1/* 2 * 3 * linux/arch/cris/kernel/setup.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (c) 2001 Axis Communications AB 7 */ 8 9/* 10 * This file handles the architecture-dependent parts of initialization 11 */ 12 13#include <linux/init.h> 14#include <linux/mm.h> 15#include <linux/bootmem.h> 16#include <asm/pgtable.h> 17#include <linux/seq_file.h> 18#include <linux/screen_info.h> 19#include <linux/utsname.h> 20#include <linux/pfn.h> 21#include <linux/cpu.h> 22#include <linux/of.h> 23#include <linux/of_fdt.h> 24#include <linux/of_platform.h> 25#include <asm/setup.h> 26#include <arch/system.h> 27 28/* 29 * Setup options 30 */ 31struct screen_info screen_info; 32 33extern int root_mountflags; 34extern char _etext, _edata, _end; 35 36char __initdata cris_command_line[COMMAND_LINE_SIZE] = { 0, }; 37 38extern const unsigned long text_start, edata; /* set by the linker script */ 39extern unsigned long dram_start, dram_end; 40 41extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */ 42 43static struct cpu cpu_devices[NR_CPUS]; 44 45extern void show_etrax_copyright(void); /* arch-vX/kernel/setup.c */ 46 47/* This mainly sets up the memory area, and can be really confusing. 48 * 49 * The physical DRAM is virtually mapped into dram_start to dram_end 50 * (usually c0000000 to c0000000 + DRAM size). The physical address is 51 * given by the macro __pa(). 52 * 53 * In this DRAM, the kernel code and data is loaded, in the beginning. 54 * It really starts at c0004000 to make room for some special pages - 55 * the start address is text_start. The kernel data ends at _end. After 56 * this the ROM filesystem is appended (if there is any). 57 * 58 * Between this address and dram_end, we have RAM pages usable to the 59 * boot code and the system. 60 * 61 */ 62 63void __init setup_arch(char **cmdline_p) 64{ 65 extern void init_etrax_debug(void); 66 unsigned long bootmap_size; 67 unsigned long start_pfn, max_pfn; 68 unsigned long memory_start; 69 70#ifdef CONFIG_OF 71 early_init_dt_scan(__dtb_start); 72#endif 73 74 /* register an initial console printing routine for printk's */ 75 76 init_etrax_debug(); 77 78 /* we should really poll for DRAM size! */ 79 80 high_memory = &dram_end; 81 82 if(romfs_in_flash || !romfs_length) { 83 /* if we have the romfs in flash, or if there is no rom filesystem, 84 * our free area starts directly after the BSS 85 */ 86 memory_start = (unsigned long) &_end; 87 } else { 88 /* otherwise the free area starts after the ROM filesystem */ 89 printk("ROM fs in RAM, size %lu bytes\n", romfs_length); 90 memory_start = romfs_start + romfs_length; 91 } 92 93 /* process 1's initial memory region is the kernel code/data */ 94 95 init_mm.start_code = (unsigned long) &text_start; 96 init_mm.end_code = (unsigned long) &_etext; 97 init_mm.end_data = (unsigned long) &_edata; 98 init_mm.brk = (unsigned long) &_end; 99 100 /* min_low_pfn points to the start of DRAM, start_pfn points 101 * to the first DRAM pages after the kernel, and max_low_pfn 102 * to the end of DRAM. 103 */ 104 105 /* 106 * partially used pages are not usable - thus 107 * we are rounding upwards: 108 */ 109 110 start_pfn = PFN_UP(memory_start); /* usually c0000000 + kernel + romfs */ 111 max_pfn = PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */ 112 113 /* 114 * Initialize the boot-time allocator (start, end) 115 * 116 * We give it access to all our DRAM, but we could as well just have 117 * given it a small slice. No point in doing that though, unless we 118 * have non-contiguous memory and want the boot-stuff to be in, say, 119 * the smallest area. 120 * 121 * It will put a bitmap of the allocated pages in the beginning 122 * of the range we give it, but it won't mark the bitmaps pages 123 * as reserved. We have to do that ourselves below. 124 * 125 * We need to use init_bootmem_node instead of init_bootmem 126 * because our map starts at a quite high address (min_low_pfn). 127 */ 128 129 max_low_pfn = max_pfn; 130 min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT; 131 132 bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn, 133 min_low_pfn, 134 max_low_pfn); 135 136 /* And free all memory not belonging to the kernel (addr, size) */ 137 138 free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn)); 139 140 /* 141 * Reserve the bootmem bitmap itself as well. We do this in two 142 * steps (first step was init_bootmem()) because this catches 143 * the (very unlikely) case of us accidentally initializing the 144 * bootmem allocator with an invalid RAM area. 145 * 146 * Arguments are start, size 147 */ 148 149 reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size, BOOTMEM_DEFAULT); 150 151 unflatten_and_copy_device_tree(); 152 153 /* paging_init() sets up the MMU and marks all pages as reserved */ 154 155 paging_init(); 156 157 *cmdline_p = cris_command_line; 158 159#ifdef CONFIG_ETRAX_CMDLINE 160 if (!strcmp(cris_command_line, "")) { 161 strlcpy(cris_command_line, CONFIG_ETRAX_CMDLINE, COMMAND_LINE_SIZE); 162 cris_command_line[COMMAND_LINE_SIZE - 1] = '\0'; 163 } 164#endif 165 166 /* Save command line for future references. */ 167 memcpy(boot_command_line, cris_command_line, COMMAND_LINE_SIZE); 168 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0'; 169 170 /* give credit for the CRIS port */ 171 show_etrax_copyright(); 172 173 /* Setup utsname */ 174 strcpy(init_utsname()->machine, cris_machine_name); 175} 176 177#ifdef CONFIG_PROC_FS 178static void *c_start(struct seq_file *m, loff_t *pos) 179{ 180 return *pos < nr_cpu_ids ? (void *)(int)(*pos + 1) : NULL; 181} 182 183static void *c_next(struct seq_file *m, void *v, loff_t *pos) 184{ 185 ++*pos; 186 return c_start(m, pos); 187} 188 189static void c_stop(struct seq_file *m, void *v) 190{ 191} 192 193extern int show_cpuinfo(struct seq_file *m, void *v); 194 195const struct seq_operations cpuinfo_op = { 196 .start = c_start, 197 .next = c_next, 198 .stop = c_stop, 199 .show = show_cpuinfo, 200}; 201#endif /* CONFIG_PROC_FS */ 202 203static int __init topology_init(void) 204{ 205 int i; 206 207 for_each_possible_cpu(i) { 208 return register_cpu(&cpu_devices[i], i); 209 } 210 211 return 0; 212} 213 214subsys_initcall(topology_init); 215 216static int __init cris_of_init(void) 217{ 218 of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL); 219 return 0; 220} 221core_initcall(cris_of_init); 222