1/*
2 * spu_switch.c
3 *
4 * (C) Copyright IBM Corp. 2005
5 *
6 * Author: Mark Nutter <mnutter@us.ibm.com>
7 *
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
10 *
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources.  SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes.  When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
18 *
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
23 * any later version.
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35#include <linux/export.h>
36#include <linux/errno.h>
37#include <linux/hardirq.h>
38#include <linux/sched.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
42#include <linux/smp.h>
43#include <linux/stddef.h>
44#include <linux/unistd.h>
45
46#include <asm/io.h>
47#include <asm/spu.h>
48#include <asm/spu_priv1.h>
49#include <asm/spu_csa.h>
50#include <asm/mmu_context.h>
51
52#include "spufs.h"
53
54#include "spu_save_dump.h"
55#include "spu_restore_dump.h"
56
57#if 0
58#define POLL_WHILE_TRUE(_c) {				\
59    do {						\
60    } while (_c);					\
61  }
62#else
63#define RELAX_SPIN_COUNT				1000
64#define POLL_WHILE_TRUE(_c) {				\
65    do {						\
66	int _i;						\
67	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68	    cpu_relax();				\
69	}						\
70	if (unlikely(_c)) yield();			\
71	else break;					\
72    } while (_c);					\
73  }
74#endif				/* debug */
75
76#define POLL_WHILE_FALSE(_c)	POLL_WHILE_TRUE(!(_c))
77
78static inline void acquire_spu_lock(struct spu *spu)
79{
80	/* Save, Step 1:
81	 * Restore, Step 1:
82	 *    Acquire SPU-specific mutual exclusion lock.
83	 *    TBD.
84	 */
85}
86
87static inline void release_spu_lock(struct spu *spu)
88{
89	/* Restore, Step 76:
90	 *    Release SPU-specific mutual exclusion lock.
91	 *    TBD.
92	 */
93}
94
95static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96{
97	struct spu_problem __iomem *prob = spu->problem;
98	u32 isolate_state;
99
100	/* Save, Step 2:
101	 * Save, Step 6:
102	 *     If SPU_Status[E,L,IS] any field is '1', this
103	 *     SPU is in isolate state and cannot be context
104	 *     saved at this time.
105	 */
106	isolate_state = SPU_STATUS_ISOLATED_STATE |
107	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109}
110
111static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112{
113	/* Save, Step 3:
114	 * Restore, Step 2:
115	 *     Save INT_Mask_class0 in CSA.
116	 *     Write INT_MASK_class0 with value of 0.
117	 *     Save INT_Mask_class1 in CSA.
118	 *     Write INT_MASK_class1 with value of 0.
119	 *     Save INT_Mask_class2 in CSA.
120	 *     Write INT_MASK_class2 with value of 0.
121	 *     Synchronize all three interrupts to be sure
122	 *     we no longer execute a handler on another CPU.
123	 */
124	spin_lock_irq(&spu->register_lock);
125	if (csa) {
126		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129	}
130	spu_int_mask_set(spu, 0, 0ul);
131	spu_int_mask_set(spu, 1, 0ul);
132	spu_int_mask_set(spu, 2, 0ul);
133	eieio();
134	spin_unlock_irq(&spu->register_lock);
135
136	/*
137	 * This flag needs to be set before calling synchronize_irq so
138	 * that the update will be visible to the relevant handlers
139	 * via a simple load.
140	 */
141	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
142	clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
143	synchronize_irq(spu->irqs[0]);
144	synchronize_irq(spu->irqs[1]);
145	synchronize_irq(spu->irqs[2]);
146}
147
148static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
149{
150	/* Save, Step 4:
151	 * Restore, Step 25.
152	 *    Set a software watchdog timer, which specifies the
153	 *    maximum allowable time for a context save sequence.
154	 *
155	 *    For present, this implementation will not set a global
156	 *    watchdog timer, as virtualization & variable system load
157	 *    may cause unpredictable execution times.
158	 */
159}
160
161static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
162{
163	/* Save, Step 5:
164	 * Restore, Step 3:
165	 *     Inhibit user-space access (if provided) to this
166	 *     SPU by unmapping the virtual pages assigned to
167	 *     the SPU memory-mapped I/O (MMIO) for problem
168	 *     state. TBD.
169	 */
170}
171
172static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
173{
174	/* Save, Step 7:
175	 * Restore, Step 5:
176	 *     Set a software context switch pending flag.
177	 *     Done above in Step 3 - disable_interrupts().
178	 */
179}
180
181static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
182{
183	struct spu_priv2 __iomem *priv2 = spu->priv2;
184
185	/* Save, Step 8:
186	 *     Suspend DMA and save MFC_CNTL.
187	 */
188	switch (in_be64(&priv2->mfc_control_RW) &
189	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
190	case MFC_CNTL_SUSPEND_IN_PROGRESS:
191		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193				 MFC_CNTL_SUSPEND_COMPLETE);
194		/* fall through */
195	case MFC_CNTL_SUSPEND_COMPLETE:
196		if (csa)
197			csa->priv2.mfc_control_RW =
198				in_be64(&priv2->mfc_control_RW) |
199				MFC_CNTL_SUSPEND_DMA_QUEUE;
200		break;
201	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
202		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
203		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
204				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
205				 MFC_CNTL_SUSPEND_COMPLETE);
206		if (csa)
207			csa->priv2.mfc_control_RW =
208				in_be64(&priv2->mfc_control_RW) &
209				~MFC_CNTL_SUSPEND_DMA_QUEUE &
210				~MFC_CNTL_SUSPEND_MASK;
211		break;
212	}
213}
214
215static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
216{
217	struct spu_problem __iomem *prob = spu->problem;
218
219	/* Save, Step 9:
220	 *     Save SPU_Runcntl in the CSA.  This value contains
221	 *     the "Application Desired State".
222	 */
223	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
224}
225
226static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
227{
228	/* Save, Step 10:
229	 *     Save MFC_SR1 in the CSA.
230	 */
231	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
232}
233
234static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
235{
236	struct spu_problem __iomem *prob = spu->problem;
237
238	/* Save, Step 11:
239	 *     Read SPU_Status[R], and save to CSA.
240	 */
241	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
242		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243	} else {
244		u32 stopped;
245
246		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
247		eieio();
248		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
249				SPU_STATUS_RUNNING);
250		stopped =
251		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
252		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
253		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
254			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
255		else
256			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
257	}
258}
259
260static inline void save_mfc_stopped_status(struct spu_state *csa,
261		struct spu *spu)
262{
263	struct spu_priv2 __iomem *priv2 = spu->priv2;
264	const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
265			MFC_CNTL_DMA_QUEUES_EMPTY;
266
267	/* Save, Step 12:
268	 *     Read MFC_CNTL[Ds].  Update saved copy of
269	 *     CSA.MFC_CNTL[Ds].
270	 *
271	 * update: do the same with MFC_CNTL[Q].
272	 */
273	csa->priv2.mfc_control_RW &= ~mask;
274	csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
275}
276
277static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
278{
279	struct spu_priv2 __iomem *priv2 = spu->priv2;
280
281	/* Save, Step 13:
282	 *     Write MFC_CNTL[Dh] set to a '1' to halt
283	 *     the decrementer.
284	 */
285	out_be64(&priv2->mfc_control_RW,
286		 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
287	eieio();
288}
289
290static inline void save_timebase(struct spu_state *csa, struct spu *spu)
291{
292	/* Save, Step 14:
293	 *    Read PPE Timebase High and Timebase low registers
294	 *    and save in CSA.  TBD.
295	 */
296	csa->suspend_time = get_cycles();
297}
298
299static inline void remove_other_spu_access(struct spu_state *csa,
300					   struct spu *spu)
301{
302	/* Save, Step 15:
303	 *     Remove other SPU access to this SPU by unmapping
304	 *     this SPU's pages from their address space.  TBD.
305	 */
306}
307
308static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
309{
310	struct spu_problem __iomem *prob = spu->problem;
311
312	/* Save, Step 16:
313	 * Restore, Step 11.
