1/* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12#include <linux/bootmem.h> 13#include <linux/module.h> 14#include <linux/mm.h> 15#include <linux/genalloc.h> 16#include <linux/gfp.h> 17#include <linux/errno.h> 18#include <linux/list.h> 19#include <linux/init.h> 20#include <linux/device.h> 21#include <linux/dma-mapping.h> 22#include <linux/dma-contiguous.h> 23#include <linux/highmem.h> 24#include <linux/memblock.h> 25#include <linux/slab.h> 26#include <linux/iommu.h> 27#include <linux/io.h> 28#include <linux/vmalloc.h> 29#include <linux/sizes.h> 30#include <linux/cma.h> 31 32#include <asm/memory.h> 33#include <asm/highmem.h> 34#include <asm/cacheflush.h> 35#include <asm/tlbflush.h> 36#include <asm/mach/arch.h> 37#include <asm/dma-iommu.h> 38#include <asm/mach/map.h> 39#include <asm/system_info.h> 40#include <asm/dma-contiguous.h> 41 42#include "mm.h" 43 44/* 45 * The DMA API is built upon the notion of "buffer ownership". A buffer 46 * is either exclusively owned by the CPU (and therefore may be accessed 47 * by it) or exclusively owned by the DMA device. These helper functions 48 * represent the transitions between these two ownership states. 49 * 50 * Note, however, that on later ARMs, this notion does not work due to 51 * speculative prefetches. We model our approach on the assumption that 52 * the CPU does do speculative prefetches, which means we clean caches 53 * before transfers and delay cache invalidation until transfer completion. 54 * 55 */ 56static void __dma_page_cpu_to_dev(struct page *, unsigned long, 57 size_t, enum dma_data_direction); 58static void __dma_page_dev_to_cpu(struct page *, unsigned long, 59 size_t, enum dma_data_direction); 60 61/** 62 * arm_dma_map_page - map a portion of a page for streaming DMA 63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 64 * @page: page that buffer resides in 65 * @offset: offset into page for start of buffer 66 * @size: size of buffer to map 67 * @dir: DMA transfer direction 68 * 69 * Ensure that any data held in the cache is appropriately discarded 70 * or written back. 71 * 72 * The device owns this memory once this call has completed. The CPU 73 * can regain ownership by calling dma_unmap_page(). 74 */ 75static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 76 unsigned long offset, size_t size, enum dma_data_direction dir, 77 struct dma_attrs *attrs) 78{ 79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 80 __dma_page_cpu_to_dev(page, offset, size, dir); 81 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 82} 83 84static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 85 unsigned long offset, size_t size, enum dma_data_direction dir, 86 struct dma_attrs *attrs) 87{ 88 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 89} 90 91/** 92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 94 * @handle: DMA address of buffer 95 * @size: size of buffer (same as passed to dma_map_page) 96 * @dir: DMA transfer direction (same as passed to dma_map_page) 97 * 98 * Unmap a page streaming mode DMA translation. The handle and size 99 * must match what was provided in the previous dma_map_page() call. 100 * All other usages are undefined. 101 * 102 * After this call, reads by the CPU to the buffer are guaranteed to see 103 * whatever the device wrote there. 104 */ 105static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 106 size_t size, enum dma_data_direction dir, 107 struct dma_attrs *attrs) 108{ 109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 111 handle & ~PAGE_MASK, size, dir); 112} 113 114static void arm_dma_sync_single_for_cpu(struct device *dev, 115 dma_addr_t handle, size_t size, enum dma_data_direction dir) 116{ 117 unsigned int offset = handle & (PAGE_SIZE - 1); 118 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 119 __dma_page_dev_to_cpu(page, offset, size, dir); 120} 121 122static void arm_dma_sync_single_for_device(struct device *dev, 123 dma_addr_t handle, size_t size, enum dma_data_direction dir) 124{ 125 unsigned int offset = handle & (PAGE_SIZE - 1); 126 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 127 __dma_page_cpu_to_dev(page, offset, size, dir); 128} 129 130struct dma_map_ops arm_dma_ops = { 131 .alloc = arm_dma_alloc, 132 .free = arm_dma_free, 133 .mmap = arm_dma_mmap, 134 .get_sgtable = arm_dma_get_sgtable, 135 .map_page = arm_dma_map_page, 136 .unmap_page = arm_dma_unmap_page, 137 .map_sg = arm_dma_map_sg, 138 .unmap_sg = arm_dma_unmap_sg, 139 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 140 .sync_single_for_device = arm_dma_sync_single_for_device, 141 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 142 .sync_sg_for_device = arm_dma_sync_sg_for_device, 143 .set_dma_mask = arm_dma_set_mask, 144}; 145EXPORT_SYMBOL(arm_dma_ops); 146 147static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 148 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 149static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 150 dma_addr_t handle, struct dma_attrs *attrs); 151 152struct dma_map_ops arm_coherent_dma_ops = { 153 .alloc = arm_coherent_dma_alloc, 154 .free = arm_coherent_dma_free, 155 .mmap = arm_dma_mmap, 156 .get_sgtable = arm_dma_get_sgtable, 157 .map_page = arm_coherent_dma_map_page, 158 .map_sg = arm_dma_map_sg, 159 .set_dma_mask = arm_dma_set_mask, 160}; 161EXPORT_SYMBOL(arm_coherent_dma_ops); 162 163static int __dma_supported(struct device *dev, u64 mask, bool warn) 164{ 165 unsigned long max_dma_pfn; 166 167 /* 168 * If the mask allows for more memory than we can address, 169 * and we actually have that much memory, then we must 170 * indicate that DMA to this device is not supported. 171 */ 172 if (sizeof(mask) != sizeof(dma_addr_t) && 173 mask > (dma_addr_t)~0 && 174 dma_to_pfn(dev, ~0) < max_pfn - 1) { 175 if (warn) { 176 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 177 mask); 178 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 179 } 180 return 0; 181 } 182 183 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 184 185 /* 186 * Translate the device's DMA mask to a PFN limit. This 187 * PFN number includes the page which we can DMA to. 188 */ 189 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 190 if (warn) 191 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 192 mask, 193 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 194 max_dma_pfn + 1); 195 return 0; 196 } 197 198 return 1; 199} 200 201static u64 get_coherent_dma_mask(struct device *dev) 202{ 203 u64 mask = (u64)DMA_BIT_MASK(32); 204 205 if (dev) { 206 mask = dev->coherent_dma_mask; 207 208 /* 209 * Sanity check the DMA mask - it must be non-zero, and 210 * must be able to be satisfied by a DMA allocation. 211 */ 212 if (mask == 0) { 213 dev_warn(dev, "coherent DMA mask is unset\n"); 214 return 0; 215 } 216 217 if (!__dma_supported(dev, mask, true)) 218 return 0; 219 } 220 221 return mask; 222} 223 224static void __dma_clear_buffer(struct page *page, size_t size) 225{ 226 /* 227 * Ensure that the allocated pages are zeroed, and that any data 228 * lurking in the kernel direct-mapped region is invalidated. 229 */ 230 if (PageHighMem(page)) { 231 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 232 phys_addr_t end = base + size; 233 while (size > 0) { 234 void *ptr = kmap_atomic(page); 235 memset(ptr, 0, PAGE_SIZE); 236 dmac_flush_range(ptr, ptr + PAGE_SIZE); 237 kunmap_atomic(ptr); 238 page++; 239 size -= PAGE_SIZE; 240 } 241 outer_flush_range(base, end); 242 } else { 243 void *ptr = page_address(page); 244 memset(ptr, 0, size); 245 dmac_flush_range(ptr, ptr + size); 246 outer_flush_range(__pa(ptr), __pa(ptr) + size); 247 } 248} 249 250/* 251 * Allocate a DMA buffer for 'dev' of size 'size' using the 252 * specified gfp mask. Note that 'size' must be page aligned. 