1#ifndef _ASM_POWERPC_PGTABLE_H
2#define _ASM_POWERPC_PGTABLE_H
3#ifdef __KERNEL__
4
5#ifndef __ASSEMBLY__
6#include <linux/mmdebug.h>
7#include <linux/mmzone.h>
8#include <asm/processor.h>		/* For TASK_SIZE */
9#include <asm/mmu.h>
10#include <asm/page.h>
11
12struct mm_struct;
13
14#endif /* !__ASSEMBLY__ */
15
16#if defined(CONFIG_PPC64)
17#  include <asm/pgtable-ppc64.h>
18#else
19#  include <asm/pgtable-ppc32.h>
20#endif
21
22/*
23 * We save the slot number & secondary bit in the second half of the
24 * PTE page. We use the 8 bytes per each pte entry.
25 */
26#define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8)
27
28#ifndef __ASSEMBLY__
29
30#include <asm/tlbflush.h>
31
32/* Generic accessors to PTE bits */
33static inline int pte_write(pte_t pte)
34{	return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO; }
35static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
36static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
37static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
38static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
39static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
40
41#ifdef CONFIG_NUMA_BALANCING
42/*
43 * These work without NUMA balancing but the kernel does not care. See the
44 * comment in include/asm-generic/pgtable.h . On powerpc, this will only
45 * work for user pages and always return true for kernel pages.
46 */
47static inline int pte_protnone(pte_t pte)
48{
49	return (pte_val(pte) &
50		(_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
51}
52
53static inline int pmd_protnone(pmd_t pmd)
54{
55	return pte_protnone(pmd_pte(pmd));
56}
57#endif /* CONFIG_NUMA_BALANCING */
58
59static inline int pte_present(pte_t pte)
60{
61	return pte_val(pte) & _PAGE_PRESENT;
62}
63
64/* Conversion functions: convert a page and protection to a page entry,
65 * and a page entry and page directory to the page they refer to.
66 *
67 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
68 * long for now.
69 */
70static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
71	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
72		     pgprot_val(pgprot)); }
73static inline unsigned long pte_pfn(pte_t pte)	{
74	return pte_val(pte) >> PTE_RPN_SHIFT; }
75
76/* Keep these as a macros to avoid include dependency mess */
77#define pte_page(x)		pfn_to_page(pte_pfn(x))
78#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
79
80/* Generic modifiers for PTE bits */
81static inline pte_t pte_wrprotect(pte_t pte) {
82	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE);
83	pte_val(pte) |= _PAGE_RO; return pte; }
84static inline pte_t pte_mkclean(pte_t pte) {
85	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
86static inline pte_t pte_mkold(pte_t pte) {
87	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
88static inline pte_t pte_mkwrite(pte_t pte) {
89	pte_val(pte) &= ~_PAGE_RO;
90	pte_val(pte) |= _PAGE_RW; return pte; }
91static inline pte_t pte_mkdirty(pte_t pte) {
92	pte_val(pte) |= _PAGE_DIRTY; return pte; }
93static inline pte_t pte_mkyoung(pte_t pte) {
94	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
95static inline pte_t pte_mkspecial(pte_t pte) {
96	pte_val(pte) |= _PAGE_SPECIAL; return pte; }
97static inline pte_t pte_mkhuge(pte_t pte) {
98	return pte; }
99static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
100{
101	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
102	return pte;
103}
104
105
106/* Insert a PTE, top-level function is out of line. It uses an inline
107 * low level function in the respective pgtable-* files
108 */
109extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
110		       pte_t pte);
111
112/* This low level function performs the actual PTE insertion
113 * Setting the PTE depends on the MMU type and other factors. It's
114 * an horrible mess that I'm not going to try to clean up now but
115 * I'm keeping it in one place rather than spread around
116 */
117static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
118				pte_t *ptep, pte_t pte, int percpu)
119{
120#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
121	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
122	 * helper pte_update() which does an atomic update. We need to do that
123	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
124	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
125	 * the hash bits instead (ie, same as the non-SMP case)
126	 */
127	if (percpu)
128		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
129			      | (pte_val(pte) & ~_PAGE_HASHPTE));
130	else
131		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
132
133#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
134	/* Second case is 32-bit with 64-bit PTE.  In this case, we
135	 * can just store as long as we do the two halves in the right order
136	 * with a barrier in between. This is possible because we take care,
137	 * in the hash code, to pre-invalidate if the PTE was already hashed,
138	 * which synchronizes us with any concurrent invalidation.
