1#ifndef _ASM_POWERPC_PGALLOC_64_H 2#define _ASM_POWERPC_PGALLOC_64_H 3/* 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10#include <linux/slab.h> 11#include <linux/cpumask.h> 12#include <linux/percpu.h> 13 14struct vmemmap_backing { 15 struct vmemmap_backing *list; 16 unsigned long phys; 17 unsigned long virt_addr; 18}; 19extern struct vmemmap_backing *vmemmap_list; 20 21/* 22 * Functions that deal with pagetables that could be at any level of 23 * the table need to be passed an "index_size" so they know how to 24 * handle allocation. For PTE pages (which are linked to a struct 25 * page for now, and drawn from the main get_free_pages() pool), the 26 * allocation size will be (2^index_size * sizeof(pointer)) and 27 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size). 28 * 29 * The maximum index size needs to be big enough to allow any 30 * pagetable sizes we need, but small enough to fit in the low bits of 31 * any page table pointer. In other words all pagetables, even tiny 32 * ones, must be aligned to allow at least enough low 0 bits to 33 * contain this value. This value is also used as a mask, so it must 34 * be one less than a power of two. 35 */ 36#define MAX_PGTABLE_INDEX_SIZE 0xf 37 38extern struct kmem_cache *pgtable_cache[]; 39#define PGT_CACHE(shift) ({ \ 40 BUG_ON(!(shift)); \ 41 pgtable_cache[(shift) - 1]; \ 42 }) 43 44static inline pgd_t *pgd_alloc(struct mm_struct *mm) 45{ 46 return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL); 47} 48 49static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) 50{ 51 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); 52} 53 54#ifndef CONFIG_PPC_64K_PAGES 55 56#define pgd_populate(MM, PGD, PUD) pgd_set(PGD, PUD) 57 58static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) 59{ 60 return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), 61 GFP_KERNEL|__GFP_REPEAT); 62} 63 64static inline void pud_free(struct mm_struct *mm, pud_t *pud) 65{ 66 kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud); 67} 68 69static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) 70{ 71 pud_set(pud, (unsigned long)pmd); 72} 73 74#define pmd_populate(mm, pmd, pte_page) \ 75 pmd_populate_kernel(mm, pmd, page_address(pte_page)) 76#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte)) 77#define pmd_pgtable(pmd) pmd_page(pmd) 78 79static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 80 unsigned long address) 81{ 82 return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO); 83} 84 85static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 86 unsigned long address) 87{ 88 struct page *page; 89 pte_t *pte; 90 91 pte = pte_alloc_one_kernel(mm, address); 92 if (!pte) 93 return NULL; 94 page = virt_to_page(pte); 95 if (!pgtable_page_ctor(page)) { 96 __free_page(page); 97 return NULL; 98 } 99 return page; 100} 101 102static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 103{ 104 free_page((unsigned long)pte); 105} 106 107static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) 108{ 109 pgtable_page_dtor(ptepage); 110 __free_page(ptepage); 111} 112 113static inline void pgtable_free(void *table, unsigned index_size) 114{ 115 if (!index_size) 116 free_page((unsigned long)table); 117 else { 118 BUG_ON(index_size > MAX_PGTABLE_INDEX_SIZE); 119 kmem_cache_free(PGT_CACHE(index_size), table); 120 } 121} 122 123#ifdef CONFIG_SMP 124static inline void pgtable_free_tlb(struct mmu_gather *tlb, 125 void *table, int shift) 126{ 127 unsigned long pgf = (unsigned long)table; 128 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); 129 pgf |= shift; 130 tlb_remove_table(tlb, (void *)pgf); 131} 132 133static inline void __tlb_remove_table(void *_table) 134{ 135 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 136 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 137 138 pgtable_free(table, shift); 139} 140#else /* !CONFIG_SMP */ 141static inline void pgtable_free_tlb(struct mmu_gather *tlb, 142 void *table, int shift) 143{ 144 pgtable_free(table, shift); 145} 146#endif /* CONFIG_SMP */ 147 148static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 149 unsigned long address) 150{ 151 tlb_flush_pgtable(tlb, address); 152 pgtable_page_dtor(table); 153 pgtable_free_tlb(tlb, page_address(table), 0); 154} 155 156#else /* if CONFIG_PPC_64K_PAGES */ 157/* 158 * we support 16 fragments per PTE page. 159 */ 160#define PTE_FRAG_NR 16 161/* 162 * We use a 2K PTE page fragment and another 2K for storing 163 * real_pte_t hash index 164 */ 165#define PTE_FRAG_SIZE_SHIFT 12 166#define PTE_FRAG_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t)) 167 168extern pte_t *page_table_alloc(struct mm_struct *, unsigned long, int); 169extern void page_table_free(struct mm_struct *, unsigned long *, int); 170extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); 171#ifdef CONFIG_SMP 172extern void __tlb_remove_table(void *_table); 173#endif 174 175#define pud_populate(mm, pud, pmd) pud_set(pud, (unsigned long)pmd) 176 177static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, 178 pte_t *pte) 179{ 180 pmd_set(pmd, (unsigned long)pte); 181} 182 183static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, 184 pgtable_t pte_page) 185{ 186 pmd_set(pmd, (unsigned long)pte_page); 187} 188 189static inline pgtable_t pmd_pgtable(pmd_t pmd) 190{ 191 return (pgtable_t)(pmd_val(pmd) & ~PMD_MASKED_BITS); 192} 193 194static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 195 unsigned long address) 196{ 197 return (pte_t *)page_table_alloc(mm, address, 1); 198} 199 200static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 201 unsigned long address) 202{ 203 return (pgtable_t)page_table_alloc(mm, address, 0); 204} 205 206static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 207{ 208 page_table_free(mm, (unsigned long *)pte, 1); 209} 210 211static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) 212{ 213 page_table_free(mm, (unsigned long *)ptepage, 0); 214} 215 216static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 217 unsigned long address) 218{ 219 tlb_flush_pgtable(tlb, address); 220 pgtable_free_tlb(tlb, table, 0); 221} 222#endif /* CONFIG_PPC_64K_PAGES */ 223 224static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) 225{ 226 return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), 227 GFP_KERNEL|__GFP_REPEAT); 228} 229 230static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) 231{ 232 kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd); 233} 234 235#define __pmd_free_tlb(tlb, pmd, addr) \ 236 pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX) 237#ifndef CONFIG_PPC_64K_PAGES 238#define __pud_free_tlb(tlb, pud, addr) \ 239 pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE) 240 241#endif /* CONFIG_PPC_64K_PAGES */ 242 243#define check_pgt_cache() do { } while (0) 244 245#endif /* _ASM_POWERPC_PGALLOC_64_H */ 246