253 */ 254static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 255{ 256 unsigned long order = get_order(size); 257 struct page *page, *p, *e; 258 259 page = alloc_pages(gfp, order); 260 if (!page) 261 return NULL; 262 263 /* 264 * Now split the huge page and free the excess pages 265 */ 266 split_page(page, order); 267 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 268 __free_page(p); 269 270 __dma_clear_buffer(page, size); 271 272 return page; 273} 274 275/* 276 * Free a DMA buffer. 'size' must be page aligned. 277 */ 278static void __dma_free_buffer(struct page *page, size_t size) 279{ 280 struct page *e = page + (size >> PAGE_SHIFT); 281 282 while (page < e) { 283 __free_page(page); 284 page++; 285 } 286} 287 288#ifdef CONFIG_MMU 289 290static void *__alloc_from_contiguous(struct device *dev, size_t size, 291 pgprot_t prot, struct page **ret_page, 292 const void *caller, bool want_vaddr); 293 294static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 295 pgprot_t prot, struct page **ret_page, 296 const void *caller, bool want_vaddr); 297 298static void * 299__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 300 const void *caller) 301{ 302 /* 303 * DMA allocation can be mapped to user space, so lets 304 * set VM_USERMAP flags too. 305 */ 306 return dma_common_contiguous_remap(page, size, 307 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 308 prot, caller); 309} 310 311static void __dma_free_remap(void *cpu_addr, size_t size) 312{ 313 dma_common_free_remap(cpu_addr, size, 314 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 315} 316 317#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 318static struct gen_pool *atomic_pool; 319 320static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; 321 322static int __init early_coherent_pool(char *p) 323{ 324 atomic_pool_size = memparse(p, &p); 325 return 0; 326} 327early_param("coherent_pool", early_coherent_pool); 328 329void __init init_dma_coherent_pool_size(unsigned long size) 330{ 331 /* 332 * Catch any attempt to set the pool size too late. 333 */ 334 BUG_ON(atomic_pool); 335 336 /* 337 * Set architecture specific coherent pool size only if 338 * it has not been changed by kernel command line parameter. 339 */ 340 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE) 341 atomic_pool_size = size; 342} 343 344/* 345 * Initialise the coherent pool for atomic allocations. 346 */ 347static int __init atomic_pool_init(void) 348{ 349 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 350 gfp_t gfp = GFP_KERNEL | GFP_DMA; 351 struct page *page; 352 void *ptr; 353 354 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 355 if (!atomic_pool) 356 goto out; 357 358 if (dev_get_cma_area(NULL)) 359 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 360 &page, atomic_pool_init, true); 361 else 362 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 363 &page, atomic_pool_init, true); 364 if (ptr) { 365 int ret; 366 367 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 368 page_to_phys(page), 369 atomic_pool_size, -1); 370 if (ret) 371 goto destroy_genpool; 372 373 gen_pool_set_algo(atomic_pool, 374 gen_pool_first_fit_order_align, 375 (void *)PAGE_SHIFT); 376 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n", 377 atomic_pool_size / 1024); 378 return 0; 379 } 380 381destroy_genpool: 382 gen_pool_destroy(atomic_pool); 383 atomic_pool = NULL; 384out: 385 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n", 386 atomic_pool_size / 1024); 387 return -ENOMEM; 388} 389/* 390 * CMA is activated by core_initcall, so we must be called after it. 391 */ 392postcore_initcall(atomic_pool_init); 393 394struct dma_contig_early_reserve { 395 phys_addr_t base; 396 unsigned long size; 397}; 398 399static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 400 401static int dma_mmu_remap_num __initdata; 402 403void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 404{ 405 dma_mmu_remap[dma_mmu_remap_num].base = base; 406 dma_mmu_remap[dma_mmu_remap_num].size = size; 407 dma_mmu_remap_num++; 408} 409 410void __init dma_contiguous_remap(void) 411{ 412 int i; 413 for (i = 0; i < dma_mmu_remap_num; i++) { 414 phys_addr_t start = dma_mmu_remap[i].base; 415 phys_addr_t end = start + dma_mmu_remap[i].size; 416 struct map_desc map; 417 unsigned long addr; 418 419 if (end > arm_lowmem_limit) 420 end = arm_lowmem_limit; 421 if (start >= end) 422 continue; 423 424 map.pfn = __phys_to_pfn(start); 425 map.virtual = __phys_to_virt(start); 426 map.length = end - start; 427 map.type = MT_MEMORY_DMA_READY; 428 429 /* 430 * Clear previous low-memory mapping to ensure that the 431 * TLB does not see any conflicting entries, then flush 432 * the TLB of the old entries before creating new mappings. 433 * 434 * This ensures that any speculatively loaded TLB entries 435 * (even though they may be rare) can not cause any problems, 436 * and ensures that this code is architecturally compliant. 437 */ 438 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 439 addr += PMD_SIZE) 440 pmd_clear(pmd_off_k(addr)); 441 442 flush_tlb_kernel_range(__phys_to_virt(start), 443 __phys_to_virt(end)); 444 445 iotable_init(&map, 1); 446 } 447} 448 449static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 450 void *data) 451{ 452 struct page *page = virt_to_page(addr); 453 pgprot_t prot = *(pgprot_t *)data; 454 455 set_pte_ext(pte, mk_pte(page, prot), 0); 456 return 0; 457} 458 459static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 460{ 461 unsigned long start = (unsigned long) page_address(page); 462 unsigned end = start + size; 463 464 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 465 flush_tlb_kernel_range(start, end); 466} 467 468static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 469 pgprot_t prot, struct page **ret_page, 470 const void *caller, bool want_vaddr) 471{ 472 struct page *page; 473 void *ptr = NULL; 474 page = __dma_alloc_buffer(dev, size, gfp); 475 if (!page) 476 return NULL; 477 if (!want_vaddr) 478 goto out; 479 480 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 481 if (!ptr) { 482 __dma_free_buffer(page, size); 483 return NULL; 484 } 485 486 out: 487 *ret_page = page; 488 return ptr; 489} 490 491static void *__alloc_from_pool(size_t size, struct page **ret_page) 492{ 493 unsigned long val; 494 void *ptr = NULL; 495 496 if (!atomic_pool) { 497 WARN(1, "coherent pool not initialised!\n"); 498 return NULL; 499 } 500 501 val = gen_pool_alloc(atomic_pool, size); 502 if (val) { 503 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 504 505 *ret_page = phys_to_page(phys); 506 ptr = (void *)val; 507 } 508 509 return ptr; 510} 511 512static bool __in_atomic_pool(void *start, size_t size) 513{ 514 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 515} 516 517static int __free_from_pool(void *start, size_t size) 518{ 519 if (!