314	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
315	 *     for a value of 0.
316	 */
317	out_be64(&prob->spc_mssync_RW, 1UL);
318	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
319}
320
321static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
322{
323	/* Save, Step 17:
324	 * Restore, Step 12.
325	 * Restore, Step 48.
326	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
327	 *     Then issue a PPE sync instruction.
328	 */
329	spu_tlb_invalidate(spu);
330	mb();
331}
332
333static inline void handle_pending_interrupts(struct spu_state *csa,
334					     struct spu *spu)
335{
336	/* Save, Step 18:
337	 *     Handle any pending interrupts from this SPU
338	 *     here.  This is OS or hypervisor specific.  One
339	 *     option is to re-enable interrupts to handle any
340	 *     pending interrupts, with the interrupt handlers
341	 *     recognizing the software Context Switch Pending
342	 *     flag, to ensure the SPU execution or MFC command
343	 *     queue is not restarted.  TBD.
344	 */
345}
346
347static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
348{
349	struct spu_priv2 __iomem *priv2 = spu->priv2;
350	int i;
351
352	/* Save, Step 19:
353	 *     If MFC_Cntl[Se]=0 then save
354	 *     MFC command queues.
355	 */
356	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
357		for (i = 0; i < 8; i++) {
358			csa->priv2.puq[i].mfc_cq_data0_RW =
359			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
360			csa->priv2.puq[i].mfc_cq_data1_RW =
361			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
362			csa->priv2.puq[i].mfc_cq_data2_RW =
363			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
364			csa->priv2.puq[i].mfc_cq_data3_RW =
365			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
366		}
367		for (i = 0; i < 16; i++) {
368			csa->priv2.spuq[i].mfc_cq_data0_RW =
369			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
370			csa->priv2.spuq[i].mfc_cq_data1_RW =
371			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
372			csa->priv2.spuq[i].mfc_cq_data2_RW =
373			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
374			csa->priv2.spuq[i].mfc_cq_data3_RW =
375			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
376		}
377	}
378}
379
380static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
381{
382	struct spu_problem __iomem *prob = spu->problem;
383
384	/* Save, Step 20:
385	 *     Save the PPU_QueryMask register
386	 *     in the CSA.
387	 */
388	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
389}
390
391static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
392{
393	struct spu_problem __iomem *prob = spu->problem;
394
395	/* Save, Step 21:
396	 *     Save the PPU_QueryType register
397	 *     in the CSA.
398	 */
399	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
400}
401
402static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
403{
404	struct spu_problem __iomem *prob = spu->problem;
405
406	/* Save the Prxy_TagStatus register in the CSA.
407	 *
408	 * It is unnecessary to restore dma_tagstatus_R, however,
409	 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
410	 * we must save it.
411	 */
412	csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
413}
414
415static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
416{
417	struct spu_priv2 __iomem *priv2 = spu->priv2;
418
419	/* Save, Step 22:
420	 *     Save the MFC_CSR_TSQ register
421	 *     in the LSCSA.
422	 */
423	csa->priv2.spu_tag_status_query_RW =
424	    in_be64(&priv2->spu_tag_status_query_RW);
425}
426
427static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
428{
429	struct spu_priv2 __iomem *priv2 = spu->priv2;
430
431	/* Save, Step 23:
432	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
433	 *     registers in the CSA.
434	 */
435	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
436	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
437}
438
439static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
440{
441	struct spu_priv2 __iomem *priv2 = spu->priv2;
442
443	/* Save, Step 24:
444	 *     Save the MFC_CSR_ATO register in
445	 *     the CSA.
446	 */
447	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
448}
449
450static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
451{
452	/* Save, Step 25:
453	 *     Save the MFC_TCLASS_ID register in
454	 *     the CSA.
455	 */
456	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
457}
458
459static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
460{
461	/* Save, Step 26:
462	 * Restore, Step 23.
463	 *     Write the MFC_TCLASS_ID register with
464	 *     the value 0x10000000.
465	 */
466	spu_mfc_tclass_id_set(spu, 0x10000000);
467	eieio();
468}
469
470static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
471{
472	struct spu_priv2 __iomem *priv2 = spu->priv2;
473
474	/* Save, Step 27:
475	 * Restore, Step 14.
476	 *     Write MFC_CNTL[Pc]=1 (purge queue).
477	 */
478	out_be64(&priv2->mfc_control_RW,
479			MFC_CNTL_PURGE_DMA_REQUEST |
480			MFC_CNTL_SUSPEND_MASK);
481	eieio();
482}
483
484static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
485{
486	struct spu_priv2 __iomem *priv2 = spu->priv2;
487
488	/* Save, Step 28:
489	 *     Poll MFC_CNTL[Ps] until value '11' is read
490	 *     (purge complete).
491	 */
492	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
493			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
494			 MFC_CNTL_PURGE_DMA_COMPLETE);
495}
496
497static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
498{
499	/* Save, Step 30:
500	 * Restore, Step 18:
501	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
502	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
503	 *     OS specific environment.
504	 *
505	 *     Implementation note: The SPU-side code
506	 *     for save/restore is privileged, so the
507	 *     MFC_SR1[Pr] bit is not set.
508	 *
509	 */
510	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
511			      MFC_STATE1_RELOCATE_MASK |
512			      MFC_STATE1_BUS_TLBIE_MASK));
513}
514
515static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
516{
517	struct spu_problem __iomem *prob = spu->problem;
518
519	/* Save, Step 31:
520	 *     Save SPU_NPC in the CSA.
521	 */
522	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
523}
524
525static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
526{
527	struct spu_priv2 __iomem *priv2 = spu->priv2;
528
529	/* Save, Step 32:
530	 *     Save SPU_PrivCntl in the CSA.
531	 */
532	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
533}
534
535static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
536{
537	struct spu_priv2 __iomem *priv2 = spu->priv2;
538
539	/* Save, Step 33:
540	 * Restore, Step 16:
541	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
542	 */
543	out_be64(&priv2->spu_privcntl_RW, 0UL);
544	eieio();
545}
546
547static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
548{
549	struct spu_priv2 __iomem *priv2 = spu->priv2;
550
551	/* Save, Step 34:
552	 *     Save SPU_LSLR in the CSA.
553	 */
554	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
555}
556
557static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
558{
559	struct spu_priv2 __iomem *priv2 = spu->priv2;
560
561	/* Save, Step 35:
562	 * Restore, Step 17.
563	 *     Reset SPU_LSLR.
564	 */
565	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
566	eieio();
567}
568
569static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
570{
571	struct spu_priv2 __iomem *priv2 = spu->priv2;
572
573	/* Save, Step 36:
574	 *     Save SPU_Cfg in the CSA.
575	 */
576	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
577}
578
579static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
580{
581	/* Save, Step 37:
582	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
583	 *     Not performed by this implementation.
584	 */
585}
586
587static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
588{
589	/* Save, Step 38:
590	 *     Save RA_GROUP_ID register and the
591	 *     RA_ENABLE reigster in the CSA.
592	 */
593	csa->priv1.resource_allocation_groupID_RW =
594		spu_resource_allocation_groupID_get(spu);
595	csa->priv1.resource_allocation_enable_RW =
596		spu_resource_allocation_enable_get(spu);
597}
598
599static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
600{
601	struct spu_problem __iomem *prob = spu->problem;
602
603	/* Save, Step 39:
604	 *     Save MB_Stat register in the CSA.
605	 */
606	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
607}
608
609static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
610{
611	struct spu_problem __iomem *prob = spu->problem;
612
613	/* Save, Step 40:
614	 *     Save the PPU_MB register in the CSA.
615	 */
616	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
617}
618
619static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
620{
621	struct spu_priv2 __iomem *priv2 = spu->priv2;
622
623	/* Save, Step 41:
624	 *     Save the PPUINT_MB register in the CSA.
