1/* SMP support routines.
2 *
3 * Copyright (C) 2006-2008 Panasonic Corporation
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16#include <linux/interrupt.h>
17#include <linux/spinlock.h>
18#include <linux/init.h>
19#include <linux/jiffies.h>
20#include <linux/cpumask.h>
21#include <linux/err.h>
22#include <linux/kernel.h>
23#include <linux/delay.h>
24#include <linux/sched.h>
25#include <linux/profile.h>
26#include <linux/smp.h>
27#include <linux/cpu.h>
28#include <asm/tlbflush.h>
29#include <asm/bitops.h>
30#include <asm/processor.h>
31#include <asm/bug.h>
32#include <asm/exceptions.h>
33#include <asm/hardirq.h>
34#include <asm/fpu.h>
35#include <asm/mmu_context.h>
36#include <asm/thread_info.h>
37#include <asm/cpu-regs.h>
38#include <asm/intctl-regs.h>
39#include "internal.h"
40
41#ifdef CONFIG_HOTPLUG_CPU
42#include <asm/cacheflush.h>
43
44static unsigned long sleep_mode[NR_CPUS];
45
46static void run_sleep_cpu(unsigned int cpu);
47static void run_wakeup_cpu(unsigned int cpu);
48#endif /* CONFIG_HOTPLUG_CPU */
49
50/*
51 * Debug Message function
52 */
53
54#undef DEBUG_SMP
55#ifdef DEBUG_SMP
56#define Dprintk(fmt, ...) printk(KERN_DEBUG fmt, ##__VA_ARGS__)
57#else
58#define Dprintk(fmt, ...) no_printk(KERN_DEBUG fmt, ##__VA_ARGS__)
59#endif
60
61/* timeout value in msec for smp_nmi_call_function. zero is no timeout. */
62#define	CALL_FUNCTION_NMI_IPI_TIMEOUT	0
63
64/*
65 * Structure and data for smp_nmi_call_function().
66 */
67struct nmi_call_data_struct {
68	smp_call_func_t	func;
69	void		*info;
70	cpumask_t	started;
71	cpumask_t	finished;
72	int		wait;
73	char		size_alignment[0]
74	__attribute__ ((__aligned__(SMP_CACHE_BYTES)));
75} __attribute__ ((__aligned__(SMP_CACHE_BYTES)));
76
77static DEFINE_SPINLOCK(smp_nmi_call_lock);
78static struct nmi_call_data_struct *nmi_call_data;
79
80/*
81 * Data structures and variables
82 */
83static cpumask_t cpu_callin_map;	/* Bitmask of callin CPUs */
84static cpumask_t cpu_callout_map;	/* Bitmask of callout CPUs */
85cpumask_t cpu_boot_map;			/* Bitmask of boot APs */
86unsigned long start_stack[NR_CPUS - 1];
87
88/*
89 * Per CPU parameters
90 */
91struct mn10300_cpuinfo cpu_data[NR_CPUS] __cacheline_aligned;
92
93static int cpucount;			/* The count of boot CPUs */
94static cpumask_t smp_commenced_mask;
95cpumask_t cpu_initialized __initdata = CPU_MASK_NONE;
96
97/*
98 * Function Prototypes
99 */
100static int do_boot_cpu(int);
101static void smp_show_cpu_info(int cpu_id);
102static void smp_callin(void);
103static void smp_online(void);
104static void smp_store_cpu_info(int);
105static void smp_cpu_init(void);
106static void smp_tune_scheduling(void);
107static void send_IPI_mask(const cpumask_t *cpumask, int irq);
108static void init_ipi(void);
109
110/*
111 * IPI Initialization interrupt definitions
112 */
113static void mn10300_ipi_disable(unsigned int irq);
114static void mn10300_ipi_enable(unsigned int irq);
115static void mn10300_ipi_chip_disable(struct irq_data *d);
116static void mn10300_ipi_chip_enable(struct irq_data *d);
117static void mn10300_ipi_ack(struct irq_data *d);
118static void mn10300_ipi_nop(struct irq_data *d);
119
120static struct irq_chip mn10300_ipi_type = {
121	.name		= "cpu_ipi",
122	.irq_disable	= mn10300_ipi_chip_disable,
123	.irq_enable	= mn10300_ipi_chip_enable,
124	.irq_ack	= mn10300_ipi_ack,
125	.irq_eoi	= mn10300_ipi_nop
126};
127
128static irqreturn_t smp_reschedule_interrupt(int irq, void *dev_id);
129static irqreturn_t smp_call_function_interrupt(int irq, void *dev_id);
130
131static struct irqaction reschedule_ipi = {
132	.handler	= smp_reschedule_interrupt,
133	.flags		= IRQF_NOBALANCING,
134	.name		= "smp reschedule IPI"
135};
136static struct irqaction call_function_ipi = {
137	.handler	= smp_call_function_interrupt,
138	.flags		= IRQF_NOBALANCING,
139	.name		= "smp call function IPI"
140};
141
142#if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST)
