555 {
556 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
557 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
558 u8 cs_offs;
559
560 if (cs == 0 && ctrl->cs0_offsets)
561 cs_offs = ctrl->cs0_offsets[reg];
562 else
563 cs_offs = ctrl->cs_offsets[reg];
564
565 if (cs && offs_cs1)
566 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
567
568 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
569 }
570
brcmnand_count_corrected(struct brcmnand_controller * ctrl)571 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
572 {
573 if (ctrl->nand_version < 0x0600)
574 return 1;
575 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
576 }
577
brcmnand_wr_corr_thresh(struct brcmnand_host * host,u8 val)578 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
579 {
580 struct brcmnand_controller *ctrl = host->ctrl;
581 unsigned int shift = 0, bits;
582 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
583 int cs = host->cs;
584
585 if (ctrl->nand_version >= 0x0600)
586 bits = 6;
587 else if (ctrl->nand_version >= 0x0500)
588 bits = 5;
589 else
590 bits = 4;
591
592 if (ctrl->nand_version >= 0x0600) {
593 if (cs >= 5)
594 reg = BRCMNAND_CORR_THRESHOLD_EXT;
595 shift = (cs % 5) * bits;
596 }
597 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
598 }
599
brcmnand_cmd_shift(struct brcmnand_controller * ctrl)600 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
601 {
602 if (ctrl->nand_version < 0x0700)
603 return 24;
604 return 0;
605 }
606
607 /***********************************************************************
608 * NAND ACC CONTROL bitfield
609 *
610 * Some bits have remained constant throughout hardware revision, while
611 * others have shifted around.
612 ***********************************************************************/
613
614 /* Constant for all versions (where supported) */
615 enum {
616 /* See BRCMNAND_HAS_CACHE_MODE */
617 ACC_CONTROL_CACHE_MODE = BIT(22),
618
619 /* See BRCMNAND_HAS_PREFETCH */
620 ACC_CONTROL_PREFETCH = BIT(23),
621
622 ACC_CONTROL_PAGE_HIT = BIT(24),
623 ACC_CONTROL_WR_PREEMPT = BIT(25),
624 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
625 ACC_CONTROL_RD_ERASED = BIT(27),
626 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
627 ACC_CONTROL_WR_ECC = BIT(30),
628 ACC_CONTROL_RD_ECC = BIT(31),
629 };
630
brcmnand_spare_area_mask(struct brcmnand_controller * ctrl)631 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
632 {
633 if (ctrl->nand_version >= 0x0600)
634 return GENMASK(6, 0);
635 else
636 return GENMASK(5, 0);
637 }
638
639 #define NAND_ACC_CONTROL_ECC_SHIFT 16
640
brcmnand_ecc_level_mask(struct brcmnand_controller * ctrl)641 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
642 {
643 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
644
645 return mask << NAND_ACC_CONTROL_ECC_SHIFT;
646 }
647
brcmnand_set_ecc_enabled(struct brcmnand_host * host,int en)648 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
649 {
650 struct brcmnand_controller *ctrl = host->ctrl;
651 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
652 u32 acc_control = nand_readreg(ctrl, offs);
653 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
654
655 if (en) {
656 acc_control |= ecc_flags; /* enable RD/WR ECC */
657 acc_control |= host->hwcfg.ecc_level
658 << NAND_ACC_CONTROL_ECC_SHIFT;
659 } else {
660 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
661 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
662 }
663
664 nand_writereg(ctrl, offs, acc_control);
665 }
666
brcmnand_sector_1k_shift(struct brcmnand_controller * ctrl)667 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
668 {
669 if (ctrl->nand_version >= 0x0600)
670 return 7;
671 else if (ctrl->nand_version >= 0x0500)
672 return 6;
673 else
674 return -1;
675 }
676
brcmnand_get_sector_size_1k(struct brcmnand_host * host)677 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
678 {
679 struct brcmnand_controller *ctrl = host->ctrl;
680 int shift = brcmnand_sector_1k_shift(ctrl);
681 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
682 BRCMNAND_CS_ACC_CONTROL);
683
684 if (shift < 0)
685 return 0;
686
687 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
688 }
689
brcmnand_set_sector_size_1k(struct brcmnand_host * host,int val)690 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
691 {
692 struct brcmnand_controller *ctrl = host->ctrl;
693 int shift = brcmnand_sector_1k_shift(ctrl);
694 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
695 BRCMNAND_CS_ACC_CONTROL);
696 u32 tmp;
697
698 if (shift < 0)
699 return;
700
701 tmp = nand_readreg(ctrl, acc_control_offs);
702 tmp &= ~(1 << shift);
703 tmp |= (!!val) << shift;
704 nand_writereg(ctrl, acc_control_offs, tmp);
705 }
706
707 /***********************************************************************
708 * CS_NAND_SELECT
709 ***********************************************************************/
710
711 enum {
712 CS_SELECT_NAND_WP = BIT(29),
713 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
714 };
715
brcmnand_set_wp(struct brcmnand_controller * ctrl,bool en)716 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
717 {
718 u32 val = en ? CS_SELECT_NAND_WP : 0;
719
720 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
721 }
722
723 /***********************************************************************
724 * Flash DMA
725 ***********************************************************************/
726
727 enum flash_dma_reg {
728 FLASH_DMA_REVISION = 0x00,
729 FLASH_DMA_FIRST_DESC = 0x04,
730 FLASH_DMA_FIRST_DESC_EXT = 0x08,
731 FLASH_DMA_CTRL = 0x0c,
732 FLASH_DMA_MODE = 0x10,
733 FLASH_DMA_STATUS = 0x14,
734 FLASH_DMA_INTERRUPT_DESC = 0x18,
735 FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c,
736 FLASH_DMA_ERROR_STATUS = 0x20,
737 FLASH_DMA_CURRENT_DESC = 0x24,
738 FLASH_DMA_CURRENT_DESC_EXT = 0x28,
739 };
740
has_flash_dma(struct brcmnand_controller * ctrl)741 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
742 {
743 return ctrl->flash_dma_base;
744 }
745
flash_dma_buf_ok(const void * buf)746 static inline bool flash_dma_buf_ok(const void *buf)
747 {
748 return buf && !is_vmalloc_addr(buf) &&
749 likely(IS_ALIGNED((uintptr_t)buf, 4));
750 }
751
flash_dma_writel(struct brcmnand_controller * ctrl,u8 offs,u32 val)752 static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
753 u32 val)
754 {
755 brcmnand_writel(val, ctrl->flash_dma_base + offs);
756 }
757
flash_dma_readl(struct brcmnand_controller * ctrl,u8 offs)758 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
759 {
760 return brcmnand_readl(ctrl->flash_dma_base + offs);
761 }
762
763 /* Low-level operation types: command, address, write, or read */
764 enum brcmnand_llop_type {
765 LL_OP_CMD,
766 LL_OP_ADDR,
767 LL_OP_WR,
768 LL_OP_RD,
769 };
770
771 /***********************************************************************
772 * Internal support functions
773 ***********************************************************************/
774
is_hamming_ecc(struct brcmnand_cfg * cfg)775 static inline bool is_hamming_ecc(struct brcmnand_cfg *cfg)
776 {
777 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
778 cfg->ecc_level == 15;
779 }
780
781 /*
782 * Returns a nand_ecclayout strucutre for the given layout/configuration.
