1/*
2 * BPF JIT compiler for ARM64
3 *
4 * Copyright (C) 2014-2015 Zi Shen Lim <zlim.lnx@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#define pr_fmt(fmt) "bpf_jit: " fmt
20
21#include <linux/filter.h>
22#include <linux/printk.h>
23#include <linux/skbuff.h>
24#include <linux/slab.h>
25
26#include <asm/byteorder.h>
27#include <asm/cacheflush.h>
28#include <asm/debug-monitors.h>
29
30#include "bpf_jit.h"
31
32int bpf_jit_enable __read_mostly;
33
34#define TMP_REG_1 (MAX_BPF_REG + 0)
35#define TMP_REG_2 (MAX_BPF_REG + 1)
36
37/* Map BPF registers to A64 registers */
38static const int bpf2a64[] = {
39	/* return value from in-kernel function, and exit value from eBPF */
40	[BPF_REG_0] = A64_R(7),
41	/* arguments from eBPF program to in-kernel function */
42	[BPF_REG_1] = A64_R(0),
43	[BPF_REG_2] = A64_R(1),
44	[BPF_REG_3] = A64_R(2),
45	[BPF_REG_4] = A64_R(3),
46	[BPF_REG_5] = A64_R(4),
47	/* callee saved registers that in-kernel function will preserve */
48	[BPF_REG_6] = A64_R(19),
49	[BPF_REG_7] = A64_R(20),
50	[BPF_REG_8] = A64_R(21),
51	[BPF_REG_9] = A64_R(22),
52	/* read-only frame pointer to access stack */
53	[BPF_REG_FP] = A64_FP,
54	/* temporary register for internal BPF JIT */
55	[TMP_REG_1] = A64_R(23),
56	[TMP_REG_2] = A64_R(24),
57};
58
59struct jit_ctx {
60	const struct bpf_prog *prog;
61	int idx;
62	int tmp_used;
63	int epilogue_offset;
64	int *offset;
65	u32 *image;
66};
67
68static inline void emit(const u32 insn, struct jit_ctx *ctx)
69{
70	if (ctx->image != NULL)
71		ctx->image[ctx->idx] = cpu_to_le32(insn);
72
73	ctx->idx++;
74}
75
76static inline void emit_a64_mov_i64(const int reg, const u64 val,
77				    struct jit_ctx *ctx)
78{
79	u64 tmp = val;
80	int shift = 0;
81
82	emit(A64_MOVZ(1, reg, tmp & 0xffff, shift), ctx);
83	tmp >>= 16;
84	shift += 16;
85	while (tmp) {
86		if (tmp & 0xffff)
87			emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
88		tmp >>= 16;
89		shift += 16;
90	}
91}
92
93static inline void emit_a64_mov_i(const int is64, const int reg,
94				  const s32 val, struct jit_ctx *ctx)
95{
96	u16 hi = val >> 16;
97	u16 lo = val & 0xffff;
98
99	if (hi & 0x8000) {
100		if (hi == 0xffff) {
101			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
102		} else {
103			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
104			emit(A64_MOVK(is64, reg, lo, 0), ctx);
105		}
106	} else {
107		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
108		if (hi)
109			emit(A64_MOVK(is64, reg, hi, 16), ctx);
110	}
111}
112
113static inline int bpf2a64_offset(int bpf_to, int bpf_from,
114				 const struct jit_ctx *ctx)
115{
116	int to = ctx->offset[bpf_to];
117	/* -1 to account for the Branch instruction */
118	int from = ctx->offset[bpf_from] - 1;
119
120	return to - from;
121}
122
123static void jit_fill_hole(void *area, unsigned int size)
124{
125	u32 *ptr;
126	/* We are guaranteed to have aligned memory. */
127	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