143static irqreturn_t smp_ipi_timer_interrupt(int irq, void *dev_id);
144static struct irqaction local_timer_ipi = {
145	.handler	= smp_ipi_timer_interrupt,
146	.flags		= IRQF_NOBALANCING,
147	.name		= "smp local timer IPI"
148};
149#endif
150
151/**
152 * init_ipi - Initialise the IPI mechanism
153 */
154static void init_ipi(void)
155{
156	unsigned long flags;
157	u16 tmp16;
158
159	/* set up the reschedule IPI */
160	irq_set_chip_and_handler(RESCHEDULE_IPI, &mn10300_ipi_type,
161				 handle_percpu_irq);
162	setup_irq(RESCHEDULE_IPI, &reschedule_ipi);
163	set_intr_level(RESCHEDULE_IPI, RESCHEDULE_GxICR_LV);
164	mn10300_ipi_enable(RESCHEDULE_IPI);
165
166	/* set up the call function IPI */
167	irq_set_chip_and_handler(CALL_FUNC_SINGLE_IPI, &mn10300_ipi_type,
168				 handle_percpu_irq);
169	setup_irq(CALL_FUNC_SINGLE_IPI, &call_function_ipi);
170	set_intr_level(CALL_FUNC_SINGLE_IPI, CALL_FUNCTION_GxICR_LV);
171	mn10300_ipi_enable(CALL_FUNC_SINGLE_IPI);
172
173	/* set up the local timer IPI */
174#if !defined(CONFIG_GENERIC_CLOCKEVENTS) || \
175    defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST)
176	irq_set_chip_and_handler(LOCAL_TIMER_IPI, &mn10300_ipi_type,
177				 handle_percpu_irq);
178	setup_irq(LOCAL_TIMER_IPI, &local_timer_ipi);
179	set_intr_level(LOCAL_TIMER_IPI, LOCAL_TIMER_GxICR_LV);
180	mn10300_ipi_enable(LOCAL_TIMER_IPI);
181#endif
182
183#ifdef CONFIG_MN10300_CACHE_ENABLED
184	/* set up the cache flush IPI */
185	irq_set_chip(FLUSH_CACHE_IPI, &mn10300_ipi_type);
186	flags = arch_local_cli_save();
187	__set_intr_stub(NUM2EXCEP_IRQ_LEVEL(FLUSH_CACHE_GxICR_LV),
188			mn10300_low_ipi_handler);
189	GxICR(FLUSH_CACHE_IPI) = FLUSH_CACHE_GxICR_LV | GxICR_DETECT;
190	mn10300_ipi_enable(FLUSH_CACHE_IPI);
191	arch_local_irq_restore(flags);
192#endif
193
194	/* set up the NMI call function IPI */
195	irq_set_chip(CALL_FUNCTION_NMI_IPI, &mn10300_ipi_type);
196	flags = arch_local_cli_save();
197	GxICR(CALL_FUNCTION_NMI_IPI) = GxICR_NMI | GxICR_ENABLE | GxICR_DETECT;
198	tmp16 = GxICR(CALL_FUNCTION_NMI_IPI);
199	arch_local_irq_restore(flags);
200
201	/* set up the SMP boot IPI */
202	flags = arch_local_cli_save();
203	__set_intr_stub(NUM2EXCEP_IRQ_LEVEL(SMP_BOOT_GxICR_LV),
204			mn10300_low_ipi_handler);
205	arch_local_irq_restore(flags);
206
207#ifdef CONFIG_KERNEL_DEBUGGER
208	irq_set_chip(DEBUGGER_NMI_IPI, &mn10300_ipi_type);
209#endif
210}
211
212/**
213 * mn10300_ipi_shutdown - Shut down handling of an IPI
214 * @irq: The IPI to be shut down.
215 */
216static void mn10300_ipi_shutdown(unsigned int irq)
217{
218	unsigned long flags;
219	u16 tmp;
220
221	flags = arch_local_cli_save();
222
223	tmp = GxICR(irq);
224	GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_DETECT;
225	tmp = GxICR(irq);
226
227	arch_local_irq_restore(flags);
228}
229
230/**
231 * mn10300_ipi_enable - Enable an IPI
232 * @irq: The IPI to be enabled.
233 */
234static void mn10300_ipi_enable(unsigned int irq)
235{
236	unsigned long flags;
237	u16 tmp;
238
239	flags = arch_local_cli_save();
240
241	tmp = GxICR(irq);
242	GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_ENABLE;
243	tmp = GxICR(irq);
244
245	arch_local_irq_restore(flags);
246}
247
248static void mn10300_ipi_chip_enable(struct irq_data *d)
249{
250	mn10300_ipi_enable(d->irq);
251}
252
253/**
254 * mn10300_ipi_disable - Disable an IPI
255 * @irq: The IPI to be disabled.
256 */
257static void mn10300_ipi_disable(unsigned int irq)
258{
259	unsigned long flags;
260	u16 tmp;
261
262	flags = arch_local_cli_save();
263
264	tmp = GxICR(irq);
265	GxICR(irq) = tmp & GxICR_LEVEL;
266	tmp = GxICR(irq);
267
268	arch_local_irq_restore(flags);
269}
270
271static void mn10300_ipi_chip_disable(struct irq_data *d)
272{
273	mn10300_ipi_disable(d->irq);
274}
275
276
277/**
278 * mn10300_ipi_ack - Acknowledge an IPI interrupt in the PIC
279 * @irq: The IPI to be acknowledged.