783 * Returns NULL on failure.
784 */
brcmnand_create_layout(int ecc_level,struct brcmnand_host * host)785 static struct nand_ecclayout *brcmnand_create_layout(int ecc_level,
786 struct brcmnand_host *host)
787 {
788 struct brcmnand_cfg *cfg = &host->hwcfg;
789 int i, j;
790 struct nand_ecclayout *layout;
791 int req;
792 int sectors;
793 int sas;
794 int idx1, idx2;
795
796 layout = devm_kzalloc(&host->pdev->dev, sizeof(*layout), GFP_KERNEL);
797 if (!layout)
798 return NULL;
799
800 sectors = cfg->page_size / (512 << cfg->sector_size_1k);
801 sas = cfg->spare_area_size << cfg->sector_size_1k;
802
803 /* Hamming */
804 if (is_hamming_ecc(cfg)) {
805 for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
806 /* First sector of each page may have BBI */
807 if (i == 0) {
808 layout->oobfree[idx2].offset = i * sas + 1;
809 /* Small-page NAND use byte 6 for BBI */
810 if (cfg->page_size == 512)
811 layout->oobfree[idx2].offset--;
812 layout->oobfree[idx2].length = 5;
813 } else {
814 layout->oobfree[idx2].offset = i * sas;
815 layout->oobfree[idx2].length = 6;
816 }
817 idx2++;
818 layout->eccpos[idx1++] = i * sas + 6;
819 layout->eccpos[idx1++] = i * sas + 7;
820 layout->eccpos[idx1++] = i * sas + 8;
821 layout->oobfree[idx2].offset = i * sas + 9;
822 layout->oobfree[idx2].length = 7;
823 idx2++;
824 /* Leave zero-terminated entry for OOBFREE */
825 if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
826 idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
827 break;
828 }
829 goto out;
830 }
831
832 /*
833 * CONTROLLER_VERSION:
834 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
835 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
836 * But we will just be conservative.
837 */
838 req = DIV_ROUND_UP(ecc_level * 14, 8);
839 if (req >= sas) {
840 dev_err(&host->pdev->dev,
841 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
842 req, sas);
843 return NULL;
844 }
845
846 layout->eccbytes = req * sectors;
847 for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
848 for (j = sas - req; j < sas && idx1 <
849 MTD_MAX_ECCPOS_ENTRIES_LARGE; j++, idx1++)
850 layout->eccpos[idx1] = i * sas + j;
851
852 /* First sector of each page may have BBI */
853 if (i == 0) {
854 if (cfg->page_size == 512 && (sas - req >= 6)) {
855 /* Small-page NAND use byte 6 for BBI */
856 layout->oobfree[idx2].offset = 0;
857 layout->oobfree[idx2].length = 5;
858 idx2++;
859 if (sas - req > 6) {
860 layout->oobfree[idx2].offset = 6;
861 layout->oobfree[idx2].length =
862 sas - req - 6;
863 idx2++;
864 }
865 } else if (sas > req + 1) {
866 layout->oobfree[idx2].offset = i * sas + 1;
867 layout->oobfree[idx2].length = sas - req - 1;
868 idx2++;
869 }
870 } else if (sas > req) {
871 layout->oobfree[idx2].offset = i * sas;
872 layout->oobfree[idx2].length = sas - req;
873 idx2++;
874 }
875 /* Leave zero-terminated entry for OOBFREE */
876 if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
877 idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
878 break;
879 }
880 out:
881 /* Sum available OOB */
882 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE; i++)
883 layout->oobavail += layout->oobfree[i].length;
884 return layout;
885 }
886
brcmstb_choose_ecc_layout(struct brcmnand_host * host)887 static struct nand_ecclayout *brcmstb_choose_ecc_layout(
888 struct brcmnand_host *host)
889 {
890 struct nand_ecclayout *layout;
891 struct brcmnand_cfg *p = &host->hwcfg;
892 unsigned int ecc_level = p->ecc_level;
893
894 if (p->sector_size_1k)
895 ecc_level <<= 1;
896
897 layout = brcmnand_create_layout(ecc_level, host);
898 if (!layout) {
899 dev_err(&host->pdev->dev,
900 "no proper ecc_layout for this NAND cfg\n");
901 return NULL;
902 }
903
904 return layout;
905 }
906
brcmnand_wp(struct mtd_info * mtd,int wp)907 static void brcmnand_wp(struct mtd_info *mtd, int wp)
908 {
909 struct nand_chip *chip = mtd->priv;
910 struct brcmnand_host *host = chip->priv;
911 struct brcmnand_controller *ctrl = host->ctrl;
912
913 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
914 static int old_wp = -1;
915
916 if (old_wp != wp) {
917 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
918 old_wp = wp;
919 }
920 brcmnand_set_wp(ctrl, wp);
921 }
922 }
923
924 /* Helper functions for reading and writing OOB registers */
oob_reg_read(struct brcmnand_controller * ctrl,u32 offs)925 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
926 {
927 u16 offset0, offset10, reg_offs;
928
929 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
930 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
931
932 if (offs >= ctrl->max_oob)
933 return 0x77;
934
935 if (offs >= 16 && offset10)
936 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
937 else
938 reg_offs = offset0 + (offs & ~0x03);
939
940 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
941 }
942
oob_reg_write(struct brcmnand_controller * ctrl,u32 offs,u32 data)943 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
944 u32 data)
945 {
946 u16 offset0, offset10, reg_offs;
947
948 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
949 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
950
951 if (offs >= ctrl->max_oob)
952 return;
953
954 if (offs >= 16 && offset10)
955 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
956 else
957 reg_offs = offset0 + (offs & ~0x03);
958
959 nand_writereg(ctrl, reg_offs, data);
960 }
961
962 /*
963 * read_oob_from_regs - read data from OOB registers
964 * @ctrl: NAND controller
965 * @i: sub-page sector index
966 * @oob: buffer to read to
967 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
968 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
969 */
read_oob_from_regs(struct brcmnand_controller * ctrl,int i,u8 * oob,int sas,int sector_1k)970 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
971 int sas, int sector_1k)
972 {
973 int tbytes = sas << sector_1k;
974 int j;
975
976 /* Adjust OOB values for 1K sector size */
977 if (sector_1k && (i & 0x01))
978 tbytes = max(0, tbytes - (int)ctrl->max_oob);
979 tbytes = min_t(int, tbytes, ctrl->max_oob);
980
981 for (j = 0; j < tbytes; j++)
982 oob[j] = oob_reg_read(ctrl, j);
983 return tbytes;
984 }
985
986 /*
987 * write_oob_to_regs - write data to OOB registers
988 * @i: sub-page sector index
989 * @oob: buffer to write from
990 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
991 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
992 */
write_oob_to_regs(struct brcmnand_controller * ctrl,int i,const u8 * oob,int sas,int sector_1k)993 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
994 const u8 *oob, int sas, int sector_1k)
995 {
996 int tbytes = sas << sector_1k;
997 int j;
998
999 /* Adjust OOB values for 1K sector size */
1000 if (sector_1k && (i & 0x01))
1001 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1002 tbytes = min_t(int, tbytes, ctrl->max_oob);
1003
1004 for (j = 0; j < tbytes; j += 4)
1005 oob_reg_write(ctrl, j,
1006 (oob[j + 0] << 24) |
1007 (oob[j + 1] << 16) |
1008 (oob[j + 2] << 8) |