__in_atomic_pool(start, size)) 520 return 0; 521 522 gen_pool_free(atomic_pool, (unsigned long)start, size); 523 524 return 1; 525} 526 527static void *__alloc_from_contiguous(struct device *dev, size_t size, 528 pgprot_t prot, struct page **ret_page, 529 const void *caller, bool want_vaddr) 530{ 531 unsigned long order = get_order(size); 532 size_t count = size >> PAGE_SHIFT; 533 struct page *page; 534 void *ptr = NULL; 535 536 page = dma_alloc_from_contiguous(dev, count, order); 537 if (!page) 538 return NULL; 539 540 __dma_clear_buffer(page, size); 541 542 if (!want_vaddr) 543 goto out; 544 545 if (PageHighMem(page)) { 546 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 547 if (!ptr) { 548 dma_release_from_contiguous(dev, page, count); 549 return NULL; 550 } 551 } else { 552 __dma_remap(page, size, prot); 553 ptr = page_address(page); 554 } 555 556 out: 557 *ret_page = page; 558 return ptr; 559} 560 561static void __free_from_contiguous(struct device *dev, struct page *page, 562 void *cpu_addr, size_t size, bool want_vaddr) 563{ 564 if (want_vaddr) { 565 if (PageHighMem(page)) 566 __dma_free_remap(cpu_addr, size); 567 else 568 __dma_remap(page, size, PAGE_KERNEL); 569 } 570 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 571} 572 573static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 574{ 575 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 576 pgprot_writecombine(prot) : 577 pgprot_dmacoherent(prot); 578 return prot; 579} 580 581#define nommu() 0 582 583#else /* !CONFIG_MMU */ 584 585#define nommu() 1 586 587#define __get_dma_pgprot(attrs, prot) __pgprot(0) 588#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL 589#define __alloc_from_pool(size, ret_page) NULL 590#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL 591#define __free_from_pool(cpu_addr, size) 0 592#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0) 593#define __dma_free_remap(cpu_addr, size) do { } while (0) 594 595#endif /* CONFIG_MMU */ 596 597static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 598 struct page **ret_page) 599{ 600 struct page *page; 601 page = __dma_alloc_buffer(dev, size, gfp); 602 if (!page) 603 return NULL; 604 605 *ret_page = page; 606 return page_address(page); 607} 608 609 610 611static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 612 gfp_t gfp, pgprot_t prot, bool is_coherent, 613 struct dma_attrs *attrs, const void *caller) 614{ 615 u64 mask = get_coherent_dma_mask(dev); 616 struct page *page = NULL; 617 void *addr; 618 bool want_vaddr; 619 620#ifdef CONFIG_DMA_API_DEBUG 621 u64 limit = (mask + 1) & ~mask; 622 if (limit && size >= limit) { 623 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 624 size, mask); 625 return NULL; 626 } 627#endif 628 629 if (!mask) 630 return NULL; 631 632 if (mask < 0xffffffffULL) 633 gfp |= GFP_DMA; 634 635 /* 636 * Following is a work-around (a.k.a. hack) to prevent pages 637 * with __GFP_COMP being passed to split_page() which cannot 638 * handle them. The real problem is that this flag probably 639 * should be 0 on ARM as it is not supported on this 640 * platform; see CONFIG_HUGETLBFS. 641 */ 642 gfp &= ~(__GFP_COMP); 643 644 *handle = DMA_ERROR_CODE; 645 size = PAGE_ALIGN(size); 646 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs); 647 648 if (is_coherent || nommu()) 649 addr = __alloc_simple_buffer(dev, size, gfp, &page); 650 else if (!(gfp & __GFP_WAIT)) 651 addr = __alloc_from_pool(size, &page); 652 else if (!dev_get_cma_area(dev)) 653 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr); 654 else 655 addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr); 656 657 if (page) 658 *handle = pfn_to_dma(dev, page_to_pfn(page)); 659 660 return want_vaddr ? addr : page; 661} 662 663/* 664 * Allocate DMA-coherent memory space and return both the kernel remapped 665 * virtual and bus address for that space. 666 */ 667void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 668 gfp_t gfp, struct dma_attrs *attrs) 669{ 670 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 671 void *memory; 672 673 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 674 return memory; 675 676 return __dma_alloc(dev, size, handle, gfp, prot, false, 677 attrs, __builtin_return_address(0)); 678} 679 680static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 681 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 682{ 683 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 684 void *memory; 685 686 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 687 return memory; 688 689 return __dma_alloc(dev, size, handle, gfp, prot, true, 690 attrs, __builtin_return_address(0)); 691} 692 693/* 694 * Create userspace mapping for the DMA-coherent memory. 695 */ 696int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 697 void *cpu_addr, dma_addr_t dma_addr, size_t size, 698 struct dma_attrs *attrs) 699{ 700 int ret = -ENXIO; 701#ifdef CONFIG_MMU 702 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 703 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 704 unsigned long pfn = dma_to_pfn(dev, dma_addr); 705 unsigned long off = vma->vm_pgoff; 706 707 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 708 709 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 710 return ret; 711 712 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 713 ret = remap_pfn_range(vma, vma->vm_start, 714 pfn + off, 715 vma->vm_end - vma->vm_start, 716 vma->vm_page_prot); 717 } 718#endif /* CONFIG_MMU */ 719 720 return ret; 721} 722 723/* 724 * Free a buffer as defined by the above mapping. 725 */ 726static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 727 dma_addr_t handle, struct dma_attrs *attrs, 728 bool is_coherent) 729{ 730 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 731 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs); 732 733 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 734 return; 735 736 size = PAGE_ALIGN(size); 737 738 if (is_coherent || nommu()) { 739 __dma_free_buffer(page, size); 740 } else if (__free_from_pool(cpu_addr, size)) { 741 return; 742 } else if (!dev_get_cma_area(dev)) { 743 if (want_vaddr) 744 __dma_free_remap(cpu_addr, size); 745 __dma_free_buffer(page, size); 746 } else { 747 /* 748 * Non-atomic allocations cannot be freed with IRQs disabled 749 */ 750 WARN_ON(irqs_disabled()); 751 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr); 752 } 753} 754 755void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 756 dma_addr_t handle, struct dma_attrs *attrs) 757{ 758 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 759} 760 761static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 762 dma_addr_t handle, struct dma_attrs *attrs) 763{ 764 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 765} 766 767int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 768 void *cpu_addr, dma_addr_t handle, size_t size, 769 struct dma_attrs *attrs) 770{ 771 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 772 int ret; 773 774 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 775 if (unlikely(ret)) 776 return ret; 777 778 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 779 return 0; 780} 781 782static void dma_cache_maint_page(struct page *page, unsigned long offset, 783 size_t size, enum dma_data_direction dir, 784 void (*op)(const void *, size_t, int)) 785{ 786 unsigned long pfn; 787 size_t left = size; 788 789 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 790 offset %= PAGE_SIZE; 791 792 /* 793 * A single sg entry may refer to multiple physically contiguous 794 * pages. But we still need to process highmem pages individually. 