128		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
129}
130
131static inline int epilogue_offset(const struct jit_ctx *ctx)
132{
133	int to = ctx->epilogue_offset;
134	int from = ctx->idx;
135
136	return to - from;
137}
138
139/* Stack must be multiples of 16B */
140#define STACK_ALIGN(sz) (((sz) + 15) & ~15)
141
142static void build_prologue(struct jit_ctx *ctx)
143{
144	const u8 r6 = bpf2a64[BPF_REG_6];
145	const u8 r7 = bpf2a64[BPF_REG_7];
146	const u8 r8 = bpf2a64[BPF_REG_8];
147	const u8 r9 = bpf2a64[BPF_REG_9];
148	const u8 fp = bpf2a64[BPF_REG_FP];
149	const u8 ra = bpf2a64[BPF_REG_A];
150	const u8 rx = bpf2a64[BPF_REG_X];
151	const u8 tmp1 = bpf2a64[TMP_REG_1];
152	const u8 tmp2 = bpf2a64[TMP_REG_2];
153	int stack_size = MAX_BPF_STACK;
154
155	stack_size += 4; /* extra for skb_copy_bits buffer */
156	stack_size = STACK_ALIGN(stack_size);
157
158	/* Save callee-saved register */
159	emit(A64_PUSH(r6, r7, A64_SP), ctx);
160	emit(A64_PUSH(r8, r9, A64_SP), ctx);
161	if (ctx->tmp_used)
162		emit(A64_PUSH(tmp1, tmp2, A64_SP), ctx);
163
164	/* Set up BPF stack */
165	emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx);
166
167	/* Set up frame pointer */
168	emit(A64_MOV(1, fp, A64_SP), ctx);
169
170	/* Clear registers A and X */
171	emit_a64_mov_i64(ra, 0, ctx);
172	emit_a64_mov_i64(rx, 0, ctx);
173}
174
175static void build_epilogue(struct jit_ctx *ctx)
176{
177	const u8 r0 = bpf2a64[BPF_REG_0];
178	const u8 r6 = bpf2a64[BPF_REG_6];
179	const u8 r7 = bpf2a64[BPF_REG_7];
180	const u8 r8 = bpf2a64[BPF_REG_8];
181	const u8 r9 = bpf2a64[BPF_REG_9];
182	const u8 fp = bpf2a64[BPF_REG_FP];
183	const u8 tmp1 = bpf2a64[TMP_REG_1];
184	const u8 tmp2 = bpf2a64[TMP_REG_2];
185	int stack_size = MAX_BPF_STACK;
186
187	stack_size += 4; /* extra for skb_copy_bits buffer */
188	stack_size = STACK_ALIGN(stack_size);
189
190	/* We're done with BPF stack */
191	emit(A64_ADD_I(1, A64_SP, A64_SP, stack_size), ctx);
192
193	/* Restore callee-saved register */
194	if (ctx->tmp_used)
195		emit(A64_POP(tmp1, tmp2, A64_SP), ctx);
196	emit(A64_POP(r8, r9, A64_SP), ctx);
197	emit(A64_POP(r6, r7, A64_SP), ctx);
198
199	/* Restore frame pointer */
200	emit(A64_MOV(1, fp, A64_SP), ctx);
201
202	/* Set return value */
203	emit(A64_MOV(1, A64_R(0), r0), ctx);
204
205	emit(A64_RET(A64_LR), ctx);
206}
207
208/* JITs an eBPF instruction.
209 * Returns:
210 * 0  - successfully JITed an 8-byte eBPF instruction.
211 * >0 - successfully JITed a 16-byte eBPF instruction.
212 * <0 - failed to JIT.
213 */
214static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
215{
216	const u8 code = insn->code;
217	const u8 dst = bpf2a64[insn->dst_reg];
218	const u8 src = bpf2a64[insn->src_reg];
219	const u8 tmp = bpf2a64[TMP_REG_1];
220	const u8 tmp2 = bpf2a64[TMP_REG_2];
221	const s16 off = insn->off;
222	const s32 imm = insn->imm;
223	const int i = insn - ctx->prog->insnsi;
224	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
225	u8 jmp_cond;