1009 (oob[j + 3] << 0));
1010 return tbytes;
1011 }
1012
brcmnand_ctlrdy_irq(int irq,void * data)1013 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1014 {
1015 struct brcmnand_controller *ctrl = data;
1016
1017 /* Discard all NAND_CTLRDY interrupts during DMA */
1018 if (ctrl->dma_pending)
1019 return IRQ_HANDLED;
1020
1021 complete(&ctrl->done);
1022 return IRQ_HANDLED;
1023 }
1024
1025 /* Handle SoC-specific interrupt hardware */
brcmnand_irq(int irq,void * data)1026 static irqreturn_t brcmnand_irq(int irq, void *data)
1027 {
1028 struct brcmnand_controller *ctrl = data;
1029
1030 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1031 return brcmnand_ctlrdy_irq(irq, data);
1032
1033 return IRQ_NONE;
1034 }
1035
brcmnand_dma_irq(int irq,void * data)1036 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1037 {
1038 struct brcmnand_controller *ctrl = data;
1039
1040 complete(&ctrl->dma_done);
1041
1042 return IRQ_HANDLED;
1043 }
1044
brcmnand_send_cmd(struct brcmnand_host * host,int cmd)1045 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1046 {
1047 struct brcmnand_controller *ctrl = host->ctrl;
1048 u32 intfc;
1049
1050 dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
1051 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
1052 BUG_ON(ctrl->cmd_pending != 0);
1053 ctrl->cmd_pending = cmd;
1054
1055 intfc = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1056 BUG_ON(!(intfc & INTFC_CTLR_READY));
1057
1058 mb(); /* flush previous writes */
1059 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1060 cmd << brcmnand_cmd_shift(ctrl));
1061 }
1062
1063 /***********************************************************************
1064 * NAND MTD API: read/program/erase
1065 ***********************************************************************/
1066
brcmnand_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)1067 static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
1068 unsigned int ctrl)
1069 {
1070 /* intentionally left blank */
1071 }
1072
brcmnand_waitfunc(struct mtd_info * mtd,struct nand_chip * this)1073 static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1074 {
1075 struct nand_chip *chip = mtd->priv;
1076 struct brcmnand_host *host = chip->priv;
1077 struct brcmnand_controller *ctrl = host->ctrl;
1078 unsigned long timeo = msecs_to_jiffies(100);
1079
1080 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1081 if (ctrl->cmd_pending &&
1082 wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
1083 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1084 >> brcmnand_cmd_shift(ctrl);
1085
1086 dev_err_ratelimited(ctrl->dev,
1087 "timeout waiting for command %#02x\n", cmd);
1088 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1089 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1090 }
1091 ctrl->cmd_pending = 0;
1092 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1093 INTFC_FLASH_STATUS;
1094 }
1095
1096 enum {
1097 LLOP_RE = BIT(16),
1098 LLOP_WE = BIT(17),
1099 LLOP_ALE = BIT(18),
1100 LLOP_CLE = BIT(19),
1101 LLOP_RETURN_IDLE = BIT(31),
1102
1103 LLOP_DATA_MASK = GENMASK(15, 0),
1104 };
1105
brcmnand_low_level_op(struct brcmnand_host * host,enum brcmnand_llop_type type,u32 data,bool last_op)1106 static int brcmnand_low_level_op(struct brcmnand_host *host,
1107 enum brcmnand_llop_type type, u32 data,
1108 bool last_op)
1109 {
1110 struct mtd_info *mtd = &host->mtd;
1111 struct nand_chip *chip = &host->chip;
1112 struct brcmnand_controller *ctrl = host->ctrl;
1113 u32 tmp;
1114
1115 tmp = data & LLOP_DATA_MASK;
1116 switch (type) {
1117 case LL_OP_CMD:
1118 tmp |= LLOP_WE | LLOP_CLE;
1119 break;
1120 case LL_OP_ADDR:
1121 /* WE | ALE */
1122 tmp |= LLOP_WE | LLOP_ALE;
1123 break;
1124 case LL_OP_WR:
1125 /* WE */
1126 tmp |= LLOP_WE;
1127 break;
1128 case LL_OP_RD:
1129 /* RE */
1130 tmp |= LLOP_RE;
1131 break;
1132 }
1133 if (last_op)
1134 /* RETURN_IDLE */
1135 tmp |= LLOP_RETURN_IDLE;
1136
1137 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1138
1139 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1140 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1141
1142 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1143 return brcmnand_waitfunc(mtd, chip);
1144 }
1145
brcmnand_cmdfunc(struct mtd_info * mtd,unsigned command,int column,int page_addr)1146 static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
1147 int column, int page_addr)
1148 {
1149 struct nand_chip *chip = mtd->priv;
1150 struct brcmnand_host *host = chip->priv;
1151 struct brcmnand_controller *ctrl = host->ctrl;
1152 u64 addr = (u64)page_addr << chip->page_shift;
1153 int native_cmd = 0;
1154
1155 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1156 command == NAND_CMD_RNDOUT)
1157 addr = (u64)column;
1158 /* Avoid propagating a negative, don't-care address */
1159 else if (page_addr < 0)
1160 addr = 0;
1161
1162 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1163 (unsigned long long)addr);
1164
1165 host->last_cmd = command;
1166 host->last_byte = 0;
1167 host->last_addr = addr;
1168
1169 switch (command) {
1170 case NAND_CMD_RESET:
1171 native_cmd = CMD_FLASH_RESET;
1172 break;
1173 case NAND_CMD_STATUS:
1174 native_cmd = CMD_STATUS_READ;
1175 break;
1176 case NAND_CMD_READID:
1177 native_cmd = CMD_DEVICE_ID_READ;
1178 break;
1179 case NAND_CMD_READOOB:
1180 native_cmd = CMD_SPARE_AREA_READ;
1181 break;
1182 case NAND_CMD_ERASE1:
1183 native_cmd = CMD_BLOCK_ERASE;
1184 brcmnand_wp(mtd, 0);
1185 break;
1186 case NAND_CMD_PARAM:
1187 native_cmd = CMD_PARAMETER_READ;
1188 break;
1189 case NAND_CMD_SET_FEATURES:
1190 case NAND_CMD_GET_FEATURES:
1191 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1192 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1193 break;
1194 case NAND_CMD_RNDOUT:
1195 native_cmd = CMD_PARAMETER_CHANGE_COL;
1196 addr &= ~((u64)(FC_BYTES - 1));
1197 /*
1198 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1199 * NB: hwcfg.sector_size_1k may not be initialized yet
1200 */
1201 if (brcmnand_get_sector_size_1k(host)) {
1202 host->hwcfg.sector_size_1k =
1203 brcmnand_get_sector_size_1k(host);
1204 brcmnand_set_sector_size_1k(host, 0);
1205 }
1206 break;
1207 }
1208
1209 if (!native_cmd)
1210 return;
1211
1212 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1213 (host->cs << 16) | ((addr >> 32) & 0xffff));
1214 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1215 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
1216 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1217
1218 brcmnand_send_cmd(host, native_cmd);
1219 brcmnand_waitfunc(mtd, chip);
1220
1221 if (native_cmd == CMD_PARAMETER_READ ||
1222 native_cmd == CMD_PARAMETER_CHANGE_COL) {
1223 int i;
1224
1225 brcmnand_soc_data_bus_prepare(ctrl->soc);
1226
1227 /*
1228 * Must cache the FLASH_CACHE now, since changes in
1229 * SECTOR_SIZE_1K may invalidate it
1230 */
1231 for (i = 0; i < FC_WORDS; i++)
1232 ctrl->flash_cache[i] = brcmnand_read_fc(ctrl, i);
1233
