1/*
2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3 *
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
7 */
8
9#undef DEBUG
10
11#include <linux/init.h>
12#include <linux/irq.h>
13#include <linux/errno.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/types.h>
17#include <linux/interrupt.h>
18#include <linux/ioport.h>
19#include <linux/timex.h>
20#include <linux/smp.h>
21#include <linux/random.h>
22#include <linux/kernel.h>
23#include <linux/kernel_stat.h>
24#include <linux/delay.h>
25#include <linux/bitops.h>
26
27#include <asm/bootinfo.h>
28#include <asm/io.h>
29#include <asm/mipsregs.h>
30
31#include <asm/processor.h>
32#include <asm/sn/addrs.h>
33#include <asm/sn/agent.h>
34#include <asm/sn/arch.h>
35#include <asm/sn/hub.h>
36#include <asm/sn/intr.h>
37
38/*
39 * Linux has a controller-independent x86 interrupt architecture.
40 * every controller has a 'controller-template', that is used
41 * by the main code to do the right thing. Each driver-visible
42 * interrupt source is transparently wired to the appropriate
43 * controller. Thus drivers need not be aware of the
44 * interrupt-controller.
45 *
46 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
47 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
48 * (IO-APICs assumed to be messaging to Pentium local-APICs)
49 *
50 * the code is designed to be easily extended with new/different
51 * interrupt controllers, without having to do assembly magic.
52 */
53
54extern asmlinkage void ip27_irq(void);
55
56/*
57 * Find first bit set
58 */
59static int ms1bit(unsigned long x)
60{
61	int b = 0, s;
62
63	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
64	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
65	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
66	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
67	s =  1; if (x >>  1 == 0) s = 0; b += s;
68
69	return b;
70}
71
72/*
73 * This code is unnecessarily complex, because we do
74 * intr enabling. Basically, once we grab the set of intrs we need
75 * to service, we must mask _all_ these interrupts; firstly, to make
76 * sure the same intr does not intr again, causing recursion that
77 * can lead to stack overflow. Secondly, we can not just mask the
78 * one intr we are do_IRQing, because the non-masked intrs in the
79 * first set might intr again, causing multiple servicings of the
80 * same intr. This effect is mostly seen for intercpu intrs.
81 * Kanoj 05.13.00
82 */
83
84static void ip27_do_irq_mask0(void)
85{
86	int irq, swlevel;
87	hubreg_t pend0, mask0;
88	cpuid_t cpu = smp_processor_id();
89	int pi_int_mask0 =
90		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
91
92	/* copied from Irix intpend0() */
93	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
94	mask0 = LOCAL_HUB_L(pi_int_mask0);
95
96	pend0 &= mask0;		/* Pick intrs we should look at */
97	if (!pend0)
98		return;
99
100	swlevel = ms1bit(pend0);
101#ifdef CONFIG_SMP
102	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
103		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
104		scheduler_ipi();
105	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
106		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
107		scheduler_ipi();
108	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
109		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
110		smp_call_function_interrupt();
111	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
112		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
113		smp_call_function_interrupt();
114	} else
115#endif
116	{
117		/* "map" swlevel to irq */
118		struct slice_data *si = cpu_data[cpu].data;
119
120		irq = si->level_to_irq[swlevel];
121		do_IRQ(irq);
122	}
123
124	LOCAL_HUB_L(PI_INT_PEND0);
125}
126
127static void ip27_do_irq_mask1(void)
128{
129	int irq, swlevel;
130	hubreg_t pend1, mask1;
131	cpuid_t cpu = smp_processor_id();
132	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
133	struct slice_data *si = cpu_data[cpu].data;
134
135	/* copied from Irix intpend0() */
136	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
137	mask1 = LOCAL_HUB_L(pi_int_mask1);
138
139	pend1 &= mask1;		/* Pick intrs we should look at */
140	if (!pend1)
141		return;
142
143	swlevel = ms1bit(pend1);
144	/* "map" swlevel to irq */
145	irq = si->level_to_irq[swlevel];
146	LOCAL_HUB_CLR_INTR(swlevel);
147	do_IRQ(irq);
148
149	LOCAL_HUB_L(PI_INT_PEND1);
150}
151
152static void ip27_prof_timer(void)
153{
154	panic("CPU %d got a profiling interrupt", smp_processor_id());
155}
156
157static void ip27_hub_error(void)
158{
159	panic("CPU %d got a hub error interrupt", smp_processor_id());
160}
161
162asmlinkage void plat_irq_dispatch(void)
163{
164	unsigned long pending = read_c0_cause() & read_c0_status();
165	extern unsigned int rt_timer_irq;
166
167	if (pending & CAUSEF_IP4)
168		do_IRQ(rt_timer_irq);
169	else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */
170		ip27_do_irq_mask0();
171	else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */
172		ip27_do_irq_mask1();
173	else if (pending & CAUSEF_IP5)
174		ip27_prof_timer();
175	else if (pending & CAUSEF_IP6)
176		ip27_hub_error();
177}
178
179void __init arch_init_irq(void)
180{
181}
182
183void install_ipi(void)
184{
185	int slice = LOCAL_HUB_L(PI_CPU_NUM);
186	int cpu = smp_processor_id();
187	struct slice_data *si = cpu_data[cpu].data;
188	struct hub_data *hub = hub_data(cpu_to_node(cpu));
189	int resched, call;
190
191	resched = CPU_RESCHED_A_IRQ + slice;
192	__set_bit(resched, hub->irq_alloc_mask);
193	__set_bit(resched, si->irq_enable_mask);
194	LOCAL_HUB_CLR_INTR(resched);
195
196	call = CPU_CALL_A_IRQ + slice;
197	__set_bit(call, hub->irq_alloc_mask);
198	__set_bit(call, si->irq_enable_mask);
199	LOCAL_HUB_CLR_INTR(call);
200
201	if (slice == 0) {
202		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
203		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
204	} else {
205		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
206		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
207	}
208}
209