226	s32 jmp_offset;
227
228#define check_imm(bits, imm) do {				\
229	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
230	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
231		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
232			i, imm, imm);				\
233		return -EINVAL;					\
234	}							\
235} while (0)
236#define check_imm19(imm) check_imm(19, imm)
237#define check_imm26(imm) check_imm(26, imm)
238
239	switch (code) {
240	/* dst = src */
241	case BPF_ALU | BPF_MOV | BPF_X:
242	case BPF_ALU64 | BPF_MOV | BPF_X:
243		emit(A64_MOV(is64, dst, src), ctx);
244		break;
245	/* dst = dst OP src */
246	case BPF_ALU | BPF_ADD | BPF_X:
247	case BPF_ALU64 | BPF_ADD | BPF_X:
248		emit(A64_ADD(is64, dst, dst, src), ctx);
249		break;
250	case BPF_ALU | BPF_SUB | BPF_X:
251	case BPF_ALU64 | BPF_SUB | BPF_X:
252		emit(A64_SUB(is64, dst, dst, src), ctx);
253		break;
254	case BPF_ALU | BPF_AND | BPF_X:
255	case BPF_ALU64 | BPF_AND | BPF_X:
256		emit(A64_AND(is64, dst, dst, src), ctx);
257		break;
258	case BPF_ALU | BPF_OR | BPF_X:
259	case BPF_ALU64 | BPF_OR | BPF_X:
260		emit(A64_ORR(is64, dst, dst, src), ctx);
261		break;
262	case BPF_ALU | BPF_XOR | BPF_X:
263	case BPF_ALU64 | BPF_XOR | BPF_X:
264		emit(A64_EOR(is64, dst, dst, src), ctx);
265		break;
266	case BPF_ALU | BPF_MUL | BPF_X:
267	case BPF_ALU64 | BPF_MUL | BPF_X:
268		emit(A64_MUL(is64, dst, dst, src), ctx);
269		break;
270	case BPF_ALU | BPF_DIV | BPF_X:
271	case BPF_ALU64 | BPF_DIV | BPF_X:
272	case BPF_ALU | BPF_MOD | BPF_X:
273	case BPF_ALU64 | BPF_MOD | BPF_X:
274	{
275		const u8 r0 = bpf2a64[BPF_REG_0];
276
277		/* if (src == 0) return 0 */
278		jmp_offset = 3; /* skip ahead to else path */
279		check_imm19(jmp_offset);
280		emit(A64_CBNZ(is64, src, jmp_offset), ctx);
281		emit(A64_MOVZ(1, r0, 0, 0), ctx);
282		jmp_offset = epilogue_offset(ctx);
283		check_imm26(jmp_offset);
284		emit(A64_B(jmp_offset), ctx);
285		/* else */
286		switch (BPF_OP(code)) {
287		case BPF_DIV:
288			emit(A64_UDIV(is64, dst, dst, src), ctx);
289			break;
290		case BPF_MOD:
291			ctx->tmp_used = 1;
292			emit(A64_UDIV(is64, tmp, dst, src), ctx);
293			emit(A64_MUL(is64, tmp, tmp, src), ctx);
294			emit(A64_SUB(is64, dst, dst, tmp), ctx);
295			break;
296		}
297		break;
298	}
299	case BPF_ALU | BPF_LSH | BPF_X:
300	case BPF_ALU64 | BPF_LSH | BPF_X:
301		emit(A64_LSLV(is64, dst, dst, src), ctx);
302		break;
303	case BPF_ALU | BPF_RSH | BPF_X:
304	case BPF_ALU64 | BPF_RSH | BPF_X:
305		emit(A64_LSRV(is64, dst, dst, src), ctx);
306		break;
307	case BPF_ALU | BPF_ARSH | BPF_X:
308	case BPF_ALU64 | BPF_ARSH | BPF_X:
309		emit(A64_ASRV(is64, dst, dst, src), ctx);
310		break;
311	/* dst = -dst */
312	case BPF_ALU | BPF_NEG:
313	case BPF_ALU64 | BPF_NEG:
314		emit(A64_NEG(is64, dst, dst), ctx);
315		break;
316	/* dst = BSWAP##imm(dst) */
317	case BPF_ALU | BPF_END | BPF_FROM_LE:
318	case BPF_ALU | BPF_END | BPF_FROM_BE:
319#ifdef CONFIG_CPU_BIG_ENDIAN
320		if (BPF_SRC(code) == BPF_FROM_BE)