280 *
281 * Clear the interrupt detection flag for the IPI on the appropriate interrupt
282 * channel in the PIC.
283 */
284static void mn10300_ipi_ack(struct irq_data *d)
285{
286	unsigned int irq = d->irq;
287	unsigned long flags;
288	u16 tmp;
289
290	flags = arch_local_cli_save();
291	GxICR_u8(irq) = GxICR_DETECT;
292	tmp = GxICR(irq);
293	arch_local_irq_restore(flags);
294}
295
296/**
297 * mn10300_ipi_nop - Dummy IPI action
298 * @irq: The IPI to be acted upon.
299 */
300static void mn10300_ipi_nop(struct irq_data *d)
301{
302}
303
304/**
305 * send_IPI_mask - Send IPIs to all CPUs in list
306 * @cpumask: The list of CPUs to target.
307 * @irq: The IPI request to be sent.
308 *
309 * Send the specified IPI to all the CPUs in the list, not waiting for them to
310 * finish before returning.  The caller is responsible for synchronisation if
311 * that is needed.
312 */
313static void send_IPI_mask(const cpumask_t *cpumask, int irq)
314{
315	int i;
316	u16 tmp;
317
318	for (i = 0; i < NR_CPUS; i++) {
319		if (cpumask_test_cpu(i, cpumask)) {
320			/* send IPI */
321			tmp = CROSS_GxICR(irq, i);
322			CROSS_GxICR(irq, i) =
323				tmp | GxICR_REQUEST | GxICR_DETECT;
324			tmp = CROSS_GxICR(irq, i); /* flush write buffer */
325		}
326	}
327}
328
329/**
330 * send_IPI_self - Send an IPI to this CPU.
331 * @irq: The IPI request to be sent.
332 *
333 * Send the specified IPI to the current CPU.
334 */
335void send_IPI_self(int irq)
336{
337	send_IPI_mask(cpumask_of(smp_processor_id()), irq);
338}
339
340/**
341 * send_IPI_allbutself - Send IPIs to all the other CPUs.
342 * @irq: The IPI request to be sent.
343 *
344 * Send the specified IPI to all CPUs in the system barring the current one,
345 * not waiting for them to finish before returning.  The caller is responsible
346 * for synchronisation if that is needed.
347 */
348void send_IPI_allbutself(int irq)
349{
350	cpumask_t cpumask;
351
352	cpumask_copy(&cpumask, cpu_online_mask);
353	cpumask_clear_cpu(smp_processor_id(), &cpumask);
354	send_IPI_mask(&cpumask, irq);
355}
356
357void arch_send_call_function_ipi_mask(const struct cpumask *mask)
358{
359	BUG();
360	/*send_IPI_mask(mask, CALL_FUNCTION_IPI);*/
361}
362
363void arch_send_call_function_single_ipi(int cpu)
364{
365	send_IPI_mask(cpumask_of(cpu), CALL_FUNC_SINGLE_IPI);
366}
367
368/**
369 * smp_send_reschedule - Send reschedule IPI to a CPU
370 * @cpu: The CPU to target.
371 */
372void smp_send_reschedule(int cpu)
373{
374	send_IPI_mask(cpumask_of(cpu), RESCHEDULE_IPI);
375}
376
377/**
378 * smp_nmi_call_function - Send a call function NMI IPI to all CPUs
379 * @func: The function to ask to be run.
380 * @info: The context data to pass to that function.
381 * @wait: If true, wait (atomically) until function is run on all CPUs.
382 *
383 * Send a non-maskable request to all CPUs in the system, requesting them to
384 * run the specified function with the given context data, and, potentially, to
385 * wait for completion of that function on all CPUs.
386 *
387 * Returns 0 if successful, -ETIMEDOUT if we were asked to wait, but hit the
388 * timeout.
389 */
390int smp_nmi_call_function(smp_call_func_t func, void *info, int wait)
391{
392	struct nmi_call_data_struct data;
393	unsigned long flags;
394	unsigned int cnt;
395	int cpus, ret = 0;
396
397	cpus = num_online_cpus() - 1;
398	if (cpus < 1)
399		return 0;
400
401	data.func = func;
402	data.info = info;
403	cpumask_copy(&data.started, cpu_online_mask);
404	cpumask_clear_cpu(smp_processor_id(), &data.started);
405	data.wait = wait;
406	if (wait)
407		data.finished = data.started;
408
409	spin_lock_irqsave(&smp_nmi_call_lock, flags);
410	nmi_call_data = &data;
411	smp_mb();
412
413	/* Send a message to all other CPUs and wait for them to respond */
414	send_IPI_allbutself(CALL_FUNCTION_NMI_IPI);
415
416	/* Wait for response */
417	if (CALL_FUNCTION_NMI_IPI_TIMEOUT > 0) {
418		for (cnt = 0;
419		     cnt < CALL_FUNCTION_NMI_IPI_TIMEOUT &&
420			     !cpumask_empty(&data.started);
421		     cnt++)
422			mdelay(1);
423
424		if (wait && cnt < CALL_FUNCTION_NMI_IPI_TIMEOUT) {
425			for (cnt = 0;
426			     cnt < CALL_FUNCTION_NMI_IPI_TIMEOUT &&
427				     !cpumask_empty(&data.finished);
428			     cnt++)
429				mdelay(1);
430		}
431
432		if (cnt >= CALL_FUNCTION_NMI_IPI_TIMEOUT)
433			ret = -ETIMEDOUT;
434
435	} else {
436		/* If timeout value is zero, wait until cpumask has been
437		 * cleared */
438		while (!cpumask_empty(&data.started))
439			barrier();
440		if (wait)
441			while (!cpumask_empty(&data.finished))
442				barrier();
443	}
444
445	spin_unlock_irqrestore(&smp_nmi_call_lock, flags);
446	return ret;
447}
448
449/**
450 * smp_jump_to_debugger - Make other CPUs enter the debugger by sending an IPI
451 *
452 * Send a non-maskable request to all other CPUs in the system, instructing
453 * them to jump into the debugger.  The caller is responsible for checking that
454 * the other CPUs responded to the instruction.
