1/*
2 *  linux/arch/arm/mm/dma-mapping.c
3 *
4 *  Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 *  DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "mm.h"
43
44/*
45 * The DMA API is built upon the notion of "buffer ownership".  A buffer
46 * is either exclusively owned by the CPU (and therefore may be accessed
47 * by it) or exclusively owned by the DMA device.  These helper functions
48 * represent the transitions between these two ownership states.
49 *
50 * Note, however, that on later ARMs, this notion does not work due to
51 * speculative prefetches.  We model our approach on the assumption that
52 * the CPU does do speculative prefetches, which means we clean caches
53 * before transfers and delay cache invalidation until transfer completion.
54 *
55 */
56static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57		size_t, enum dma_data_direction);
58static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59		size_t, enum dma_data_direction);
60
61/**
62 * arm_dma_map_page - map a portion of a page for streaming DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @page: page that buffer resides in
65 * @offset: offset into page for start of buffer
66 * @size: size of buffer to map
67 * @dir: DMA transfer direction
68 *
69 * Ensure that any data held in the cache is appropriately discarded
70 * or written back.
71 *
72 * The device owns this memory once this call has completed.  The CPU
73 * can regain ownership by calling dma_unmap_page().
74 */
75static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76	     unsigned long offset, size_t size, enum dma_data_direction dir,
77	     struct dma_attrs *attrs)
78{
79	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80		__dma_page_cpu_to_dev(page, offset, size, dir);
81	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82}
83
84static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85	     unsigned long offset, size_t size, enum dma_data_direction dir,
86	     struct dma_attrs *attrs)
87{
88	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89}
90
91/**
92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94 * @handle: DMA address of buffer
95 * @size: size of buffer (same as passed to dma_map_page)
96 * @dir: DMA transfer direction (same as passed to dma_map_page)
97 *
98 * Unmap a page streaming mode DMA translation.  The handle and size
99 * must match what was provided in the previous dma_map_page() call.
100 * All other usages are undefined.
101 *
102 * After this call, reads by the CPU to the buffer are guaranteed to see
103 * whatever the device wrote there.
104 */
105static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106		size_t size, enum dma_data_direction dir,
107		struct dma_attrs *attrs)
108{
109	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111				      handle & ~PAGE_MASK, size, dir);
112}
113
114static void arm_dma_sync_single_for_cpu(struct device *dev,
115		dma_addr_t handle, size_t size, enum dma_data_direction dir)
116{
117	unsigned int offset = handle & (PAGE_SIZE - 1);
118	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119	__dma_page_dev_to_cpu(page, offset, size, dir);
120}
121
122static void arm_dma_sync_single_for_device(struct device *dev,
123		dma_addr_t handle, size_t size, enum dma_data_direction dir)
124{
125	unsigned int offset = handle & (PAGE_SIZE - 1);
126	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127	__dma_page_cpu_to_dev(page, offset, size, dir);
128}
129
130struct dma_map_ops arm_dma_ops = {
131	.alloc			= arm_dma_alloc,
132	.free			= arm_dma_free,
133	.mmap			= arm_dma_mmap,
134	.get_sgtable		= arm_dma_get_sgtable,
135	.map_page		= arm_dma_map_page,
136	.unmap_page		= arm_dma_unmap_page,
137	.map_sg			= arm_dma_map_sg,
138	.unmap_sg		= arm_dma_unmap_sg,
139	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
140	.sync_single_for_device	= arm_dma_sync_single_for_device,
141	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
142	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
143	.set_dma_mask		= arm_dma_set_mask,
144};
145EXPORT_SYMBOL(arm_dma_ops);
146
147static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150				  dma_addr_t handle, struct dma_attrs *attrs);
151
152struct dma_map_ops arm_coherent_dma_ops = {
153	.alloc			= arm_coherent_dma_alloc,
154	.free			= arm_coherent_dma_free,
155	.mmap			= arm_dma_mmap,
156	.get_sgtable		= arm_dma_get_sgtable,
157	.map_page		= arm_coherent_dma_map_page,
158	.map_sg			= arm_dma_map_sg,
159	.set_dma_mask		= arm_dma_set_mask,
160};
161EXPORT_SYMBOL(arm_coherent_dma_ops);
162
163static int __dma_supported(struct device *dev, u64 mask, bool warn)
164{
165	unsigned long max_dma_pfn;
166
167	/*
168	 * If the mask allows for more memory than we can address,
169	 * and we actually have that much memory, then we must
170	 * indicate that DMA to this device is not supported.
171	 */
172	if (sizeof(mask) != sizeof(dma_addr_t) &&
173	    mask > (dma_addr_t)~0 &&
174	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
175		if (warn) {
176			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177				 mask);
178			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179		}
180		return 0;
181	}
182
183	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184
185	/*
186	 * Translate the device's DMA mask to a PFN limit.  This
187	 * PFN number includes the page which we can DMA to.
188	 */
189	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190		if (warn)
191			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192				 mask,
193				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194				 max_dma_pfn + 1);
195		return 0;
196	}
197
198	return 1;
199}
200
201static u64 get_coherent_dma_mask(struct device *dev)
202{
203	u64 mask = (u64)DMA_BIT_MASK(32);
204
205	if (dev) {
206		mask = dev->coherent_dma_mask;
207
208		/*
209		 * Sanity check the DMA mask - it must be non-zero, and
210		 * must be able to be satisfied by a DMA allocation.
211		 */
212		if (mask == 0) {
213			dev_warn(dev, "coherent DMA mask is unset\n");
214			return 0;
215		}
216
217		if (!__dma_supported(dev, mask, true))
218			return 0;
219	}
220
221	return mask;
222}
223
224static void __dma_clear_buffer(struct page *page, size_t size)
225{
226	/*
227	 * Ensure that the allocated pages are zeroed, and that any data
228	 * lurking in the kernel direct-mapped region is invalidated.
229	 */
230	if (PageHighMem(page)) {
231		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232		phys_addr_t end = base + size;
233		while (size > 0) {
234			void *ptr = kmap_atomic(page);
235			memset(ptr, 0, PAGE_SIZE);
236			dmac_flush_range(ptr, ptr + PAGE_SIZE);
237			kunmap_atomic(ptr);
238			page++;
239			size -= PAGE_SIZE;
240		}
241		outer_flush_range(base, end);
242	} else {
243		void *ptr = page_address(page);
244		memset(ptr, 0, size);
245		dmac_flush_range(ptr, ptr + size);
246		outer_flush_range(__pa(ptr), __pa(ptr) + size);
247	}
248}
249
250/*
251 * Allocate a DMA buffer for 'dev' of size 'size' using the
252 * specified gfp mask.  Note that 'size' must be page aligned.
253 */
254static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255{
256	unsigned long order = get_order(size);
257	struct page *page, *p, *e;
258
259	page = alloc_pages(gfp, order);
260	if (!page)
261		return NULL;
262
263	/*
264	 * Now split the huge page and free the excess pages
265	 */
266	split_page(page, order);
267	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268		__free_page(p);
269
270	__dma_clear_buffer(page, size);
271
272	return page;
273}
274
275/*
276 * Free a DMA buffer.  'size' must be page aligned.