625	 */
626	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
627}
628
629static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
630{
631	struct spu_priv2 __iomem *priv2 = spu->priv2;
632	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
633	int i;
634
635	/* Save, Step 42:
636	 */
637
638	/* Save CH 1, without channel count */
639	out_be64(&priv2->spu_chnlcntptr_RW, 1);
640	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
641
642	/* Save the following CH: [0,3,4,24,25,27] */
643	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
644		idx = ch_indices[i];
645		out_be64(&priv2->spu_chnlcntptr_RW, idx);
646		eieio();
647		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
648		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
649		out_be64(&priv2->spu_chnldata_RW, 0UL);
650		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
651		eieio();
652	}
653}
654
655static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
656{
657	struct spu_priv2 __iomem *priv2 = spu->priv2;
658	int i;
659
660	/* Save, Step 43:
661	 *     Save SPU Read Mailbox Channel.
662	 */
663	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
664	eieio();
665	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
666	for (i = 0; i < 4; i++) {
667		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
668	}
669	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
670	eieio();
671}
672
673static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
674{
675	struct spu_priv2 __iomem *priv2 = spu->priv2;
676
677	/* Save, Step 44:
678	 *     Save MFC_CMD Channel.
679	 */
680	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
681	eieio();
682	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
683	eieio();
684}
685
686static inline void reset_ch(struct spu_state *csa, struct spu *spu)
687{
688	struct spu_priv2 __iomem *priv2 = spu->priv2;
689	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
690	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
691	u64 idx;
692	int i;
693
694	/* Save, Step 45:
695	 *     Reset the following CH: [21, 23, 28, 30]
696	 */
697	for (i = 0; i < 4; i++) {
698		idx = ch_indices[i];
699		out_be64(&priv2->spu_chnlcntptr_RW, idx);
700		eieio();
701		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
702		eieio();
703	}
704}
705
706static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
707{
708	struct spu_priv2 __iomem *priv2 = spu->priv2;
709
710	/* Save, Step 46:
711	 * Restore, Step 25.
712	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
713	 */
714	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
715}
716
717static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
718		unsigned int *code, int code_size)
719{
720	/* Save, Step 47:
721	 * Restore, Step 30.
722	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
723	 *     register, then initialize SLB_VSID and SLB_ESID
724	 *     to provide access to SPU context save code and
725	 *     LSCSA.
726	 *
727	 *     This implementation places both the context
728	 *     switch code and LSCSA in kernel address space.
729	 *
730	 *     Further this implementation assumes that the
731	 *     MFC_SR1[R]=1 (in other words, assume that
732	 *     translation is desired by OS environment).
733	 */
734	spu_invalidate_slbs(spu);
735	spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
736}
737
738static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
739{
740	/* Save, Step 48:
741	 * Restore, Step 23.
742	 *     Change the software context switch pending flag
743	 *     to context switch active.  This implementation does
744	 *     not uses a switch active flag.
745	 *
746	 * Now that we have saved the mfc in the csa, we can add in the
747	 * restart command if an exception occurred.
748	 */
749	if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
750		csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
751	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
752	mb();
753}
754
755static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
756{
757	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
758	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
759
760	/* Save, Step 49:
761	 * Restore, Step 22:
762	 *     Reset and then enable interrupts, as
763	 *     needed by OS.
764	 *
765	 *     This implementation enables only class1
766	 *     (translation) interrupts.
767	 */
768	spin_lock_irq(&spu->register_lock);
769	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
770	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
771	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
772	spu_int_mask_set(spu, 0, 0ul);
773	spu_int_mask_set(spu, 1, class1_mask);
774	spu_int_mask_set(spu, 2, 0ul);
775	spin_unlock_irq(&spu->register_lock);
776}
777
778static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
779			       unsigned int ls_offset, unsigned int size,
780			       unsigned int tag, unsigned int rclass,
781			       unsigned int cmd)
782{
783	struct spu_problem __iomem *prob = spu->problem;
784	union mfc_tag_size_class_cmd command;
785	unsigned int transfer_size;
786	volatile unsigned int status = 0x0;
787
788	while (size > 0) {
789		transfer_size =
790		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
791		command.u.mfc_size = transfer_size;
792		command.u.mfc_tag = tag;
793		command.u.mfc_rclassid = rclass;
794		command.u.mfc_cmd = cmd;
795		do {
796			out_be32(&prob->mfc_lsa_W, ls_offset);
797			out_be64(&prob->mfc_ea_W, ea);
798			out_be64(&prob->mfc_union_W.all64, command.all64);
799			status =
800			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
801			if (unlikely(status & 0x2)) {
802				cpu_relax();
803			}
804		} while (status & 0x3);
805		size -= transfer_size;
806		ea += transfer_size;
807		ls_offset += transfer_size;
808	}
809	return 0;
810}
811
812static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
813{
814	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
815	unsigned int ls_offset = 0x0;
816	unsigned int size = 16384;
817	unsigned int tag = 0;
818	unsigned int rclass = 0;
819	unsigned int cmd = MFC_PUT_CMD;
820
821	/* Save, Step 50:
822	 *     Issue a DMA command to copy the first 16K bytes
823	 *     of local storage to the CSA.
824	 */
825	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
826}
827
828static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
829{
830	struct spu_problem __iomem *prob = spu->problem;
831
832	/* Save, Step 51:
833	 * Restore, Step 31.
834	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
835	 *     point address of context save code in local
836	 *     storage.
837	 *
838	 *     This implementation uses SPU-side save/restore
839	 *     programs with entry points at LSA of 0.
840	 */
841	out_be32(&prob->spu_npc_RW, 0);
842	eieio();
843}
844
845static inline void set_signot1(struct spu_state *csa, struct spu *spu)
846{
847	struct spu_problem __iomem *prob = spu->problem;
848	union {
849		u64 ull;
850		u32 ui[2];
851	} addr64;
852
853	/* Save, Step 52:
854	 * Restore, Step 32:
855	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
856	 *    of the CSA.LSCSA effective address.
857	 */
858	addr64.ull = (u64) csa->lscsa;
859	out_be32(&prob->signal_notify1, addr64.ui[0]);
860	eieio();
861}
862
863static inline void set_signot2(struct spu_state *csa, struct spu *spu)
864{
865	struct spu_problem __iomem *prob = spu->problem;
866	union {
867		u64 ull;
868		u32 ui[2];
869	} addr64;
870
871	/* Save, Step 53:
872	 * Restore, Step 33:
873	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
874	 *    of the CSA.LSCSA effective address.
875	 */
876	addr64.ull = (u64) csa->lscsa;
877	out_be32(&prob->signal_notify2, addr64.ui[1]);
878	eieio();
879}
880
881static inline void send_save_code(struct spu_state *csa, struct spu *spu)
882{
883	unsigned long addr = (unsigned long)&spu_save_code[0];
884	unsigned int ls_offset = 0x0;
885	unsigned int size = sizeof(spu_save_code);
886	unsigned int tag = 0;
887	unsigned int rclass = 0;
888	unsigned int cmd = MFC_GETFS_CMD;
889
890	/* Save, Step 54:
891	 *     Issue a DMA command to copy context save code
892	 *     to local storage and start SPU.
893	 */
894	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
895}
896
897static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
898{
899	struct spu_problem __iomem *prob = spu->problem;
900
901	/* Save, Step 55:
902	 * Restore, Step 38.
903	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
904	 *     and issue eieio instruction.
905	 */
906	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
907	eieio();
908}
909
910static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
911{
912	struct spu_problem __iomem *prob = spu->problem;
913	u32 mask = MFC_TAGID_TO_TAGMASK(0);
914	unsigned long flags;
915
916	/* Save, Step 56:
917	 * Restore, Step 39.
918	 * Restore, Step 39.
919	 * Restore, Step 46.
920	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
921	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
922	 *     Complete Interrupt.  Write INT_Stat_Class0 or
923	 *     INT_Stat_Class2 with value of 'handled'.