795 * If highmem is not configured then the bulk of this loop gets 796 * optimized out. 797 */ 798 do { 799 size_t len = left; 800 void *vaddr; 801 802 page = pfn_to_page(pfn); 803 804 if (PageHighMem(page)) { 805 if (len + offset > PAGE_SIZE) 806 len = PAGE_SIZE - offset; 807 808 if (cache_is_vipt_nonaliasing()) { 809 vaddr = kmap_atomic(page); 810 op(vaddr + offset, len, dir); 811 kunmap_atomic(vaddr); 812 } else { 813 vaddr = kmap_high_get(page); 814 if (vaddr) { 815 op(vaddr + offset, len, dir); 816 kunmap_high(page); 817 } 818 } 819 } else { 820 vaddr = page_address(page) + offset; 821 op(vaddr, len, dir); 822 } 823 offset = 0; 824 pfn++; 825 left -= len; 826 } while (left); 827} 828 829/* 830 * Make an area consistent for devices. 831 * Note: Drivers should NOT use this function directly, as it will break 832 * platforms with CONFIG_DMABOUNCE. 833 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 834 */ 835static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 836 size_t size, enum dma_data_direction dir) 837{ 838 phys_addr_t paddr; 839 840 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 841 842 paddr = page_to_phys(page) + off; 843 if (dir == DMA_FROM_DEVICE) { 844 outer_inv_range(paddr, paddr + size); 845 } else { 846 outer_clean_range(paddr, paddr + size); 847 } 848 /* FIXME: non-speculating: flush on bidirectional mappings? */ 849} 850 851static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 852 size_t size, enum dma_data_direction dir) 853{ 854 phys_addr_t paddr = page_to_phys(page) + off; 855 856 /* FIXME: non-speculating: not required */ 857 /* in any case, don't bother invalidating if DMA to device */ 858 if (dir != DMA_TO_DEVICE) { 859 outer_inv_range(paddr, paddr + size); 860 861 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 862 } 863 864 /* 865 * Mark the D-cache clean for these pages to avoid extra flushing. 866 */ 867 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 868 unsigned long pfn; 869 size_t left = size; 870 871 pfn = page_to_pfn(page) + off / PAGE_SIZE; 872 off %= PAGE_SIZE; 873 if (off) { 874 pfn++; 875 left -= PAGE_SIZE - off; 876 } 877 while (left >= PAGE_SIZE) { 878 page = pfn_to_page(pfn++); 879 set_bit(PG_dcache_clean, &page->flags); 880 left -= PAGE_SIZE; 881 } 882 } 883} 884 885/** 886 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 887 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 888 * @sg: list of buffers 889 * @nents: number of buffers to map 890 * @dir: DMA transfer direction 891 * 892 * Map a set of buffers described by scatterlist in streaming mode for DMA. 893 * This is the scatter-gather version of the dma_map_single interface. 894 * Here the scatter gather list elements are each tagged with the 895 * appropriate dma address and length. They are obtained via 896 * sg_dma_{address,length}. 897 * 898 * Device ownership issues as mentioned for dma_map_single are the same 899 * here. 900 */ 901int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 902 enum dma_data_direction dir, struct dma_attrs *attrs) 903{ 904 struct dma_map_ops *ops = get_dma_ops(dev); 905 struct scatterlist *s; 906 int i, j; 907 908 for_each_sg(sg, s, nents, i) { 909#ifdef CONFIG_NEED_SG_DMA_LENGTH 910 s->dma_length = s->length; 911#endif 912 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 913 s->length, dir, attrs); 914 if (dma_mapping_error(dev, s->dma_address)) 915 goto bad_mapping; 916 } 917 return nents; 918 919 bad_mapping: 920 for_each_sg(sg, s, i, j) 921 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 922 return 0; 923} 924 925/** 926 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 927 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 928 * @sg: list of buffers 929 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 930 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 931 * 932 * Unmap a set of streaming mode DMA translations. Again, CPU access 933 * rules concerning calls here are the same as for dma_unmap_single(). 934 */ 935void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 936 enum dma_data_direction dir, struct dma_attrs *attrs) 937{ 938 struct dma_map_ops *ops = get_dma_ops(dev); 939 struct scatterlist *s; 940 941 int i; 942 943 for_each_sg(sg, s, nents, i) 944 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 945} 946 947/** 948 * arm_dma_sync_sg_for_cpu 949 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 950 * @sg: list of buffers 951 * @nents: number of buffers to map (returned from dma_map_sg) 952 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 953 */ 954void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 955 int nents, enum dma_data_direction dir) 956{ 957 struct dma_map_ops *ops = get_dma_ops(dev); 958 struct scatterlist *s; 959 int i; 960 961 for_each_sg(sg, s, nents, i) 962 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 963 dir); 964} 965 966/** 967 * arm_dma_sync_sg_for_device 968 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 969 * @sg: list of buffers 970 * @nents: number of buffers to map (returned from dma_map_sg) 971 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 972 */ 973void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 974 int nents, enum dma_data_direction dir) 975{ 976 struct dma_map_ops *ops = get_dma_ops(dev); 977 struct scatterlist *s; 978 int i; 979 980 for_each_sg(sg, s, nents, i) 981 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 982 dir); 983} 984 985/* 986 * Return whether the given device DMA address mask can be supported 987 * properly. For example, if your device can only drive the low 24-bits 988 * during bus mastering, then you would pass 0x00ffffff as the mask 989 * to this function. 990 */ 991int dma_supported(struct device *dev, u64 mask) 992{ 993 return __dma_supported(dev, mask, false); 994} 995EXPORT_SYMBOL(dma_supported); 996 997int arm_dma_set_mask(struct device *dev, u64 dma_mask) 998{ 999 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 1000 return -EIO; 1001 1002 *dev->dma_mask = dma_mask; 1003 1004 return 0; 1005} 1006 1007#define PREALLOC_DMA_DEBUG_ENTRIES 4096 1008 1009static int __init dma_debug_do_init(void) 1010{ 1011 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1012 return 0; 1013} 1014fs_initcall(dma_debug_do_init); 1015 1016#ifdef CONFIG_ARM_DMA_USE_IOMMU 1017 1018/* IOMMU */ 1019 1020static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1021 1022static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1023 size_t size) 1024{ 1025 unsigned int order = get_order(size); 1026 unsigned int align = 0; 1027 unsigned int count, start; 1028 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1029 unsigned long flags; 1030 dma_addr_t iova; 1031 int i; 1032 1033 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1034 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1035 1036 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1037 align = (1 << order) - 1; 1038 1039 spin_lock_irqsave(&mapping->lock, flags); 1040 for (i = 0; i < mapping->nr_bitmaps; i++) { 1041 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1042 mapping->bits, 0, count, align); 1043 1044 if (start > mapping->bits) 1045 continue; 1046 1047 bitmap_set(mapping->bitmaps[i], start, count); 1048 break; 1049 } 1050 1051 /* 1052 * No unused range found. Try to extend the existing mapping 1053 * and perform a second attempt to reserve an IO virtual 1054 * address range of size bytes. 