277 */
278static void __dma_free_buffer(struct page *page, size_t size)
279{
280	struct page *e = page + (size >> PAGE_SHIFT);
281
282	while (page < e) {
283		__free_page(page);
284		page++;
285	}
286}
287
288#ifdef CONFIG_MMU
289
290static void *__alloc_from_contiguous(struct device *dev, size_t size,
291				     pgprot_t prot, struct page **ret_page,
292				     const void *caller, bool want_vaddr);
293
294static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295				 pgprot_t prot, struct page **ret_page,
296				 const void *caller, bool want_vaddr);
297
298static void *
299__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300	const void *caller)
301{
302	/*
303	 * DMA allocation can be mapped to user space, so lets
304	 * set VM_USERMAP flags too.
305	 */
306	return dma_common_contiguous_remap(page, size,
307			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308			prot, caller);
309}
310
311static void __dma_free_remap(void *cpu_addr, size_t size)
312{
313	dma_common_free_remap(cpu_addr, size,
314			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315}
316
317#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
318static struct gen_pool *atomic_pool;
319
320static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321
322static int __init early_coherent_pool(char *p)
323{
324	atomic_pool_size = memparse(p, &p);
325	return 0;
326}
327early_param("coherent_pool", early_coherent_pool);
328
329void __init init_dma_coherent_pool_size(unsigned long size)
330{
331	/*
332	 * Catch any attempt to set the pool size too late.
333	 */
334	BUG_ON(atomic_pool);
335
336	/*
337	 * Set architecture specific coherent pool size only if
338	 * it has not been changed by kernel command line parameter.
339	 */
340	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341		atomic_pool_size = size;
342}
343
344/*
345 * Initialise the coherent pool for atomic allocations.
346 */
347static int __init atomic_pool_init(void)
348{
349	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350	gfp_t gfp = GFP_KERNEL | GFP_DMA;
351	struct page *page;
352	void *ptr;
353
354	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355	if (!atomic_pool)
356		goto out;
357
358	if (dev_get_cma_area(NULL))
359		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360					      &page, atomic_pool_init, true);
361	else
362		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363					   &page, atomic_pool_init, true);
364	if (ptr) {
365		int ret;
366
367		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368					page_to_phys(page),
369					atomic_pool_size, -1);
370		if (ret)
371			goto destroy_genpool;
372
373		gen_pool_set_algo(atomic_pool,
374				gen_pool_first_fit_order_align,
375				(void *)PAGE_SHIFT);
376		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377		       atomic_pool_size / 1024);
378		return 0;
379	}
380
381destroy_genpool:
382	gen_pool_destroy(atomic_pool);
383	atomic_pool = NULL;
384out:
385	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386	       atomic_pool_size / 1024);
387	return -ENOMEM;
388}
389/*
390 * CMA is activated by core_initcall, so we must be called after it.
391 */
392postcore_initcall(atomic_pool_init);
393
394struct dma_contig_early_reserve {
395	phys_addr_t base;
396	unsigned long size;
397};
398
399static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400
401static int dma_mmu_remap_num __initdata;
402
403void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404{
405	dma_mmu_remap[dma_mmu_remap_num].base = base;
406	dma_mmu_remap[dma_mmu_remap_num].size = size;
407	dma_mmu_remap_num++;
408}
409
410void __init dma_contiguous_remap(void)
411{
412	int i;
413	for (i = 0; i < dma_mmu_remap_num; i++) {
414		phys_addr_t start = dma_mmu_remap[i].base;
415		phys_addr_t end = start + dma_mmu_remap[i].size;
416		struct map_desc map;
417		unsigned long addr;
418
419		if (end > arm_lowmem_limit)
420			end = arm_lowmem_limit;
421		if (start >= end)
422			continue;
423
424		map.pfn = __phys_to_pfn(start);
425		map.virtual = __phys_to_virt(start);
426		map.length = end - start;
427		map.type = MT_MEMORY_DMA_READY;
428
429		/*
430		 * Clear previous low-memory mapping to ensure that the
431		 * TLB does not see any conflicting entries, then flush
432		 * the TLB of the old entries before creating new mappings.
433		 *
434		 * This ensures that any speculatively loaded TLB entries
435		 * (even though they may be rare) can not cause any problems,
436		 * and ensures that this code is architecturally compliant.
437		 */
438		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439		     addr += PMD_SIZE)
440			pmd_clear(pmd_off_k(addr));
441
442		flush_tlb_kernel_range(__phys_to_virt(start),
443				       __phys_to_virt(end));
444
445		iotable_init(&map, 1);
446	}
447}
448
449static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450			    void *data)
451{
452	struct page *page = virt_to_page(addr);
453	pgprot_t prot = *(pgprot_t *)data;
454
455	set_pte_ext(pte, mk_pte(page, prot), 0);
456	return 0;
457}
458
459static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460{
461	unsigned long start = (unsigned long) page_address(page);
462	unsigned end = start + size;
463
464	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
465	flush_tlb_kernel_range(start, end);
466}
467
468static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469				 pgprot_t prot, struct page **ret_page,
470				 const void *caller, bool want_vaddr)
471{
472	struct page *page;
473	void *ptr = NULL;
474	page = __dma_alloc_buffer(dev, size, gfp);
475	if (!page)
476		return NULL;
477	if (!want_vaddr)
478		goto out;
479
480	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
481	if (!ptr) {
482		__dma_free_buffer(page, size);
483		return NULL;
484	}
485
486 out:
487	*ret_page = page;
488	return ptr;
489}
490
491static void *__alloc_from_pool(size_t size, struct page **ret_page)
492{
493	unsigned long val;
494	void *ptr = NULL;
495
496	if (!atomic_pool) {
497		WARN(1, "coherent pool not initialised!\n");
498		return NULL;
499	}
500
501	val = gen_pool_alloc(atomic_pool, size);
502	if (val) {
503		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
504
505		*ret_page = phys_to_page(phys);
506		ptr = (void *)val;
507	}
508
509	return ptr;
510}
511
512static bool __in_atomic_pool(void *start, size_t size)
513{
514	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
515}
516
517static int __free_from_pool(void *start, size_t size)
518{
519	if (!__in_atomic_pool(start, size))
520		return 0;
521
522	gen_pool_free(atomic_pool, (unsigned long)start, size);
523
524	return 1;
525}
526
527static void *__alloc_from_contiguous(struct device *dev, size_t size,
528				     pgprot_t prot, struct page **ret_page,
529				     const void *caller, bool want_vaddr)
530{
531	unsigned long order = get_order(size);
532	size_t count = size >> PAGE_SHIFT;
533	struct page *page;
534	void *ptr = NULL;
535
536	page = dma_alloc_from_contiguous(dev, count, order);
537	if (!page)
538		return NULL;
539
540	__dma_clear_buffer(page, size);
541
542	if (!want_vaddr)
543		goto out;
544
545	if (PageHighMem(page)) {
546		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
547		if (!ptr) {
548			dma_release_from_contiguous(dev, page, count);
549			return NULL;
550		}
551	} else {
552		__dma_remap(page, size, prot);
553		ptr = page_address(page);
554	}
555
556 out:
557	*ret_page = page;
558	return ptr;
559}
560
561static void __free_from_contiguous(struct device *dev, struct page *page,
562				   void *cpu_addr, size_t size, bool want_vaddr)
563{
564	if (want_vaddr) {
