1/*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 *  PowerPC version
5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 *  Derived from "arch/i386/kernel/signal.c"
11 *    Copyright (C) 1991, 1992 Linus Torvalds
12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13 *
14 *  This program is free software; you can redistribute it and/or
15 *  modify it under the terms of the GNU General Public License
16 *  as published by the Free Software Foundation; either version
17 *  2 of the License, or (at your option) any later version.
18 */
19
20#include <linux/sched.h>
21#include <linux/mm.h>
22#include <linux/smp.h>
23#include <linux/kernel.h>
24#include <linux/signal.h>
25#include <linux/errno.h>
26#include <linux/elf.h>
27#include <linux/ptrace.h>
28#include <linux/ratelimit.h>
29#ifdef CONFIG_PPC64
30#include <linux/syscalls.h>
31#include <linux/compat.h>
32#else
33#include <linux/wait.h>
34#include <linux/unistd.h>
35#include <linux/stddef.h>
36#include <linux/tty.h>
37#include <linux/binfmts.h>
38#endif
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/syscalls.h>
43#include <asm/sigcontext.h>
44#include <asm/vdso.h>
45#include <asm/switch_to.h>
46#include <asm/tm.h>
47#ifdef CONFIG_PPC64
48#include "ppc32.h"
49#include <asm/unistd.h>
50#else
51#include <asm/ucontext.h>
52#include <asm/pgtable.h>
53#endif
54
55#include "signal.h"
56
57
58#ifdef CONFIG_PPC64
59#define sys_rt_sigreturn	compat_sys_rt_sigreturn
60#define sys_swapcontext	compat_sys_swapcontext
61#define sys_sigreturn	compat_sys_sigreturn
62
63#define old_sigaction	old_sigaction32
64#define sigcontext	sigcontext32
65#define mcontext	mcontext32
66#define ucontext	ucontext32
67
68#define __save_altstack __compat_save_altstack
69
70/*
71 * Userspace code may pass a ucontext which doesn't include VSX added
72 * at the end.  We need to check for this case.
73 */
74#define UCONTEXTSIZEWITHOUTVSX \
75		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
76
77/*
78 * Returning 0 means we return to userspace via
79 * ret_from_except and thus restore all user
80 * registers from *regs.  This is what we need
81 * to do when a signal has been delivered.
82 */
83
84#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
85#undef __SIGNAL_FRAMESIZE
86#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
87#undef ELF_NVRREG
88#define ELF_NVRREG	ELF_NVRREG32
89
90/*
91 * Functions for flipping sigsets (thanks to brain dead generic
92 * implementation that makes things simple for little endian only)
93 */
94static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
95{
96	compat_sigset_t	cset;
97
98	switch (_NSIG_WORDS) {
99	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
100		cset.sig[7] = set->sig[3] >> 32;
101	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
102		cset.sig[5] = set->sig[2] >> 32;
103	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
104		cset.sig[3] = set->sig[1] >> 32;
105	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
106		cset.sig[1] = set->sig[0] >> 32;
107	}
108	return copy_to_user(uset, &cset, sizeof(*uset));
109}
110
111static inline int get_sigset_t(sigset_t *set,
112			       const compat_sigset_t __user *uset)
113{
114	compat_sigset_t s32;
115
116	if (copy_from_user(&s32, uset, sizeof(*uset)))
117		return -EFAULT;
118
119	/*
120	 * Swap the 2 words of the 64-bit sigset_t (they are stored
121	 * in the "wrong" endian in 32-bit user storage).
122	 */
123	switch (_NSIG_WORDS) {
124	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
125	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
126	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
127	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
128	}
129	return 0;
130}
131
132#define to_user_ptr(p)		ptr_to_compat(p)
133#define from_user_ptr(p)	compat_ptr(p)
134
135static inline int save_general_regs(struct pt_regs *regs,
136		struct mcontext __user *frame)
137{
138	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
139	int i;
140
141	WARN_ON(!FULL_REGS(regs));
142
143	for (i = 0; i <= PT_RESULT; i ++) {
144		if (i == 14 && !FULL_REGS(regs))
145			i = 32;
146		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
147			return -EFAULT;
148	}
149	return 0;
150}
151
152static inline int restore_general_regs(struct pt_regs *regs,
153		struct mcontext __user *sr)
154{
155	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
156	int i;
157
158	for (i = 0; i <= PT_RESULT; i++) {
159		if ((i == PT_MSR) || (i == PT_SOFTE))
160			continue;
161		if (__get_user(gregs[i], &sr->mc_gregs[i]))
162			return -EFAULT;
163	}
164	return 0;
165}
166
167#else /* CONFIG_PPC64 */
168
169#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
170
171static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
172{
173	return copy_to_user(uset, set, sizeof(*uset));
174}
175
176static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
177{
178	return copy_from_user(set, uset, sizeof(*uset));
179}
180
181#define to_user_ptr(p)		((unsigned long)(p))
182#define from_user_ptr(p)	((void __user *)(p))
183
184static inline int save_general_regs(struct pt_regs *regs,
185		struct mcontext __user *frame)
186{
187	WARN_ON(!FULL_REGS(regs));
188	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
189}
190
191static inline int restore_general_regs(struct pt_regs *regs,
192		struct mcontext __user *sr)
193{
194	/* copy up to but not including MSR */
195	if (__copy_from_user(regs, &sr->mc_gregs,
196				PT_MSR * sizeof(elf_greg_t)))
197		return -EFAULT;
198	/* copy from orig_r3 (the word after the MSR) up to the end */
199	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
200				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
201		return -EFAULT;
202	return 0;
203}
204#endif
205
206/*
207 * When we have signals to deliver, we set up on the
208 * user stack, going down from the original stack pointer:
209 *	an ABI gap of 56 words
210 *	an mcontext struct
211 *	a sigcontext struct
212 *	a gap of __SIGNAL_FRAMESIZE bytes
213 *
214 * Each of these things must be a multiple of 16 bytes in size. The following
215 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
216 *
217 */
218struct sigframe {
219	struct sigcontext sctx;		/* the sigcontext */
220	struct mcontext	mctx;		/* all the register values */
221#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
222	struct sigcontext sctx_transact;
223	struct mcontext	mctx_transact;
224#endif
225	/*
226	 * Programs using the rs6000/xcoff abi can save up to 19 gp
227	 * regs and 18 fp regs below sp before decrementing it.