455 *
456 * The caller should make sure that this CPU's debugger IPI is disabled.
457 */
458void smp_jump_to_debugger(void)
459{
460	if (num_online_cpus() > 1)
461		/* Send a message to all other CPUs */
462		send_IPI_allbutself(DEBUGGER_NMI_IPI);
463}
464
465/**
466 * stop_this_cpu - Callback to stop a CPU.
467 * @unused: Callback context (ignored).
468 */
469void stop_this_cpu(void *unused)
470{
471	static volatile int stopflag;
472	unsigned long flags;
473
474#ifdef CONFIG_GDBSTUB
475	/* In case of single stepping smp_send_stop by other CPU,
476	 * clear procindebug to avoid deadlock.
477	 */
478	atomic_set(&procindebug[smp_processor_id()], 0);
479#endif	/* CONFIG_GDBSTUB */
480
481	flags = arch_local_cli_save();
482	set_cpu_online(smp_processor_id(), false);
483
484	while (!stopflag)
485		cpu_relax();
486
487	set_cpu_online(smp_processor_id(), true);
488	arch_local_irq_restore(flags);
489}
490
491/**
492 * smp_send_stop - Send a stop request to all CPUs.
493 */
494void smp_send_stop(void)
495{
496	smp_nmi_call_function(stop_this_cpu, NULL, 0);
497}
498
499/**
500 * smp_reschedule_interrupt - Reschedule IPI handler
501 * @irq: The interrupt number.
502 * @dev_id: The device ID.
503 *
504 * Returns IRQ_HANDLED to indicate we handled the interrupt successfully.
505 */
506static irqreturn_t smp_reschedule_interrupt(int irq, void *dev_id)
507{
508	scheduler_ipi();
509	return IRQ_HANDLED;
510}
511
512/**
513 * smp_call_function_interrupt - Call function IPI handler
514 * @irq: The interrupt number.
515 * @dev_id: The device ID.
516 *
517 * Returns IRQ_HANDLED to indicate we handled the interrupt successfully.
518 */
519static irqreturn_t smp_call_function_interrupt(int irq, void *dev_id)
520{
521	/* generic_smp_call_function_interrupt(); */
522	generic_smp_call_function_single_interrupt();
523	return IRQ_HANDLED;
524}
525
526/**
527 * smp_nmi_call_function_interrupt - Non-maskable call function IPI handler
528 */
529void smp_nmi_call_function_interrupt(void)
530{
531	smp_call_func_t func = nmi_call_data->func;
532	void *info = nmi_call_data->info;
533	int wait = nmi_call_data->wait;
534
535	/* Notify the initiating CPU that I've grabbed the data and am about to
536	 * execute the function
537	 */
538	smp_mb();
539	cpumask_clear_cpu(smp_processor_id(), &nmi_call_data->started);
540	(*func)(info);
541
542	if (wait) {
543		smp_mb();
544		cpumask_clear_cpu(smp_processor_id(),
545				  &nmi_call_data->finished);
546	}
547}
548
549#if !defined(CONFIG_GENERIC_CLOCKEVENTS) || \
550    defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST)
551/**
552 * smp_ipi_timer_interrupt - Local timer IPI handler
553 * @irq: The interrupt number.
554 * @dev_id: The device ID.
555 *
556 * Returns IRQ_HANDLED to indicate we handled the interrupt successfully.
557 */
558static irqreturn_t smp_ipi_timer_interrupt(int irq, void *dev_id)
559{
560	return local_timer_interrupt();
561}
562#endif
563
564void __init smp_init_cpus(void)
565{
566	int i;
567	for (i = 0; i < NR_CPUS; i++) {
568		set_cpu_possible(i, true);
569		set_cpu_present(i, true);
570	}
571}
572
573/**
574 * smp_cpu_init - Initialise AP in start_secondary.
575 *
576 * For this Application Processor, set up init_mm, initialise FPU and set
577 * interrupt level 0-6 setting.