1055 */ 1056 if (i == mapping->nr_bitmaps) { 1057 if (extend_iommu_mapping(mapping)) { 1058 spin_unlock_irqrestore(&mapping->lock, flags); 1059 return DMA_ERROR_CODE; 1060 } 1061 1062 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1063 mapping->bits, 0, count, align); 1064 1065 if (start > mapping->bits) { 1066 spin_unlock_irqrestore(&mapping->lock, flags); 1067 return DMA_ERROR_CODE; 1068 } 1069 1070 bitmap_set(mapping->bitmaps[i], start, count); 1071 } 1072 spin_unlock_irqrestore(&mapping->lock, flags); 1073 1074 iova = mapping->base + (mapping_size * i); 1075 iova += start << PAGE_SHIFT; 1076 1077 return iova; 1078} 1079 1080static inline void __free_iova(struct dma_iommu_mapping *mapping, 1081 dma_addr_t addr, size_t size) 1082{ 1083 unsigned int start, count; 1084 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1085 unsigned long flags; 1086 dma_addr_t bitmap_base; 1087 u32 bitmap_index; 1088 1089 if (!size) 1090 return; 1091 1092 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1093 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1094 1095 bitmap_base = mapping->base + mapping_size * bitmap_index; 1096 1097 start = (addr - bitmap_base) >> PAGE_SHIFT; 1098 1099 if (addr + size > bitmap_base + mapping_size) { 1100 /* 1101 * The address range to be freed reaches into the iova 1102 * range of the next bitmap. This should not happen as 1103 * we don't allow this in __alloc_iova (at the 1104 * moment). 1105 */ 1106 BUG(); 1107 } else 1108 count = size >> PAGE_SHIFT; 1109 1110 spin_lock_irqsave(&mapping->lock, flags); 1111 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1112 spin_unlock_irqrestore(&mapping->lock, flags); 1113} 1114 1115static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1116 gfp_t gfp, struct dma_attrs *attrs) 1117{ 1118 struct page **pages; 1119 int count = size >> PAGE_SHIFT; 1120 int array_size = count * sizeof(struct page *); 1121 int i = 0; 1122 1123 if (array_size <= PAGE_SIZE) 1124 pages = kzalloc(array_size, GFP_KERNEL); 1125 else 1126 pages = vzalloc(array_size); 1127 if (!pages) 1128 return NULL; 1129 1130 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) 1131 { 1132 unsigned long order = get_order(size); 1133 struct page *page; 1134 1135 page = dma_alloc_from_contiguous(dev, count, order); 1136 if (!page) 1137 goto error; 1138 1139 __dma_clear_buffer(page, size); 1140 1141 for (i = 0; i < count; i++) 1142 pages[i] = page + i; 1143 1144 return pages; 1145 } 1146 1147 /* 1148 * IOMMU can map any pages, so himem can also be used here 1149 */ 1150 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1151 1152 while (count) { 1153 int j, order; 1154 1155 for (order = __fls(count); order > 0; --order) { 1156 /* 1157 * We do not want OOM killer to be invoked as long 1158 * as we can fall back to single pages, so we force 1159 * __GFP_NORETRY for orders higher than zero. 1160 */ 1161 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1162 if (pages[i]) 1163 break; 1164 } 1165 1166 if (!pages[i]) { 1167 /* 1168 * Fall back to single page allocation. 1169 * Might invoke OOM killer as last resort. 1170 */ 1171 pages[i] = alloc_pages(gfp, 0); 1172 if (!pages[i]) 1173 goto error; 1174 } 1175 1176 if (order) { 1177 split_page(pages[i], order); 1178 j = 1 << order; 1179 while (--j) 1180 pages[i + j] = pages[i] + j; 1181 } 1182 1183 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1184 i += 1 << order; 1185 count -= 1 << order; 1186 } 1187 1188 return pages; 1189error: 1190 while (i--) 1191 if (pages[i]) 1192 __free_pages(pages[i], 0); 1193 if (array_size <= PAGE_SIZE) 1194 kfree(pages); 1195 else 1196 vfree(pages); 1197 return NULL; 1198} 1199 1200static int __iommu_free_buffer(struct device *dev, struct page **pages, 1201 size_t size, struct dma_attrs *attrs) 1202{ 1203 int count = size >> PAGE_SHIFT; 1204 int array_size = count * sizeof(struct page *); 1205 int i; 1206 1207 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { 1208 dma_release_from_contiguous(dev, pages[0], count); 1209 } else { 1210 for (i = 0; i < count; i++) 1211 if (pages[i]) 1212 __free_pages(pages[i], 0); 1213 } 1214 1215 if (array_size <= PAGE_SIZE) 1216 kfree(pages); 1217 else 1218 vfree(pages); 1219 return 0; 1220} 1221 1222/* 1223 * Create a CPU mapping for a specified pages 1224 */ 1225static void * 1226__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1227 const void *caller) 1228{ 1229 return dma_common_pages_remap(pages, size, 1230 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1231} 1232 1233/* 1234 * Create a mapping in device IO address space for specified pages 1235 */ 1236static dma_addr_t 1237__iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1238{ 1239 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1240 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1241 dma_addr_t dma_addr, iova; 1242 int i, ret = DMA_ERROR_CODE; 1243 1244 dma_addr = __alloc_iova(mapping, size); 1245 if (dma_addr == DMA_ERROR_CODE) 1246 return dma_addr; 1247 1248 iova = dma_addr; 1249 for (i = 0; i < count; ) { 1250 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1251 phys_addr_t phys = page_to_phys(pages[i]); 1252 unsigned int len, j; 1253 1254 for (j = i + 1; j < count; j++, next_pfn++) 1255 if (page_to_pfn(pages[j]) != next_pfn) 1256 break; 1257 1258 len = (j - i) << PAGE_SHIFT; 1259 ret = iommu_map(mapping->domain, iova, phys, len, 1260 IOMMU_READ|IOMMU_WRITE); 1261 if (ret < 0) 1262 goto fail; 1263 iova += len; 1264 i = j; 1265 } 1266 return dma_addr; 1267fail: 1268 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1269 __free_iova(mapping, dma_addr, size); 1270 return DMA_ERROR_CODE; 1271} 1272 1273static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1274{ 1275 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1276 1277 /* 1278 * add optional in-page offset from iova to size and align 1279 * result to page size 1280 */ 1281 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1282 iova &= PAGE_MASK; 1283 1284 iommu_unmap(mapping->domain, iova, size); 1285 __free_iova(mapping, iova, size); 1286 return 0; 1287} 1288 1289static struct page **__atomic_get_pages(void *addr) 1290{ 1291 struct page *page; 1292 phys_addr_t phys; 1293 1294 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1295 page = phys_to_page(phys); 1296 1297 return (struct page **)page; 1298} 1299 1300static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1301{ 1302 struct vm_struct *area; 1303 1304 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1305 return __atomic_get_pages(cpu_addr); 1306 1307 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1308 return cpu_addr; 1309 1310 area = find_vm_area(cpu_addr); 1311 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1312 return area->pages; 1313 return NULL; 1314} 1315 1316static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1317 dma_addr_t *handle) 1318{ 1319 struct page *page; 1320 void *addr; 1321 1322 addr = __alloc_from_pool(size, &page); 1323 if (!addr) 1324 return NULL; 1325 1326 *handle = __iommu_create_mapping(dev, &page, size); 1327 if (*handle == DMA_ERROR_CODE) 1328 goto err_mapping; 1329 1330 return addr; 1331 1332err_mapping: 1333 __free_from_pool(addr, size); 1334 return NULL; 1335} 1336 1337static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1338 dma_addr_t handle, size_t size) 1339{ 1340 __iommu_remove_mapping(dev, handle, size); 1341 __free_from_pool(cpu_addr, size); 1342} 1343 1344static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1345 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1346{ 1347 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1348 struct page **pages; 1349 void *addr = NULL; 1350 1351 *handle = DMA_ERROR_CODE; 1352 size = PAGE_ALIGN(size); 1353 1354 if (!(gfp & __GFP_WAIT)) 1355 return __iommu_alloc_atomic(dev, size, handle); 1356 1357 /* 1358 * Following is a work-around (a.k.a. hack) to prevent pages 1359 * with __GFP_COMP being passed to split_page() which cannot 1360 * handle them. The real problem is that this flag probably 1361 * should be 0 on ARM as it is not supported on this 1362 * platform; see CONFIG_HUGETLBFS. 