1/*
2 * PowerPC64 SLB support.
3 *
4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5 * Based on earlier code written by:
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 *    Copyright (c) 2001 Dave Engebretsen
8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 *
11 *      This program is free software; you can redistribute it and/or
12 *      modify it under the terms of the GNU General Public License
13 *      as published by the Free Software Foundation; either version
14 *      2 of the License, or (at your option) any later version.
15 */
16
17#include <asm/pgtable.h>
18#include <asm/mmu.h>
19#include <asm/mmu_context.h>
20#include <asm/paca.h>
21#include <asm/cputable.h>
22#include <asm/cacheflush.h>
23#include <asm/smp.h>
24#include <linux/compiler.h>
25#include <asm/udbg.h>
26#include <asm/code-patching.h>
27
28
29extern void slb_allocate_realmode(unsigned long ea);
30extern void slb_allocate_user(unsigned long ea);
31
32static void slb_allocate(unsigned long ea)
33{
34	/* Currently, we do real mode for all SLBs including user, but
35	 * that will change if we bring back dynamic VSIDs
36	 */
37	slb_allocate_realmode(ea);
38}
39
40#define slb_esid_mask(ssize)	\
41	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
42
43static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
44					 unsigned long slot)
45{
46	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | slot;
47}
48
49static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
50					 unsigned long flags)
51{
52	return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
53		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
54}
55
56static inline void slb_shadow_update(unsigned long ea, int ssize,
57				     unsigned long flags,
58				     unsigned long entry)
59{
60	/*
61	 * Clear the ESID first so the entry is not valid while we are
62	 * updating it.  No write barriers are needed here, provided
63	 * we only update the current CPU's SLB shadow buffer.
64	 */
65	get_slb_shadow()->save_area[entry].esid = 0;
66	get_slb_shadow()->save_area[entry].vsid =
67				cpu_to_be64(mk_vsid_data(ea, ssize, flags));
68	get_slb_shadow()->save_area[entry].esid =
69				cpu_to_be64(mk_esid_data(ea, ssize, entry));
70}
71
72static inline void slb_shadow_clear(unsigned long entry)
73{
74	get_slb_shadow()->save_area[entry].esid = 0;
75}
76
77static inline void create_shadowed_slbe(unsigned long ea, int ssize,
78					unsigned long flags,
79					unsigned long entry)
80{
81	/*
82	 * Updating the shadow buffer before writing the SLB ensures
83	 * we don't get a stale entry here if we get preempted by PHYP
84	 * between these two statements.
85	 */
86	slb_shadow_update(ea, ssize, flags, entry);
87
88	asm volatile("slbmte  %0,%1" :
89		     : "r" (mk_vsid_data(ea, ssize, flags)),
90		       "r" (mk_esid_data(ea, ssize, entry))
91		     : "memory" );
92}
93
94static void __slb_flush_and_rebolt(void)
95{
96	/* If you change this make sure you change SLB_NUM_BOLTED
97	 * and PR KVM appropriately too. */
98	unsigned long linear_llp, vmalloc_llp, lflags, vflags;
99	unsigned long ksp_esid_data, ksp_vsid_data;
100
101	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
102	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
103	lflags = SLB_VSID_KERNEL | linear_llp;
104	vflags = SLB_VSID_KERNEL | vmalloc_llp;
105
106	ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
107	if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
108		ksp_esid_data &= ~SLB_ESID_V;
109		ksp_vsid_data = 0;
110		slb_shadow_clear(2);
111	} else {
112		/* Update stack entry; others don't change */
113		slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
114		ksp_vsid_data =
115			be64_to_cpu(get_slb_shadow()->save_area[2].vsid);
116	}
117
118	/* We need to do this all in asm, so we're sure we don't touch
119	 * the stack between the slbia and rebolting it. */
120	asm volatile("isync\n"
121		     "slbia\n"
122		     /* Slot 1 - first VMALLOC segment */
123		     "slbmte	%0,%1\n"
124		     /* Slot 2 - kernel stack */
125		     "slbmte	%2,%3\n"
126		     "isync"
127		     :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
128		        "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
129		        "r"(ksp_vsid_data),
130		        "r"(ksp_esid_data)
131		     : "memory");
132}
133
134void slb_flush_and_rebolt(void)
135{
136
137	WARN_ON(!irqs_disabled());
138
139	/*
140	 * We can't take a PMU exception in the following code, so hard
141	 * disable interrupts.
142	 */
143	hard_irq_disable();
144
145	__slb_flush_and_rebolt();
146	get_paca()->slb_cache_ptr = 0;
147}
148
149void slb_vmalloc_update(void)
150{
151	unsigned long vflags;
152
153	vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
154	slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
155	slb_flush_and_rebolt();
156}
157
158/* Helper function to compare esids.  There are four cases to handle.
159 * 1. The system is not 1T segment size capable.  Use the GET_ESID compare.
160 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
161 * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match.