1234 brcmnand_soc_data_bus_unprepare(ctrl->soc);
1235
1236 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1237 if (host->hwcfg.sector_size_1k)
1238 brcmnand_set_sector_size_1k(host,
1239 host->hwcfg.sector_size_1k);
1240 }
1241
1242 /* Re-enable protection is necessary only after erase */
1243 if (command == NAND_CMD_ERASE1)
1244 brcmnand_wp(mtd, 1);
1245 }
1246
brcmnand_read_byte(struct mtd_info * mtd)1247 static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
1248 {
1249 struct nand_chip *chip = mtd->priv;
1250 struct brcmnand_host *host = chip->priv;
1251 struct brcmnand_controller *ctrl = host->ctrl;
1252 uint8_t ret = 0;
1253 int addr, offs;
1254
1255 switch (host->last_cmd) {
1256 case NAND_CMD_READID:
1257 if (host->last_byte < 4)
1258 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1259 (24 - (host->last_byte << 3));
1260 else if (host->last_byte < 8)
1261 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1262 (56 - (host->last_byte << 3));
1263 break;
1264
1265 case NAND_CMD_READOOB:
1266 ret = oob_reg_read(ctrl, host->last_byte);
1267 break;
1268
1269 case NAND_CMD_STATUS:
1270 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1271 INTFC_FLASH_STATUS;
1272 if (wp_on) /* hide WP status */
1273 ret |= NAND_STATUS_WP;
1274 break;
1275
1276 case NAND_CMD_PARAM:
1277 case NAND_CMD_RNDOUT:
1278 addr = host->last_addr + host->last_byte;
1279 offs = addr & (FC_BYTES - 1);
1280
1281 /* At FC_BYTES boundary, switch to next column */
1282 if (host->last_byte > 0 && offs == 0)
1283 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, addr, -1);
1284
1285 ret = ctrl->flash_cache[offs >> 2] >>
1286 (24 - ((offs & 0x03) << 3));
1287 break;
1288 case NAND_CMD_GET_FEATURES:
1289 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1290 ret = 0;
1291 } else {
1292 bool last = host->last_byte ==
1293 ONFI_SUBFEATURE_PARAM_LEN - 1;
1294 brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1295 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1296 }
1297 }
1298
1299 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1300 host->last_byte++;
1301
1302 return ret;
1303 }
1304
brcmnand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)1305 static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1306 {
1307 int i;
1308
1309 for (i = 0; i < len; i++, buf++)
1310 *buf = brcmnand_read_byte(mtd);
1311 }
1312
brcmnand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)1313 static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1314 int len)
1315 {
1316 int i;
1317 struct nand_chip *chip = mtd->priv;
1318 struct brcmnand_host *host = chip->priv;
1319
1320 switch (host->last_cmd) {
1321 case NAND_CMD_SET_FEATURES:
1322 for (i = 0; i < len; i++)
1323 brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1324 (i + 1) == len);
1325 break;
1326 default:
1327 BUG();
1328 break;
1329 }
1330 }
1331
1332 /**
1333 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1334 * following ahead of time:
1335 * - Is this descriptor the beginning or end of a linked list?
1336 * - What is the (DMA) address of the next descriptor in the linked list?
1337 */
brcmnand_fill_dma_desc(struct brcmnand_host * host,struct brcm_nand_dma_desc * desc,u64 addr,dma_addr_t buf,u32 len,u8 dma_cmd,bool begin,bool end,dma_addr_t next_desc)1338 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1339 struct brcm_nand_dma_desc *desc, u64 addr,
1340 dma_addr_t buf, u32 len, u8 dma_cmd,
1341 bool begin, bool end,
1342 dma_addr_t next_desc)
1343 {
1344 memset(desc, 0, sizeof(*desc));
1345 /* Descriptors are written in native byte order (wordwise) */
1346 desc->next_desc = lower_32_bits(next_desc);
1347 desc->next_desc_ext = upper_32_bits(next_desc);
1348 desc->cmd_irq = (dma_cmd << 24) |
1349 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1350 (!!begin) | ((!!end) << 1); /* head, tail */
1351 #ifdef CONFIG_CPU_BIG_ENDIAN
1352 desc->cmd_irq |= 0x01 << 12;
1353 #endif
1354 desc->dram_addr = lower_32_bits(buf);
1355 desc->dram_addr_ext = upper_32_bits(buf);
1356 desc->tfr_len = len;
1357 desc->total_len = len;
1358 desc->flash_addr = lower_32_bits(addr);
1359 desc->flash_addr_ext = upper_32_bits(addr);
1360 desc->cs = host->cs;
1361 desc->status_valid = 0x01;
1362 return 0;
1363 }
1364
1365 /**
1366 * Kick the FLASH_DMA engine, with a given DMA descriptor
1367 */
brcmnand_dma_run(struct brcmnand_host * host,dma_addr_t desc)1368 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1369 {
1370 struct brcmnand_controller *ctrl = host->ctrl;
1371 unsigned long timeo = msecs_to_jiffies(100);
1372
1373 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1374 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1375 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1376 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1377
1378 /* Start FLASH_DMA engine */
1379 ctrl->dma_pending = true;
1380 mb(); /* flush previous writes */
1381 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1382
1383 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1384 dev_err(ctrl->dev,
1385 "timeout waiting for DMA; status %#x, error status %#x\n",
1386 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1387 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1388 }
1389 ctrl->dma_pending = false;
1390 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1391 }
1392
brcmnand_dma_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u32 len,u8 dma_cmd)1393 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1394 u32 len, u8 dma_cmd)
1395 {
1396 struct brcmnand_controller *ctrl = host->ctrl;
1397 dma_addr_t buf_pa;
1398 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1399
1400 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1401 if (dma_mapping_error(ctrl->dev, buf_pa)) {
1402 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1403 return -ENOMEM;
1404 }
1405
1406 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1407 dma_cmd, true, true, 0);
1408
1409 brcmnand_dma_run(host, ctrl->dma_pa);
1410
1411 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1412
1413 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1414 return -EBADMSG;
1415 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1416 return -EUCLEAN;
1417
1418 return 0;
1419 }
1420
1421 /*
1422 * Assumes proper CS is already set
1423 */
brcmnand_read_by_pio(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob,u64 * err_addr)1424 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1425 u64 addr, unsigned int trans, u32 *buf,
1426 u8 *oob, u64 *err_addr)
1427 {
1428 struct brcmnand_host *host = chip->priv;
1429 struct brcmnand_controller *ctrl = host->ctrl;
1430 int i, j, ret = 0;
1431
1432 /* Clear error addresses */
1433 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
1434 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
1435
1436 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1437 (host->cs << 16) | ((addr >> 32) & 0xffff));
1438 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1439