1363 */ 1364 gfp &= ~(__GFP_COMP); 1365 1366 pages = __iommu_alloc_buffer(dev, size, gfp, attrs); 1367 if (!pages) 1368 return NULL; 1369 1370 *handle = __iommu_create_mapping(dev, pages, size); 1371 if (*handle == DMA_ERROR_CODE) 1372 goto err_buffer; 1373 1374 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1375 return pages; 1376 1377 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1378 __builtin_return_address(0)); 1379 if (!addr) 1380 goto err_mapping; 1381 1382 return addr; 1383 1384err_mapping: 1385 __iommu_remove_mapping(dev, *handle, size); 1386err_buffer: 1387 __iommu_free_buffer(dev, pages, size, attrs); 1388 return NULL; 1389} 1390 1391static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1392 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1393 struct dma_attrs *attrs) 1394{ 1395 unsigned long uaddr = vma->vm_start; 1396 unsigned long usize = vma->vm_end - vma->vm_start; 1397 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1398 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1399 unsigned long off = vma->vm_pgoff; 1400 1401 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1402 1403 if (!pages) 1404 return -ENXIO; 1405 1406 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1407 return -ENXIO; 1408 1409 pages += off; 1410 1411 do { 1412 int ret = vm_insert_page(vma, uaddr, *pages++); 1413 if (ret) { 1414 pr_err("Remapping memory failed: %d\n", ret); 1415 return ret; 1416 } 1417 uaddr += PAGE_SIZE; 1418 usize -= PAGE_SIZE; 1419 } while (usize > 0); 1420 1421 return 0; 1422} 1423 1424/* 1425 * free a page as defined by the above mapping. 1426 * Must not be called with IRQs disabled. 1427 */ 1428void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1429 dma_addr_t handle, struct dma_attrs *attrs) 1430{ 1431 struct page **pages; 1432 size = PAGE_ALIGN(size); 1433 1434 if (__in_atomic_pool(cpu_addr, size)) { 1435 __iommu_free_atomic(dev, cpu_addr, handle, size); 1436 return; 1437 } 1438 1439 pages = __iommu_get_pages(cpu_addr, attrs); 1440 if (!pages) { 1441 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1442 return; 1443 } 1444 1445 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1446 dma_common_free_remap(cpu_addr, size, 1447 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1448 } 1449 1450 __iommu_remove_mapping(dev, handle, size); 1451 __iommu_free_buffer(dev, pages, size, attrs); 1452} 1453 1454static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1455 void *cpu_addr, dma_addr_t dma_addr, 1456 size_t size, struct dma_attrs *attrs) 1457{ 1458 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1459 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1460 1461 if (!pages) 1462 return -ENXIO; 1463 1464 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1465 GFP_KERNEL); 1466} 1467 1468static int __dma_direction_to_prot(enum dma_data_direction dir) 1469{ 1470 int prot; 1471 1472 switch (dir) { 1473 case DMA_BIDIRECTIONAL: 1474 prot = IOMMU_READ | IOMMU_WRITE; 1475 break; 1476 case DMA_TO_DEVICE: 1477 prot = IOMMU_READ; 1478 break; 1479 case DMA_FROM_DEVICE: 1480 prot = IOMMU_WRITE; 1481 break; 1482 default: 1483 prot = 0; 1484 } 1485 1486 return prot; 1487} 1488 1489/* 1490 * Map a part of the scatter-gather list into contiguous io address space 1491 */ 1492static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1493 size_t size, dma_addr_t *handle, 1494 enum dma_data_direction dir, struct dma_attrs *attrs, 1495 bool is_coherent) 1496{ 1497 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1498 dma_addr_t iova, iova_base; 1499 int ret = 0; 1500 unsigned int count; 1501 struct scatterlist *s; 1502 int prot; 1503 1504 size = PAGE_ALIGN(size); 1505 *handle = DMA_ERROR_CODE; 1506 1507 iova_base = iova = __alloc_iova(mapping, size); 1508 if (iova == DMA_ERROR_CODE) 1509 return -ENOMEM; 1510 1511 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1512 phys_addr_t phys = page_to_phys(sg_page(s)); 1513 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1514 1515 if (!is_coherent && 1516 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1517 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1518 1519 prot = __dma_direction_to_prot(dir); 1520 1521 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1522 if (ret < 0) 1523 goto fail; 1524 count += len >> PAGE_SHIFT; 1525 iova += len; 1526 } 1527 *handle = iova_base; 1528 1529 return 0; 1530fail: 1531 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1532 __free_iova(mapping, iova_base, size); 1533 return ret; 1534} 1535 1536static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1537 enum dma_data_direction dir, struct dma_attrs *attrs, 1538 bool is_coherent) 1539{ 1540 struct scatterlist *s = sg, *dma = sg, *start = sg; 1541 int i, count = 0; 1542 unsigned int offset = s->offset; 1543 unsigned int size = s->offset + s->length; 1544 unsigned int max = dma_get_max_seg_size(dev); 1545 1546 for (i = 1; i < nents; i++) { 1547 s = sg_next(s); 1548 1549 s->dma_address = DMA_ERROR_CODE; 1550 s->dma_length = 0; 1551 1552 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1553 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1554 dir, attrs, is_coherent) < 0) 1555 goto bad_mapping; 1556 1557 dma->dma_address += offset; 1558 dma->dma_length = size - offset; 1559 1560 size = offset = s->offset; 1561 start = s; 1562 dma = sg_next(dma); 1563 count += 1; 1564 } 1565 size += s->length; 1566 } 1567 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1568 is_coherent) < 0) 1569 goto bad_mapping; 1570 1571 dma->dma_address += offset; 1572 dma->dma_length = size - offset; 1573 1574 return count+1; 1575 1576bad_mapping: 1577 for_each_sg(sg, s, count, i) 1578 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1579 return 0; 1580} 1581 1582/** 1583 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1584 * @dev: valid struct device pointer 1585 * @sg: list of buffers 1586 * @nents: number of buffers to map 1587 * @dir: DMA transfer direction 1588 * 1589 * Map a set of i/o coherent buffers described by scatterlist in streaming 1590 * mode for DMA. The scatter gather list elements are merged together (if 1591 * possible) and tagged with the appropriate dma address and length. They are 1592 * obtained via sg_dma_{address,length}. 1593 */ 1594int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1595 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1596{ 1597 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1598} 1599 1600/** 1601 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1602 * @dev: valid struct device pointer 1603 * @sg: list of buffers 1604 * @nents: number of buffers to map 1605 * @dir: DMA transfer direction 1606 * 1607 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1608 * The scatter gather list elements are merged together (if possible) and 1609 * tagged with the appropriate dma address and length. They are obtained via 1610 * sg_dma_{address,length}. 