924	 */
925	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
926
927	local_irq_save(flags);
928	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
929	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
930	local_irq_restore(flags);
931}
932
933static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
934{
935	struct spu_problem __iomem *prob = spu->problem;
936	unsigned long flags;
937
938	/* Save, Step 57:
939	 * Restore, Step 40.
940	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
941	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
942	 *     or INT_Stat_class2 with value of handled.
943	 */
944	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
945
946	local_irq_save(flags);
947	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
948	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
949	local_irq_restore(flags);
950}
951
952static inline int check_save_status(struct spu_state *csa, struct spu *spu)
953{
954	struct spu_problem __iomem *prob = spu->problem;
955	u32 complete;
956
957	/* Save, Step 54:
958	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
959	 *     context save succeeded, otherwise context save
960	 *     failed.
961	 */
962	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
963		    SPU_STATUS_STOPPED_BY_STOP);
964	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
965}
966
967static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
968{
969	/* Restore, Step 4:
970	 *    If required, notify the "using application" that
971	 *    the SPU task has been terminated.  TBD.
972	 */
973}
974
975static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
976		struct spu *spu)
977{
978	struct spu_priv2 __iomem *priv2 = spu->priv2;
979
980	/* Restore, Step 7:
981	 *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
982	 *     the queue and halt the decrementer.
983	 */
984	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
985		 MFC_CNTL_DECREMENTER_HALTED);
986	eieio();
987}
988
989static inline void wait_suspend_mfc_complete(struct spu_state *csa,
990					     struct spu *spu)
991{
992	struct spu_priv2 __iomem *priv2 = spu->priv2;
993
994	/* Restore, Step 8:
995	 * Restore, Step 47.
996	 *     Poll MFC_CNTL[Ss] until 11 is returned.
997	 */
998	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
999			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1000			 MFC_CNTL_SUSPEND_COMPLETE);
1001}
1002
1003static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1004{
1005	struct spu_problem __iomem *prob = spu->problem;
1006
1007	/* Restore, Step 9:
1008	 *    If SPU_Status[R]=1, stop SPU execution
1009	 *    and wait for stop to complete.
1010	 *
1011	 *    Returns       1 if SPU_Status[R]=1 on entry.
1012	 *                  0 otherwise
1013	 */
1014	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1015		if (in_be32(&prob->spu_status_R) &
1016		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1017			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1018					SPU_STATUS_RUNNING);
1019		}
1020		if ((in_be32(&prob->spu_status_R) &
1021		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1022		    || (in_be32(&prob->spu_status_R) &
1023			SPU_STATUS_ISOLATED_STATE)) {
1024			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1025			eieio();
1026			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1027					SPU_STATUS_RUNNING);
1028			out_be32(&prob->spu_runcntl_RW, 0x2);
1029			eieio();
1030			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1031					SPU_STATUS_RUNNING);
1032		}
1033		if (in_be32(&prob->spu_status_R) &
1034		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1035			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1036			eieio();
1037			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1038					SPU_STATUS_RUNNING);
1039		}
1040		return 1;
1041	}
1042	return 0;
1043}
1044
1045static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1046{
1047	struct spu_problem __iomem *prob = spu->problem;
1048
1049	/* Restore, Step 10:
1050	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1051	 *    release SPU from isolate state.
1052	 */
1053	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1054		if (in_be32(&prob->spu_status_R) &
1055		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1056			spu_mfc_sr1_set(spu,
1057					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1058			eieio();
1059			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1060			eieio();
1061			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1062					SPU_STATUS_RUNNING);
1063		}
1064		if ((in_be32(&prob->spu_status_R) &
1065		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1066		    || (in_be32(&prob->spu_status_R) &
1067			SPU_STATUS_ISOLATED_STATE)) {
1068			spu_mfc_sr1_set(spu,
1069					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1070			eieio();
1071			out_be32(&prob->spu_runcntl_RW, 0x2);
1072			eieio();
1073			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1074					SPU_STATUS_RUNNING);
1075		}
1076	}
1077}
1078
1079static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1080{
1081	struct spu_priv2 __iomem *priv2 = spu->priv2;
1082	u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1083	u64 idx;
1084	int i;
1085
1086	/* Restore, Step 20:
1087	 */
1088
1089	/* Reset CH 1 */
1090	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1091	out_be64(&priv2->spu_chnldata_RW, 0UL);
1092
1093	/* Reset the following CH: [0,3,4,24,25,27] */
1094	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1095		idx = ch_indices[i];
1096		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1097		eieio();
1098		out_be64(&priv2->spu_chnldata_RW, 0UL);
1099		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1100		eieio();
1101	}
1102}
1103
1104static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1105{
1106	struct spu_priv2 __iomem *priv2 = spu->priv2;
1107	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1108	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1109	u64 idx;
1110	int i;
1111
1112	/* Restore, Step 21:
1113	 *     Reset the following CH: [21, 23, 28, 29, 30]
1114	 */
1115	for (i = 0; i < 5; i++) {
1116		idx = ch_indices[i];
1117		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1118		eieio();
1119		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1120		eieio();
1121	}
1122}
1123
1124static inline void setup_spu_status_part1(struct spu_state *csa,
1125					  struct spu *spu)
1126{
1127	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1128	u32 status_I = SPU_STATUS_INVALID_INSTR;
1129	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1130	u32 status_S = SPU_STATUS_SINGLE_STEP;
1131	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1132	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1133	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1134	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1135	u32 status_code;
1136
1137	/* Restore, Step 27:
1138	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1139	 *     instruction sequence to the end of the SPU based restore
1140	 *     code (after the "context restored" stop and signal) to
1141	 *     restore the correct SPU status.
1142	 *
1143	 *     NOTE: Rather than modifying the SPU executable, we
1144	 *     instead add a new 'stopped_status' field to the
1145	 *     LSCSA.  The SPU-side restore reads this field and
1146	 *     takes the appropriate action when exiting.
1147	 */
1148
1149	status_code =
1150	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1151	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1152
1153		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1154		 * by Stop and Signal instruction, followed by 'br -4'.
1155		 *
1156		 */
1157		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1158		csa->lscsa->stopped_status.slot[1] = status_code;
1159
1160	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1161
1162		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1163		 * by Stop and Signal instruction, followed by
1164		 * 'br -4'.
1165		 */
1166		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1167		csa->lscsa->stopped_status.slot[1] = status_code;
1168
1169	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1170
1171		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1172		 * followed by 'br -4'.
1173		 */
1174		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1175		csa->lscsa->stopped_status.slot[1] = status_code;
1176
1177	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1178
1179		/* SPU_Status[S,I]=1 - Illegal instruction followed
1180		 * by 'br -4'.
1181		 */
1182		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1183		csa->lscsa->stopped_status.slot[1] = status_code;
1184
1185	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1186
1187		/* SPU_Status[P]=1 - Stop and Signal instruction
1188		 * followed by 'br -4'.
1189		 */
1190		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1191		csa->lscsa->stopped_status.slot[1] = status_code;
1192
1193	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1194
1195		/* SPU_Status[H]=1 - Halt Conditional, followed
1196		 * by 'br -4'.
1197		 */
1198		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1199
1200	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1201
1202		/* SPU_Status[S]=1 - Two nop instructions.
1203		 */
1204		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1205
1206	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1207
1208		/* SPU_Status[I]=1 - Illegal instruction followed
1209		 * by 'br -4'.
1210		 */
1211		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1212
1213	}
1214}
1215
1216static inline void setup_spu_status_part2(struct spu_state *csa,
1217					  struct spu *spu)
1218{
1219	u32 mask;
1220
1221	/* Restore, Step 28:
1222	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1223	 *     add a 'br *' instruction to the end of
1224	 *     the SPU based restore code.
1225	 *
1226	 *     NOTE: Rather than modifying the SPU executable, we
1227	 *     instead add a new 'stopped_status' field to the
1228	 *     LSCSA.  The SPU-side restore reads this field and
1229	 *     takes the appropriate action when exiting.