162 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
163 */
164static inline int esids_match(unsigned long addr1, unsigned long addr2)
165{
166	int esid_1t_count;
167
168	/* System is not 1T segment size capable. */
169	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
170		return (GET_ESID(addr1) == GET_ESID(addr2));
171
172	esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
173				((addr2 >> SID_SHIFT_1T) != 0));
174
175	/* both addresses are < 1T */
176	if (esid_1t_count == 0)
177		return (GET_ESID(addr1) == GET_ESID(addr2));
178
179	/* One address < 1T, the other > 1T.  Not a match */
180	if (esid_1t_count == 1)
181		return 0;
182
183	/* Both addresses are > 1T. */
184	return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
185}
186
187/* Flush all user entries from the segment table of the current processor. */
188void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
189{
190	unsigned long offset;
191	unsigned long slbie_data = 0;
192	unsigned long pc = KSTK_EIP(tsk);
193	unsigned long stack = KSTK_ESP(tsk);
194	unsigned long exec_base;
195
196	/*
197	 * We need interrupts hard-disabled here, not just soft-disabled,
198	 * so that a PMU interrupt can't occur, which might try to access
199	 * user memory (to get a stack trace) and possible cause an SLB miss
200	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
201	 */
202	hard_irq_disable();
203	offset = get_paca()->slb_cache_ptr;
204	if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
205	    offset <= SLB_CACHE_ENTRIES) {
206		int i;
207		asm volatile("isync" : : : "memory");
208		for (i = 0; i < offset; i++) {
209			slbie_data = (unsigned long)get_paca()->slb_cache[i]
210				<< SID_SHIFT; /* EA */
211			slbie_data |= user_segment_size(slbie_data)
212				<< SLBIE_SSIZE_SHIFT;
213			slbie_data |= SLBIE_C; /* C set for user addresses */
214			asm volatile("slbie %0" : : "r" (slbie_data));
215		}
216		asm volatile("isync" : : : "memory");
217	} else {
218		__slb_flush_and_rebolt();
219	}
220
221	/* Workaround POWER5 < DD2.1 issue */
222	if (offset == 1 || offset > SLB_CACHE_ENTRIES)
223		asm volatile("slbie %0" : : "r" (slbie_data));
224
225	get_paca()->slb_cache_ptr = 0;
226	get_paca()->context = mm->context;
227
228	/*
229	 * preload some userspace segments into the SLB.
230	 * Almost all 32 and 64bit PowerPC executables are linked at
231	 * 0x10000000 so it makes sense to preload this segment.
232	 */
233	exec_base = 0x10000000;
234
235	if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
236	    is_kernel_addr(exec_base))
237		return;
238
239	slb_allocate(pc);
240
241	if (!esids_match(pc, stack))
242		slb_allocate(stack);
243
244	if (!esids_match(pc, exec_base) &&
245	    !esids_match(stack, exec_base))
246		slb_allocate(exec_base);
247}
248
249static inline void patch_slb_encoding(unsigned int *insn_addr,
250				      unsigned int immed)
251{
252	int insn = (*insn_addr & 0xffff0000) | immed;
253	patch_instruction(insn_addr, insn);
254}
255
256extern u32 slb_compare_rr_to_size[];
257extern u32 slb_miss_kernel_load_linear[];
258extern u32 slb_miss_kernel_load_io[];
259extern u32 slb_compare_rr_to_size[];
260extern u32 slb_miss_kernel_load_vmemmap[];
261
262void slb_set_size(u16 size)
263{
264	if (mmu_slb_size == size)
265		return;
266
267	mmu_slb_size = size;
268	patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
269}
270
271void slb_initialize(void)
272{
273	unsigned long linear_llp, vmalloc_llp, io_llp;
274	unsigned long lflags, vflags;
275	static int slb_encoding_inited;
276#ifdef CONFIG_SPARSEMEM_VMEMMAP
277	unsigned long vmemmap_llp;
278#endif
279
280	/* Prepare our SLB miss handler based on our page size */
281	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
282	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
283	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
284	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
285#ifdef CONFIG_SPARSEMEM_VMEMMAP
286	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
287#endif
288	if (!slb_encoding_inited) {
289		slb_encoding_inited = 1;
290		patch_slb_encoding(slb_miss_kernel_load_linear,
291				   SLB_VSID_KERNEL | linear_llp);
292		patch_slb_encoding(slb_miss_kernel_load_io,
293				   SLB_VSID_KERNEL | io_llp);
294		patch_slb_encoding(slb_compare_rr_to_size,
295				   mmu_slb_size);
296
297		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
298		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
299
300#ifdef CONFIG_SPARSEMEM_VMEMMAP
301		patch_slb_encoding(slb_miss_kernel_load_vmemmap,
302				   SLB_VSID_KERNEL | vmemmap_llp);
303		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
304#endif
305	}
306
307	get_paca()->stab_rr = SLB_NUM_BOLTED;
308
309	lflags = SLB_VSID_KERNEL | linear_llp;
310	vflags = SLB_VSID_KERNEL | vmalloc_llp;
311
312	/* Invalidate the entire SLB (even slot 0) & all the ERATS */
313	asm volatile("isync":::"memory");
314	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
315	asm volatile("isync; slbia; isync":::"memory");
316	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
317
318	create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
319
320	/* For the boot cpu, we're running on the stack in init_thread_union,
321	 * which is in the first segment of the linear mapping, and also
322	 * get_paca()->kstack hasn't been initialized yet.
323	 * For secondary cpus, we need to bolt the kernel stack entry now.
324	 */
325	slb_shadow_clear(2);
326	if (raw_smp_processor_id() != boot_cpuid &&
327	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
328		create_shadowed_slbe(get_paca()->kstack,
329				     mmu_kernel_ssize, lflags, 2);
330
331	asm volatile("isync":::"memory");
332}
333