578 */
579static void __init smp_cpu_init(void)
580{
581	unsigned long flags;
582	int cpu_id = smp_processor_id();
583	u16 tmp16;
584
585	if (test_and_set_bit(cpu_id, &cpu_initialized)) {
586		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu_id);
587		for (;;)
588			local_irq_enable();
589	}
590	printk(KERN_INFO "Initializing CPU#%d\n", cpu_id);
591
592	atomic_inc(&init_mm.mm_count);
593	current->active_mm = &init_mm;
594	BUG_ON(current->mm);
595
596	enter_lazy_tlb(&init_mm, current);
597
598	/* Force FPU initialization */
599	clear_using_fpu(current);
600
601	GxICR(CALL_FUNC_SINGLE_IPI) = CALL_FUNCTION_GxICR_LV | GxICR_DETECT;
602	mn10300_ipi_enable(CALL_FUNC_SINGLE_IPI);
603
604	GxICR(LOCAL_TIMER_IPI) = LOCAL_TIMER_GxICR_LV | GxICR_DETECT;
605	mn10300_ipi_enable(LOCAL_TIMER_IPI);
606
607	GxICR(RESCHEDULE_IPI) = RESCHEDULE_GxICR_LV | GxICR_DETECT;
608	mn10300_ipi_enable(RESCHEDULE_IPI);
609
610#ifdef CONFIG_MN10300_CACHE_ENABLED
611	GxICR(FLUSH_CACHE_IPI) = FLUSH_CACHE_GxICR_LV | GxICR_DETECT;
612	mn10300_ipi_enable(FLUSH_CACHE_IPI);
613#endif
614
615	mn10300_ipi_shutdown(SMP_BOOT_IRQ);
616
617	/* Set up the non-maskable call function IPI */
618	flags = arch_local_cli_save();
619	GxICR(CALL_FUNCTION_NMI_IPI) = GxICR_NMI | GxICR_ENABLE | GxICR_DETECT;
620	tmp16 = GxICR(CALL_FUNCTION_NMI_IPI);
621	arch_local_irq_restore(flags);
622}
623
624/**
625 * smp_prepare_cpu_init - Initialise CPU in startup_secondary
626 *
627 * Set interrupt level 0-6 setting and init ICR of the kernel debugger.
628 */
629void smp_prepare_cpu_init(void)
630{
631	int loop;
632
633	/* Set the interrupt vector registers */
634	IVAR0 = EXCEP_IRQ_LEVEL0;
635	IVAR1 = EXCEP_IRQ_LEVEL1;
636	IVAR2 = EXCEP_IRQ_LEVEL2;
637	IVAR3 = EXCEP_IRQ_LEVEL3;
638	IVAR4 = EXCEP_IRQ_LEVEL4;
639	IVAR5 = EXCEP_IRQ_LEVEL5;
640	IVAR6 = EXCEP_IRQ_LEVEL6;
641
642	/* Disable all interrupts and set to priority 6 (lowest) */
643	for (loop = 0; loop < GxICR_NUM_IRQS; loop++)
644		GxICR(loop) = GxICR_LEVEL_6 | GxICR_DETECT;
645
646#ifdef CONFIG_KERNEL_DEBUGGER
647	/* initialise the kernel debugger interrupt */
648	do {
649		unsigned long flags;
650		u16 tmp16;
651
652		flags = arch_local_cli_save();
653		GxICR(DEBUGGER_NMI_IPI) = GxICR_NMI | GxICR_ENABLE | GxICR_DETECT;
654		tmp16 = GxICR(DEBUGGER_NMI_IPI);
655		arch_local_irq_restore(flags);
656	} while (0);
657#endif
658}
659
660/**
661 * start_secondary - Activate a secondary CPU (AP)
662 * @unused: Thread parameter (ignored).
663 */
664int __init start_secondary(void *unused)
665{
666	smp_cpu_init();
667	smp_callin();
668	while (!cpumask_test_cpu(smp_processor_id(), &smp_commenced_mask))
669		cpu_relax();
670
671	local_flush_tlb();
672	preempt_disable();
673	smp_online();
674
675#ifdef CONFIG_GENERIC_CLOCKEVENTS
676	init_clockevents();
677#endif
678	cpu_startup_entry(CPUHP_ONLINE);
679	return 0;
680}
681
682/**
683 * smp_prepare_cpus - Boot up secondary CPUs (APs)
684 * @max_cpus: Maximum number of CPUs to boot.
685 *
686 * Call do_boot_cpu, and boot up APs.
687 */
688void __init smp_prepare_cpus(unsigned int max_cpus)
689{
690	int phy_id;
691
692	/* Setup boot CPU information */
693	smp_store_cpu_info(0);
694	smp_tune_scheduling();
695
696	init_ipi();
697
698	/* If SMP should be disabled, then finish */
699	if (max_cpus == 0) {
700		printk(KERN_INFO "SMP mode deactivated.\n");
701		goto smp_done;
702	}
703
704	/* Boot secondary CPUs (for which phy_id > 0) */
705	for (phy_id = 0; phy_id < NR_CPUS; phy_id++) {
706		/* Don't boot primary CPU */
707		if (max_cpus <= cpucount + 1)
708			continue;
709		if (phy_id != 0)
710			do_boot_cpu(phy_id);
711		set_cpu_possible(phy_id, true);
712		smp_show_cpu_info(phy_id);
713	}
714
715smp_done:
716	Dprintk("Boot done.\n");
717}
718
719/**
720 * smp_store_cpu_info - Save a CPU's information
721 * @cpu: The CPU to save for.
722 *
723 * Save boot_cpu_data and jiffy for the specified CPU.