1440 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1441 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1442 lower_32_bits(addr));
1443 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1444 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1445 brcmnand_send_cmd(host, CMD_PAGE_READ);
1446 brcmnand_waitfunc(mtd, chip);
1447
1448 if (likely(buf)) {
1449 brcmnand_soc_data_bus_prepare(ctrl->soc);
1450
1451 for (j = 0; j < FC_WORDS; j++, buf++)
1452 *buf = brcmnand_read_fc(ctrl, j);
1453
1454 brcmnand_soc_data_bus_unprepare(ctrl->soc);
1455 }
1456
1457 if (oob)
1458 oob += read_oob_from_regs(ctrl, i, oob,
1459 mtd->oobsize / trans,
1460 host->hwcfg.sector_size_1k);
1461
1462 if (!ret) {
1463 *err_addr = brcmnand_read_reg(ctrl,
1464 BRCMNAND_UNCORR_ADDR) |
1465 ((u64)(brcmnand_read_reg(ctrl,
1466 BRCMNAND_UNCORR_EXT_ADDR)
1467 & 0xffff) << 32);
1468 if (*err_addr)
1469 ret = -EBADMSG;
1470 }
1471
1472 if (!ret) {
1473 *err_addr = brcmnand_read_reg(ctrl,
1474 BRCMNAND_CORR_ADDR) |
1475 ((u64)(brcmnand_read_reg(ctrl,
1476 BRCMNAND_CORR_EXT_ADDR)
1477 & 0xffff) << 32);
1478 if (*err_addr)
1479 ret = -EUCLEAN;
1480 }
1481 }
1482
1483 return ret;
1484 }
1485
brcmnand_read(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob)1486 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1487 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1488 {
1489 struct brcmnand_host *host = chip->priv;
1490 struct brcmnand_controller *ctrl = host->ctrl;
1491 u64 err_addr = 0;
1492 int err;
1493
1494 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1495
1496 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
1497
1498 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1499 err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1500 CMD_PAGE_READ);
1501 if (err) {
1502 if (mtd_is_bitflip_or_eccerr(err))
1503 err_addr = addr;
1504 else
1505 return -EIO;
1506 }
1507 } else {
1508 if (oob)
1509 memset(oob, 0x99, mtd->oobsize);
1510
1511 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1512 oob, &err_addr);
1513 }
1514
1515 if (mtd_is_eccerr(err)) {
1516 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1517 (unsigned long long)err_addr);
1518 mtd->ecc_stats.failed++;
1519 /* NAND layer expects zero on ECC errors */
1520 return 0;
1521 }
1522
1523 if (mtd_is_bitflip(err)) {
1524 unsigned int corrected = brcmnand_count_corrected(ctrl);
1525
1526 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1527 (unsigned long long)err_addr);
1528 mtd->ecc_stats.corrected += corrected;
1529 /* Always exceed the software-imposed threshold */
1530 return max(mtd->bitflip_threshold, corrected);
1531 }
1532
1533 return 0;
1534 }
1535
brcmnand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1536 static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1537 uint8_t *buf, int oob_required, int page)
1538 {
1539 struct brcmnand_host *host = chip->priv;
1540 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1541
1542 return brcmnand_read(mtd, chip, host->last_addr,
1543 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1544 }
1545
brcmnand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1546 static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1547 uint8_t *buf, int oob_required, int page)
1548 {
1549 struct brcmnand_host *host = chip->priv;
1550 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1551 int ret;
1552
1553 brcmnand_set_ecc_enabled(host, 0);
1554 ret = brcmnand_read(mtd, chip, host->last_addr,
1555 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1556 brcmnand_set_ecc_enabled(host, 1);
1557 return ret;
1558 }
1559
brcmnand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1560 static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1561 int page)
1562 {
1563 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1564 mtd->writesize >> FC_SHIFT,
1565 NULL, (u8 *)chip->oob_poi);
1566 }
1567
brcmnand_read_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1568 static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1569 int page)
1570 {
1571 struct brcmnand_host *host = chip->priv;
1572
1573 brcmnand_set_ecc_enabled(host, 0);
1574 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1575 mtd->writesize >> FC_SHIFT,
1576 NULL, (u8 *)chip->oob_poi);
1577 brcmnand_set_ecc_enabled(host, 1);
1578 return 0;
1579 }
1580
brcmnand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)1581 static int brcmnand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1582 uint32_t data_offs, uint32_t readlen,
1583 uint8_t *bufpoi, int page)
1584 {
1585 struct brcmnand_host *host = chip->priv;
1586
1587 return brcmnand_read(mtd, chip, host->last_addr + data_offs,
1588 readlen >> FC_SHIFT, (u32 *)bufpoi, NULL);
1589 }
1590
brcmnand_write(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,const u32 * buf,u8 * oob)1591 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1592 u64 addr, const u32 *buf, u8 *oob)
1593 {
1594 struct brcmnand_host *host = chip->priv;
1595 struct brcmnand_controller *ctrl = host->ctrl;
1596 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1597 int status, ret = 0;
1598
1599 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1600
1601 if (unlikely((unsigned long)buf & 0x03)) {
1602 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1603 buf = (u32 *)((unsigned long)buf & ~0x03);
1604 }
1605
1606 brcmnand_wp(mtd, 0);
1607
1608 for (i = 0; i < ctrl->max_oob; i += 4)
1609 oob_reg_write(ctrl, i, 0xffffffff);
1610
1611 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1612 if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1613 mtd->writesize, CMD_PROGRAM_PAGE))
1614 ret = -EIO;
1615 goto out;
1616 }
1617
1618 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1619 (host->cs << 16) | ((addr >> 32) & 0xffff));
1620 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1621
1622 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1623 /* full address MUST be set before populating FC */
1624 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1625 lower_32_bits(addr));
1626 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1627
1628 if (buf) {
1629 brcmnand_soc_data_bus_prepare(ctrl->soc);
1630
1631 for (j = 0; j < FC_WORDS; j++, buf++)
1632 brcmnand_write_fc(ctrl, j, *buf);
1633
1634 brcmnand_soc_data_bus_unprepare(ctrl->soc);
1635 } else if (oob) {
1636 for (j = 0; j < FC_WORDS; j++)
1637 brcmnand_write_fc(ctrl, j, 0xffffffff);
1638 }
1639
1640 if (oob) {
1641 oob += write_oob_to_regs(ctrl, i, oob,
1642 mtd->oobsize / trans,
1643 host->hwcfg.sector_size_1k);
1644 }
1645
1646 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
1647 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
1648 status = brcmnand_waitfunc(mtd, chip);
1649
1650 if (status & NAND_STATUS_FAIL) {
1651 dev_info(ctrl->dev, "program failed at %llx\n",
1652 (unsigned long long)addr);
1653 ret = -EIO;
1654 goto out;
1655 }
1656 }
1657 out:
1658 brcmnand_wp(mtd, 1);
1659 return ret;
1660 }
1661