228	 */
229	int			abigap[56];
230};
231
232/* We use the mc_pad field for the signal return trampoline. */
233#define tramp	mc_pad
234
235/*
236 *  When we have rt signals to deliver, we set up on the
237 *  user stack, going down from the original stack pointer:
238 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
239 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
240 *  (the +16 is to get the siginfo and ucontext in the same
241 *  positions as in older kernels).
242 *
243 *  Each of these things must be a multiple of 16 bytes in size.
244 *
245 */
246struct rt_sigframe {
247#ifdef CONFIG_PPC64
248	compat_siginfo_t info;
249#else
250	struct siginfo info;
251#endif
252	struct ucontext	uc;
253#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
254	struct ucontext	uc_transact;
255#endif
256	/*
257	 * Programs using the rs6000/xcoff abi can save up to 19 gp
258	 * regs and 18 fp regs below sp before decrementing it.
259	 */
260	int			abigap[56];
261};
262
263#ifdef CONFIG_VSX
264unsigned long copy_fpr_to_user(void __user *to,
265			       struct task_struct *task)
266{
267	u64 buf[ELF_NFPREG];
268	int i;
269
270	/* save FPR copy to local buffer then write to the thread_struct */
271	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
272		buf[i] = task->thread.TS_FPR(i);
273	buf[i] = task->thread.fp_state.fpscr;
274	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
275}
276
277unsigned long copy_fpr_from_user(struct task_struct *task,
278				 void __user *from)
279{
280	u64 buf[ELF_NFPREG];
281	int i;
282
283	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
284		return 1;
285	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
286		task->thread.TS_FPR(i) = buf[i];
287	task->thread.fp_state.fpscr = buf[i];
288
289	return 0;
290}
291
292unsigned long copy_vsx_to_user(void __user *to,
293			       struct task_struct *task)
294{
295	u64 buf[ELF_NVSRHALFREG];
296	int i;
297
298	/* save FPR copy to local buffer then write to the thread_struct */
299	for (i = 0; i < ELF_NVSRHALFREG; i++)
300		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
301	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
302}
303
304unsigned long copy_vsx_from_user(struct task_struct *task,
305				 void __user *from)
306{
307	u64 buf[ELF_NVSRHALFREG];
308	int i;
309
310	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
311		return 1;
312	for (i = 0; i < ELF_NVSRHALFREG ; i++)
313		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
314	return 0;
315}
316
317#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
318unsigned long copy_transact_fpr_to_user(void __user *to,
319				  struct task_struct *task)
320{
321	u64 buf[ELF_NFPREG];
322	int i;
323
324	/* save FPR copy to local buffer then write to the thread_struct */
325	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
326		buf[i] = task->thread.TS_TRANS_FPR(i);
327	buf[i] = task->thread.transact_fp.fpscr;
328	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
329}
330
331unsigned long copy_transact_fpr_from_user(struct task_struct *task,
332					  void __user *from)
333{
334	u64 buf[ELF_NFPREG];
335	int i;
336
337	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
338		return 1;
339	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
340		task->thread.TS_TRANS_FPR(i) = buf[i];
341	task->thread.transact_fp.fpscr = buf[i];
342
343	return 0;
344}
345
346unsigned long copy_transact_vsx_to_user(void __user *to,
347				  struct task_struct *task)
348{
349	u64 buf[ELF_NVSRHALFREG];
350	int i;
351
352	/* save FPR copy to local buffer then write to the thread_struct */
353	for (i = 0; i < ELF_NVSRHALFREG; i++)
354		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
355	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
356}
357
358unsigned long copy_transact_vsx_from_user(struct task_struct *task,
359					  void __user *from)
360{
361	u64 buf[ELF_NVSRHALFREG];
362	int i;
363
364	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
365		return 1;
366	for (i = 0; i < ELF_NVSRHALFREG ; i++)
367		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
368	return 0;
369}
370#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
371#else
372inline unsigned long copy_fpr_to_user(void __user *to,
373				      struct task_struct *task)
374{
375	return __copy_to_user(to, task->thread.fp_state.fpr,
376			      ELF_NFPREG * sizeof(double));
377}
378
379inline unsigned long copy_fpr_from_user(struct task_struct *task,
380					void __user *from)
381{
382	return __copy_from_user(task->thread.fp_state.fpr, from,
383			      ELF_NFPREG * sizeof(double));
384}
385
386#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
387inline unsigned long copy_transact_fpr_to_user(void __user *to,
388					 struct task_struct *task)
389{
390	return __copy_to_user(to, task->thread.transact_fp.fpr,
391			      ELF_NFPREG * sizeof(double));
392}
393
394inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
395						 void __user *from)
396{
397	return __copy_from_user(task->thread.transact_fp.fpr, from,
398				ELF_NFPREG * sizeof(double));
399}
400#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
401#endif
402
403/*
404 * Save the current user registers on the user stack.
405 * We only save the altivec/spe registers if the process has used
406 * altivec/spe instructions at some point.
407 */
408static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
409			  struct mcontext __user *tm_frame, int sigret,
410			  int ctx_has_vsx_region)
411{
412	unsigned long msr = regs->msr;
413
414	/* Make sure floating point registers are stored in regs */
415	flush_fp_to_thread(current);
416
417	/* save general registers */
418	if (save_general_regs(regs, frame))
419		return 1;
420
421#ifdef CONFIG_ALTIVEC
422	/* save altivec registers */
423	if (current->thread.used_vr) {
424		flush_altivec_to_thread(current);
425		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
426				   ELF_NVRREG * sizeof(vector128)))
427			return 1;
428		/* set MSR_VEC in the saved MSR value to indicate that
429		   frame->mc_vregs contains valid data */
430		msr |= MSR_VEC;
431	}
432	/* else assert((regs->msr & MSR_VEC) == 0) */
433
434	/* We always copy to/from vrsave, it's 0 if we don't have or don't
435	 * use altivec. Since VSCR only contains 32 bits saved in the least
436	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
437	 * most significant bits of that same vector. --BenH
438	 * Note that the current VRSAVE value is in the SPR at this point.