1611 */ 1612int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1613 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1614{ 1615 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1616} 1617 1618static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1619 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1620 bool is_coherent) 1621{ 1622 struct scatterlist *s; 1623 int i; 1624 1625 for_each_sg(sg, s, nents, i) { 1626 if (sg_dma_len(s)) 1627 __iommu_remove_mapping(dev, sg_dma_address(s), 1628 sg_dma_len(s)); 1629 if (!is_coherent && 1630 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1631 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1632 s->length, dir); 1633 } 1634} 1635 1636/** 1637 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1638 * @dev: valid struct device pointer 1639 * @sg: list of buffers 1640 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1641 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1642 * 1643 * Unmap a set of streaming mode DMA translations. Again, CPU access 1644 * rules concerning calls here are the same as for dma_unmap_single(). 1645 */ 1646void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1647 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1648{ 1649 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1650} 1651 1652/** 1653 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1654 * @dev: valid struct device pointer 1655 * @sg: list of buffers 1656 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1657 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1658 * 1659 * Unmap a set of streaming mode DMA translations. Again, CPU access 1660 * rules concerning calls here are the same as for dma_unmap_single(). 1661 */ 1662void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1663 enum dma_data_direction dir, struct dma_attrs *attrs) 1664{ 1665 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1666} 1667 1668/** 1669 * arm_iommu_sync_sg_for_cpu 1670 * @dev: valid struct device pointer 1671 * @sg: list of buffers 1672 * @nents: number of buffers to map (returned from dma_map_sg) 1673 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1674 */ 1675void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1676 int nents, enum dma_data_direction dir) 1677{ 1678 struct scatterlist *s; 1679 int i; 1680 1681 for_each_sg(sg, s, nents, i) 1682 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1683 1684} 1685 1686/** 1687 * arm_iommu_sync_sg_for_device 1688 * @dev: valid struct device pointer 1689 * @sg: list of buffers 1690 * @nents: number of buffers to map (returned from dma_map_sg) 1691 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1692 */ 1693void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1694 int nents, enum dma_data_direction dir) 1695{ 1696 struct scatterlist *s; 1697 int i; 1698 1699 for_each_sg(sg, s, nents, i) 1700 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1701} 1702 1703 1704/** 1705 * arm_coherent_iommu_map_page 1706 * @dev: valid struct device pointer 1707 * @page: page that buffer resides in 1708 * @offset: offset into page for start of buffer 1709 * @size: size of buffer to map 1710 * @dir: DMA transfer direction 1711 * 1712 * Coherent IOMMU aware version of arm_dma_map_page() 1713 */ 1714static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1715 unsigned long offset, size_t size, enum dma_data_direction dir, 1716 struct dma_attrs *attrs) 1717{ 1718 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1719 dma_addr_t dma_addr; 1720 int ret, prot, len = PAGE_ALIGN(size + offset); 1721 1722 dma_addr = __alloc_iova(mapping, len); 1723 if (dma_addr == DMA_ERROR_CODE) 1724 return dma_addr; 1725 1726 prot = __dma_direction_to_prot(dir); 1727 1728 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1729 if (ret < 0) 1730 goto fail; 1731 1732 return dma_addr + offset; 1733fail: 1734 __free_iova(mapping, dma_addr, len); 1735 return DMA_ERROR_CODE; 1736} 1737 1738/** 1739 * arm_iommu_map_page 1740 * @dev: valid struct device pointer 1741 * @page: page that buffer resides in 1742 * @offset: offset into page for start of buffer 1743 * @size: size of buffer to map 1744 * @dir: DMA transfer direction 1745 * 1746 * IOMMU aware version of arm_dma_map_page() 1747 */ 1748static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1749 unsigned long offset, size_t size, enum dma_data_direction dir, 1750 struct dma_attrs *attrs) 1751{ 1752 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1753 __dma_page_cpu_to_dev(page, offset, size, dir); 1754 1755 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1756} 1757 1758/** 1759 * arm_coherent_iommu_unmap_page 1760 * @dev: valid struct device pointer 1761 * @handle: DMA address of buffer 1762 * @size: size of buffer (same as passed to dma_map_page) 1763 * @dir: DMA transfer direction (same as passed to dma_map_page) 1764 * 1765 * Coherent IOMMU aware version of arm_dma_unmap_page() 1766 */ 1767static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1768 size_t size, enum dma_data_direction dir, 1769 struct dma_attrs *attrs) 1770{ 1771 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1772 dma_addr_t iova = handle & PAGE_MASK; 1773 int offset = handle & ~PAGE_MASK; 1774 int len = PAGE_ALIGN(size + offset); 1775 1776 if (!iova) 1777 return; 1778 1779 iommu_unmap(mapping->domain, iova, len); 1780 __free_iova(mapping, iova, len); 1781} 1782 1783/** 1784 * arm_iommu_unmap_page 1785 * @dev: valid struct device pointer 1786 * @handle: DMA address of buffer 1787 * @size: size of buffer (same as passed to dma_map_page) 1788 * @dir: DMA transfer direction (same as passed to dma_map_page) 1789 * 1790 * IOMMU aware version of arm_dma_unmap_page() 1791 */ 1792static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1793 size_t size, enum dma_data_direction dir, 1794 struct dma_attrs *attrs) 1795{ 1796 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1797 dma_addr_t iova = handle & PAGE_MASK; 1798 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1799 int offset = handle & ~PAGE_MASK; 1800 int len = PAGE_ALIGN(size + offset); 1801 1802 if (!iova) 1803 return; 1804 1805 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1806 __dma_page_dev_to_cpu(page, offset, size, dir); 1807 1808 iommu_unmap(mapping->domain, iova, len); 1809 __free_iova(mapping, iova, len); 1810} 1811 1812static void arm_iommu_sync_single_for_cpu(struct device *dev, 1813 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1814{ 1815 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1816 dma_addr_t iova = handle & PAGE_MASK; 1817 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1818 unsigned int offset = handle & ~PAGE_MASK; 1819 1820 if (!iova) 1821 return; 1822 1823 __dma_page_dev_to_cpu(page, offset, size, dir); 1824} 1825 1826static void arm_iommu_sync_single_for_device(struct device *dev, 1827 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1828{ 1829 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1830 dma_addr_t iova = handle & PAGE_MASK; 1831 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1832 unsigned int offset = handle & ~PAGE_MASK; 1833 1834 if (!iova) 1835 return; 1836 1837 __dma_page_cpu_to_dev(page, offset, size, dir); 1838} 1839 1840struct dma_map_ops iommu_ops = { 1841 .alloc = arm_iommu_alloc_attrs, 1842 .free = arm_iommu_free_attrs, 1843 .mmap = arm_iommu_mmap_attrs, 1844 .get_sgtable = arm_iommu_get_sgtable, 1845 1846 .map_page = arm_iommu_map_page, 1847 .unmap_page = arm_iommu_unmap_page, 1848 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1849 .sync_single_for_device = arm_iommu_sync_single_for_device, 1850 1851 .map_sg = arm_iommu_map_sg, 1852 .unmap_sg = arm_iommu_unmap_sg, 1853 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1854 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1855 1856 .set_dma_mask = arm_dma_set_mask, 1857}; 1858 1859struct dma_map_ops iommu_coherent_ops = { 1860 .alloc = arm_iommu_alloc_attrs, 1861 .free = arm_iommu_free_attrs, 1862 .mmap = arm_iommu_mmap_attrs, 1863 .get_sgtable = arm_iommu_get_sgtable, 1864 1865 .map_page = arm_coherent_iommu_map_page, 1866 .unmap_page = arm_coherent_iommu_unmap_page, 1867 1868 .map_sg = arm_coherent_iommu_map_sg, 1869 .unmap_sg = arm_coherent_iommu_unmap_sg, 1870 1871 .set_dma_mask = arm_dma_set_mask, 1872}; 1873 1874/** 1875 * arm_iommu_create_mapping 1876 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1877 * @base: start address of the valid IO address space 1878 * @size: maximum size of the valid IO address space 1879 * 1880 * Creates a mapping structure which holds information about used/unused 1881 * IO address ranges, which is required to perform memory allocation and 1882 * mapping with IOMMU aware functions. 