1230	 */
1231	mask = SPU_STATUS_INVALID_INSTR |
1232	    SPU_STATUS_SINGLE_STEP |
1233	    SPU_STATUS_STOPPED_BY_HALT |
1234	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1235	if (!(csa->prob.spu_status_R & mask)) {
1236		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1237	}
1238}
1239
1240static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1241{
1242	/* Restore, Step 29:
1243	 *     Restore RA_GROUP_ID register and the
1244	 *     RA_ENABLE reigster from the CSA.
1245	 */
1246	spu_resource_allocation_groupID_set(spu,
1247			csa->priv1.resource_allocation_groupID_RW);
1248	spu_resource_allocation_enable_set(spu,
1249			csa->priv1.resource_allocation_enable_RW);
1250}
1251
1252static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1253{
1254	unsigned long addr = (unsigned long)&spu_restore_code[0];
1255	unsigned int ls_offset = 0x0;
1256	unsigned int size = sizeof(spu_restore_code);
1257	unsigned int tag = 0;
1258	unsigned int rclass = 0;
1259	unsigned int cmd = MFC_GETFS_CMD;
1260
1261	/* Restore, Step 37:
1262	 *     Issue MFC DMA command to copy context
1263	 *     restore code to local storage.
1264	 */
1265	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1266}
1267
1268static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1269{
1270	/* Restore, Step 34:
1271	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1272	 *     running) then adjust decrementer, set
1273	 *     decrementer running status in LSCSA,
1274	 *     and set decrementer "wrapped" status
1275	 *     in LSCSA.
1276	 */
1277	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1278		cycles_t resume_time = get_cycles();
1279		cycles_t delta_time = resume_time - csa->suspend_time;
1280
1281		csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1282		if (csa->lscsa->decr.slot[0] < delta_time) {
1283			csa->lscsa->decr_status.slot[0] |=
1284				 SPU_DECR_STATUS_WRAPPED;
1285		}
1286
1287		csa->lscsa->decr.slot[0] -= delta_time;
1288	} else {
1289		csa->lscsa->decr_status.slot[0] = 0;
1290	}
1291}
1292
1293static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1294{
1295	/* Restore, Step 35:
1296	 *     Copy the CSA.PU_MB data into the LSCSA.
1297	 */
1298	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1299}
1300
1301static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1302{
1303	/* Restore, Step 36:
1304	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1305	 */
1306	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1307}
1308
1309static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1310{
1311	struct spu_problem __iomem *prob = spu->problem;
1312	u32 complete;
1313
1314	/* Restore, Step 40:
1315	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1316	 *     context restore succeeded, otherwise context restore
1317	 *     failed.
1318	 */
1319	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1320		    SPU_STATUS_STOPPED_BY_STOP);
1321	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1322}
1323
1324static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1325{
1326	struct spu_priv2 __iomem *priv2 = spu->priv2;
1327
1328	/* Restore, Step 41:
1329	 *     Restore SPU_PrivCntl from the CSA.
1330	 */
1331	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1332	eieio();
1333}
1334
1335static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1336{
1337	struct spu_problem __iomem *prob = spu->problem;
1338	u32 mask;
1339
1340	/* Restore, Step 42:
1341	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1342	 *     restore the error or single step state.
1343	 */
1344	mask = SPU_STATUS_INVALID_INSTR |
1345	    SPU_STATUS_SINGLE_STEP |
1346	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1347	if (csa->prob.spu_status_R & mask) {
1348		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1349		eieio();
1350		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1351				SPU_STATUS_RUNNING);
1352	}
1353}
1354
1355static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1356{
1357	struct spu_problem __iomem *prob = spu->problem;
1358	u32 mask;
1359
1360	/* Restore, Step 43:
1361	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1362	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1363	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1364	 *     for SPU_Status[R]=0.
1365	 */
1366	mask = SPU_STATUS_INVALID_INSTR |
1367	    SPU_STATUS_SINGLE_STEP |
1368	    SPU_STATUS_STOPPED_BY_HALT |
1369	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1370	if (!(csa->prob.spu_status_R & mask)) {
1371		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1372		eieio();
1373		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1374				 SPU_STATUS_RUNNING);
1375		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1376		eieio();
1377		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1378				SPU_STATUS_RUNNING);
1379	}
1380}
1381
1382static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1383{
1384	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1385	unsigned int ls_offset = 0x0;
1386	unsigned int size = 16384;
1387	unsigned int tag = 0;
1388	unsigned int rclass = 0;
1389	unsigned int cmd = MFC_GET_CMD;
1390
1391	/* Restore, Step 44:
1392	 *     Issue a DMA command to restore the first
1393	 *     16kb of local storage from CSA.
1394	 */
1395	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1396}
1397
1398static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1399{
1400	struct spu_priv2 __iomem *priv2 = spu->priv2;
1401
1402	/* Restore, Step 47.
1403	 *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1404	 *     the queue.
1405	 */
1406	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1407	eieio();
1408}
1409
1410static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1411{
1412	/* Restore, Step 49:
1413	 *     Write INT_MASK_class0 with value of 0.
1414	 *     Write INT_MASK_class1 with value of 0.
1415	 *     Write INT_MASK_class2 with value of 0.
1416	 *     Write INT_STAT_class0 with value of -1.
1417	 *     Write INT_STAT_class1 with value of -1.
1418	 *     Write INT_STAT_class2 with value of -1.
1419	 */
1420	spin_lock_irq(&spu->register_lock);
1421	spu_int_mask_set(spu, 0, 0ul);
1422	spu_int_mask_set(spu, 1, 0ul);
1423	spu_int_mask_set(spu, 2, 0ul);
1424	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1425	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1426	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1427	spin_unlock_irq(&spu->register_lock);
1428}
1429
1430static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1431{
1432	struct spu_priv2 __iomem *priv2 = spu->priv2;
1433	int i;
1434
1435	/* Restore, Step 50:
1436	 *     If MFC_Cntl[Se]!=0 then restore
1437	 *     MFC command queues.
1438	 */
1439	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1440		for (i = 0; i < 8; i++) {
1441			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1442				 csa->priv2.puq[i].mfc_cq_data0_RW);
1443			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1444				 csa->priv2.puq[i].mfc_cq_data1_RW);
1445			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1446				 csa->priv2.puq[i].mfc_cq_data2_RW);
1447			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1448				 csa->priv2.puq[i].mfc_cq_data3_RW);
1449		}
1450		for (i = 0; i < 16; i++) {
1451			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1452				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1453			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1454				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1455			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1456				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1457			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1458				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1459		}
1460	}
1461	eieio();
1462}
1463
1464static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1465{
1466	struct spu_problem __iomem *prob = spu->problem;
1467
1468	/* Restore, Step 51:
1469	 *     Restore the PPU_QueryMask register from CSA.
1470	 */
1471	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1472	eieio();
1473}
1474
1475static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1476{
1477	struct spu_problem __iomem *prob = spu->problem;
1478
1479	/* Restore, Step 52:
1480	 *     Restore the PPU_QueryType register from CSA.
1481	 */
1482	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1483	eieio();
1484}
1485
1486static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1487{
1488	struct spu_priv2 __iomem *priv2 = spu->priv2;
1489
1490	/* Restore, Step 53:
1491	 *     Restore the MFC_CSR_TSQ register from CSA.
1492	 */
1493	out_be64(&priv2->spu_tag_status_query_RW,
1494		 csa->priv2.spu_tag_status_query_RW);
1495	eieio();
1496}
1497
1498static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1499{
1500	struct spu_priv2 __iomem *priv2 = spu->priv2;
1501
1502	/* Restore, Step 54:
1503	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1504	 *     registers from CSA.
1505	 */
1506	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1507	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1508	eieio();
1509}
1510
1511static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1512{
1513	struct spu_priv2 __iomem *priv2 = spu->priv2;
1514
1515	/* Restore, Step 55:
1516	 *     Restore the MFC_CSR_ATO register from CSA.
1517	 */
1518	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1519}
1520
1521static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1522{
1523	/* Restore, Step 56:
1524	 *     Restore the MFC_TCLASS_ID register from CSA.