724 */
725static void __init smp_store_cpu_info(int cpu)
726{
727	struct mn10300_cpuinfo *ci = &cpu_data[cpu];
728
729	*ci = boot_cpu_data;
730	ci->loops_per_jiffy = loops_per_jiffy;
731	ci->type = CPUREV;
732}
733
734/**
735 * smp_tune_scheduling - Set time slice value
736 *
737 * Nothing to do here.
738 */
739static void __init smp_tune_scheduling(void)
740{
741}
742
743/**
744 * do_boot_cpu: Boot up one CPU
745 * @phy_id: Physical ID of CPU to boot.
746 *
747 * Send an IPI to a secondary CPU to boot it.  Returns 0 on success, 1
748 * otherwise.
749 */
750static int __init do_boot_cpu(int phy_id)
751{
752	struct task_struct *idle;
753	unsigned long send_status, callin_status;
754	int timeout, cpu_id;
755
756	send_status = GxICR_REQUEST;
757	callin_status = 0;
758	timeout = 0;
759	cpu_id = phy_id;
760
761	cpucount++;
762
763	/* Create idle thread for this CPU */
764	idle = fork_idle(cpu_id);
765	if (IS_ERR(idle))
766		panic("Failed fork for CPU#%d.", cpu_id);
767
768	idle->thread.pc = (unsigned long)start_secondary;
769
770	printk(KERN_NOTICE "Booting CPU#%d\n", cpu_id);
771	start_stack[cpu_id - 1] = idle->thread.sp;
772
773	task_thread_info(idle)->cpu = cpu_id;
774
775	/* Send boot IPI to AP */
776	send_IPI_mask(cpumask_of(phy_id), SMP_BOOT_IRQ);
777
778	Dprintk("Waiting for send to finish...\n");
779
780	/* Wait for AP's IPI receive in 100[ms] */
781	do {
782		udelay(1000);
783		send_status =
784			CROSS_GxICR(SMP_BOOT_IRQ, phy_id) & GxICR_REQUEST;
785	} while (send_status == GxICR_REQUEST && timeout++ < 100);
786
787	Dprintk("Waiting for cpu_callin_map.\n");
788
789	if (send_status == 0) {
790		/* Allow AP to start initializing */
791		cpumask_set_cpu(cpu_id, &cpu_callout_map);
792
793		/* Wait for setting cpu_callin_map */
794		timeout = 0;
795		do {
796			udelay(1000);
797			callin_status = cpumask_test_cpu(cpu_id,
798							 &cpu_callin_map);
799		} while (callin_status == 0 && timeout++ < 5000);
800
801		if (callin_status == 0)
802			Dprintk("Not responding.\n");
803	} else {
804		printk(KERN_WARNING "IPI not delivered.\n");
805	}
806
807	if (send_status == GxICR_REQUEST || callin_status == 0) {
808		cpumask_clear_cpu(cpu_id, &cpu_callout_map);
809		cpumask_clear_cpu(cpu_id, &cpu_callin_map);
810		cpumask_clear_cpu(cpu_id, &cpu_initialized);
811		cpucount--;
812		return 1;
813	}
814	return 0;
815}
816
817/**
818 * smp_show_cpu_info - Show SMP CPU information
819 * @cpu: The CPU of interest.
820 */
821static void __init smp_show_cpu_info(int cpu)
822{
823	struct mn10300_cpuinfo *ci = &cpu_data[cpu];
824
825	printk(KERN_INFO
826	       "CPU#%d : ioclk speed: %lu.%02luMHz : bogomips : %lu.%02lu\n",
827	       cpu,
828	       MN10300_IOCLK / 1000000,
829	       (MN10300_IOCLK / 10000) % 100,
830	       ci->loops_per_jiffy / (500000 / HZ),
831	       (ci->loops_per_jiffy / (5000 / HZ)) % 100);
832}
833
834/**
835 * smp_callin - Set cpu_callin_map of the current CPU ID
836 */
837static void __init smp_callin(void)
838{
839	unsigned long timeout;
840	int cpu;
841
842	cpu = smp_processor_id();
843	timeout = jiffies + (2 * HZ);
844
845	if (cpumask_test_cpu(cpu, &cpu_callin_map)) {
846		printk(KERN_ERR "CPU#%d already present.\n", cpu);
847		BUG();
848	}
849	Dprintk("CPU#%d waiting for CALLOUT\n", cpu);
850
851	/* Wait for AP startup 2s total */
852	while (time_before(jiffies, timeout)) {
853		if (cpumask_test_cpu(cpu, &cpu_callout_map))
854			break;
855		cpu_relax();
856	}
857
858	if (!time_before(jiffies, timeout)) {
859		printk(KERN_ERR
860		       "BUG: CPU#%d started up but did not get a callout!\n",
861		       cpu);
862		BUG();
863	}
864
865#ifdef CONFIG_CALIBRATE_DELAY
866	calibrate_delay();		/* Get our bogomips */
867#endif
868
869	/* Save our processor parameters */
870	smp_store_cpu_info(cpu);
871
872	/* Allow the boot processor to continue */
873	cpumask_set_cpu(cpu, &cpu_callin_map);
874}
875
876/**
877 * smp_online - Set cpu_online_mask
878 */
879static void __init smp_online(void)
880{
881	int cpu;
882
883	cpu = smp_processor_id();
884
885	notify_cpu_starting(cpu);
886
887	set_cpu_online(cpu, true);
888
889	local_irq_enable();
890}
891
892/**
893 * smp_cpus_done -
894 * @max_cpus: Maximum CPU count.