1883 * 1884 * The client device need to be attached to the mapping with 1885 * arm_iommu_attach_device function. 1886 */ 1887struct dma_iommu_mapping * 1888arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 1889{ 1890 unsigned int bits = size >> PAGE_SHIFT; 1891 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 1892 struct dma_iommu_mapping *mapping; 1893 int extensions = 1; 1894 int err = -ENOMEM; 1895 1896 /* currently only 32-bit DMA address space is supported */ 1897 if (size > DMA_BIT_MASK(32) + 1) 1898 return ERR_PTR(-ERANGE); 1899 1900 if (!bitmap_size) 1901 return ERR_PTR(-EINVAL); 1902 1903 if (bitmap_size > PAGE_SIZE) { 1904 extensions = bitmap_size / PAGE_SIZE; 1905 bitmap_size = PAGE_SIZE; 1906 } 1907 1908 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1909 if (!mapping) 1910 goto err; 1911 1912 mapping->bitmap_size = bitmap_size; 1913 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 1914 GFP_KERNEL); 1915 if (!mapping->bitmaps) 1916 goto err2; 1917 1918 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 1919 if (!mapping->bitmaps[0]) 1920 goto err3; 1921 1922 mapping->nr_bitmaps = 1; 1923 mapping->extensions = extensions; 1924 mapping->base = base; 1925 mapping->bits = BITS_PER_BYTE * bitmap_size; 1926 1927 spin_lock_init(&mapping->lock); 1928 1929 mapping->domain = iommu_domain_alloc(bus); 1930 if (!mapping->domain) 1931 goto err4; 1932 1933 kref_init(&mapping->kref); 1934 return mapping; 1935err4: 1936 kfree(mapping->bitmaps[0]); 1937err3: 1938 kfree(mapping->bitmaps); 1939err2: 1940 kfree(mapping); 1941err: 1942 return ERR_PTR(err); 1943} 1944EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 1945 1946static void release_iommu_mapping(struct kref *kref) 1947{ 1948 int i; 1949 struct dma_iommu_mapping *mapping = 1950 container_of(kref, struct dma_iommu_mapping, kref); 1951 1952 iommu_domain_free(mapping->domain); 1953 for (i = 0; i < mapping->nr_bitmaps; i++) 1954 kfree(mapping->bitmaps[i]); 1955 kfree(mapping->bitmaps); 1956 kfree(mapping); 1957} 1958 1959static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 1960{ 1961 int next_bitmap; 1962 1963 if (mapping->nr_bitmaps >= mapping->extensions) 1964 return -EINVAL; 1965 1966 next_bitmap = mapping->nr_bitmaps; 1967 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 1968 GFP_ATOMIC); 1969 if (!mapping->bitmaps[next_bitmap]) 1970 return -ENOMEM; 1971 1972 mapping->nr_bitmaps++; 1973 1974 return 0; 1975} 1976 1977void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1978{ 1979 if (mapping) 1980 kref_put(&mapping->kref, release_iommu_mapping); 1981} 1982EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 1983 1984static int __arm_iommu_attach_device(struct device *dev, 1985 struct dma_iommu_mapping *mapping) 1986{ 1987 int err; 1988 1989 err = iommu_attach_device(mapping->domain, dev); 1990 if (err) 1991 return err; 1992 1993 kref_get(&mapping->kref); 1994 to_dma_iommu_mapping(dev) = mapping; 1995 1996 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1997 return 0; 1998} 1999 2000/** 2001 * arm_iommu_attach_device 2002 * @dev: valid struct device pointer 2003 * @mapping: io address space mapping structure (returned from 2004 * arm_iommu_create_mapping) 2005 * 2006 * Attaches specified io address space mapping to the provided device. 2007 * This replaces the dma operations (dma_map_ops pointer) with the 2008 * IOMMU aware version. 2009 * 2010 * More than one client might be attached to the same io address space 2011 * mapping. 2012 */ 2013int arm_iommu_attach_device(struct device *dev, 2014 struct dma_iommu_mapping *mapping) 2015{ 2016 int err; 2017 2018 err = __arm_iommu_attach_device(dev, mapping); 2019 if (err) 2020 return err; 2021 2022 set_dma_ops(dev, &iommu_ops); 2023 return 0; 2024} 2025EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2026 2027static void __arm_iommu_detach_device(struct device *dev) 2028{ 2029 struct dma_iommu_mapping *mapping; 2030 2031 mapping = to_dma_iommu_mapping(dev); 2032 if (!mapping) { 2033 dev_warn(dev, "Not attached\n"); 2034 return; 2035 } 2036 2037 iommu_detach_device(mapping->domain, dev); 2038 kref_put(&mapping->kref, release_iommu_mapping); 2039 to_dma_iommu_mapping(dev) = NULL; 2040 2041 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2042} 2043 2044/** 2045 * arm_iommu_detach_device 2046 * @dev: valid struct device pointer 2047 * 2048 * Detaches the provided device from a previously attached map. 2049 * This voids the dma operations (dma_map_ops pointer) 2050 */ 2051void arm_iommu_detach_device(struct device *dev) 2052{ 2053 __arm_iommu_detach_device(dev); 2054 set_dma_ops(dev, NULL); 2055} 2056EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2057 2058static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2059{ 2060 return coherent ? &iommu_coherent_ops : &iommu_ops; 2061} 2062 2063static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2064 struct iommu_ops *iommu) 2065{ 2066 struct dma_iommu_mapping *mapping; 2067 2068 if (!iommu) 2069 return false; 2070 2071 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2072 if (IS_ERR(mapping)) { 2073 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2074 size, dev_name(dev)); 2075 return false; 2076 } 2077 2078 if (__arm_iommu_attach_device(dev, mapping)) { 2079 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2080 dev_name(dev)); 2081 arm_iommu_release_mapping(mapping); 2082 return false; 2083 } 2084 2085 return true; 2086} 2087 2088static void arm_teardown_iommu_dma_ops(struct device *dev) 2089{ 2090 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2091 2092 if (!mapping) 2093 return; 2094 2095 __arm_iommu_detach_device(dev); 2096 arm_iommu_release_mapping(mapping); 2097} 2098 2099#else 2100 2101static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2102 struct iommu_ops *iommu) 2103{ 2104 return false; 2105} 2106 2107static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2108 2109#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2110 2111#endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2112 2113static struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2114{ 2115 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2116} 2117 2118void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2119 struct iommu_ops *iommu, bool coherent) 2120{ 2121 struct dma_map_ops *dma_ops; 2122 2123 dev->archdata.dma_coherent = coherent; 2124 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2125 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2126 else 2127 dma_ops = arm_get_dma_map_ops(coherent); 2128 2129 set_dma_ops(dev, dma_ops); 2130} 2131 2132void arch_teardown_dma_ops(struct device *dev) 2133{ 2134 arm_teardown_iommu_dma_ops(dev); 2135} 2136