1525	 */
1526	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1527	eieio();
1528}
1529
1530static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1531{
1532	u64 ch0_cnt, ch0_data;
1533	u64 ch1_data;
1534
1535	/* Restore, Step 57:
1536	 *    Set the Lock Line Reservation Lost Event by:
1537	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1538	 *      2. If CSA.SPU_Channel_0_Count=0 and
1539	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1540	 *         CSA.SPU_Event_Status[Lr]=0 then set
1541	 *         CSA.SPU_Event_Status_Count=1.
1542	 */
1543	ch0_cnt = csa->spu_chnlcnt_RW[0];
1544	ch0_data = csa->spu_chnldata_RW[0];
1545	ch1_data = csa->spu_chnldata_RW[1];
1546	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1547	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1548	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1549		csa->spu_chnlcnt_RW[0] = 1;
1550	}
1551}
1552
1553static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1554{
1555	/* Restore, Step 58:
1556	 *     If the status of the CSA software decrementer
1557	 *     "wrapped" flag is set, OR in a '1' to
1558	 *     CSA.SPU_Event_Status[Tm].
1559	 */
1560	if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1561		return;
1562
1563	if ((csa->spu_chnlcnt_RW[0] == 0) &&
1564	    (csa->spu_chnldata_RW[1] & 0x20) &&
1565	    !(csa->spu_chnldata_RW[0] & 0x20))
1566		csa->spu_chnlcnt_RW[0] = 1;
1567
1568	csa->spu_chnldata_RW[0] |= 0x20;
1569}
1570
1571static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1572{
1573	struct spu_priv2 __iomem *priv2 = spu->priv2;
1574	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1575	int i;
1576
1577	/* Restore, Step 59:
1578	 *	Restore the following CH: [0,3,4,24,25,27]
1579	 */
1580	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1581		idx = ch_indices[i];
1582		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1583		eieio();
1584		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1585		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1586		eieio();
1587	}
1588}
1589
1590static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1591{
1592	struct spu_priv2 __iomem *priv2 = spu->priv2;
1593	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1594	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1595	u64 idx;
1596	int i;
1597
1598	/* Restore, Step 60:
1599	 *     Restore the following CH: [9,21,23].
1600	 */
1601	ch_counts[0] = 1UL;
1602	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1603	ch_counts[2] = 1UL;
1604	for (i = 0; i < 3; i++) {
1605		idx = ch_indices[i];
1606		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1607		eieio();
1608		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1609		eieio();
1610	}
1611}
1612
1613static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1614{
1615	struct spu_priv2 __iomem *priv2 = spu->priv2;
1616
1617	/* Restore, Step 61:
1618	 *     Restore the SPU_LSLR register from CSA.
1619	 */
1620	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1621	eieio();
1622}
1623
1624static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1625{
1626	struct spu_priv2 __iomem *priv2 = spu->priv2;
1627
1628	/* Restore, Step 62:
1629	 *     Restore the SPU_Cfg register from CSA.
1630	 */
1631	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1632	eieio();
1633}
1634
1635static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1636{
1637	/* Restore, Step 63:
1638	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1639	 *     Not performed by this implementation.
1640	 */
1641}
1642
1643static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1644{
1645	struct spu_problem __iomem *prob = spu->problem;
1646
1647	/* Restore, Step 64:
1648	 *     Restore SPU_NPC from CSA.
1649	 */
1650	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1651	eieio();
1652}
1653
1654static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1655{
1656	struct spu_priv2 __iomem *priv2 = spu->priv2;
1657	int i;
1658
1659	/* Restore, Step 65:
1660	 *     Restore MFC_RdSPU_MB from CSA.
1661	 */
1662	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1663	eieio();
1664	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1665	for (i = 0; i < 4; i++) {
1666		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1667	}
1668	eieio();
1669}
1670
1671static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1672{
1673	struct spu_problem __iomem *prob = spu->problem;
1674	u32 dummy = 0;
1675
1676	/* Restore, Step 66:
1677	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1678	 *     read from the PPU_MB register.
1679	 */
1680	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1681		dummy = in_be32(&prob->pu_mb_R);
1682		eieio();
1683	}
1684}
1685
1686static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1687{
1688	struct spu_priv2 __iomem *priv2 = spu->priv2;
1689	u64 dummy = 0UL;
1690
1691	/* Restore, Step 66:
1692	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1693	 *     read from the PPUINT_MB register.
1694	 */
1695	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1696		dummy = in_be64(&priv2->puint_mb_R);
1697		eieio();
1698		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1699		eieio();
1700	}
1701}
1702
1703static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1704{
1705	/* Restore, Step 69:
1706	 *     Restore the MFC_SR1 register from CSA.
1707	 */
1708	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1709	eieio();
1710}
1711
1712static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1713{
1714	struct spu_context *ctx = spu->ctx;
1715
1716	spu_cpu_affinity_set(spu, ctx->last_ran);
1717}
1718
1719static inline void restore_other_spu_access(struct spu_state *csa,
1720					    struct spu *spu)
1721{
1722	/* Restore, Step 70:
1723	 *     Restore other SPU mappings to this SPU. TBD.
1724	 */
1725}
1726
1727static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1728{
1729	struct spu_problem __iomem *prob = spu->problem;
1730
1731	/* Restore, Step 71:
1732	 *     If CSA.SPU_Status[R]=1 then write
1733	 *     SPU_RunCntl[R0R1]='01'.
1734	 */
1735	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1736		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1737		eieio();
1738	}
1739}
1740
1741static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1742{
1743	struct spu_priv2 __iomem *priv2 = spu->priv2;
1744
1745	/* Restore, Step 72:
1746	 *    Restore the MFC_CNTL register for the CSA.
1747	 */
1748	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1749	eieio();
1750
1751	/*
1752	 * The queue is put back into the same state that was evident prior to
1753	 * the context switch. The suspend flag is added to the saved state in
1754	 * the csa, if the operational state was suspending or suspended. In
1755	 * this case, the code that suspended the mfc is responsible for
1756	 * continuing it. Note that SPE faults do not change the operational
1757	 * state of the spu.
1758	 */
1759}
1760
1761static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1762{
1763	/* Restore, Step 73:
1764	 *     Enable user-space access (if provided) to this
1765	 *     SPU by mapping the virtual pages assigned to
1766	 *     the SPU memory-mapped I/O (MMIO) for problem
1767	 *     state. TBD.
1768	 */
1769}
1770
1771static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1772{
1773	/* Restore, Step 74:
1774	 *     Reset the "context switch active" flag.
1775	 *     Not performed by this implementation.
1776	 */
1777}
1778
1779static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1780{
1781	/* Restore, Step 75:
1782	 *     Re-enable SPU interrupts.
1783	 */
1784	spin_lock_irq(&spu->register_lock);
1785	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1786	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1787	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1788	spin_unlock_irq(&spu->register_lock);
1789}
1790
1791static int quiece_spu(struct spu_state *prev, struct spu *spu)
1792{
1793	/*
1794	 * Combined steps 2-18 of SPU context save sequence, which
1795	 * quiesce the SPU state (disable SPU execution, MFC command
1796	 * queues, decrementer, SPU interrupts, etc.).
1797	 *
1798	 * Returns      0 on success.
1799	 *              2 if failed step 2.
1800	 *              6 if failed step 6.