439	 */
440	if (cpu_has_feature(CPU_FTR_ALTIVEC))
441		current->thread.vrsave = mfspr(SPRN_VRSAVE);
442	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
443		return 1;
444#endif /* CONFIG_ALTIVEC */
445	if (copy_fpr_to_user(&frame->mc_fregs, current))
446		return 1;
447
448	/*
449	 * Clear the MSR VSX bit to indicate there is no valid state attached
450	 * to this context, except in the specific case below where we set it.
451	 */
452	msr &= ~MSR_VSX;
453#ifdef CONFIG_VSX
454	/*
455	 * Copy VSR 0-31 upper half from thread_struct to local
456	 * buffer, then write that to userspace.  Also set MSR_VSX in
457	 * the saved MSR value to indicate that frame->mc_vregs
458	 * contains valid data
459	 */
460	if (current->thread.used_vsr && ctx_has_vsx_region) {
461		__giveup_vsx(current);
462		if (copy_vsx_to_user(&frame->mc_vsregs, current))
463			return 1;
464		msr |= MSR_VSX;
465	}
466#endif /* CONFIG_VSX */
467#ifdef CONFIG_SPE
468	/* save spe registers */
469	if (current->thread.used_spe) {
470		flush_spe_to_thread(current);
471		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
472				   ELF_NEVRREG * sizeof(u32)))
473			return 1;
474		/* set MSR_SPE in the saved MSR value to indicate that
475		   frame->mc_vregs contains valid data */
476		msr |= MSR_SPE;
477	}
478	/* else assert((regs->msr & MSR_SPE) == 0) */
479
480	/* We always copy to/from spefscr */
481	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
482		return 1;
483#endif /* CONFIG_SPE */
484
485	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
486		return 1;
487	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
488	 * can check it on the restore to see if TM is active
489	 */
490	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
491		return 1;
492
493	if (sigret) {
494		/* Set up the sigreturn trampoline: li r0,sigret; sc */
495		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
496		    || __put_user(0x44000002UL, &frame->tramp[1]))
497			return 1;
498		flush_icache_range((unsigned long) &frame->tramp[0],
499				   (unsigned long) &frame->tramp[2]);
500	}
501
502	return 0;
503}
504
505#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
506/*
507 * Save the current user registers on the user stack.
508 * We only save the altivec/spe registers if the process has used
509 * altivec/spe instructions at some point.
510 * We also save the transactional registers to a second ucontext in the
511 * frame.
512 *
513 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
514 */
515static int save_tm_user_regs(struct pt_regs *regs,
516			     struct mcontext __user *frame,
517			     struct mcontext __user *tm_frame, int sigret)
518{
519	unsigned long msr = regs->msr;
520
521	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
522	 * just indicates to userland that we were doing a transaction, but we
523	 * don't want to return in transactional state.  This also ensures
524	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
525	 */
526	regs->msr &= ~MSR_TS_MASK;
527
528	/* Make sure floating point registers are stored in regs */
529	flush_fp_to_thread(current);
530
531	/* Save both sets of general registers */
532	if (save_general_regs(&current->thread.ckpt_regs, frame)
533	    || save_general_regs(regs, tm_frame))
534		return 1;
535
536	/* Stash the top half of the 64bit MSR into the 32bit MSR word
537	 * of the transactional mcontext.  This way we have a backward-compatible
538	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
539	 * also look at what type of transaction (T or S) was active at the
540	 * time of the signal.
541	 */
542	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
543		return 1;
544
545#ifdef CONFIG_ALTIVEC
546	/* save altivec registers */
547	if (current->thread.used_vr) {
548		flush_altivec_to_thread(current);
549		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
550				   ELF_NVRREG * sizeof(vector128)))
551			return 1;
552		if (msr & MSR_VEC) {
553			if (__copy_to_user(&tm_frame->mc_vregs,
554					   &current->thread.transact_vr,
555					   ELF_NVRREG * sizeof(vector128)))
556				return 1;
557		} else {
558			if (__copy_to_user(&tm_frame->mc_vregs,
559					   &current->thread.vr_state,
560					   ELF_NVRREG * sizeof(vector128)))
561				return 1;
562		}
563
564		/* set MSR_VEC in the saved MSR value to indicate that
565		 * frame->mc_vregs contains valid data
566		 */
567		msr |= MSR_VEC;
568	}
569
570	/* We always copy to/from vrsave, it's 0 if we don't have or don't
571	 * use altivec. Since VSCR only contains 32 bits saved in the least
572	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
573	 * most significant bits of that same vector. --BenH
574	 */
575	if (cpu_has_feature(CPU_FTR_ALTIVEC))
576		current->thread.vrsave = mfspr(SPRN_VRSAVE);
577	if (__put_user(current->thread.vrsave,
578		       (u32 __user *)&frame->mc_vregs[32]))
579		return 1;
580	if (msr & MSR_VEC) {
581		if (__put_user(current->thread.transact_vrsave,
582			       (u32 __user *)&tm_frame->mc_vregs[32]))
583			return 1;
584	} else {
585		if (__put_user(current->thread.vrsave,
586			       (u32 __user *)&tm_frame->mc_vregs[32]))
587			return 1;
588	}
589#endif /* CONFIG_ALTIVEC */
590
591	if (copy_fpr_to_user(&frame->mc_fregs, current))
592		return 1;
593	if (msr & MSR_FP) {
594		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
595			return 1;
596	} else {
597		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
598			return 1;
599	}
600
601#ifdef CONFIG_VSX
602	/*
603	 * Copy VSR 0-31 upper half from thread_struct to local
604	 * buffer, then write that to userspace.  Also set MSR_VSX in
605	 * the saved MSR value to indicate that frame->mc_vregs
606	 * contains valid data
607	 */
608	if (current->thread.used_vsr) {
609		__giveup_vsx(current);
610		if (copy_vsx_to_user(&frame->mc_vsregs, current))
611			return 1;
612		if (msr & MSR_VSX) {
613			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
614						      current))
615				return 1;
616		} else {
617			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
618				return 1;
619		}
620
621		msr |= MSR_VSX;
622	}
623#endif /* CONFIG_VSX */
624#ifdef CONFIG_SPE
625	/* SPE regs are not checkpointed with TM, so this section is
626	 * simply the same as in save_user_regs().