895 *
896 * Do nothing.
897 */
898void __init smp_cpus_done(unsigned int max_cpus)
899{
900}
901
902/*
903 * smp_prepare_boot_cpu - Set up stuff for the boot processor.
904 *
905 * Set up the cpu_online_mask, cpu_callout_map and cpu_callin_map of the boot
906 * processor (CPU 0).
907 */
908void smp_prepare_boot_cpu(void)
909{
910	cpumask_set_cpu(0, &cpu_callout_map);
911	cpumask_set_cpu(0, &cpu_callin_map);
912	current_thread_info()->cpu = 0;
913}
914
915/*
916 * initialize_secondary - Initialise a secondary CPU (Application Processor).
917 *
918 * Set SP register and jump to thread's PC address.
919 */
920void initialize_secondary(void)
921{
922	asm volatile (
923		"mov	%0,sp	\n"
924		"jmp	(%1)	\n"
925		:
926		: "a"(current->thread.sp), "a"(current->thread.pc));
927}
928
929/**
930 * __cpu_up - Set smp_commenced_mask for the nominated CPU
931 * @cpu: The target CPU.
932 */
933int __cpu_up(unsigned int cpu, struct task_struct *tidle)
934{
935	int timeout;
936
937#ifdef CONFIG_HOTPLUG_CPU
938	if (sleep_mode[cpu])
939		run_wakeup_cpu(cpu);
940#endif /* CONFIG_HOTPLUG_CPU */
941
942	cpumask_set_cpu(cpu, &smp_commenced_mask);
943
944	/* Wait 5s total for a response */
945	for (timeout = 0 ; timeout < 5000 ; timeout++) {
946		if (cpu_online(cpu))
947			break;
948		udelay(1000);
949	}
950
951	BUG_ON(!cpu_online(cpu));
952	return 0;
953}
954
955/**
956 * setup_profiling_timer - Set up the profiling timer
957 * @multiplier - The frequency multiplier to use
958 *
959 * The frequency of the profiling timer can be changed by writing a multiplier
960 * value into /proc/profile.
961 */
962int setup_profiling_timer(unsigned int multiplier)
963{
964	return -EINVAL;
965}
966
967/*
968 * CPU hotplug routines
969 */
970#ifdef CONFIG_HOTPLUG_CPU
971
972static DEFINE_PER_CPU(struct cpu, cpu_devices);
973
974static int __init topology_init(void)
975{
976	int cpu, ret;
977
978	for_each_cpu(cpu) {
979		ret = register_cpu(&per_cpu(cpu_devices, cpu), cpu, NULL);
980		if (ret)
981			printk(KERN_WARNING
982			       "topology_init: register_cpu %d failed (%d)\n",
983			       cpu, ret);
984	}
985	return 0;
986}
987
988subsys_initcall(topology_init);
989
990int __cpu_disable(void)
991{
992	int cpu = smp_processor_id();
993	if (cpu == 0)
994		return -EBUSY;
995
996	migrate_irqs();
997	cpumask_clear_cpu(cpu, &mm_cpumask(current->active_mm));
998	return 0;
999}
1000
1001void __cpu_die(unsigned int cpu)
1002{
1003	run_sleep_cpu(cpu);
1004}
1005
1006#ifdef CONFIG_MN10300_CACHE_ENABLED
1007static inline void hotplug_cpu_disable_cache(void)
1008{
1009	int tmp;
1010	asm volatile(
1011		"	movhu	(%1),%0	\n"
1012		"	and	%2,%0	\n"
1013		"	movhu	%0,(%1)	\n"
1014		"1:	movhu	(%1),%0	\n"
1015		"	btst	%3,%0	\n"
1016		"	bne	1b	\n"
1017		: "=&r"(tmp)
1018		: "a"(&CHCTR),
1019		  "i"(~(CHCTR_ICEN | CHCTR_DCEN)),
1020		  "i"(CHCTR_ICBUSY | CHCTR_DCBUSY)
1021		: "memory", "cc");
1022}
1023
1024static inline void hotplug_cpu_enable_cache(void)
1025{
1026	int tmp;
1027	asm volatile(
1028		"movhu	(%1),%0	\n"
1029		"or	%2,%0	\n"
1030		"movhu	%0,(%1)	\n"
1031		: "=&r"(tmp)
1032		: "a"(&CHCTR),
1033		  "i"(CHCTR_ICEN | CHCTR_DCEN)
1034		: "memory", "cc");
1035}
1036
1037static inline void hotplug_cpu_invalidate_cache(void)
1038{
1039	int tmp;
1040	asm volatile (
1041		"movhu	(%1),%0	\n"
1042		"or	%2,%0	\n"
1043		"movhu	%0,(%1)	\n"
1044		: "=&r"(tmp)
1045		: "a"(&CHCTR),
1046		  "i"(CHCTR_ICINV | CHCTR_DCINV)
1047		: "cc");
1048}
1049
1050#else /* CONFIG_MN10300_CACHE_ENABLED */
1051#define hotplug_cpu_disable_cache()	do {} while (0)
1052#define hotplug_cpu_enable_cache()	do {} while (0)
1053#define hotplug_cpu_invalidate_cache()	do {} while (0)
1054#endif /* CONFIG_MN10300_CACHE_ENABLED */
1055
1056/**
1057 * hotplug_cpu_nmi_call_function - Call a function on other CPUs for hotplug
1058 * @cpumask: List of target CPUs.
