1/*
2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
3 *
4 * Created by:  Nicolas Pitre, March 2012
5 * Copyright:   (C) 2012-2013  Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/init.h>
14#include <linux/irqflags.h>
15#include <linux/cpu_pm.h>
16
17#include <asm/mcpm.h>
18#include <asm/cacheflush.h>
19#include <asm/idmap.h>
20#include <asm/cputype.h>
21#include <asm/suspend.h>
22
23extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
24
25void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
26{
27	unsigned long val = ptr ? virt_to_phys(ptr) : 0;
28	mcpm_entry_vectors[cluster][cpu] = val;
29	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
30}
31
32extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
33
34void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
35			 unsigned long poke_phys_addr, unsigned long poke_val)
36{
37	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
38	poke[0] = poke_phys_addr;
39	poke[1] = poke_val;
40	__sync_cache_range_w(poke, 2 * sizeof(*poke));
41}
42
43static const struct mcpm_platform_ops *platform_ops;
44
45int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
46{
47	if (platform_ops)
48		return -EBUSY;
49	platform_ops = ops;
50	return 0;
51}
52
53bool mcpm_is_available(void)
54{
55	return (platform_ops) ? true : false;
56}
57
58/*
59 * We can't use regular spinlocks. In the switcher case, it is possible
60 * for an outbound CPU to call power_down() after its inbound counterpart
61 * is already live using the same logical CPU number which trips lockdep
62 * debugging.
63 */
64static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
65
66static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
67
68static inline bool mcpm_cluster_unused(unsigned int cluster)
69{
70	int i, cnt;
71	for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
72		cnt |= mcpm_cpu_use_count[cluster][i];
73	return !cnt;
74}
75
76int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
77{
78	bool cpu_is_down, cluster_is_down;
79	int ret = 0;
80
81	if (!platform_ops)
82		return -EUNATCH; /* try not to shadow power_up errors */
83	might_sleep();
84
85	/* backward compatibility callback */
86	if (platform_ops->power_up)
87		return platform_ops->power_up(cpu, cluster);
88
89	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
90
91	/*
92	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
93	 * variant exists, we need to disable IRQs manually here.
94	 */
95	local_irq_disable();
96	arch_spin_lock(&mcpm_lock);
97
98	cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
99	cluster_is_down = mcpm_cluster_unused(cluster);
100
101	mcpm_cpu_use_count[cluster][cpu]++;
102	/*
103	 * The only possible values are:
104	 * 0 = CPU down
105	 * 1 = CPU (still) up
106	 * 2 = CPU requested to be up before it had a chance
107	 *     to actually make itself down.
108	 * Any other value is a bug.
109	 */
110	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
111	       mcpm_cpu_use_count[cluster][cpu] != 2);
112
113	if (cluster_is_down)
114		ret = platform_ops->cluster_powerup(cluster);
115	if (cpu_is_down && !ret)
116		ret = platform_ops->cpu_powerup(cpu, cluster);
117
118	arch_spin_unlock(&mcpm_lock);
119	local_irq_enable();
120	return ret;
121}
122
123typedef void (*phys_reset_t)(unsigned long);
124
125void mcpm_cpu_power_down(void)
126{
127	unsigned int mpidr, cpu, cluster;
128	bool cpu_going_down, last_man;
129	phys_reset_t phys_reset;
130
131	if (WARN_ON_ONCE(!platform_ops))
132	       return;
133	BUG_ON(!irqs_disabled());
134
135	/*
136	 * Do this before calling into the power_down method,
137	 * as it might not always be safe to do afterwards.
138	 */
139	setup_mm_for_reboot();
140
141	/* backward compatibility callback */
142	if (platform_ops->power_down) {
143		platform_ops->power_down();
144		goto not_dead;
145	}
146
147	mpidr = read_cpuid_mpidr();
148	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
149	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
150	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
151
152	__mcpm_cpu_going_down(cpu, cluster);
153
154	arch_spin_lock(&mcpm_lock);
155	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
156
157	mcpm_cpu_use_count[cluster][cpu]--;
158	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
159	       mcpm_cpu_use_count[cluster][cpu] != 1);
160	cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
161	last_man = mcpm_cluster_unused(cluster);
162
163	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
164		platform_ops->cpu_powerdown_prepare(cpu, cluster);
165		platform_ops->cluster_powerdown_prepare(cluster);
166		arch_spin_unlock(&mcpm_lock);
167		platform_ops->cluster_cache_disable();
168		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
169	} else {
170		if (cpu_going_down)
171			platform_ops->cpu_powerdown_prepare(cpu, cluster);
172		arch_spin_unlock(&mcpm_lock);
173		/*
174		 * If cpu_going_down is false here, that means a power_up
175		 * request raced ahead of us.  Even if we do not want to
176		 * shut this CPU down, the caller still expects execution
177		 * to return through the system resume entry path, like
178		 * when the WFI is aborted due to a new IRQ or the like..