627	 */
628	if (current->thread.used_spe) {
629		flush_spe_to_thread(current);
630		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
631				   ELF_NEVRREG * sizeof(u32)))
632			return 1;
633		/* set MSR_SPE in the saved MSR value to indicate that
634		 * frame->mc_vregs contains valid data */
635		msr |= MSR_SPE;
636	}
637
638	/* We always copy to/from spefscr */
639	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
640		return 1;
641#endif /* CONFIG_SPE */
642
643	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
644		return 1;
645	if (sigret) {
646		/* Set up the sigreturn trampoline: li r0,sigret; sc */
647		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
648		    || __put_user(0x44000002UL, &frame->tramp[1]))
649			return 1;
650		flush_icache_range((unsigned long) &frame->tramp[0],
651				   (unsigned long) &frame->tramp[2]);
652	}
653
654	return 0;
655}
656#endif
657
658/*
659 * Restore the current user register values from the user stack,
660 * (except for MSR).
661 */
662static long restore_user_regs(struct pt_regs *regs,
663			      struct mcontext __user *sr, int sig)
664{
665	long err;
666	unsigned int save_r2 = 0;
667	unsigned long msr;
668#ifdef CONFIG_VSX
669	int i;
670#endif
671
672	/*
673	 * restore general registers but not including MSR or SOFTE. Also
674	 * take care of keeping r2 (TLS) intact if not a signal
675	 */
676	if (!sig)
677		save_r2 = (unsigned int)regs->gpr[2];
678	err = restore_general_regs(regs, sr);
679	regs->trap = 0;
680	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
681	if (!sig)
682		regs->gpr[2] = (unsigned long) save_r2;
683	if (err)
684		return 1;
685
686	/* if doing signal return, restore the previous little-endian mode */
687	if (sig)
688		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
689
690	/*
691	 * Do this before updating the thread state in
692	 * current->thread.fpr/vr/evr.  That way, if we get preempted
693	 * and another task grabs the FPU/Altivec/SPE, it won't be
694	 * tempted to save the current CPU state into the thread_struct
695	 * and corrupt what we are writing there.
696	 */
697	discard_lazy_cpu_state();
698
699#ifdef CONFIG_ALTIVEC
700	/*
701	 * Force the process to reload the altivec registers from
702	 * current->thread when it next does altivec instructions
703	 */
704	regs->msr &= ~MSR_VEC;
705	if (msr & MSR_VEC) {
706		/* restore altivec registers from the stack */
707		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
708				     sizeof(sr->mc_vregs)))
709			return 1;
710	} else if (current->thread.used_vr)
711		memset(&current->thread.vr_state, 0,
712		       ELF_NVRREG * sizeof(vector128));
713
714	/* Always get VRSAVE back */
715	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
716		return 1;
717	if (cpu_has_feature(CPU_FTR_ALTIVEC))
718		mtspr(SPRN_VRSAVE, current->thread.vrsave);
719#endif /* CONFIG_ALTIVEC */
720	if (copy_fpr_from_user(current, &sr->mc_fregs))
721		return 1;
722
723#ifdef CONFIG_VSX
724	/*
725	 * Force the process to reload the VSX registers from
726	 * current->thread when it next does VSX instruction.
727	 */
728	regs->msr &= ~MSR_VSX;
729	if (msr & MSR_VSX) {
730		/*
731		 * Restore altivec registers from the stack to a local
732		 * buffer, then write this out to the thread_struct
733		 */
734		if (copy_vsx_from_user(current, &sr->mc_vsregs))
735			return 1;
736	} else if (current->thread.used_vsr)
737		for (i = 0; i < 32 ; i++)
738			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
739#endif /* CONFIG_VSX */
740	/*
741	 * force the process to reload the FP registers from
742	 * current->thread when it next does FP instructions
743	 */
744	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
745
746#ifdef CONFIG_SPE
747	/* force the process to reload the spe registers from
748	   current->thread when it next does spe instructions */
749	regs->msr &= ~MSR_SPE;
750	if (msr & MSR_SPE) {
751		/* restore spe registers from the stack */
752		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
753				     ELF_NEVRREG * sizeof(u32)))
754			return 1;
755	} else if (current->thread.used_spe)
756		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
757
758	/* Always get SPEFSCR back */
759	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
760		return 1;
761#endif /* CONFIG_SPE */
762
763	return 0;
764}
765
766#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
767/*
768 * Restore the current user register values from the user stack, except for
769 * MSR, and recheckpoint the original checkpointed register state for processes
770 * in transactions.
771 */
772static long restore_tm_user_regs(struct pt_regs *regs,
773				 struct mcontext __user *sr,
774				 struct mcontext __user *tm_sr)
775{
776	long err;
777	unsigned long msr, msr_hi;
778#ifdef CONFIG_VSX
779	int i;
780#endif
781
782	/*
783	 * restore general registers but not including MSR or SOFTE. Also
784	 * take care of keeping r2 (TLS) intact if not a signal.
785	 * See comment in signal_64.c:restore_tm_sigcontexts();
786	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
787	 * were set by the signal delivery.
788	 */
789	err = restore_general_regs(regs, tm_sr);
790	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
791
792	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
793
794	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
795	if (err)
796		return 1;
797
798	/* Restore the previous little-endian mode */
799	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
800
801	/*
802	 * Do this before updating the thread state in
803	 * current->thread.fpr/vr/evr.  That way, if we get preempted
804	 * and another task grabs the FPU/Altivec/SPE, it won't be
805	 * tempted to save the current CPU state into the thread_struct
806	 * and corrupt what we are writing there.