1801	 */
1802
1803	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1804		return 2;
1805	}
1806	disable_interrupts(prev, spu);	        /* Step 3. */
1807	set_watchdog_timer(prev, spu);	        /* Step 4. */
1808	inhibit_user_access(prev, spu);	        /* Step 5. */
1809	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1810		return 6;
1811	}
1812	set_switch_pending(prev, spu);	        /* Step 7. */
1813	save_mfc_cntl(prev, spu);		/* Step 8. */
1814	save_spu_runcntl(prev, spu);	        /* Step 9. */
1815	save_mfc_sr1(prev, spu);	        /* Step 10. */
1816	save_spu_status(prev, spu);	        /* Step 11. */
1817	save_mfc_stopped_status(prev, spu);     /* Step 12. */
1818	halt_mfc_decr(prev, spu);	        /* Step 13. */
1819	save_timebase(prev, spu);		/* Step 14. */
1820	remove_other_spu_access(prev, spu);	/* Step 15. */
1821	do_mfc_mssync(prev, spu);	        /* Step 16. */
1822	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1823	handle_pending_interrupts(prev, spu);	/* Step 18. */
1824
1825	return 0;
1826}
1827
1828static void save_csa(struct spu_state *prev, struct spu *spu)
1829{
1830	/*
1831	 * Combine steps 19-44 of SPU context save sequence, which
1832	 * save regions of the privileged & problem state areas.
1833	 */
1834
1835	save_mfc_queues(prev, spu);	/* Step 19. */
1836	save_ppu_querymask(prev, spu);	/* Step 20. */
1837	save_ppu_querytype(prev, spu);	/* Step 21. */
1838	save_ppu_tagstatus(prev, spu);  /* NEW.     */
1839	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1840	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1841	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1842	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1843	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1844	save_mfc_cmd(prev, spu);	/* Step 26a - moved from 44. */
1845	purge_mfc_queue(prev, spu);	/* Step 27. */
1846	wait_purge_complete(prev, spu);	/* Step 28. */
1847	setup_mfc_sr1(prev, spu);	/* Step 30. */
1848	save_spu_npc(prev, spu);	/* Step 31. */
1849	save_spu_privcntl(prev, spu);	/* Step 32. */
1850	reset_spu_privcntl(prev, spu);	/* Step 33. */
1851	save_spu_lslr(prev, spu);	/* Step 34. */
1852	reset_spu_lslr(prev, spu);	/* Step 35. */
1853	save_spu_cfg(prev, spu);	/* Step 36. */
1854	save_pm_trace(prev, spu);	/* Step 37. */
1855	save_mfc_rag(prev, spu);	/* Step 38. */
1856	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1857	save_ppu_mb(prev, spu);	        /* Step 40. */
1858	save_ppuint_mb(prev, spu);	/* Step 41. */
1859	save_ch_part1(prev, spu);	/* Step 42. */
1860	save_spu_mb(prev, spu);	        /* Step 43. */
1861	reset_ch(prev, spu);	        /* Step 45. */
1862}
1863
1864static void save_lscsa(struct spu_state *prev, struct spu *spu)
1865{
1866	/*
1867	 * Perform steps 46-57 of SPU context save sequence,
1868	 * which save regions of the local store and register
1869	 * file.
1870	 */
1871
1872	resume_mfc_queue(prev, spu);	/* Step 46. */
1873	/* Step 47. */
1874	setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1875	set_switch_active(prev, spu);	/* Step 48. */
1876	enable_interrupts(prev, spu);	/* Step 49. */
1877	save_ls_16kb(prev, spu);	/* Step 50. */
1878	set_spu_npc(prev, spu);	        /* Step 51. */
1879	set_signot1(prev, spu);		/* Step 52. */
1880	set_signot2(prev, spu);		/* Step 53. */
1881	send_save_code(prev, spu);	/* Step 54. */
1882	set_ppu_querymask(prev, spu);	/* Step 55. */
1883	wait_tag_complete(prev, spu);	/* Step 56. */
1884	wait_spu_stopped(prev, spu);	/* Step 57. */
1885}
1886
1887static void force_spu_isolate_exit(struct spu *spu)
1888{
1889	struct spu_problem __iomem *prob = spu->problem;
1890	struct spu_priv2 __iomem *priv2 = spu->priv2;
1891
1892	/* Stop SPE execution and wait for completion. */
1893	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1894	iobarrier_rw();
1895	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1896
1897	/* Restart SPE master runcntl. */
1898	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1899	iobarrier_w();
1900
1901	/* Initiate isolate exit request and wait for completion. */
1902	out_be64(&priv2->spu_privcntl_RW, 4LL);
1903	iobarrier_w();
1904	out_be32(&prob->spu_runcntl_RW, 2);
1905	iobarrier_rw();
1906	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1907				& SPU_STATUS_STOPPED_BY_STOP));
1908
1909	/* Reset load request to normal. */
1910	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1911	iobarrier_w();
1912}
1913
1914/**
1915 * stop_spu_isolate
1916 *	Check SPU run-control state and force isolated
1917 *	exit function as necessary.
1918 */
1919static void stop_spu_isolate(struct spu *spu)
1920{
1921	struct spu_problem __iomem *prob = spu->problem;
1922
1923	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1924		/* The SPU is in isolated state; the only way
1925		 * to get it out is to perform an isolated
1926		 * exit (clean) operation.
1927		 */
1928		force_spu_isolate_exit(spu);
1929	}
1930}
1931
1932static void harvest(struct spu_state *prev, struct spu *spu)
1933{
1934	/*
1935	 * Perform steps 2-25 of SPU context restore sequence,
1936	 * which resets an SPU either after a failed save, or
1937	 * when using SPU for first time.
1938	 */
1939
1940	disable_interrupts(prev, spu);	        /* Step 2.  */
1941	inhibit_user_access(prev, spu);	        /* Step 3.  */
1942	terminate_spu_app(prev, spu);	        /* Step 4.  */
1943	set_switch_pending(prev, spu);	        /* Step 5.  */
1944	stop_spu_isolate(spu);			/* NEW.     */
1945	remove_other_spu_access(prev, spu);	/* Step 6.  */
1946	suspend_mfc_and_halt_decr(prev, spu);	/* Step 7.  */
1947	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1948	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1949		clear_spu_status(prev, spu);	/* Step 10. */
1950	do_mfc_mssync(prev, spu);	        /* Step 11. */
1951	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1952	handle_pending_interrupts(prev, spu);	/* Step 13. */
1953	purge_mfc_queue(prev, spu);	        /* Step 14. */
1954	wait_purge_complete(prev, spu);	        /* Step 15. */
1955	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1956	reset_spu_lslr(prev, spu);              /* Step 17. */
1957	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1958	spu_invalidate_slbs(spu);		/* Step 19. */
1959	reset_ch_part1(prev, spu);	        /* Step 20. */
1960	reset_ch_part2(prev, spu);	        /* Step 21. */
1961	enable_interrupts(prev, spu);	        /* Step 22. */
1962	set_switch_active(prev, spu);	        /* Step 23. */
1963	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1964	resume_mfc_queue(prev, spu);	        /* Step 25. */
1965}
1966
1967static void restore_lscsa(struct spu_state *next, struct spu *spu)
1968{
1969	/*
1970	 * Perform steps 26-40 of SPU context restore sequence,
1971	 * which restores regions of the local store and register
1972	 * file.
1973	 */
1974
1975	set_watchdog_timer(next, spu);	        /* Step 26. */
1976	setup_spu_status_part1(next, spu);	/* Step 27. */
1977	setup_spu_status_part2(next, spu);	/* Step 28. */
1978	restore_mfc_rag(next, spu);	        /* Step 29. */
1979	/* Step 30. */
1980	setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1981	set_spu_npc(next, spu);	                /* Step 31. */
1982	set_signot1(next, spu);	                /* Step 32. */
1983	set_signot2(next, spu);	                /* Step 33. */
1984	setup_decr(next, spu);	                /* Step 34. */
1985	setup_ppu_mb(next, spu);	        /* Step 35. */
1986	setup_ppuint_mb(next, spu);	        /* Step 36. */
1987	send_restore_code(next, spu);	        /* Step 37. */
1988	set_ppu_querymask(next, spu);	        /* Step 38. */
1989	wait_tag_complete(next, spu);	        /* Step 39. */
1990	wait_spu_stopped(next, spu);	        /* Step 40. */
1991}
1992
1993static void restore_csa(struct spu_state *next, struct spu *spu)
1994{
1995	/*
1996	 * Combine steps 41-76 of SPU context restore sequence, which
1997	 * restore regions of the privileged & problem state areas.