1059 * @func: The function to call on those CPUs.
1060 * @info: The context data for the function to be called.
1061 * @wait: Whether to wait for the calls to complete.
1062 *
1063 * Non-maskably call a function on another CPU for hotplug purposes.
1064 *
1065 * This function must be called with maskable interrupts disabled.
1066 */
1067static int hotplug_cpu_nmi_call_function(cpumask_t cpumask,
1068					 smp_call_func_t func, void *info,
1069					 int wait)
1070{
1071	/*
1072	 * The address and the size of nmi_call_func_mask_data
1073	 * need to be aligned on L1_CACHE_BYTES.
1074	 */
1075	static struct nmi_call_data_struct nmi_call_func_mask_data
1076		__cacheline_aligned;
1077	unsigned long start, end;
1078
1079	start = (unsigned long)&nmi_call_func_mask_data;
1080	end = start + sizeof(struct nmi_call_data_struct);
1081
1082	nmi_call_func_mask_data.func = func;
1083	nmi_call_func_mask_data.info = info;
1084	nmi_call_func_mask_data.started = cpumask;
1085	nmi_call_func_mask_data.wait = wait;
1086	if (wait)
1087		nmi_call_func_mask_data.finished = cpumask;
1088
1089	spin_lock(&smp_nmi_call_lock);
1090	nmi_call_data = &nmi_call_func_mask_data;
1091	mn10300_local_dcache_flush_range(start, end);
1092	smp_wmb();
1093
1094	send_IPI_mask(cpumask, CALL_FUNCTION_NMI_IPI);
1095
1096	do {
1097		mn10300_local_dcache_inv_range(start, end);
1098		barrier();
1099	} while (!cpumask_empty(&nmi_call_func_mask_data.started));
1100
1101	if (wait) {
1102		do {
1103			mn10300_local_dcache_inv_range(start, end);
1104			barrier();
1105		} while (!cpumask_empty(&nmi_call_func_mask_data.finished));
1106	}
1107
1108	spin_unlock(&smp_nmi_call_lock);
1109	return 0;
1110}
1111
1112static void restart_wakeup_cpu(void)
1113{
1114	unsigned int cpu = smp_processor_id();
1115
1116	cpumask_set_cpu(cpu, &cpu_callin_map);
1117	local_flush_tlb();
1118	set_cpu_online(cpu, true);
1119	smp_wmb();
1120}
1121
1122static void prepare_sleep_cpu(void *unused)
1123{
1124	sleep_mode[smp_processor_id()] = 1;
1125	smp_mb();
1126	mn10300_local_dcache_flush_inv();
1127	hotplug_cpu_disable_cache();
1128	hotplug_cpu_invalidate_cache();
1129}
1130
1131/* when this function called, IE=0, NMID=0. */
1132static void sleep_cpu(void *unused)
1133{
1134	unsigned int cpu_id = smp_processor_id();
1135	/*
1136	 * CALL_FUNCTION_NMI_IPI for wakeup_cpu() shall not be requested,
1137	 * before this cpu goes in SLEEP mode.
1138	 */
1139	do {
1140		smp_mb();
1141		__sleep_cpu();
1142	} while (sleep_mode[cpu_id]);
1143	restart_wakeup_cpu();
1144}
1145
1146static void run_sleep_cpu(unsigned int cpu)
1147{
1148	unsigned long flags;
1149	cpumask_t cpumask;
1150
1151	cpumask_copy(&cpumask, &cpumask_of(cpu));
1152	flags = arch_local_cli_save();
1153	hotplug_cpu_nmi_call_function(cpumask, prepare_sleep_cpu, NULL, 1);
1154	hotplug_cpu_nmi_call_function(cpumask, sleep_cpu, NULL, 0);
1155	udelay(1);		/* delay for the cpu to sleep. */
1156	arch_local_irq_restore(flags);
1157}
1158
1159static void wakeup_cpu(void)
1160{
1161	hotplug_cpu_invalidate_cache();
1162	hotplug_cpu_enable_cache();
1163	smp_mb();
1164	sleep_mode[smp_processor_id()] = 0;
1165}
1166
1167static void run_wakeup_cpu(unsigned int cpu)
1168{
1169	unsigned long flags;
1170
1171	flags = arch_local_cli_save();
1172#if NR_CPUS == 2
1173	mn10300_local_dcache_flush_inv();
1174#else
1175	/*
1176	 * Before waking up the cpu,
1177	 * all online cpus should stop and flush D-Cache for global data.
1178	 */
1179#error not support NR_CPUS > 2, when CONFIG_HOTPLUG_CPU=y.
1180#endif
1181	hotplug_cpu_nmi_call_function(cpumask_of(cpu), wakeup_cpu, NULL, 1);
1182	arch_local_irq_restore(flags);
1183}
1184
1185#endif /* CONFIG_HOTPLUG_CPU */
1186