807	 */
808	discard_lazy_cpu_state();
809
810#ifdef CONFIG_ALTIVEC
811	regs->msr &= ~MSR_VEC;
812	if (msr & MSR_VEC) {
813		/* restore altivec registers from the stack */
814		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
815				     sizeof(sr->mc_vregs)) ||
816		    __copy_from_user(&current->thread.transact_vr,
817				     &tm_sr->mc_vregs,
818				     sizeof(sr->mc_vregs)))
819			return 1;
820	} else if (current->thread.used_vr) {
821		memset(&current->thread.vr_state, 0,
822		       ELF_NVRREG * sizeof(vector128));
823		memset(&current->thread.transact_vr, 0,
824		       ELF_NVRREG * sizeof(vector128));
825	}
826
827	/* Always get VRSAVE back */
828	if (__get_user(current->thread.vrsave,
829		       (u32 __user *)&sr->mc_vregs[32]) ||
830	    __get_user(current->thread.transact_vrsave,
831		       (u32 __user *)&tm_sr->mc_vregs[32]))
832		return 1;
833	if (cpu_has_feature(CPU_FTR_ALTIVEC))
834		mtspr(SPRN_VRSAVE, current->thread.vrsave);
835#endif /* CONFIG_ALTIVEC */
836
837	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
838
839	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
840	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
841		return 1;
842
843#ifdef CONFIG_VSX
844	regs->msr &= ~MSR_VSX;
845	if (msr & MSR_VSX) {
846		/*
847		 * Restore altivec registers from the stack to a local
848		 * buffer, then write this out to the thread_struct
849		 */
850		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
851		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
852			return 1;
853	} else if (current->thread.used_vsr)
854		for (i = 0; i < 32 ; i++) {
855			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
856			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
857		}
858#endif /* CONFIG_VSX */
859
860#ifdef CONFIG_SPE
861	/* SPE regs are not checkpointed with TM, so this section is
862	 * simply the same as in restore_user_regs().
863	 */
864	regs->msr &= ~MSR_SPE;
865	if (msr & MSR_SPE) {
866		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
867				     ELF_NEVRREG * sizeof(u32)))
868			return 1;
869	} else if (current->thread.used_spe)
870		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
871
872	/* Always get SPEFSCR back */
873	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
874		       + ELF_NEVRREG))
875		return 1;
876#endif /* CONFIG_SPE */
877
878	/* Get the top half of the MSR from the user context */
879	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
880		return 1;
881	msr_hi <<= 32;
882	/* If TM bits are set to the reserved value, it's an invalid context */
883	if (MSR_TM_RESV(msr_hi))
884		return 1;
885	/* Pull in the MSR TM bits from the user context */
886	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
887	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
888	 * registers, including FP and V[S]Rs.  After recheckpointing, the
889	 * transactional versions should be loaded.
890	 */
891	tm_enable();
892	/* Make sure the transaction is marked as failed */
893	current->thread.tm_texasr |= TEXASR_FS;
894	/* This loads the checkpointed FP/VEC state, if used */
895	tm_recheckpoint(&current->thread, msr);
896
897	/* This loads the speculative FP/VEC state, if used */
898	if (msr & MSR_FP) {
899		do_load_up_transact_fpu(&current->thread);
900		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
901	}
902#ifdef CONFIG_ALTIVEC
903	if (msr & MSR_VEC) {
904		do_load_up_transact_altivec(&current->thread);
905		regs->msr |= MSR_VEC;
906	}
907#endif
908
909	return 0;
910}
911#endif
912
913#ifdef CONFIG_PPC64
914int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
915{
916	int err;
917
918	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
919		return -EFAULT;
920
921	/* If you change siginfo_t structure, please be sure
922	 * this code is fixed accordingly.
923	 * It should never copy any pad contained in the structure
924	 * to avoid security leaks, but must copy the generic
925	 * 3 ints plus the relevant union member.
926	 * This routine must convert siginfo from 64bit to 32bit as well
927	 * at the same time.
928	 */
929	err = __put_user(s->si_signo, &d->si_signo);
930	err |= __put_user(s->si_errno, &d->si_errno);
931	err |= __put_user((short)s->si_code, &d->si_code);
932	if (s->si_code < 0)
933		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
934				      SI_PAD_SIZE32);
935	else switch(s->si_code >> 16) {
936	case __SI_CHLD >> 16:
937		err |= __put_user(s->si_pid, &d->si_pid);
938		err |= __put_user(s->si_uid, &d->si_uid);
939		err |= __put_user(s->si_utime, &d->si_utime);
940		err |= __put_user(s->si_stime, &d->si_stime);
941		err |= __put_user(s->si_status, &d->si_status);
942		break;
943	case __SI_FAULT >> 16:
944		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
945				  &d->si_addr);
946		break;
947	case __SI_POLL >> 16:
948		err |= __put_user(s->si_band, &d->si_band);
949		err |= __put_user(s->si_fd, &d->si_fd);
950		break;
951	case __SI_TIMER >> 16:
952		err |= __put_user(s->si_tid, &d->si_tid);
953		err |= __put_user(s->si_overrun, &d->si_overrun);
954		err |= __put_user(s->si_int, &d->si_int);
955		break;
956	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
957	case __SI_MESGQ >> 16:
958		err |= __put_user(s->si_int, &d->si_int);
959		/* fallthrough */
960	case __SI_KILL >> 16:
961	default:
962		err |= __put_user(s->si_pid, &d->si_pid);
963		err |= __put_user(s->si_uid, &d->si_uid);
964		break;
965	}
966	return err;
967}
968
969#define copy_siginfo_to_user	copy_siginfo_to_user32
970
971int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
972{
973	if (copy_from_user(to, from, 3*sizeof(int)) ||
974	    copy_from_user(to->_sifields._pad,
975			   from->_sifields._pad, SI_PAD_SIZE32))
976		return -EFAULT;
977
978	return 0;
979}
980#endif /* CONFIG_PPC64 */
981
982/*
983 * Set up a signal frame for a "real-time" signal handler
984 * (one which gets siginfo).