brcmnand_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1662 static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1663 const uint8_t *buf, int oob_required, int page)
1664 {
1665 struct brcmnand_host *host = chip->priv;
1666 void *oob = oob_required ? chip->oob_poi : NULL;
1667
1668 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1669 return 0;
1670 }
1671
brcmnand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1672 static int brcmnand_write_page_raw(struct mtd_info *mtd,
1673 struct nand_chip *chip, const uint8_t *buf,
1674 int oob_required, int page)
1675 {
1676 struct brcmnand_host *host = chip->priv;
1677 void *oob = oob_required ? chip->oob_poi : NULL;
1678
1679 brcmnand_set_ecc_enabled(host, 0);
1680 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1681 brcmnand_set_ecc_enabled(host, 1);
1682 return 0;
1683 }
1684
brcmnand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1685 static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1686 int page)
1687 {
1688 return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
1689 NULL, chip->oob_poi);
1690 }
1691
brcmnand_write_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1692 static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1693 int page)
1694 {
1695 struct brcmnand_host *host = chip->priv;
1696 int ret;
1697
1698 brcmnand_set_ecc_enabled(host, 0);
1699 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
1700 (u8 *)chip->oob_poi);
1701 brcmnand_set_ecc_enabled(host, 1);
1702
1703 return ret;
1704 }
1705
1706 /***********************************************************************
1707 * Per-CS setup (1 NAND device)
1708 ***********************************************************************/
1709
brcmnand_set_cfg(struct brcmnand_host * host,struct brcmnand_cfg * cfg)1710 static int brcmnand_set_cfg(struct brcmnand_host *host,
1711 struct brcmnand_cfg *cfg)
1712 {
1713 struct brcmnand_controller *ctrl = host->ctrl;
1714 struct nand_chip *chip = &host->chip;
1715 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1716 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
1717 BRCMNAND_CS_CFG_EXT);
1718 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1719 BRCMNAND_CS_ACC_CONTROL);
1720 u8 block_size = 0, page_size = 0, device_size = 0;
1721 u32 tmp;
1722
1723 if (ctrl->block_sizes) {
1724 int i, found;
1725
1726 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
1727 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
1728 block_size = i;
1729 found = 1;
1730 }
1731 if (!found) {
1732 dev_warn(ctrl->dev, "invalid block size %u\n",
1733 cfg->block_size);
1734 return -EINVAL;
1735 }
1736 } else {
1737 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
1738 }
1739
1740 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
1741 cfg->block_size > ctrl->max_block_size)) {
1742 dev_warn(ctrl->dev, "invalid block size %u\n",
1743 cfg->block_size);
1744 block_size = 0;
1745 }
1746
1747 if (ctrl->page_sizes) {
1748 int i, found;
1749
1750 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
1751 if (ctrl->page_sizes[i] == cfg->page_size) {
1752 page_size = i;
1753 found = 1;
1754 }
1755 if (!found) {
1756 dev_warn(ctrl->dev, "invalid page size %u\n",
1757 cfg->page_size);
1758 return -EINVAL;
1759 }
1760 } else {
1761 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
1762 }
1763
1764 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
1765 cfg->page_size > ctrl->max_page_size)) {
1766 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
1767 return -EINVAL;
1768 }
1769
1770 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
1771 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
1772 (unsigned long long)cfg->device_size);
1773 return -EINVAL;
1774 }
1775 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
1776
1777 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
1778 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
1779 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
1780 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
1781 (device_size << CFG_DEVICE_SIZE_SHIFT);
1782 if (cfg_offs == cfg_ext_offs) {
1783 tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
1784 (block_size << CFG_BLK_SIZE_SHIFT);
1785 nand_writereg(ctrl, cfg_offs, tmp);
1786 } else {
1787 nand_writereg(ctrl, cfg_offs, tmp);
1788 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
1789 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
1790 nand_writereg(ctrl, cfg_ext_offs, tmp);
1791 }
1792
1793 tmp = nand_readreg(ctrl, acc_control_offs);
1794 tmp &= ~brcmnand_ecc_level_mask(ctrl);
1795 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
1796 tmp &= ~brcmnand_spare_area_mask(ctrl);
1797 tmp |= cfg->spare_area_size;
1798 nand_writereg(ctrl, acc_control_offs, tmp);
1799
1800 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
1801
1802 /* threshold = ceil(BCH-level * 0.75) */
1803 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
1804
1805 return 0;
1806 }
1807
brcmnand_print_cfg(char * buf,struct brcmnand_cfg * cfg)1808 static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg)
1809 {
1810 buf += sprintf(buf,
1811 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
1812 (unsigned long long)cfg->device_size >> 20,
1813 cfg->block_size >> 10,
1814 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
1815 cfg->page_size >= 1024 ? "KiB" : "B",
1816 cfg->spare_area_size, cfg->device_width);
1817
1818 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
1819 if (is_hamming_ecc(cfg))
1820 sprintf(buf, ", Hamming ECC");
1821 else if (cfg->sector_size_1k)
1822 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
1823 else
1824 sprintf(buf, ", BCH-%u", cfg->ecc_level);
1825 }
1826
1827 /*
1828 * Minimum number of bytes to address a page. Calculated as:
1829 * roundup(log2(size / page-size) / 8)
1830 *
1831 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
1832 * OK because many other things will break if 'size' is irregular...
1833 */
get_blk_adr_bytes(u64 size,u32 writesize)1834 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
1835 {
1836 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
1837 }
1838
brcmnand_setup_dev(struct brcmnand_host * host)1839 static int brcmnand_setup_dev(struct brcmnand_host *host)
1840 {
1841 struct mtd_info *mtd = &host->mtd;
1842 struct nand_chip *chip = &host->chip;
1843 struct brcmnand_controller *ctrl = host->ctrl;
1844 struct brcmnand_cfg *cfg = &host->hwcfg;
1845 char msg[128];
1846 u32 offs, tmp, oob_sector;
1847 int ret;
1848
1849 memset(cfg, 0, sizeof(*cfg));
1850
1851 ret = of_property_read_u32(chip->flash_node,
1852 "brcm,nand-oob-sector-size",
1853 &oob_sector);
1854 if (ret) {
1855 /* Use detected size */
1856 cfg->spare_area_size = mtd->oobsize /
1857 (mtd->writesize >> FC_SHIFT);
1858 } else {
1859 cfg->spare_area_size = oob_sector;
1860 }
1861 if (cfg->spare_area_size > ctrl->max_oob)
1862 cfg->spare_area_size = ctrl->max_oob;
1863 /*
1864 * Set oobsize to be consistent with controller's spare_area_size, as
1865 * the rest is inaccessible.