565		if (PageHighMem(page))
566			__dma_free_remap(cpu_addr, size);
567		else
568			__dma_remap(page, size, PAGE_KERNEL);
569	}
570	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
571}
572
573static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
574{
575	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
576			    pgprot_writecombine(prot) :
577			    pgprot_dmacoherent(prot);
578	return prot;
579}
580
581#define nommu() 0
582
583#else	/* !CONFIG_MMU */
584
585#define nommu() 1
586
587#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
588#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
589#define __alloc_from_pool(size, ret_page)			NULL
590#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
591#define __free_from_pool(cpu_addr, size)			0
592#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
593#define __dma_free_remap(cpu_addr, size)			do { } while (0)
594
595#endif	/* CONFIG_MMU */
596
597static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
598				   struct page **ret_page)
599{
600	struct page *page;
601	page = __dma_alloc_buffer(dev, size, gfp);
602	if (!page)
603		return NULL;
604
605	*ret_page = page;
606	return page_address(page);
607}
608
609
610
611static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
612			 gfp_t gfp, pgprot_t prot, bool is_coherent,
613			 struct dma_attrs *attrs, const void *caller)
614{
615	u64 mask = get_coherent_dma_mask(dev);
616	struct page *page = NULL;
617	void *addr;
618	bool want_vaddr;
619
620#ifdef CONFIG_DMA_API_DEBUG
621	u64 limit = (mask + 1) & ~mask;
622	if (limit && size >= limit) {
623		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
624			size, mask);
625		return NULL;
626	}
627#endif
628
629	if (!mask)
630		return NULL;
631
632	if (mask < 0xffffffffULL)
633		gfp |= GFP_DMA;
634
635	/*
636	 * Following is a work-around (a.k.a. hack) to prevent pages
637	 * with __GFP_COMP being passed to split_page() which cannot
638	 * handle them.  The real problem is that this flag probably
639	 * should be 0 on ARM as it is not supported on this
640	 * platform; see CONFIG_HUGETLBFS.
641	 */
642	gfp &= ~(__GFP_COMP);
643
644	*handle = DMA_ERROR_CODE;
645	size = PAGE_ALIGN(size);
646	want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
647
648	if (is_coherent || nommu())
649		addr = __alloc_simple_buffer(dev, size, gfp, &page);
650	else if (!(gfp & __GFP_WAIT))
651		addr = __alloc_from_pool(size, &page);
652	else if (!dev_get_cma_area(dev))
653		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
654	else
655		addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
656
657	if (page)
658		*handle = pfn_to_dma(dev, page_to_pfn(page));
659
660	return want_vaddr ? addr : page;
661}
662
663/*
664 * Allocate DMA-coherent memory space and return both the kernel remapped
665 * virtual and bus address for that space.
666 */
667void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
668		    gfp_t gfp, struct dma_attrs *attrs)
669{
670	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
671	void *memory;
672
673	if (dma_alloc_from_coherent(dev, size, handle, &memory))
674		return memory;
675
676	return __dma_alloc(dev, size, handle, gfp, prot, false,
677			   attrs, __builtin_return_address(0));
678}
679
680static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
681	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
682{
683	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
684	void *memory;
685
686	if (dma_alloc_from_coherent(dev, size, handle, &memory))
687		return memory;
688
689	return __dma_alloc(dev, size, handle, gfp, prot, true,
690			   attrs, __builtin_return_address(0));
691}
692
693/*
694 * Create userspace mapping for the DMA-coherent memory.
695 */
696int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
697		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
698		 struct dma_attrs *attrs)
699{
700	int ret = -ENXIO;
701#ifdef CONFIG_MMU
702	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
704	unsigned long pfn = dma_to_pfn(dev, dma_addr);
705	unsigned long off = vma->vm_pgoff;
706
707	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
708
709	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
710		return ret;
711
712	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
713		ret = remap_pfn_range(vma, vma->vm_start,
714				      pfn + off,
715				      vma->vm_end - vma->vm_start,
716				      vma->vm_page_prot);
717	}
718#endif	/* CONFIG_MMU */
719
720	return ret;
721}
722
723/*
724 * Free a buffer as defined by the above mapping.
725 */
726static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
727			   dma_addr_t handle, struct dma_attrs *attrs,
728			   bool is_coherent)
729{
730	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
731	bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
732
733	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
734		return;
735
736	size = PAGE_ALIGN(size);
737
738	if (is_coherent || nommu()) {
739		__dma_free_buffer(page, size);
740	} else if (__free_from_pool(cpu_addr, size)) {
741		return;
742	} else if (!dev_get_cma_area(dev)) {
743		if (want_vaddr)
744			__dma_free_remap(cpu_addr, size);
745		__dma_free_buffer(page, size);
746	} else {
747		/*
748		 * Non-atomic allocations cannot be freed with IRQs disabled
749		 */
750		WARN_ON(irqs_disabled());
751		__free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
752	}
753}
754
755void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
756		  dma_addr_t handle, struct dma_attrs *attrs)
757{
758	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
759}
760
761static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
762				  dma_addr_t handle, struct dma_attrs *attrs)
763{
764	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
765}
766
767int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
768		 void *cpu_addr, dma_addr_t handle, size_t size,
769		 struct dma_attrs *attrs)
770{
771	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
772	int ret;
773
774	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
775	if (unlikely(ret))
776		return ret;
777
778	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
779	return 0;
780}
781
782static void dma_cache_maint_page(struct page *page, unsigned long offset,
783	size_t size, enum dma_data_direction dir,
784	void (*op)(const void *, size_t, int))
785{
786	unsigned long pfn;
787	size_t left = size;
788
789	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
790	offset %= PAGE_SIZE;
791
792	/*
793	 * A single sg entry may refer to multiple physically contiguous
794	 * pages.  But we still need to process highmem pages individually.
795	 * If highmem is not configured then the bulk of this loop gets
796	 * optimized out.
797	 */
798	do {
799		size_t len = left;
800		void *vaddr;
801
802		page = pfn_to_page(pfn);
803
804		if (PageHighMem(page)) {
805			if (len + offset > PAGE_SIZE)
806				len = PAGE_SIZE - offset;
807
808			if (cache_is_vipt_nonaliasing()) {
809				vaddr = kmap_atomic(page);
810				op(vaddr + offset, len, dir);
811				kunmap_atomic(vaddr);
812			} else {
813				vaddr = kmap_high_get(page);
814				if (vaddr) {
815					op(vaddr + offset, len, dir);
816					kunmap_high(page);
817				}
818			}
819		} else {
820			vaddr = page_address(page) + offset;
821			op(vaddr, len, dir);
822		}
823		offset = 0;
824		pfn++;
825		left -= len;
826	} while (left);
827}
828
829/*
830 * Make an area consistent for devices.
831 * Note: Drivers should NOT use this function directly, as it will break
832 * platforms with CONFIG_DMABOUNCE.