985 */
986int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
987		       struct pt_regs *regs)
988{
989	struct rt_sigframe __user *rt_sf;
990	struct mcontext __user *frame;
991	struct mcontext __user *tm_frame = NULL;
992	void __user *addr;
993	unsigned long newsp = 0;
994	int sigret;
995	unsigned long tramp;
996
997	/* Set up Signal Frame */
998	/* Put a Real Time Context onto stack */
999	rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
1000	addr = rt_sf;
1001	if (unlikely(rt_sf == NULL))
1002		goto badframe;
1003
1004	/* Put the siginfo & fill in most of the ucontext */
1005	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
1006	    || __put_user(0, &rt_sf->uc.uc_flags)
1007	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1008	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1009		    &rt_sf->uc.uc_regs)
1010	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1011		goto badframe;
1012
1013	/* Save user registers on the stack */
1014	frame = &rt_sf->uc.uc_mcontext;
1015	addr = frame;
1016	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1017		sigret = 0;
1018		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1019	} else {
1020		sigret = __NR_rt_sigreturn;
1021		tramp = (unsigned long) frame->tramp;
1022	}
1023
1024#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1025	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1026	if (MSR_TM_ACTIVE(regs->msr)) {
1027		if (__put_user((unsigned long)&rt_sf->uc_transact,
1028			       &rt_sf->uc.uc_link) ||
1029		    __put_user((unsigned long)tm_frame,
1030			       &rt_sf->uc_transact.uc_regs))
1031			goto badframe;
1032		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1033			goto badframe;
1034	}
1035	else
1036#endif
1037	{
1038		if (__put_user(0, &rt_sf->uc.uc_link))
1039			goto badframe;
1040		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1041			goto badframe;
1042	}
1043	regs->link = tramp;
1044
1045	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1046
1047	/* create a stack frame for the caller of the handler */
1048	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1049	addr = (void __user *)regs->gpr[1];
1050	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1051		goto badframe;
1052
1053	/* Fill registers for signal handler */
1054	regs->gpr[1] = newsp;
1055	regs->gpr[3] = ksig->sig;
1056	regs->gpr[4] = (unsigned long) &rt_sf->info;
1057	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1058	regs->gpr[6] = (unsigned long) rt_sf;
1059	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1060	/* enter the signal handler in native-endian mode */
1061	regs->msr &= ~MSR_LE;
1062	regs->msr |= (MSR_KERNEL & MSR_LE);
1063	return 0;
1064
1065badframe:
1066	if (show_unhandled_signals)
1067		printk_ratelimited(KERN_INFO
1068				   "%s[%d]: bad frame in handle_rt_signal32: "
1069				   "%p nip %08lx lr %08lx\n",
1070				   current->comm, current->pid,
1071				   addr, regs->nip, regs->link);
1072
1073	return 1;
1074}
1075
1076static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1077{
1078	sigset_t set;
1079	struct mcontext __user *mcp;
1080
1081	if (get_sigset_t(&set, &ucp->uc_sigmask))
1082		return -EFAULT;
1083#ifdef CONFIG_PPC64
1084	{
1085		u32 cmcp;
1086
1087		if (__get_user(cmcp, &ucp->uc_regs))
1088			return -EFAULT;
1089		mcp = (struct mcontext __user *)(u64)cmcp;
1090		/* no need to check access_ok(mcp), since mcp < 4GB */
1091	}
1092#else
1093	if (__get_user(mcp, &ucp->uc_regs))
1094		return -EFAULT;
1095	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1096		return -EFAULT;
1097#endif
1098	set_current_blocked(&set);
1099	if (restore_user_regs(regs, mcp, sig))
1100		return -EFAULT;
1101
1102	return 0;
1103}
1104
1105#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1106static int do_setcontext_tm(struct ucontext __user *ucp,
1107			    struct ucontext __user *tm_ucp,
1108			    struct pt_regs *regs)
1109{
1110	sigset_t set;
1111	struct mcontext __user *mcp;
1112	struct mcontext __user *tm_mcp;
1113	u32 cmcp;
1114	u32 tm_cmcp;
1115
1116	if (get_sigset_t(&set, &ucp->uc_sigmask))
1117		return -EFAULT;
1118
1119	if (__get_user(cmcp, &ucp->uc_regs) ||
1120	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1121		return -EFAULT;
1122	mcp = (struct mcontext __user *)(u64)cmcp;
1123	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1124	/* no need to check access_ok(mcp), since mcp < 4GB */
1125
1126	set_current_blocked(&set);
1127	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1128		return -EFAULT;
1129
1130	return 0;
1131}
1132#endif
1133
1134long sys_swapcontext(struct ucontext __user *old_ctx,
1135		     struct ucontext __user *new_ctx,
1136		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1137{
1138	unsigned char tmp;
1139	int ctx_has_vsx_region = 0;
1140
1141#ifdef CONFIG_PPC64
1142	unsigned long new_msr = 0;
1143
1144	if (new_ctx) {
1145		struct mcontext __user *mcp;
1146		u32 cmcp;
1147
1148		/*
1149		 * Get pointer to the real mcontext.  No need for
1150		 * access_ok since we are dealing with compat
1151		 * pointers.
1152		 */
1153		if (__get_user(cmcp, &new_ctx->uc_regs))
1154			return -EFAULT;
1155		mcp = (struct mcontext __user *)(u64)cmcp;
1156		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1157			return -EFAULT;
1158	}
1159	/*
1160	 * Check that the context is not smaller than the original
1161	 * size (with VMX but without VSX)
1162	 */
1163	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1164		return -EINVAL;
1165	/*
1166	 * If the new context state sets the MSR VSX bits but
1167	 * it doesn't provide VSX state.