139	 * In the percpu case, we also fallback to the simple update preserving
140	 * the hash bits
141	 */
142	if (percpu) {
143		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
144			      | (pte_val(pte) & ~_PAGE_HASHPTE));
145		return;
146	}
147#if _PAGE_HASHPTE != 0
148	if (pte_val(*ptep) & _PAGE_HASHPTE)
149		flush_hash_entry(mm, ptep, addr);
150#endif
151	__asm__ __volatile__("\
152		stw%U0%X0 %2,%0\n\
153		eieio\n\
154		stw%U0%X0 %L2,%1"
155	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
156	: "r" (pte) : "memory");
157
158#elif defined(CONFIG_PPC_STD_MMU_32)
159	/* Third case is 32-bit hash table in UP mode, we need to preserve
160	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
161	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
162	 * and see we need to keep track that this PTE needs invalidating
163	 */
164	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
165		      | (pte_val(pte) & ~_PAGE_HASHPTE));
166
167#else
168	/* Anything else just stores the PTE normally. That covers all 64-bit
169	 * cases, and 32-bit non-hash with 32-bit PTEs.
170	 */
171	*ptep = pte;
172#endif
173}
174
175
176#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
177extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
178				 pte_t *ptep, pte_t entry, int dirty);
179
180/*
181 * Macro to mark a page protection value as "uncacheable".
182 */
183
184#define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
185			 _PAGE_WRITETHRU)
186
187#define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
188				            _PAGE_NO_CACHE | _PAGE_GUARDED))
189
190#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
191				            _PAGE_NO_CACHE))
192
193#define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
194				            _PAGE_COHERENT))
195
196#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
197				            _PAGE_COHERENT | _PAGE_WRITETHRU))
198
199#define pgprot_cached_noncoherent(prot) \
200		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
201
202#define pgprot_writecombine pgprot_noncached_wc
203
204struct file;
205extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
206				     unsigned long size, pgprot_t vma_prot);
207#define __HAVE_PHYS_MEM_ACCESS_PROT
208
209/*
210 * ZERO_PAGE is a global shared page that is always zero: used
211 * for zero-mapped memory areas etc..
212 */
213extern unsigned long empty_zero_page[];
214#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
215
216extern pgd_t swapper_pg_dir[];
217
218void limit_zone_pfn(enum zone_type zone, unsigned long max_pfn);
219int dma_pfn_limit_to_zone(u64 pfn_limit);
220extern void paging_init(void);
221
222/*
223 * kern_addr_valid is intended to indicate whether an address is a valid
224 * kernel address.  Most 32-bit archs define it as always true (like this)
225 * but most 64-bit archs actually perform a test.  What should we do here?
226 */
227#define kern_addr_valid(addr)	(1)
228
229#include <asm-generic/pgtable.h>
230
231
232/*
233 * This gets called at the end of handling a page fault, when
234 * the kernel has put a new PTE into the page table for the process.
235 * We use it to ensure coherency between the i-cache and d-cache
236 * for the page which has just been mapped in.
237 * On machines which use an MMU hash table, we use this to put a
238 * corresponding HPTE into the hash table ahead of time, instead of
239 * waiting for the inevitable extra hash-table miss exception.
240 */
241extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
242
243extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
244		       unsigned long end, int write,
245		       struct page **pages, int *nr);
246#ifndef CONFIG_TRANSPARENT_HUGEPAGE
247#define pmd_large(pmd)		0
248#define has_transparent_hugepage() 0
249#endif
250pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
251				 unsigned *shift);
252static inline pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
253					       unsigned *shift)
254{
255	if (!arch_irqs_disabled()) {
256		pr_info("%s called with irq enabled\n", __func__);
257		dump_stack();
258	}
259	return __find_linux_pte_or_hugepte(pgdir, ea, shift);
260}
261#endif /* __ASSEMBLY__ */
262
263#endif /* __KERNEL__ */
264#endif /* _ASM_POWERPC_PGTABLE_H */
265