179		 * So let's continue with cache cleaning in all cases.
180		 */
181		platform_ops->cpu_cache_disable();
182	}
183
184	__mcpm_cpu_down(cpu, cluster);
185
186	/* Now we are prepared for power-down, do it: */
187	if (cpu_going_down)
188		wfi();
189
190not_dead:
191	/*
192	 * It is possible for a power_up request to happen concurrently
193	 * with a power_down request for the same CPU. In this case the
194	 * CPU might not be able to actually enter a powered down state
195	 * with the WFI instruction if the power_up request has removed
196	 * the required reset condition.  We must perform a re-entry in
197	 * the kernel as if the power_up method just had deasserted reset
198	 * on the CPU.
199	 */
200	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
201	phys_reset(virt_to_phys(mcpm_entry_point));
202
203	/* should never get here */
204	BUG();
205}
206
207int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
208{
209	int ret;
210
211	if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
212		return -EUNATCH;
213
214	ret = platform_ops->wait_for_powerdown(cpu, cluster);
215	if (ret)
216		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
217			__func__, cpu, cluster, ret);
218
219	return ret;
220}
221
222void mcpm_cpu_suspend(u64 expected_residency)
223{
224	if (WARN_ON_ONCE(!platform_ops))
225		return;
226
227	/* backward compatibility callback */
228	if (platform_ops->suspend) {
229		phys_reset_t phys_reset;
230		BUG_ON(!irqs_disabled());
231		setup_mm_for_reboot();
232		platform_ops->suspend(expected_residency);
233		phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
234		phys_reset(virt_to_phys(mcpm_entry_point));
235		BUG();
236	}
237
238	/* Some platforms might have to enable special resume modes, etc. */
239	if (platform_ops->cpu_suspend_prepare) {
240		unsigned int mpidr = read_cpuid_mpidr();
241		unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
242		unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
243		arch_spin_lock(&mcpm_lock);
244		platform_ops->cpu_suspend_prepare(cpu, cluster);
245		arch_spin_unlock(&mcpm_lock);
246	}
247	mcpm_cpu_power_down();
248}
249
250int mcpm_cpu_powered_up(void)
251{
252	unsigned int mpidr, cpu, cluster;
253	bool cpu_was_down, first_man;
254	unsigned long flags;
255
256	if (!platform_ops)
257		return -EUNATCH;
258
259	/* backward compatibility callback */
260	if (platform_ops->powered_up) {
261		platform_ops->powered_up();
262		return 0;
263	}
264
265	mpidr = read_cpuid_mpidr();
266	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
267	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
268	local_irq_save(flags);
269	arch_spin_lock(&mcpm_lock);
270
271	cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
272	first_man = mcpm_cluster_unused(cluster);
273
274	if (first_man && platform_ops->cluster_is_up)
275		platform_ops->cluster_is_up(cluster);
276	if (cpu_was_down)
277		mcpm_cpu_use_count[cluster][cpu] = 1;
278	if (platform_ops->cpu_is_up)
279		platform_ops->cpu_is_up(cpu, cluster);
280
281	arch_spin_unlock(&mcpm_lock);
282	local_irq_restore(flags);
283
284	return 0;
285}
286
287#ifdef CONFIG_ARM_CPU_SUSPEND
288
289static int __init nocache_trampoline(unsigned long _arg)
290{
291	void (*cache_disable)(void) = (void *)_arg;
292	unsigned int mpidr = read_cpuid_mpidr();
293	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
294	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
295	phys_reset_t phys_reset;
296
297	mcpm_set_entry_vector(cpu, cluster, cpu_resume);
298	setup_mm_for_reboot();
299
300	__mcpm_cpu_going_down(cpu, cluster);
301	BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
302	cache_disable();
303	__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
304	__mcpm_cpu_down(cpu, cluster);
305
306	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
307	phys_reset(virt_to_phys(mcpm_entry_point));
308	BUG();
309}
310
311int __init mcpm_loopback(void (*cache_disable)(void))
312{
313	int ret;
314
315	/*
316	 * We're going to soft-restart the current CPU through the
317	 * low-level MCPM code by leveraging the suspend/resume
318	 * infrastructure. Let's play it safe by using cpu_pm_enter()
319	 * in case the CPU init code path resets the VFP or similar.