833 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
834 */
835static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
836	size_t size, enum dma_data_direction dir)
837{
838	phys_addr_t paddr;
839
840	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
841
842	paddr = page_to_phys(page) + off;
843	if (dir == DMA_FROM_DEVICE) {
844		outer_inv_range(paddr, paddr + size);
845	} else {
846		outer_clean_range(paddr, paddr + size);
847	}
848	/* FIXME: non-speculating: flush on bidirectional mappings? */
849}
850
851static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
852	size_t size, enum dma_data_direction dir)
853{
854	phys_addr_t paddr = page_to_phys(page) + off;
855
856	/* FIXME: non-speculating: not required */
857	/* in any case, don't bother invalidating if DMA to device */
858	if (dir != DMA_TO_DEVICE) {
859		outer_inv_range(paddr, paddr + size);
860
861		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
862	}
863
864	/*
865	 * Mark the D-cache clean for these pages to avoid extra flushing.
866	 */
867	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
868		unsigned long pfn;
869		size_t left = size;
870
871		pfn = page_to_pfn(page) + off / PAGE_SIZE;
872		off %= PAGE_SIZE;
873		if (off) {
874			pfn++;
875			left -= PAGE_SIZE - off;
876		}
877		while (left >= PAGE_SIZE) {
878			page = pfn_to_page(pfn++);
879			set_bit(PG_dcache_clean, &page->flags);
880			left -= PAGE_SIZE;
881		}
882	}
883}
884
885/**
886 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
887 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
888 * @sg: list of buffers
889 * @nents: number of buffers to map
890 * @dir: DMA transfer direction
891 *
892 * Map a set of buffers described by scatterlist in streaming mode for DMA.
893 * This is the scatter-gather version of the dma_map_single interface.
894 * Here the scatter gather list elements are each tagged with the
895 * appropriate dma address and length.  They are obtained via
896 * sg_dma_{address,length}.
897 *
898 * Device ownership issues as mentioned for dma_map_single are the same
899 * here.
900 */
901int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
902		enum dma_data_direction dir, struct dma_attrs *attrs)
903{
904	struct dma_map_ops *ops = get_dma_ops(dev);
905	struct scatterlist *s;
906	int i, j;
907
908	for_each_sg(sg, s, nents, i) {
909#ifdef CONFIG_NEED_SG_DMA_LENGTH
910		s->dma_length = s->length;
911#endif
912		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
913						s->length, dir, attrs);
914		if (dma_mapping_error(dev, s->dma_address))
915			goto bad_mapping;
916	}
917	return nents;
918
919 bad_mapping:
920	for_each_sg(sg, s, i, j)
921		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
922	return 0;
923}
924
925/**
926 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
927 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
928 * @sg: list of buffers
929 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
930 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
931 *
932 * Unmap a set of streaming mode DMA translations.  Again, CPU access
933 * rules concerning calls here are the same as for dma_unmap_single().
934 */
935void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
936		enum dma_data_direction dir, struct dma_attrs *attrs)
937{
938	struct dma_map_ops *ops = get_dma_ops(dev);
939	struct scatterlist *s;
940
941	int i;
942
943	for_each_sg(sg, s, nents, i)
944		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
945}
946
947/**
948 * arm_dma_sync_sg_for_cpu
949 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
950 * @sg: list of buffers
951 * @nents: number of buffers to map (returned from dma_map_sg)
952 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
953 */
954void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
955			int nents, enum dma_data_direction dir)
956{
957	struct dma_map_ops *ops = get_dma_ops(dev);
958	struct scatterlist *s;
959	int i;
960
961	for_each_sg(sg, s, nents, i)
962		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
963					 dir);
964}
965
966/**
967 * arm_dma_sync_sg_for_device
968 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
969 * @sg: list of buffers
970 * @nents: number of buffers to map (returned from dma_map_sg)
971 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
972 */
973void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
974			int nents, enum dma_data_direction dir)
975{
976	struct dma_map_ops *ops = get_dma_ops(dev);
977	struct scatterlist *s;
978	int i;
979
980	for_each_sg(sg, s, nents, i)
981		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
982					    dir);
983}
984
985/*
986 * Return whether the given device DMA address mask can be supported
987 * properly.  For example, if your device can only drive the low 24-bits
988 * during bus mastering, then you would pass 0x00ffffff as the mask
989 * to this function.
990 */
991int dma_supported(struct device *dev, u64 mask)
992{
993	return __dma_supported(dev, mask, false);
994}
995EXPORT_SYMBOL(dma_supported);
996
997int arm_dma_set_mask(struct device *dev, u64 dma_mask)
998{
999	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1000		return -EIO;
1001
1002	*dev->dma_mask = dma_mask;
1003
1004	return 0;
1005}
1006
1007#define PREALLOC_DMA_DEBUG_ENTRIES	4096
1008
1009static int __init dma_debug_do_init(void)
1010{
1011	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1012	return 0;
1013}
1014fs_initcall(dma_debug_do_init);
1015
1016#ifdef CONFIG_ARM_DMA_USE_IOMMU
1017
1018/* IOMMU */
1019
1020static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1021
1022static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1023				      size_t size)
1024{
1025	unsigned int order = get_order(size);
1026	unsigned int align = 0;
1027	unsigned int count, start;
1028	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1029	unsigned long flags;
1030	dma_addr_t iova;
1031	int i;
1032
1033	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1034		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1035
1036	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1037	align = (1 << order) - 1;
1038
1039	spin_lock_irqsave(&mapping->lock, flags);
1040	for (i = 0; i < mapping->nr_bitmaps; i++) {
1041		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1042				mapping->bits, 0, count, align);
1043
1044		if (start > mapping->bits)
1045			continue;
1046
1047		bitmap_set(mapping->bitmaps[i], start, count);
1048		break;
1049	}
1050
1051	/*
1052	 * No unused range found. Try to extend the existing mapping
1053	 * and perform a second attempt to reserve an IO virtual
1054	 * address range of size bytes.
1055	 */
1056	if (i == mapping->nr_bitmaps) {
1057		if (extend_iommu_mapping(mapping)) {
1058			spin_unlock_irqrestore(&mapping->lock, flags);
1059			return DMA_ERROR_CODE;
1060		}
1061
1062		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1063				mapping->bits, 0, count, align);
1064
1065		if (start > mapping->bits) {
1066			spin_unlock_irqrestore(&mapping->lock, flags);
1067			return DMA_ERROR_CODE;
1068		}
1069
1070		bitmap_set(mapping->bitmaps[i], start, count);
1071	}
1072	spin_unlock_irqrestore(&mapping->lock, flags);
1073
1074	iova = mapping->base + (mapping_size * i);
1075	iova += start << PAGE_SHIFT;
1076
1077	return iova;
1078}
1079
1080static inline void __free_iova(struct dma_iommu_mapping *mapping,
1081			       dma_addr_t addr, size_t size)
1082{
1083	unsigned int start, count;
1084	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1085	unsigned long flags;
1086	dma_addr_t bitmap_base;
1087	u32 bitmap_index;
1088
1089	if (!size)
1090		return;
1091
1092	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1093	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1094
1095	bitmap_base = mapping->base + mapping_size * bitmap_index;
1096
1097	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1098
1099	if (addr + size > bitmap_base + mapping_size) {
1100		/*
1101		 * The address range to be freed reaches into the iova
1102		 * range of the next bitmap. This should not happen as
1103		 * we don't allow this in __alloc_iova (at the
1104		 * moment).