321			goto emit_bswap_uxt;
322#else /* !CONFIG_CPU_BIG_ENDIAN */
323		if (BPF_SRC(code) == BPF_FROM_LE)
324			goto emit_bswap_uxt;
325#endif
326		switch (imm) {
327		case 16:
328			emit(A64_REV16(is64, dst, dst), ctx);
329			/* zero-extend 16 bits into 64 bits */
330			emit(A64_UXTH(is64, dst, dst), ctx);
331			break;
332		case 32:
333			emit(A64_REV32(is64, dst, dst), ctx);
334			/* upper 32 bits already cleared */
335			break;
336		case 64:
337			emit(A64_REV64(dst, dst), ctx);
338			break;
339		}
340		break;
341emit_bswap_uxt:
342		switch (imm) {
343		case 16:
344			/* zero-extend 16 bits into 64 bits */
345			emit(A64_UXTH(is64, dst, dst), ctx);
346			break;
347		case 32:
348			/* zero-extend 32 bits into 64 bits */
349			emit(A64_UXTW(is64, dst, dst), ctx);
350			break;
351		case 64:
352			/* nop */
353			break;
354		}
355		break;
356	/* dst = imm */
357	case BPF_ALU | BPF_MOV | BPF_K:
358	case BPF_ALU64 | BPF_MOV | BPF_K:
359		emit_a64_mov_i(is64, dst, imm, ctx);
360		break;
361	/* dst = dst OP imm */
362	case BPF_ALU | BPF_ADD | BPF_K:
363	case BPF_ALU64 | BPF_ADD | BPF_K:
364		ctx->tmp_used = 1;
365		emit_a64_mov_i(is64, tmp, imm, ctx);
366		emit(A64_ADD(is64, dst, dst, tmp), ctx);
367		break;
368	case BPF_ALU | BPF_SUB | BPF_K:
369	case BPF_ALU64 | BPF_SUB | BPF_K:
370		ctx->tmp_used = 1;
371		emit_a64_mov_i(is64, tmp, imm, ctx);
372		emit(A64_SUB(is64, dst, dst, tmp), ctx);
373		break;
374	case BPF_ALU | BPF_AND | BPF_K:
375	case BPF_ALU64 | BPF_AND | BPF_K:
376		ctx->tmp_used = 1;
377		emit_a64_mov_i(is64, tmp, imm, ctx);
378		emit(A64_AND(is64, dst, dst, tmp), ctx);
379		break;
380	case BPF_ALU | BPF_OR | BPF_K:
381	case BPF_ALU64 | BPF_OR | BPF_K:
382		ctx->tmp_used = 1;
383		emit_a64_mov_i(is64, tmp, imm, ctx);
384		emit(A64_ORR(is64, dst, dst, tmp), ctx);
385		break;
386	case BPF_ALU | BPF_XOR | BPF_K:
387	case BPF_ALU64 | BPF_XOR | BPF_K:
388		ctx->tmp_used = 1;
389		emit_a64_mov_i(is64, tmp, imm, ctx);
390		emit(A64_EOR(is64, dst, dst, tmp), ctx);
391		break;
392	case BPF_ALU | BPF_MUL | BPF_K:
393	case BPF_ALU64 | BPF_MUL | BPF_K:
394		ctx->tmp_used = 1;
395		emit_a64_mov_i(is64, tmp, imm, ctx);
396		emit(A64_MUL(is64, dst, dst, tmp), ctx);
397		break;
398	case BPF_ALU | BPF_DIV | BPF_K:
399	case BPF_ALU64 | BPF_DIV | BPF_K:
400		ctx->tmp_used = 1;
401		emit_a64_mov_i(is64, tmp, imm, ctx);
402		emit(A64_UDIV(is64, dst, dst, tmp), ctx);
403		break;
404	case BPF_ALU | BPF_MOD | BPF_K:
405	case BPF_ALU64 | BPF_MOD | BPF_K:
406		ctx->tmp_used = 1;
407		emit_a64_mov_i(is64, tmp2, imm, ctx);
408		emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
409		emit(A64_MUL(is64, tmp, tmp, tmp2), ctx);
410		emit(A64_SUB(is64, dst, dst, tmp), ctx);
411		break;
412	case BPF_ALU | BPF_LSH | BPF_K:
413	case BPF_ALU64 | BPF_LSH | BPF_K:
414		emit(A64_LSL(is64, dst, dst, imm), ctx);
415		break;
416	case BPF_ALU | BPF_RSH | BPF_K:
417	case BPF_ALU64 | BPF_RSH | BPF_K:
418		emit(A64_LSR(is64, dst, dst, imm), ctx);