320	 */
321	local_irq_disable();
322	local_fiq_disable();
323	ret = cpu_pm_enter();
324	if (!ret) {
325		ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
326		cpu_pm_exit();
327	}
328	local_fiq_enable();
329	local_irq_enable();
330	if (ret)
331		pr_err("%s returned %d\n", __func__, ret);
332	return ret;
333}
334
335#endif
336
337struct sync_struct mcpm_sync;
338
339/*
340 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
341 *    This must be called at the point of committing to teardown of a CPU.
342 *    The CPU cache (SCTRL.C bit) is expected to still be active.
343 */
344void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
345{
346	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
347	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
348}
349
350/*
351 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
352 *    cluster can be torn down without disrupting this CPU.
353 *    To avoid deadlocks, this must be called before a CPU is powered down.
354 *    The CPU cache (SCTRL.C bit) is expected to be off.
355 *    However L2 cache might or might not be active.
356 */
357void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
358{
359	dmb();
360	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
361	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
362	sev();
363}
364
365/*
366 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
367 * @state: the final state of the cluster:
368 *     CLUSTER_UP: no destructive teardown was done and the cluster has been
369 *         restored to the previous state (CPU cache still active); or
370 *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
371 *         (CPU cache disabled, L2 cache either enabled or disabled).
372 */
373void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
374{
375	dmb();
376	mcpm_sync.clusters[cluster].cluster = state;
377	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
378	sev();
379}
380
381/*
382 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
383 * This function should be called by the last man, after local CPU teardown
384 * is complete.  CPU cache expected to be active.
385 *
386 * Returns:
387 *     false: the critical section was not entered because an inbound CPU was
388 *         observed, or the cluster is already being set up;
389 *     true: the critical section was entered: it is now safe to tear down the
390 *         cluster.
391 */
392bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
393{
394	unsigned int i;
395	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
396
397	/* Warn inbound CPUs that the cluster is being torn down: */
398	c->cluster = CLUSTER_GOING_DOWN;
399	sync_cache_w(&c->cluster);
400
401	/* Back out if the inbound cluster is already in the critical region: */
402	sync_cache_r(&c->inbound);
403	if (c->inbound == INBOUND_COMING_UP)
404		goto abort;
405
406	/*
407	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
408	 * teardown is complete on each CPU before tearing down the cluster.
409	 *
410	 * If any CPU has been woken up again from the DOWN state, then we
411	 * shouldn't be taking the cluster down at all: abort in that case.
412	 */
413	sync_cache_r(&c->cpus);
414	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
415		int cpustate;
416
417		if (i == cpu)
418			continue;
419
420		while (1) {
421			cpustate = c->cpus[i].cpu;
422			if (cpustate != CPU_GOING_DOWN)
423				break;
424
425			wfe();
426			sync_cache_r(&c->cpus[i].cpu);
427		}
428
429		switch (cpustate) {
430		case CPU_DOWN:
431			continue;
432
433		default:
434			goto abort;
435		}
436	}
437
438	return true;
439
440abort:
441	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
442	return false;
443}
444
445int __mcpm_cluster_state(unsigned int cluster)
446{
447	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
448	return mcpm_sync.clusters[cluster].cluster;
449}
450
451extern unsigned long mcpm_power_up_setup_phys;
452
453int __init mcpm_sync_init(
454	void (*power_up_setup)(unsigned int affinity_level))
455{
456	unsigned int i, j, mpidr, this_cluster;
457
458	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
459	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
460
461	/*
462	 * Set initial CPU and cluster states.
463	 * Only one cluster is assumed to be active at this point.
464	 */
465	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
466		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
467		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
468		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
469			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
470	}
471	mpidr = read_cpuid_mpidr();
472	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
473	for_each_online_cpu(i) {
474		mcpm_cpu_use_count[this_cluster][i] = 1;
475		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
476	}
477	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
478	sync_cache_w(&mcpm_sync);
479
480	if (power_up_setup) {
481		mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
482		sync_cache_w(&mcpm_power_up_setup_phys);
483	}
484
485	return 0;
486}
487