1168	 */
1169	if ((ctx_size < sizeof(struct ucontext)) &&
1170	    (new_msr & MSR_VSX))
1171		return -EINVAL;
1172	/* Does the context have enough room to store VSX data? */
1173	if (ctx_size >= sizeof(struct ucontext))
1174		ctx_has_vsx_region = 1;
1175#else
1176	/* Context size is for future use. Right now, we only make sure
1177	 * we are passed something we understand
1178	 */
1179	if (ctx_size < sizeof(struct ucontext))
1180		return -EINVAL;
1181#endif
1182	if (old_ctx != NULL) {
1183		struct mcontext __user *mctx;
1184
1185		/*
1186		 * old_ctx might not be 16-byte aligned, in which
1187		 * case old_ctx->uc_mcontext won't be either.
1188		 * Because we have the old_ctx->uc_pad2 field
1189		 * before old_ctx->uc_mcontext, we need to round down
1190		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1191		 */
1192		mctx = (struct mcontext __user *)
1193			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1194		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1195		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1196		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1197		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1198			return -EFAULT;
1199	}
1200	if (new_ctx == NULL)
1201		return 0;
1202	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1203	    || __get_user(tmp, (u8 __user *) new_ctx)
1204	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1205		return -EFAULT;
1206
1207	/*
1208	 * If we get a fault copying the context into the kernel's
1209	 * image of the user's registers, we can't just return -EFAULT
1210	 * because the user's registers will be corrupted.  For instance
1211	 * the NIP value may have been updated but not some of the
1212	 * other registers.  Given that we have done the access_ok
1213	 * and successfully read the first and last bytes of the region
1214	 * above, this should only happen in an out-of-memory situation
1215	 * or if another thread unmaps the region containing the context.
1216	 * We kill the task with a SIGSEGV in this situation.
1217	 */
1218	if (do_setcontext(new_ctx, regs, 0))
1219		do_exit(SIGSEGV);
1220
1221	set_thread_flag(TIF_RESTOREALL);
1222	return 0;
1223}
1224
1225long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1226		     struct pt_regs *regs)
1227{
1228	struct rt_sigframe __user *rt_sf;
1229#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1230	struct ucontext __user *uc_transact;
1231	unsigned long msr_hi;
1232	unsigned long tmp;
1233	int tm_restore = 0;
1234#endif
1235	/* Always make any pending restarted system calls return -EINTR */
1236	current->restart_block.fn = do_no_restart_syscall;
1237
1238	rt_sf = (struct rt_sigframe __user *)
1239		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1240	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1241		goto bad;
1242#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1243	if (__get_user(tmp, &rt_sf->uc.uc_link))
1244		goto bad;
1245	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1246	if (uc_transact) {
1247		u32 cmcp;
1248		struct mcontext __user *mcp;
1249
1250		if (__get_user(cmcp, &uc_transact->uc_regs))
1251			return -EFAULT;
1252		mcp = (struct mcontext __user *)(u64)cmcp;
1253		/* The top 32 bits of the MSR are stashed in the transactional
1254		 * ucontext. */
1255		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1256			goto bad;
1257
1258		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1259			/* We only recheckpoint on return if we're
1260			 * transaction.
1261			 */
1262			tm_restore = 1;
1263			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1264				goto bad;
1265		}
1266	}
1267	if (!tm_restore)
1268		/* Fall through, for non-TM restore */
1269#endif
1270	if (do_setcontext(&rt_sf->uc, regs, 1))
1271		goto bad;
1272
1273	/*
1274	 * It's not clear whether or why it is desirable to save the
1275	 * sigaltstack setting on signal delivery and restore it on
1276	 * signal return.  But other architectures do this and we have
1277	 * always done it up until now so it is probably better not to
1278	 * change it.  -- paulus
1279	 */
1280#ifdef CONFIG_PPC64
1281	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1282		goto bad;
1283#else
1284	if (restore_altstack(&rt_sf->uc.uc_stack))
1285		goto bad;
1286#endif
1287	set_thread_flag(TIF_RESTOREALL);
1288	return 0;
1289
1290 bad:
1291	if (show_unhandled_signals)
1292		printk_ratelimited(KERN_INFO
1293				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1294				   "%p nip %08lx lr %08lx\n",
1295				   current->comm, current->pid,
1296				   rt_sf, regs->nip, regs->link);
1297
1298	force_sig(SIGSEGV, current);
1299	return 0;
1300}
1301
1302#ifdef CONFIG_PPC32
1303int sys_debug_setcontext(struct ucontext __user *ctx,
1304			 int ndbg, struct sig_dbg_op __user *dbg,
1305			 int r6, int r7, int r8,
1306			 struct pt_regs *regs)
1307{
1308	struct sig_dbg_op op;
1309	int i;
1310	unsigned char tmp;
1311	unsigned long new_msr = regs->msr;
1312#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1313	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1314#endif
1315
1316	for (i=0; i<ndbg; i++) {
1317		if (copy_from_user(&op, dbg + i, sizeof(op)))
1318			return -EFAULT;
1319		switch (op.dbg_type) {
1320		case SIG_DBG_SINGLE_STEPPING:
1321#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1322			if (op.dbg_value) {
1323				new_msr |= MSR_DE;
1324				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1325			} else {
1326				new_dbcr0 &= ~DBCR0_IC;
1327				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1328						current->thread.debug.dbcr1)) {
1329					new_msr &= ~MSR_DE;
1330					new_dbcr0 &= ~DBCR0_IDM;
1331				}
1332			}
1333#else
1334			if (op.dbg_value)
1335				new_msr |= MSR_SE;
1336			else
1337				new_msr &= ~MSR_SE;
1338#endif
1339			break;
1340		case SIG_DBG_BRANCH_TRACING:
1341#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1342			return -EINVAL;
1343#else
1344			if (op.dbg_value)
1345				new_msr |= MSR_BE;
1346			else
1347				new_msr &= ~MSR_BE;
1348#endif
1349			break;
1350
1351		default:
1352			return -EINVAL;
1353		}
1354	}
1355
1356	/* We wait until here to actually install the values in the
1357	   registers so if we fail in the above loop, it will not
1358	   affect the contents of these registers.  After this point,
1359	   failure is a problem, anyway, and it's very unlikely unless
1360	   the user is really doing something wrong. */
1361	regs->msr = new_msr;
1362#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1363	current->thread.debug.dbcr0 = new_dbcr0;
1364#endif
1365
1366	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1367	    || __get_user(tmp, (u8 __user *) ctx)
1368	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1369		return -EFAULT;
1370
1371	/*
1372	 * If we get a fault copying the context into the kernel's
1373	 * image of the user's registers, we can't just return -EFAULT
1374	 * because the user's registers will be corrupted.  For instance
1375	 * the NIP value may have been updated but not some of the
1376	 * other registers.  Given that we have done the access_ok
1377	 * and successfully read the first and last bytes of the region
1378	 * above, this should only happen in an out-of-memory situation
1379	 * or if another thread unmaps the region containing the context.