419		break;
420	case BPF_ALU | BPF_ARSH | BPF_K:
421	case BPF_ALU64 | BPF_ARSH | BPF_K:
422		emit(A64_ASR(is64, dst, dst, imm), ctx);
423		break;
424
425	/* JUMP off */
426	case BPF_JMP | BPF_JA:
427		jmp_offset = bpf2a64_offset(i + off, i, ctx);
428		check_imm26(jmp_offset);
429		emit(A64_B(jmp_offset), ctx);
430		break;
431	/* IF (dst COND src) JUMP off */
432	case BPF_JMP | BPF_JEQ | BPF_X:
433	case BPF_JMP | BPF_JGT | BPF_X:
434	case BPF_JMP | BPF_JGE | BPF_X:
435	case BPF_JMP | BPF_JNE | BPF_X:
436	case BPF_JMP | BPF_JSGT | BPF_X:
437	case BPF_JMP | BPF_JSGE | BPF_X:
438		emit(A64_CMP(1, dst, src), ctx);
439emit_cond_jmp:
440		jmp_offset = bpf2a64_offset(i + off, i, ctx);
441		check_imm19(jmp_offset);
442		switch (BPF_OP(code)) {
443		case BPF_JEQ:
444			jmp_cond = A64_COND_EQ;
445			break;
446		case BPF_JGT:
447			jmp_cond = A64_COND_HI;
448			break;
449		case BPF_JGE:
450			jmp_cond = A64_COND_CS;
451			break;
452		case BPF_JNE:
453			jmp_cond = A64_COND_NE;
454			break;
455		case BPF_JSGT:
456			jmp_cond = A64_COND_GT;
457			break;
458		case BPF_JSGE:
459			jmp_cond = A64_COND_GE;
460			break;
461		default:
462			return -EFAULT;
463		}
464		emit(A64_B_(jmp_cond, jmp_offset), ctx);
465		break;
466	case BPF_JMP | BPF_JSET | BPF_X:
467		emit(A64_TST(1, dst, src), ctx);
468		goto emit_cond_jmp;
469	/* IF (dst COND imm) JUMP off */
470	case BPF_JMP | BPF_JEQ | BPF_K:
471	case BPF_JMP | BPF_JGT | BPF_K:
472	case BPF_JMP | BPF_JGE | BPF_K:
473	case BPF_JMP | BPF_JNE | BPF_K:
474	case BPF_JMP | BPF_JSGT | BPF_K:
475	case BPF_JMP | BPF_JSGE | BPF_K:
476		ctx->tmp_used = 1;
477		emit_a64_mov_i(1, tmp, imm, ctx);
478		emit(A64_CMP(1, dst, tmp), ctx);
479		goto emit_cond_jmp;
480	case BPF_JMP | BPF_JSET | BPF_K:
481		ctx->tmp_used = 1;
482		emit_a64_mov_i(1, tmp, imm, ctx);
483		emit(A64_TST(1, dst, tmp), ctx);
484		goto emit_cond_jmp;
485	/* function call */
486	case BPF_JMP | BPF_CALL:
487	{
488		const u8 r0 = bpf2a64[BPF_REG_0];
489		const u64 func = (u64)__bpf_call_base + imm;
490
491		ctx->tmp_used = 1;
492		emit_a64_mov_i64(tmp, func, ctx);
493		emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
494		emit(A64_MOV(1, A64_FP, A64_SP), ctx);
495		emit(A64_BLR(tmp), ctx);
496		emit(A64_MOV(1, r0, A64_R(0)), ctx);
497		emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
498		break;
499	}
500	/* function return */
501	case BPF_JMP | BPF_EXIT:
502		/* Optimization: when last instruction is EXIT,
503		   simply fallthrough to epilogue. */
504		if (i == ctx->prog->len - 1)
505			break;
506		jmp_offset = epilogue_offset(ctx);
507		check_imm26(jmp_offset);
508		emit(A64_B(jmp_offset), ctx);
509		break;
510
511	/* dst = imm64 */
512	case BPF_LD | BPF_IMM | BPF_DW:
513	{
514		const struct bpf_insn insn1 = insn[1];
515		u64 imm64;
516
517		if (insn1.code != 0 || insn1.src_reg != 0 ||
518		    insn1.dst_reg != 0 || insn1.off != 0) {
519			/* Note: verifier in BPF core must catch invalid
520			 * instructions.