1105		 */
1106		BUG();
1107	} else
1108		count = size >> PAGE_SHIFT;
1109
1110	spin_lock_irqsave(&mapping->lock, flags);
1111	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1112	spin_unlock_irqrestore(&mapping->lock, flags);
1113}
1114
1115static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1116					  gfp_t gfp, struct dma_attrs *attrs)
1117{
1118	struct page **pages;
1119	int count = size >> PAGE_SHIFT;
1120	int array_size = count * sizeof(struct page *);
1121	int i = 0;
1122
1123	if (array_size <= PAGE_SIZE)
1124		pages = kzalloc(array_size, GFP_KERNEL);
1125	else
1126		pages = vzalloc(array_size);
1127	if (!pages)
1128		return NULL;
1129
1130	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1131	{
1132		unsigned long order = get_order(size);
1133		struct page *page;
1134
1135		page = dma_alloc_from_contiguous(dev, count, order);
1136		if (!page)
1137			goto error;
1138
1139		__dma_clear_buffer(page, size);
1140
1141		for (i = 0; i < count; i++)
1142			pages[i] = page + i;
1143
1144		return pages;
1145	}
1146
1147	/*
1148	 * IOMMU can map any pages, so himem can also be used here
1149	 */
1150	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1151
1152	while (count) {
1153		int j, order;
1154
1155		for (order = __fls(count); order > 0; --order) {
1156			/*
1157			 * We do not want OOM killer to be invoked as long
1158			 * as we can fall back to single pages, so we force
1159			 * __GFP_NORETRY for orders higher than zero.
1160			 */
1161			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1162			if (pages[i])
1163				break;
1164		}
1165
1166		if (!pages[i]) {
1167			/*
1168			 * Fall back to single page allocation.
1169			 * Might invoke OOM killer as last resort.
1170			 */
1171			pages[i] = alloc_pages(gfp, 0);
1172			if (!pages[i])
1173				goto error;
1174		}
1175
1176		if (order) {
1177			split_page(pages[i], order);
1178			j = 1 << order;
1179			while (--j)
1180				pages[i + j] = pages[i] + j;
1181		}
1182
1183		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1184		i += 1 << order;
1185		count -= 1 << order;
1186	}
1187
1188	return pages;
1189error:
1190	while (i--)
1191		if (pages[i])
1192			__free_pages(pages[i], 0);
1193	if (array_size <= PAGE_SIZE)
1194		kfree(pages);
1195	else
1196		vfree(pages);
1197	return NULL;
1198}
1199
1200static int __iommu_free_buffer(struct device *dev, struct page **pages,
1201			       size_t size, struct dma_attrs *attrs)
1202{
1203	int count = size >> PAGE_SHIFT;
1204	int array_size = count * sizeof(struct page *);
1205	int i;
1206
1207	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1208		dma_release_from_contiguous(dev, pages[0], count);
1209	} else {
1210		for (i = 0; i < count; i++)
1211			if (pages[i])
1212				__free_pages(pages[i], 0);
1213	}
1214
1215	if (array_size <= PAGE_SIZE)
1216		kfree(pages);
1217	else
1218		vfree(pages);
1219	return 0;
1220}
1221
1222/*
1223 * Create a CPU mapping for a specified pages
1224 */
1225static void *
1226__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1227		    const void *caller)
1228{
1229	return dma_common_pages_remap(pages, size,
1230			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1231}
1232
1233/*
1234 * Create a mapping in device IO address space for specified pages
1235 */
1236static dma_addr_t
1237__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1238{
1239	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1240	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1241	dma_addr_t dma_addr, iova;
1242	int i, ret = DMA_ERROR_CODE;
1243
1244	dma_addr = __alloc_iova(mapping, size);
1245	if (dma_addr == DMA_ERROR_CODE)
1246		return dma_addr;
1247
1248	iova = dma_addr;
1249	for (i = 0; i < count; ) {
1250		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1251		phys_addr_t phys = page_to_phys(pages[i]);
1252		unsigned int len, j;
1253
1254		for (j = i + 1; j < count; j++, next_pfn++)
1255			if (page_to_pfn(pages[j]) != next_pfn)
1256				break;
1257
1258		len = (j - i) << PAGE_SHIFT;
1259		ret = iommu_map(mapping->domain, iova, phys, len,
1260				IOMMU_READ|IOMMU_WRITE);
1261		if (ret < 0)
1262			goto fail;
1263		iova += len;
1264		i = j;
1265	}
1266	return dma_addr;
1267fail:
1268	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1269	__free_iova(mapping, dma_addr, size);
1270	return DMA_ERROR_CODE;
1271}
1272
1273static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1274{
1275	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1276
1277	/*
1278	 * add optional in-page offset from iova to size and align
1279	 * result to page size
1280	 */
1281	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1282	iova &= PAGE_MASK;
1283
1284	iommu_unmap(mapping->domain, iova, size);
1285	__free_iova(mapping, iova, size);
1286	return 0;
1287}
1288
1289static struct page **__atomic_get_pages(void *addr)
1290{
1291	struct page *page;
1292	phys_addr_t phys;
1293
1294	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1295	page = phys_to_page(phys);
1296
1297	return (struct page **)page;
1298}
1299
1300static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1301{
1302	struct vm_struct *area;
1303
1304	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1305		return __atomic_get_pages(cpu_addr);
1306
1307	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1308		return cpu_addr;
1309
1310	area = find_vm_area(cpu_addr);
1311	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1312		return area->pages;
1313	return NULL;
1314}
1315
1316static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1317				  dma_addr_t *handle)
1318{
1319	struct page *page;
1320	void *addr;
1321
1322	addr = __alloc_from_pool(size, &page);
1323	if (!addr)
1324		return NULL;
1325
1326	*handle = __iommu_create_mapping(dev, &page, size);
1327	if (*handle == DMA_ERROR_CODE)
1328		goto err_mapping;
1329
1330	return addr;
1331
1332err_mapping:
1333	__free_from_pool(addr, size);
1334	return NULL;
1335}
1336
1337static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1338				dma_addr_t handle, size_t size)
1339{
1340	__iommu_remove_mapping(dev, handle, size);
1341	__free_from_pool(cpu_addr, size);
1342}
1343
1344static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1345	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1346{
1347	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1348	struct page **pages;
1349	void *addr = NULL;
1350
1351	*handle = DMA_ERROR_CODE;
1352	size = PAGE_ALIGN(size);
1353
1354	if (!(gfp & __GFP_WAIT))
1355		return __iommu_alloc_atomic(dev, size, handle);
1356
1357	/*
1358	 * Following is a work-around (a.k.a. hack) to prevent pages
1359	 * with __GFP_COMP being passed to split_page() which cannot
1360	 * handle them.  The real problem is that this flag probably
1361	 * should be 0 on ARM as it is not supported on this
1362	 * platform; see CONFIG_HUGETLBFS.