1866 */
1867 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
1868
1869 cfg->device_size = mtd->size;
1870 cfg->block_size = mtd->erasesize;
1871 cfg->page_size = mtd->writesize;
1872 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
1873 cfg->col_adr_bytes = 2;
1874 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
1875
1876 switch (chip->ecc.size) {
1877 case 512:
1878 if (chip->ecc.strength == 1) /* Hamming */
1879 cfg->ecc_level = 15;
1880 else
1881 cfg->ecc_level = chip->ecc.strength;
1882 cfg->sector_size_1k = 0;
1883 break;
1884 case 1024:
1885 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
1886 dev_err(ctrl->dev, "1KB sectors not supported\n");
1887 return -EINVAL;
1888 }
1889 if (chip->ecc.strength & 0x1) {
1890 dev_err(ctrl->dev,
1891 "odd ECC not supported with 1KB sectors\n");
1892 return -EINVAL;
1893 }
1894
1895 cfg->ecc_level = chip->ecc.strength >> 1;
1896 cfg->sector_size_1k = 1;
1897 break;
1898 default:
1899 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
1900 chip->ecc.size);
1901 return -EINVAL;
1902 }
1903
1904 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
1905 if (mtd->writesize > 512)
1906 cfg->ful_adr_bytes += cfg->col_adr_bytes;
1907 else
1908 cfg->ful_adr_bytes += 1;
1909
1910 ret = brcmnand_set_cfg(host, cfg);
1911 if (ret)
1912 return ret;
1913
1914 brcmnand_set_ecc_enabled(host, 1);
1915
1916 brcmnand_print_cfg(msg, cfg);
1917 dev_info(ctrl->dev, "detected %s\n", msg);
1918
1919 /* Configure ACC_CONTROL */
1920 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1921 tmp = nand_readreg(ctrl, offs);
1922 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
1923 tmp &= ~ACC_CONTROL_RD_ERASED;
1924 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
1925 if (ctrl->features & BRCMNAND_HAS_PREFETCH) {
1926 /*
1927 * FIXME: Flash DMA + prefetch may see spurious erased-page ECC
1928 * errors
1929 */
1930 if (has_flash_dma(ctrl))
1931 tmp &= ~ACC_CONTROL_PREFETCH;
1932 else
1933 tmp |= ACC_CONTROL_PREFETCH;
1934 }
1935 nand_writereg(ctrl, offs, tmp);
1936
1937 return 0;
1938 }
1939
brcmnand_init_cs(struct brcmnand_host * host)1940 static int brcmnand_init_cs(struct brcmnand_host *host)
1941 {
1942 struct brcmnand_controller *ctrl = host->ctrl;
1943 struct device_node *dn = host->of_node;
1944 struct platform_device *pdev = host->pdev;
1945 struct mtd_info *mtd;
1946 struct nand_chip *chip;
1947 int ret;
1948 u16 cfg_offs;
1949 struct mtd_part_parser_data ppdata = { .of_node = dn };
1950
1951 ret = of_property_read_u32(dn, "reg", &host->cs);
1952 if (ret) {
1953 dev_err(&pdev->dev, "can't get chip-select\n");
1954 return -ENXIO;
1955 }
1956
1957 mtd = &host->mtd;
1958 chip = &host->chip;
1959
1960 chip->flash_node = dn;
1961 chip->priv = host;
1962 mtd->priv = chip;
1963 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
1964 host->cs);
1965 mtd->owner = THIS_MODULE;
1966 mtd->dev.parent = &pdev->dev;
1967
1968 chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
1969 chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
1970
1971 chip->cmd_ctrl = brcmnand_cmd_ctrl;
1972 chip->cmdfunc = brcmnand_cmdfunc;
1973 chip->waitfunc = brcmnand_waitfunc;
1974 chip->read_byte = brcmnand_read_byte;
1975 chip->read_buf = brcmnand_read_buf;
1976 chip->write_buf = brcmnand_write_buf;
1977
1978 chip->ecc.mode = NAND_ECC_HW;
1979 chip->ecc.read_page = brcmnand_read_page;
1980 chip->ecc.read_subpage = brcmnand_read_subpage;
1981 chip->ecc.write_page = brcmnand_write_page;
1982 chip->ecc.read_page_raw = brcmnand_read_page_raw;
1983 chip->ecc.write_page_raw = brcmnand_write_page_raw;
1984 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
1985 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
1986 chip->ecc.read_oob = brcmnand_read_oob;
1987 chip->ecc.write_oob = brcmnand_write_oob;
1988
1989 chip->controller = &ctrl->controller;
1990
1991 /*
1992 * The bootloader might have configured 16bit mode but
1993 * NAND READID command only works in 8bit mode. We force
1994 * 8bit mode here to ensure that NAND READID commands works.
1995 */
1996 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1997 nand_writereg(ctrl, cfg_offs,
1998 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
1999
2000 if (nand_scan_ident(mtd, 1, NULL))
2001 return -ENXIO;
2002
2003 chip->options |= NAND_NO_SUBPAGE_WRITE;
2004 /*
2005 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2006 * to/from, and have nand_base pass us a bounce buffer instead, as
2007 * needed.
2008 */
2009 chip->options |= NAND_USE_BOUNCE_BUFFER;
2010
2011 if (of_get_nand_on_flash_bbt(dn))
2012 chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
2013
2014 if (brcmnand_setup_dev(host))
2015 return -ENXIO;
2016
2017 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2018 /* only use our internal HW threshold */
2019 mtd->bitflip_threshold = 1;
2020
2021 chip->ecc.layout = brcmstb_choose_ecc_layout(host);
2022 if (!chip->ecc.layout)
2023 return -ENXIO;
2024
2025 if (nand_scan_tail(mtd))
2026 return -ENXIO;
2027
2028 return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
2029 }
2030
brcmnand_save_restore_cs_config(struct brcmnand_host * host,int restore)2031 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2032 int restore)
2033 {
2034 struct brcmnand_controller *ctrl = host->ctrl;
2035 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2036 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2037 BRCMNAND_CS_CFG_EXT);
2038 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2039 BRCMNAND_CS_ACC_CONTROL);
2040 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2041 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2042
2043 if (restore) {
2044 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2045 if (cfg_offs != cfg_ext_offs)
2046 nand_writereg(ctrl, cfg_ext_offs,
2047 host->hwcfg.config_ext);
2048 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2049 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2050 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2051 } else {
2052 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2053 if (cfg_offs != cfg_ext_offs)
2054 host->hwcfg.config_ext =
2055 nand_readreg(ctrl, cfg_ext_offs);
2056 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2057 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2058 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2059 }
2060 }
2061
brcmnand_suspend(struct device * dev)2062 static int brcmnand_suspend(struct device *dev)
2063 {
2064 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2065 struct brcmnand_host *host;
2066
2067 list_for_each_entry(host, &ctrl->host_list, node)
2068 brcmnand_save_restore_cs_config(host, 0);
2069
2070 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2071 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2072 ctrl->corr_stat_threshold =
2073 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2074
2075 if (has_flash_dma(ctrl))
2076 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2077
2078 return 0;
2079 }
2080