521			 */
522			pr_err_once("Invalid BPF_LD_IMM64 instruction\n");
523			return -EINVAL;
524		}
525
526		imm64 = (u64)insn1.imm << 32 | (u32)imm;
527		emit_a64_mov_i64(dst, imm64, ctx);
528
529		return 1;
530	}
531
532	/* LDX: dst = *(size *)(src + off) */
533	case BPF_LDX | BPF_MEM | BPF_W:
534	case BPF_LDX | BPF_MEM | BPF_H:
535	case BPF_LDX | BPF_MEM | BPF_B:
536	case BPF_LDX | BPF_MEM | BPF_DW:
537		ctx->tmp_used = 1;
538		emit_a64_mov_i(1, tmp, off, ctx);
539		switch (BPF_SIZE(code)) {
540		case BPF_W:
541			emit(A64_LDR32(dst, src, tmp), ctx);
542			break;
543		case BPF_H:
544			emit(A64_LDRH(dst, src, tmp), ctx);
545			break;
546		case BPF_B:
547			emit(A64_LDRB(dst, src, tmp), ctx);
548			break;
549		case BPF_DW:
550			emit(A64_LDR64(dst, src, tmp), ctx);
551			break;
552		}
553		break;
554
555	/* ST: *(size *)(dst + off) = imm */
556	case BPF_ST | BPF_MEM | BPF_W:
557	case BPF_ST | BPF_MEM | BPF_H:
558	case BPF_ST | BPF_MEM | BPF_B:
559	case BPF_ST | BPF_MEM | BPF_DW:
560		goto notyet;
561
562	/* STX: *(size *)(dst + off) = src */
563	case BPF_STX | BPF_MEM | BPF_W:
564	case BPF_STX | BPF_MEM | BPF_H:
565	case BPF_STX | BPF_MEM | BPF_B:
566	case BPF_STX | BPF_MEM | BPF_DW:
567		ctx->tmp_used = 1;
568		emit_a64_mov_i(1, tmp, off, ctx);
569		switch (BPF_SIZE(code)) {
570		case BPF_W:
571			emit(A64_STR32(src, dst, tmp), ctx);
572			break;
573		case BPF_H:
574			emit(A64_STRH(src, dst, tmp), ctx);
575			break;
576		case BPF_B:
577			emit(A64_STRB(src, dst, tmp), ctx);
578			break;
579		case BPF_DW:
580			emit(A64_STR64(src, dst, tmp), ctx);
581			break;
582		}
583		break;
584	/* STX XADD: lock *(u32 *)(dst + off) += src */
585	case BPF_STX | BPF_XADD | BPF_W:
586	/* STX XADD: lock *(u64 *)(dst + off) += src */
587	case BPF_STX | BPF_XADD | BPF_DW:
588		goto notyet;
589
590	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
591	case BPF_LD | BPF_ABS | BPF_W:
592	case BPF_LD | BPF_ABS | BPF_H:
593	case BPF_LD | BPF_ABS | BPF_B:
594	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
595	case BPF_LD | BPF_IND | BPF_W:
596	case BPF_LD | BPF_IND | BPF_H:
597	case BPF_LD | BPF_IND | BPF_B:
598	{
599		const u8 r0 = bpf2a64[BPF_REG_0]; /* r0 = return value */
600		const u8 r6 = bpf2a64[BPF_REG_6]; /* r6 = pointer to sk_buff */
601		const u8 fp = bpf2a64[BPF_REG_FP];
602		const u8 r1 = bpf2a64[BPF_REG_1]; /* r1: struct sk_buff *skb */
603		const u8 r2 = bpf2a64[BPF_REG_2]; /* r2: int k */
604		const u8 r3 = bpf2a64[BPF_REG_3]; /* r3: unsigned int size */
605		const u8 r4 = bpf2a64[BPF_REG_4]; /* r4: void *buffer */
606		const u8 r5 = bpf2a64[BPF_REG_5]; /* r5: void *(*func)(...) */
607		int size;
608
609		emit(A64_MOV(1, r1, r6), ctx);
610		emit_a64_mov_i(0, r2, imm, ctx);
611		if (BPF_MODE(code) == BPF_IND)
612			emit(A64_ADD(0, r2, r2, src), ctx);
613		switch (BPF_SIZE(code)) {
614		case BPF_W:
615			size = 4;
616			break;
617		case BPF_H:
618			size = 2;
619			break;
620		case BPF_B:
621			size = 1;
622			break;
623		default:
624			return -EINVAL;
625		}
626		emit_a64_mov_i64(r3, size, ctx);
627		emit(A64_ADD_I(1, r4, fp, MAX_BPF_STACK), ctx);
628		emit_a64_mov_i64(r5, (unsigned long)bpf_load_pointer, ctx);
629		emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
630		emit(A64_MOV(1, A64_FP, A64_SP), ctx);
631		emit(A64_BLR(r5), ctx);
632		emit(A64_MOV(1, r0, A64_R(0)), ctx);