1363	 */
1364	gfp &= ~(__GFP_COMP);
1365
1366	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1367	if (!pages)
1368		return NULL;
1369
1370	*handle = __iommu_create_mapping(dev, pages, size);
1371	if (*handle == DMA_ERROR_CODE)
1372		goto err_buffer;
1373
1374	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1375		return pages;
1376
1377	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1378				   __builtin_return_address(0));
1379	if (!addr)
1380		goto err_mapping;
1381
1382	return addr;
1383
1384err_mapping:
1385	__iommu_remove_mapping(dev, *handle, size);
1386err_buffer:
1387	__iommu_free_buffer(dev, pages, size, attrs);
1388	return NULL;
1389}
1390
1391static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1392		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1393		    struct dma_attrs *attrs)
1394{
1395	unsigned long uaddr = vma->vm_start;
1396	unsigned long usize = vma->vm_end - vma->vm_start;
1397	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1398	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1399	unsigned long off = vma->vm_pgoff;
1400
1401	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1402
1403	if (!pages)
1404		return -ENXIO;
1405
1406	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1407		return -ENXIO;
1408
1409	pages += off;
1410
1411	do {
1412		int ret = vm_insert_page(vma, uaddr, *pages++);
1413		if (ret) {
1414			pr_err("Remapping memory failed: %d\n", ret);
1415			return ret;
1416		}
1417		uaddr += PAGE_SIZE;
1418		usize -= PAGE_SIZE;
1419	} while (usize > 0);
1420
1421	return 0;
1422}
1423
1424/*
1425 * free a page as defined by the above mapping.
1426 * Must not be called with IRQs disabled.
1427 */
1428void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1429			  dma_addr_t handle, struct dma_attrs *attrs)
1430{
1431	struct page **pages;
1432	size = PAGE_ALIGN(size);
1433
1434	if (__in_atomic_pool(cpu_addr, size)) {
1435		__iommu_free_atomic(dev, cpu_addr, handle, size);
1436		return;
1437	}
1438
1439	pages = __iommu_get_pages(cpu_addr, attrs);
1440	if (!pages) {
1441		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1442		return;
1443	}
1444
1445	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1446		dma_common_free_remap(cpu_addr, size,
1447			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1448	}
1449
1450	__iommu_remove_mapping(dev, handle, size);
1451	__iommu_free_buffer(dev, pages, size, attrs);
1452}
1453
1454static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1455				 void *cpu_addr, dma_addr_t dma_addr,
1456				 size_t size, struct dma_attrs *attrs)
1457{
1458	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1459	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1460
1461	if (!pages)
1462		return -ENXIO;
1463
1464	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1465					 GFP_KERNEL);
1466}
1467
1468static int __dma_direction_to_prot(enum dma_data_direction dir)
1469{
1470	int prot;
1471
1472	switch (dir) {
1473	case DMA_BIDIRECTIONAL:
1474		prot = IOMMU_READ | IOMMU_WRITE;
1475		break;
1476	case DMA_TO_DEVICE:
1477		prot = IOMMU_READ;
1478		break;
1479	case DMA_FROM_DEVICE:
1480		prot = IOMMU_WRITE;
1481		break;
1482	default:
1483		prot = 0;
1484	}
1485
1486	return prot;
1487}
1488
1489/*
1490 * Map a part of the scatter-gather list into contiguous io address space
1491 */
1492static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1493			  size_t size, dma_addr_t *handle,
1494			  enum dma_data_direction dir, struct dma_attrs *attrs,
1495			  bool is_coherent)
1496{
1497	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1498	dma_addr_t iova, iova_base;
1499	int ret = 0;
1500	unsigned int count;
1501	struct scatterlist *s;
1502	int prot;
1503
1504	size = PAGE_ALIGN(size);
1505	*handle = DMA_ERROR_CODE;
1506
1507	iova_base = iova = __alloc_iova(mapping, size);
1508	if (iova == DMA_ERROR_CODE)
1509		return -ENOMEM;
1510
1511	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1512		phys_addr_t phys = page_to_phys(sg_page(s));
1513		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1514
1515		if (!is_coherent &&
1516			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1517			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1518
1519		prot = __dma_direction_to_prot(dir);
1520
1521		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1522		if (ret < 0)
1523			goto fail;
1524		count += len >> PAGE_SHIFT;
1525		iova += len;
1526	}
1527	*handle = iova_base;
1528
1529	return 0;
1530fail:
1531	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1532	__free_iova(mapping, iova_base, size);
1533	return ret;
1534}
1535
1536static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1537		     enum dma_data_direction dir, struct dma_attrs *attrs,
1538		     bool is_coherent)
1539{
1540	struct scatterlist *s = sg, *dma = sg, *start = sg;
1541	int i, count = 0;
1542	unsigned int offset = s->offset;
1543	unsigned int size = s->offset + s->length;
1544	unsigned int max = dma_get_max_seg_size(dev);
1545
1546	for (i = 1; i < nents; i++) {
1547		s = sg_next(s);
1548
1549		s->dma_address = DMA_ERROR_CODE;
1550		s->dma_length = 0;
1551
1552		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1553			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1554			    dir, attrs, is_coherent) < 0)
1555				goto bad_mapping;
1556
1557			dma->dma_address += offset;
1558			dma->dma_length = size - offset;
1559
1560			size = offset = s->offset;
1561			start = s;
1562			dma = sg_next(dma);
1563			count += 1;
1564		}
1565		size += s->length;
1566	}
1567	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1568		is_coherent) < 0)
1569		goto bad_mapping;
1570
1571	dma->dma_address += offset;
1572	dma->dma_length = size - offset;
1573
1574	return count+1;
1575
1576bad_mapping:
1577	for_each_sg(sg, s, count, i)
1578		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1579	return 0;
1580}
1581
1582/**
1583 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1584 * @dev: valid struct device pointer
1585 * @sg: list of buffers
1586 * @nents: number of buffers to map
1587 * @dir: DMA transfer direction
1588 *
1589 * Map a set of i/o coherent buffers described by scatterlist in streaming
1590 * mode for DMA. The scatter gather list elements are merged together (if
1591 * possible) and tagged with the appropriate dma address and length. They are
1592 * obtained via sg_dma_{address,length}.
1593 */
1594int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1595		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1596{
1597	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1598}
1599
1600/**
1601 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1602 * @dev: valid struct device pointer
1603 * @sg: list of buffers
1604 * @nents: number of buffers to map
1605 * @dir: DMA transfer direction
1606 *
1607 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1608 * The scatter gather list elements are merged together (if possible) and
1609 * tagged with the appropriate dma address and length. They are obtained via
1610 * sg_dma_{address,length}.
1611 */
1612int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1613		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1614{
1615	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1616}
1617
1618static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1619		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1620		bool is_coherent)
1621{
1622	struct scatterlist *s;
1623	int i;
1624
1625	for_each_sg(sg, s, nents, i) {
1626		if (sg_dma_len(s))
1627			__iommu_remove_mapping(dev, sg_dma_address(s),
1628					       sg_dma_len(s));
1629		if (!is_coherent &&
1630		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1631			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1632					      s->length, dir);
1633	}
1634}
1635
1636/**
1637 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1638 * @dev: valid struct device pointer
1639 * @sg: list of buffers
1640 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1641 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1642 *
1643 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1644 * rules concerning calls here are the same as for dma_unmap_single().