brcmnand_resume(struct device * dev)2081 static int brcmnand_resume(struct device *dev)
2082 {
2083 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2084 struct brcmnand_host *host;
2085
2086 if (has_flash_dma(ctrl)) {
2087 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2088 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2089 }
2090
2091 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2092 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2093 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2094 ctrl->corr_stat_threshold);
2095 if (ctrl->soc) {
2096 /* Clear/re-enable interrupt */
2097 ctrl->soc->ctlrdy_ack(ctrl->soc);
2098 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2099 }
2100
2101 list_for_each_entry(host, &ctrl->host_list, node) {
2102 struct mtd_info *mtd = &host->mtd;
2103 struct nand_chip *chip = mtd->priv;
2104
2105 brcmnand_save_restore_cs_config(host, 1);
2106
2107 /* Reset the chip, required by some chips after power-up */
2108 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2109 }
2110
2111 return 0;
2112 }
2113
2114 const struct dev_pm_ops brcmnand_pm_ops = {
2115 .suspend = brcmnand_suspend,
2116 .resume = brcmnand_resume,
2117 };
2118 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2119
2120 static const struct of_device_id brcmnand_of_match[] = {
2121 { .compatible = "brcm,brcmnand-v4.0" },
2122 { .compatible = "brcm,brcmnand-v5.0" },
2123 { .compatible = "brcm,brcmnand-v6.0" },
2124 { .compatible = "brcm,brcmnand-v6.1" },
2125 { .compatible = "brcm,brcmnand-v7.0" },
2126 { .compatible = "brcm,brcmnand-v7.1" },
2127 {},
2128 };
2129 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2130
2131 /***********************************************************************
2132 * Platform driver setup (per controller)
2133 ***********************************************************************/
2134
brcmnand_probe(struct platform_device * pdev,struct brcmnand_soc * soc)2135 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2136 {
2137 struct device *dev = &pdev->dev;
2138 struct device_node *dn = dev->of_node, *child;
2139 struct brcmnand_controller *ctrl;
2140 struct resource *res;
2141 int ret;
2142
2143 /* We only support device-tree instantiation */
2144 if (!dn)
2145 return -ENODEV;
2146
2147 if (!of_match_node(brcmnand_of_match, dn))
2148 return -ENODEV;
2149
2150 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2151 if (!ctrl)
2152 return -ENOMEM;
2153
2154 dev_set_drvdata(dev, ctrl);
2155 ctrl->dev = dev;
2156
2157 init_completion(&ctrl->done);
2158 init_completion(&ctrl->dma_done);
2159 spin_lock_init(&ctrl->controller.lock);
2160 init_waitqueue_head(&ctrl->controller.wq);
2161 INIT_LIST_HEAD(&ctrl->host_list);
2162
2163 /* NAND register range */
2164 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2165 ctrl->nand_base = devm_ioremap_resource(dev, res);
2166 if (IS_ERR(ctrl->nand_base))
2167 return PTR_ERR(ctrl->nand_base);
2168
2169 /* Initialize NAND revision */
2170 ret = brcmnand_revision_init(ctrl);
2171 if (ret)
2172 return ret;
2173
2174 /*
2175 * Most chips have this cache at a fixed offset within 'nand' block.
2176 * Some must specify this region separately.
2177 */
2178 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2179 if (res) {
2180 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2181 if (IS_ERR(ctrl->nand_fc))
2182 return PTR_ERR(ctrl->nand_fc);
2183 } else {
2184 ctrl->nand_fc = ctrl->nand_base +
2185 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2186 }
2187
2188 /* FLASH_DMA */
2189 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2190 if (res) {
2191 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2192 if (IS_ERR(ctrl->flash_dma_base))
2193 return PTR_ERR(ctrl->flash_dma_base);
2194
2195 flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
2196 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2197
2198 /* Allocate descriptor(s) */
2199 ctrl->dma_desc = dmam_alloc_coherent(dev,
2200 sizeof(*ctrl->dma_desc),
2201 &ctrl->dma_pa, GFP_KERNEL);
2202 if (!ctrl->dma_desc)
2203 return -ENOMEM;
2204
2205 ctrl->dma_irq = platform_get_irq(pdev, 1);
2206 if ((int)ctrl->dma_irq < 0) {
2207 dev_err(dev, "missing FLASH_DMA IRQ\n");
2208 return -ENODEV;
2209 }
2210
2211 ret = devm_request_irq(dev, ctrl->dma_irq,
2212 brcmnand_dma_irq, 0, DRV_NAME,
2213 ctrl);
2214 if (ret < 0) {
2215 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2216 ctrl->dma_irq, ret);
2217 return ret;
2218 }
2219
2220 dev_info(dev, "enabling FLASH_DMA\n");
2221 }
2222
2223 /* Disable automatic device ID config, direct addressing */
2224 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2225 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2226 /* Disable XOR addressing */
2227 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2228
2229 if (ctrl->features & BRCMNAND_HAS_WP) {
2230 /* Permanently disable write protection */
2231 if (wp_on == 2)
2232 brcmnand_set_wp(ctrl, false);
2233 } else {
2234 wp_on = 0;
2235 }
2236
2237 /* IRQ */
2238 ctrl->irq = platform_get_irq(pdev, 0);
2239 if ((int)ctrl->irq < 0) {
2240 dev_err(dev, "no IRQ defined\n");
2241 return -ENODEV;
2242 }
2243
2244 /*
2245 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2246 * interesting ways
2247 */
2248 if (soc) {
2249 ctrl->soc = soc;
2250
2251 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2252 DRV_NAME, ctrl);
2253
2254 /* Enable interrupt */
2255 ctrl->soc->ctlrdy_ack(ctrl->soc);
2256 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2257 } else {
2258 /* Use standard interrupt infrastructure */
2259 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2260 DRV_NAME, ctrl);
2261 }
2262 if (ret < 0) {
2263 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2264 ctrl->irq, ret);
2265 return ret;
2266 }
2267
2268 for_each_available_child_of_node(dn, child) {
2269 if (of_device_is_compatible(child, "brcm,nandcs")) {
2270 struct brcmnand_host *host;
2271
2272 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2273 if (!host)
2274 return -ENOMEM;
2275 host->pdev = pdev;
2276 host->ctrl = ctrl;
2277 host->of_node = child;
2278
2279 ret = brcmnand_init_cs(host);
2280 if (ret)
2281 continue; /* Try all chip-selects */
2282
2283 list_add_tail(&host->node, &ctrl->host_list);
2284 }
2285 }
2286
2287 /* No chip-selects could initialize properly */
2288 if (list_empty(&ctrl->host_list))
2289 return -ENODEV;
2290
2291 return 0;
2292 }
2293 EXPORT_SYMBOL_GPL(brcmnand_probe);
2294
brcmnand_remove(struct platform_device * pdev)2295 int brcmnand_remove(struct platform_device *pdev)
2296 {
2297 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2298 struct brcmnand_host *host;
2299
2300 list_for_each_entry(host, &ctrl->host_list, node)
2301 nand_release(&host->mtd);
2302
2303 dev_set_drvdata(&pdev->dev, NULL);
2304
2305 return 0;
2306 }
2307 EXPORT_SYMBOL_GPL(brcmnand_remove);
2308
2309 MODULE_LICENSE("GPL v2");
2310 MODULE_AUTHOR("Kevin Cernekee");
2311 MODULE_AUTHOR("Brian Norris");
2312 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2313 MODULE_ALIAS("platform:brcmnand");
2314