1380	 * We kill the task with a SIGSEGV in this situation.
1381	 */
1382	if (do_setcontext(ctx, regs, 1)) {
1383		if (show_unhandled_signals)
1384			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1385					   "sys_debug_setcontext: %p nip %08lx "
1386					   "lr %08lx\n",
1387					   current->comm, current->pid,
1388					   ctx, regs->nip, regs->link);
1389
1390		force_sig(SIGSEGV, current);
1391		goto out;
1392	}
1393
1394	/*
1395	 * It's not clear whether or why it is desirable to save the
1396	 * sigaltstack setting on signal delivery and restore it on
1397	 * signal return.  But other architectures do this and we have
1398	 * always done it up until now so it is probably better not to
1399	 * change it.  -- paulus
1400	 */
1401	restore_altstack(&ctx->uc_stack);
1402
1403	set_thread_flag(TIF_RESTOREALL);
1404 out:
1405	return 0;
1406}
1407#endif
1408
1409/*
1410 * OK, we're invoking a handler
1411 */
1412int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs)
1413{
1414	struct sigcontext __user *sc;
1415	struct sigframe __user *frame;
1416	struct mcontext __user *tm_mctx = NULL;
1417	unsigned long newsp = 0;
1418	int sigret;
1419	unsigned long tramp;
1420
1421	/* Set up Signal Frame */
1422	frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1);
1423	if (unlikely(frame == NULL))
1424		goto badframe;
1425	sc = (struct sigcontext __user *) &frame->sctx;
1426
1427#if _NSIG != 64
1428#error "Please adjust handle_signal()"
1429#endif
1430	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1431	    || __put_user(oldset->sig[0], &sc->oldmask)
1432#ifdef CONFIG_PPC64
1433	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1434#else
1435	    || __put_user(oldset->sig[1], &sc->_unused[3])
1436#endif
1437	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1438	    || __put_user(ksig->sig, &sc->signal))
1439		goto badframe;
1440
1441	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1442		sigret = 0;
1443		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1444	} else {
1445		sigret = __NR_sigreturn;
1446		tramp = (unsigned long) frame->mctx.tramp;
1447	}
1448
1449#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1450	tm_mctx = &frame->mctx_transact;
1451	if (MSR_TM_ACTIVE(regs->msr)) {
1452		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1453				      sigret))
1454			goto badframe;
1455	}
1456	else
1457#endif
1458	{
1459		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1460			goto badframe;
1461	}
1462
1463	regs->link = tramp;
1464
1465	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1466
1467	/* create a stack frame for the caller of the handler */
1468	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1469	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1470		goto badframe;
1471
1472	regs->gpr[1] = newsp;
1473	regs->gpr[3] = ksig->sig;
1474	regs->gpr[4] = (unsigned long) sc;
1475	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1476	/* enter the signal handler in big-endian mode */
1477	regs->msr &= ~MSR_LE;
1478	return 0;
1479
1480badframe:
1481	if (show_unhandled_signals)
1482		printk_ratelimited(KERN_INFO
1483				   "%s[%d]: bad frame in handle_signal32: "
1484				   "%p nip %08lx lr %08lx\n",
1485				   current->comm, current->pid,
1486				   frame, regs->nip, regs->link);
1487
1488	return 1;
1489}
1490
1491/*
1492 * Do a signal return; undo the signal stack.
1493 */
1494long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1495		       struct pt_regs *regs)
1496{
1497	struct sigframe __user *sf;
1498	struct sigcontext __user *sc;
1499	struct sigcontext sigctx;
1500	struct mcontext __user *sr;
1501	void __user *addr;
1502	sigset_t set;
1503#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1504	struct mcontext __user *mcp, *tm_mcp;
1505	unsigned long msr_hi;
1506#endif
1507
1508	/* Always make any pending restarted system calls return -EINTR */
1509	current->restart_block.fn = do_no_restart_syscall;
1510
1511	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1512	sc = &sf->sctx;
1513	addr = sc;
1514	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1515		goto badframe;
1516
1517#ifdef CONFIG_PPC64
1518	/*
1519	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1520	 * unused part of the signal stackframe
1521	 */
1522	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1523#else
1524	set.sig[0] = sigctx.oldmask;
1525	set.sig[1] = sigctx._unused[3];
1526#endif
1527	set_current_blocked(&set);
1528
1529#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1530	mcp = (struct mcontext __user *)&sf->mctx;
1531	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1532	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1533		goto badframe;
1534	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1535		if (!cpu_has_feature(CPU_FTR_TM))
1536			goto badframe;
1537		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1538			goto badframe;
1539	} else
1540#endif
1541	{
1542		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1543		addr = sr;
1544		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1545		    || restore_user_regs(regs, sr, 1))
1546			goto badframe;
1547	}
1548
1549	set_thread_flag(TIF_RESTOREALL);
1550	return 0;
1551
1552badframe:
1553	if (show_unhandled_signals)
1554		printk_ratelimited(KERN_INFO
1555				   "%s[%d]: bad frame in sys_sigreturn: "
1556				   "%p nip %08lx lr %08lx\n",
1557				   current->comm, current->pid,
1558				   addr, regs->nip, regs->link);
1559
1560	force_sig(SIGSEGV, current);
1561	return 0;
1562}
1563