1645 */
1646void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1647		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1648{
1649	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1650}
1651
1652/**
1653 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1654 * @dev: valid struct device pointer
1655 * @sg: list of buffers
1656 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1657 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1658 *
1659 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1660 * rules concerning calls here are the same as for dma_unmap_single().
1661 */
1662void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1663			enum dma_data_direction dir, struct dma_attrs *attrs)
1664{
1665	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1666}
1667
1668/**
1669 * arm_iommu_sync_sg_for_cpu
1670 * @dev: valid struct device pointer
1671 * @sg: list of buffers
1672 * @nents: number of buffers to map (returned from dma_map_sg)
1673 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1674 */
1675void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1676			int nents, enum dma_data_direction dir)
1677{
1678	struct scatterlist *s;
1679	int i;
1680
1681	for_each_sg(sg, s, nents, i)
1682		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1683
1684}
1685
1686/**
1687 * arm_iommu_sync_sg_for_device
1688 * @dev: valid struct device pointer
1689 * @sg: list of buffers
1690 * @nents: number of buffers to map (returned from dma_map_sg)
1691 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1692 */
1693void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1694			int nents, enum dma_data_direction dir)
1695{
1696	struct scatterlist *s;
1697	int i;
1698
1699	for_each_sg(sg, s, nents, i)
1700		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1701}
1702
1703
1704/**
1705 * arm_coherent_iommu_map_page
1706 * @dev: valid struct device pointer
1707 * @page: page that buffer resides in
1708 * @offset: offset into page for start of buffer
1709 * @size: size of buffer to map
1710 * @dir: DMA transfer direction
1711 *
1712 * Coherent IOMMU aware version of arm_dma_map_page()
1713 */
1714static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1715	     unsigned long offset, size_t size, enum dma_data_direction dir,
1716	     struct dma_attrs *attrs)
1717{
1718	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1719	dma_addr_t dma_addr;
1720	int ret, prot, len = PAGE_ALIGN(size + offset);
1721
1722	dma_addr = __alloc_iova(mapping, len);
1723	if (dma_addr == DMA_ERROR_CODE)
1724		return dma_addr;
1725
1726	prot = __dma_direction_to_prot(dir);
1727
1728	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1729	if (ret < 0)
1730		goto fail;
1731
1732	return dma_addr + offset;
1733fail:
1734	__free_iova(mapping, dma_addr, len);
1735	return DMA_ERROR_CODE;
1736}
1737
1738/**
1739 * arm_iommu_map_page
1740 * @dev: valid struct device pointer
1741 * @page: page that buffer resides in
1742 * @offset: offset into page for start of buffer
1743 * @size: size of buffer to map
1744 * @dir: DMA transfer direction
1745 *
1746 * IOMMU aware version of arm_dma_map_page()
1747 */
1748static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1749	     unsigned long offset, size_t size, enum dma_data_direction dir,
1750	     struct dma_attrs *attrs)
1751{
1752	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1753		__dma_page_cpu_to_dev(page, offset, size, dir);
1754
1755	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1756}
1757
1758/**
1759 * arm_coherent_iommu_unmap_page
1760 * @dev: valid struct device pointer
1761 * @handle: DMA address of buffer
1762 * @size: size of buffer (same as passed to dma_map_page)
1763 * @dir: DMA transfer direction (same as passed to dma_map_page)
1764 *
1765 * Coherent IOMMU aware version of arm_dma_unmap_page()
1766 */
1767static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1768		size_t size, enum dma_data_direction dir,
1769		struct dma_attrs *attrs)
1770{
1771	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1772	dma_addr_t iova = handle & PAGE_MASK;
1773	int offset = handle & ~PAGE_MASK;
1774	int len = PAGE_ALIGN(size + offset);
1775
1776	if (!iova)
1777		return;
1778
1779	iommu_unmap(mapping->domain, iova, len);
1780	__free_iova(mapping, iova, len);
1781}
1782
1783/**
1784 * arm_iommu_unmap_page
1785 * @dev: valid struct device pointer
1786 * @handle: DMA address of buffer
1787 * @size: size of buffer (same as passed to dma_map_page)
1788 * @dir: DMA transfer direction (same as passed to dma_map_page)
1789 *
1790 * IOMMU aware version of arm_dma_unmap_page()
1791 */
1792static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1793		size_t size, enum dma_data_direction dir,
1794		struct dma_attrs *attrs)
1795{
1796	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1797	dma_addr_t iova = handle & PAGE_MASK;
1798	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1799	int offset = handle & ~PAGE_MASK;
1800	int len = PAGE_ALIGN(size + offset);
1801
1802	if (!iova)
1803		return;
1804
1805	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1806		__dma_page_dev_to_cpu(page, offset, size, dir);
1807
1808	iommu_unmap(mapping->domain, iova, len);
1809	__free_iova(mapping, iova, len);
1810}
1811
1812static void arm_iommu_sync_single_for_cpu(struct device *dev,
1813		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1814{
1815	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1816	dma_addr_t iova = handle & PAGE_MASK;
1817	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1818	unsigned int offset = handle & ~PAGE_MASK;
1819
1820	if (!iova)
1821		return;
1822
1823	__dma_page_dev_to_cpu(page, offset, size, dir);
1824}
1825
1826static void arm_iommu_sync_single_for_device(struct device *dev,
1827		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1828{
1829	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1830	dma_addr_t iova = handle & PAGE_MASK;
1831	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1832	unsigned int offset = handle & ~PAGE_MASK;
1833
1834	if (!iova)
1835		return;
1836
1837	__dma_page_cpu_to_dev(page, offset, size, dir);
1838}
1839
1840struct dma_map_ops iommu_ops = {
1841	.alloc		= arm_iommu_alloc_attrs,
1842	.free		= arm_iommu_free_attrs,
1843	.mmap		= arm_iommu_mmap_attrs,
1844	.get_sgtable	= arm_iommu_get_sgtable,
1845
1846	.map_page		= arm_iommu_map_page,
1847	.unmap_page		= arm_iommu_unmap_page,
1848	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1849	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1850
1851	.map_sg			= arm_iommu_map_sg,
1852	.unmap_sg		= arm_iommu_unmap_sg,
1853	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1854	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1855
1856	.set_dma_mask		= arm_dma_set_mask,
1857};
1858
1859struct dma_map_ops iommu_coherent_ops = {
1860	.alloc		= arm_iommu_alloc_attrs,
1861	.free		= arm_iommu_free_attrs,
1862	.mmap		= arm_iommu_mmap_attrs,
1863	.get_sgtable	= arm_iommu_get_sgtable,
1864
1865	.map_page	= arm_coherent_iommu_map_page,
1866	.unmap_page	= arm_coherent_iommu_unmap_page,
1867
1868	.map_sg		= arm_coherent_iommu_map_sg,
1869	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1870
1871	.set_dma_mask	= arm_dma_set_mask,
1872};
1873
1874/**
1875 * arm_iommu_create_mapping
1876 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1877 * @base: start address of the valid IO address space
1878 * @size: maximum size of the valid IO address space
1879 *
1880 * Creates a mapping structure which holds information about used/unused
1881 * IO address ranges, which is required to perform memory allocation and
1882 * mapping with IOMMU aware functions.