633		emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
634
635		jmp_offset = epilogue_offset(ctx);
636		check_imm19(jmp_offset);
637		emit(A64_CBZ(1, r0, jmp_offset), ctx);
638		emit(A64_MOV(1, r5, r0), ctx);
639		switch (BPF_SIZE(code)) {
640		case BPF_W:
641			emit(A64_LDR32(r0, r5, A64_ZR), ctx);
642#ifndef CONFIG_CPU_BIG_ENDIAN
643			emit(A64_REV32(0, r0, r0), ctx);
644#endif
645			break;
646		case BPF_H:
647			emit(A64_LDRH(r0, r5, A64_ZR), ctx);
648#ifndef CONFIG_CPU_BIG_ENDIAN
649			emit(A64_REV16(0, r0, r0), ctx);
650#endif
651			break;
652		case BPF_B:
653			emit(A64_LDRB(r0, r5, A64_ZR), ctx);
654			break;
655		}
656		break;
657	}
658notyet:
659		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
660		return -EFAULT;
661
662	default:
663		pr_err_once("unknown opcode %02x\n", code);
664		return -EINVAL;
665	}
666
667	return 0;
668}
669
670static int build_body(struct jit_ctx *ctx)
671{
672	const struct bpf_prog *prog = ctx->prog;
673	int i;
674
675	for (i = 0; i < prog->len; i++) {
676		const struct bpf_insn *insn = &prog->insnsi[i];
677		int ret;
678
679		ret = build_insn(insn, ctx);
680
681		if (ctx->image == NULL)
682			ctx->offset[i] = ctx->idx;
683
684		if (ret > 0) {
685			i++;
686			continue;
687		}
688		if (ret)
689			return ret;
690	}
691
692	return 0;
693}
694
695static inline void bpf_flush_icache(void *start, void *end)
696{
697	flush_icache_range((unsigned long)start, (unsigned long)end);
698}
699
700void bpf_jit_compile(struct bpf_prog *prog)
701{
702	/* Nothing to do here. We support Internal BPF. */
703}
704
705void bpf_int_jit_compile(struct bpf_prog *prog)
706{
707	struct bpf_binary_header *header;
708	struct jit_ctx ctx;
709	int image_size;
710	u8 *image_ptr;
711
712	if (!bpf_jit_enable)
713		return;
714
715	if (!prog || !prog->len)
716		return;
717
718	memset(&ctx, 0, sizeof(ctx));
719	ctx.prog = prog;
720
721	ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
722	if (ctx.offset == NULL)
723		return;
724
725	/* 1. Initial fake pass to compute ctx->idx. */
726
727	/* Fake pass to fill in ctx->offset and ctx->tmp_used. */
728	if (build_body(&ctx))
729		goto out;
730
731	build_prologue(&ctx);
732
733	ctx.epilogue_offset = ctx.idx;
734	build_epilogue(&ctx);
735
736	/* Now we know the actual image size. */
737	image_size = sizeof(u32) * ctx.idx;
738	header = bpf_jit_binary_alloc(image_size, &image_ptr,
739				      sizeof(u32), jit_fill_hole);
740	if (header == NULL)
741		goto out;
742
743	/* 2. Now, the actual pass. */
744
745	ctx.image = (u32 *)image_ptr;
746	ctx.idx = 0;
747
748	build_prologue(&ctx);
749
750	if (build_body(&ctx)) {
751		bpf_jit_binary_free(header);
752		goto out;
753	}
754
755	build_epilogue(&ctx);
756
757	/* And we're done. */
758	if (bpf_jit_enable > 1)
759		bpf_jit_dump(prog->len, image_size, 2, ctx.image);
760
761	bpf_flush_icache(ctx.image, ctx.image + ctx.idx);
762
763	set_memory_ro((unsigned long)header, header->pages);
764	prog->bpf_func = (void *)ctx.image;
765	prog->jited = true;
766out:
767	kfree(ctx.offset);
768}
769
770void bpf_jit_free(struct bpf_prog *prog)
771{
772	unsigned long addr = (unsigned long)prog->bpf_func & PAGE_MASK;
773	struct bpf_binary_header *header = (void *)addr;
774
775	if (!prog->jited)
776		goto free_filter;
777
778	set_memory_rw(addr, header->pages);
779	bpf_jit_binary_free(header);
780
781free_filter:
782	bpf_prog_unlock_free(prog);
783}
784