1998	 */
1999
2000	restore_spu_privcntl(next, spu);	/* Step 41. */
2001	restore_status_part1(next, spu);	/* Step 42. */
2002	restore_status_part2(next, spu);	/* Step 43. */
2003	restore_ls_16kb(next, spu);	        /* Step 44. */
2004	wait_tag_complete(next, spu);	        /* Step 45. */
2005	suspend_mfc(next, spu);	                /* Step 46. */
2006	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
2007	issue_mfc_tlbie(next, spu);	        /* Step 48. */
2008	clear_interrupts(next, spu);	        /* Step 49. */
2009	restore_mfc_queues(next, spu);	        /* Step 50. */
2010	restore_ppu_querymask(next, spu);	/* Step 51. */
2011	restore_ppu_querytype(next, spu);	/* Step 52. */
2012	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
2013	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
2014	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
2015	restore_mfc_tclass_id(next, spu);	/* Step 56. */
2016	set_llr_event(next, spu);	        /* Step 57. */
2017	restore_decr_wrapped(next, spu);	/* Step 58. */
2018	restore_ch_part1(next, spu);	        /* Step 59. */
2019	restore_ch_part2(next, spu);	        /* Step 60. */
2020	restore_spu_lslr(next, spu);	        /* Step 61. */
2021	restore_spu_cfg(next, spu);	        /* Step 62. */
2022	restore_pm_trace(next, spu);	        /* Step 63. */
2023	restore_spu_npc(next, spu);	        /* Step 64. */
2024	restore_spu_mb(next, spu);	        /* Step 65. */
2025	check_ppu_mb_stat(next, spu);	        /* Step 66. */
2026	check_ppuint_mb_stat(next, spu);	/* Step 67. */
2027	spu_invalidate_slbs(spu);		/* Modified Step 68. */
2028	restore_mfc_sr1(next, spu);	        /* Step 69. */
2029	set_int_route(next, spu);		/* NEW      */
2030	restore_other_spu_access(next, spu);	/* Step 70. */
2031	restore_spu_runcntl(next, spu);	        /* Step 71. */
2032	restore_mfc_cntl(next, spu);	        /* Step 72. */
2033	enable_user_access(next, spu);	        /* Step 73. */
2034	reset_switch_active(next, spu);	        /* Step 74. */
2035	reenable_interrupts(next, spu);	        /* Step 75. */
2036}
2037
2038static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2039{
2040	int rc;
2041
2042	/*
2043	 * SPU context save can be broken into three phases:
2044	 *
2045	 *     (a) quiesce [steps 2-16].
2046	 *     (b) save of CSA, performed by PPE [steps 17-42]
2047	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2048	 *
2049	 * Returns      0 on success.
2050	 *              2,6 if failed to quiece SPU
2051	 *              53 if SPU-side of save failed.
2052	 */
2053
2054	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2055	switch (rc) {
2056	default:
2057	case 2:
2058	case 6:
2059		harvest(prev, spu);
2060		return rc;
2061		break;
2062	case 0:
2063		break;
2064	}
2065	save_csa(prev, spu);	                /* Steps 17-43. */
2066	save_lscsa(prev, spu);	                /* Steps 44-53. */
2067	return check_save_status(prev, spu);	/* Step 54.     */
2068}
2069
2070static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2071{
2072	int rc;
2073
2074	/*
2075	 * SPU context restore can be broken into three phases:
2076	 *
2077	 *    (a) harvest (or reset) SPU [steps 2-24].
2078	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2079	 *    (c) restore CSA [steps 41-76], performed by PPE.
2080	 *
2081	 * The 'harvest' step is not performed here, but rather
2082	 * as needed below.
2083	 */
2084
2085	restore_lscsa(next, spu);	        /* Steps 24-39. */
2086	rc = check_restore_status(next, spu);	/* Step 40.     */
2087	switch (rc) {
2088	default:
2089		/* Failed. Return now. */
2090		return rc;
2091		break;
2092	case 0:
2093		/* Fall through to next step. */
2094		break;
2095	}
2096	restore_csa(next, spu);
2097
2098	return 0;
2099}
2100
2101/**
2102 * spu_save - SPU context save, with locking.
2103 * @prev: pointer to SPU context save area, to be saved.
2104 * @spu: pointer to SPU iomem structure.
2105 *
2106 * Acquire locks, perform the save operation then return.
2107 */
2108int spu_save(struct spu_state *prev, struct spu *spu)
2109{
2110	int rc;
2111
2112	acquire_spu_lock(spu);	        /* Step 1.     */
2113	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2114	release_spu_lock(spu);
2115	if (rc != 0 && rc != 2 && rc != 6) {
2116		panic("%s failed on SPU[%d], rc=%d.\n",
2117		      __func__, spu->number, rc);
2118	}
2119	return 0;
2120}
2121EXPORT_SYMBOL_GPL(spu_save);
2122
2123/**
2124 * spu_restore - SPU context restore, with harvest and locking.
2125 * @new: pointer to SPU context save area, to be restored.
2126 * @spu: pointer to SPU iomem structure.
2127 *
2128 * Perform harvest + restore, as we may not be coming
2129 * from a previous successful save operation, and the
2130 * hardware state is unknown.
2131 */
2132int spu_restore(struct spu_state *new, struct spu *spu)
2133{
2134	int rc;
2135
2136	acquire_spu_lock(spu);
2137	harvest(NULL, spu);
2138	spu->slb_replace = 0;
2139	rc = __do_spu_restore(new, spu);
2140	release_spu_lock(spu);
2141	if (rc) {
2142		panic("%s failed on SPU[%d] rc=%d.\n",
2143		       __func__, spu->number, rc);
2144	}
2145	return rc;
2146}
2147EXPORT_SYMBOL_GPL(spu_restore);
2148
2149static void init_prob(struct spu_state *csa)
2150{
2151	csa->spu_chnlcnt_RW[9] = 1;
2152	csa->spu_chnlcnt_RW[21] = 16;
2153	csa->spu_chnlcnt_RW[23] = 1;
2154	csa->spu_chnlcnt_RW[28] = 1;
2155	csa->spu_chnlcnt_RW[30] = 1;
2156	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2157	csa->prob.mb_stat_R = 0x000400;
2158}
2159
2160static void init_priv1(struct spu_state *csa)
2161{
2162	/* Enable decode, relocate, tlbie response, master runcntl. */
2163	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2164	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2165	    MFC_STATE1_PROBLEM_STATE_MASK |
2166	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2167
2168	/* Enable OS-specific set of interrupts. */
2169	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2170	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2171	    CLASS0_ENABLE_SPU_ERROR_INTR;
2172	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2173	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2174	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2175	    CLASS2_ENABLE_SPU_HALT_INTR |
2176	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2177}
2178
2179static void init_priv2(struct spu_state *csa)
2180{
2181	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2182	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2183	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2184	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2185}
2186
2187/**
2188 * spu_alloc_csa - allocate and initialize an SPU context save area.
2189 *
2190 * Allocate and initialize the contents of an SPU context save area.
2191 * This includes enabling address translation, interrupt masks, etc.,
2192 * as appropriate for the given OS environment.
2193 *
2194 * Note that storage for the 'lscsa' is allocated separately,
2195 * as it is by far the largest of the context save regions,
2196 * and may need to be pinned or otherwise specially aligned.
2197 */
2198int spu_init_csa(struct spu_state *csa)
2199{
2200	int rc;
2201
2202	if (!csa)
2203		return -EINVAL;
2204	memset(csa, 0, sizeof(struct spu_state));
2205
2206	rc = spu_alloc_lscsa(csa);
2207	if (rc)
2208		return rc;
2209
2210	spin_lock_init(&csa->register_lock);
2211
2212	init_prob(csa);
2213	init_priv1(csa);
2214	init_priv2(csa);
2215
2216	return 0;
2217}
2218
2219void spu_fini_csa(struct spu_state *csa)
2220{
2221	spu_free_lscsa(csa);
2222}
2223