1883 *
1884 * The client device need to be attached to the mapping with
1885 * arm_iommu_attach_device function.
1886 */
1887struct dma_iommu_mapping *
1888arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1889{
1890	unsigned int bits = size >> PAGE_SHIFT;
1891	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1892	struct dma_iommu_mapping *mapping;
1893	int extensions = 1;
1894	int err = -ENOMEM;
1895
1896	/* currently only 32-bit DMA address space is supported */
1897	if (size > DMA_BIT_MASK(32) + 1)
1898		return ERR_PTR(-ERANGE);
1899
1900	if (!bitmap_size)
1901		return ERR_PTR(-EINVAL);
1902
1903	if (bitmap_size > PAGE_SIZE) {
1904		extensions = bitmap_size / PAGE_SIZE;
1905		bitmap_size = PAGE_SIZE;
1906	}
1907
1908	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1909	if (!mapping)
1910		goto err;
1911
1912	mapping->bitmap_size = bitmap_size;
1913	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1914				GFP_KERNEL);
1915	if (!mapping->bitmaps)
1916		goto err2;
1917
1918	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1919	if (!mapping->bitmaps[0])
1920		goto err3;
1921
1922	mapping->nr_bitmaps = 1;
1923	mapping->extensions = extensions;
1924	mapping->base = base;
1925	mapping->bits = BITS_PER_BYTE * bitmap_size;
1926
1927	spin_lock_init(&mapping->lock);
1928
1929	mapping->domain = iommu_domain_alloc(bus);
1930	if (!mapping->domain)
1931		goto err4;
1932
1933	kref_init(&mapping->kref);
1934	return mapping;
1935err4:
1936	kfree(mapping->bitmaps[0]);
1937err3:
1938	kfree(mapping->bitmaps);
1939err2:
1940	kfree(mapping);
1941err:
1942	return ERR_PTR(err);
1943}
1944EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1945
1946static void release_iommu_mapping(struct kref *kref)
1947{
1948	int i;
1949	struct dma_iommu_mapping *mapping =
1950		container_of(kref, struct dma_iommu_mapping, kref);
1951
1952	iommu_domain_free(mapping->domain);
1953	for (i = 0; i < mapping->nr_bitmaps; i++)
1954		kfree(mapping->bitmaps[i]);
1955	kfree(mapping->bitmaps);
1956	kfree(mapping);
1957}
1958
1959static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1960{
1961	int next_bitmap;
1962
1963	if (mapping->nr_bitmaps >= mapping->extensions)
1964		return -EINVAL;
1965
1966	next_bitmap = mapping->nr_bitmaps;
1967	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1968						GFP_ATOMIC);
1969	if (!mapping->bitmaps[next_bitmap])
1970		return -ENOMEM;
1971
1972	mapping->nr_bitmaps++;
1973
1974	return 0;
1975}
1976
1977void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1978{
1979	if (mapping)
1980		kref_put(&mapping->kref, release_iommu_mapping);
1981}
1982EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1983
1984static int __arm_iommu_attach_device(struct device *dev,
1985				     struct dma_iommu_mapping *mapping)
1986{
1987	int err;
1988
1989	err = iommu_attach_device(mapping->domain, dev);
1990	if (err)
1991		return err;
1992
1993	kref_get(&mapping->kref);
1994	to_dma_iommu_mapping(dev) = mapping;
1995
1996	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1997	return 0;
1998}
1999
2000/**
2001 * arm_iommu_attach_device
2002 * @dev: valid struct device pointer
2003 * @mapping: io address space mapping structure (returned from
2004 *	arm_iommu_create_mapping)
2005 *
2006 * Attaches specified io address space mapping to the provided device.
2007 * This replaces the dma operations (dma_map_ops pointer) with the
2008 * IOMMU aware version.
2009 *
2010 * More than one client might be attached to the same io address space
2011 * mapping.
2012 */
2013int arm_iommu_attach_device(struct device *dev,
2014			    struct dma_iommu_mapping *mapping)
2015{
2016	int err;
2017
2018	err = __arm_iommu_attach_device(dev, mapping);
2019	if (err)
2020		return err;
2021
2022	set_dma_ops(dev, &iommu_ops);
2023	return 0;
2024}
2025EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2026
2027static void __arm_iommu_detach_device(struct device *dev)
2028{
2029	struct dma_iommu_mapping *mapping;
2030
2031	mapping = to_dma_iommu_mapping(dev);
2032	if (!mapping) {
2033		dev_warn(dev, "Not attached\n");
2034		return;
2035	}
2036
2037	iommu_detach_device(mapping->domain, dev);
2038	kref_put(&mapping->kref, release_iommu_mapping);
2039	to_dma_iommu_mapping(dev) = NULL;
2040
2041	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2042}
2043
2044/**
2045 * arm_iommu_detach_device
2046 * @dev: valid struct device pointer
2047 *
2048 * Detaches the provided device from a previously attached map.
2049 * This voids the dma operations (dma_map_ops pointer)
2050 */
2051void arm_iommu_detach_device(struct device *dev)
2052{
2053	__arm_iommu_detach_device(dev);
2054	set_dma_ops(dev, NULL);
2055}
2056EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2057
2058static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2059{
2060	return coherent ? &iommu_coherent_ops : &iommu_ops;
2061}
2062
2063static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2064				    struct iommu_ops *iommu)
2065{
2066	struct dma_iommu_mapping *mapping;
2067
2068	if (!iommu)
2069		return false;
2070
2071	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2072	if (IS_ERR(mapping)) {
2073		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2074				size, dev_name(dev));
2075		return false;
2076	}
2077
2078	if (__arm_iommu_attach_device(dev, mapping)) {
2079		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2080				dev_name(dev));
2081		arm_iommu_release_mapping(mapping);
2082		return false;
2083	}
2084
2085	return true;
2086}
2087
2088static void arm_teardown_iommu_dma_ops(struct device *dev)
2089{
2090	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2091
2092	if (!mapping)
2093		return;
2094
2095	__arm_iommu_detach_device(dev);
2096	arm_iommu_release_mapping(mapping);
2097}
2098
2099#else
2100
2101static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2102				    struct iommu_ops *iommu)
2103{
2104	return false;
2105}
2106
2107static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2108
2109#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2110
2111#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2112
2113static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2114{
2115	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2116}
2117
2118void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2119			struct iommu_ops *iommu, bool coherent)
2120{
2121	struct dma_map_ops *dma_ops;
2122
2123	dev->archdata.dma_coherent = coherent;
2124	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2125		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2126	else
2127		dma_ops = arm_get_dma_map_ops(coherent);
2128
2129	set_dma_ops(dev, dma_ops);
2130}
2131
2132void arch_teardown_dma_ops(struct device *dev)
2133{
2134	arm_teardown_iommu_dma_ops(dev);
2135}
2136